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Abstract. Let p, λ be real numbers such that 1 < p < ∞, and 0 < λ < 1. Also let Lp,λ(T) be Morrey spaces

on the unit circle T, and L
p,λ
0 (T) the closure of C(T) in Lp,λ(T). Zorko [7] gave the predual Zq,λ(T) (1/p +1/q =

1) of Lp,λ(T). In this article, we show a property of L
p,λ
0 (T) and prove in detail that L

p,λ
0 (T) is the predual of

Zq,λ(T), whose fact is stated in Adams-Xiao [1].

1. Introduction and Main results

Let p be in 1 < p < ∞, q the conjugate exponent of p, and 0 < λ < 1. Also let Lp(T)

be the usual Lp-space on the unit circle T with respect to the normalized Haar measure. The
Morrey spaces Lp,λ(T) are defined by

Lp,λ(T) =
{
f

∣∣∣∣ ‖f ‖p,λ = sup
I⊂T=[−π,π)
I �=∅:interval

(
1

|I |λ
∫

I

|f |pdx

)1/p

< ∞
}

,

and L
p,λ

0 (T) the closure of C(T) in Lp,λ(T), where C(T) is the set of all continuous functions

on T. Then it is easy to see that Lp,λ(T) is a Banach space (cf. Kufner [3], Torchinsky
[6; p. 215]). Also Zq,λ(T) (1/p + 1/q = 1) are defined by {f | ‖f ‖Zq,λ < ∞}, where

‖f ‖Zq,λ = inf

{ ∞∑
k=1

|ck|
∣∣∣∣ f (x) =

∞∑
k=1

ckak(x), ck ∈ C, ak(x) : (q, λ)-block

}
,

where ak(x) is called (q, λ)-block, if
(1) supp ak ⊂ I

(2) ‖ak‖q ≤ 1
|I |λ/p , where 1/p + 1/q = 1,

for some interval I . In particular, ak(x) is called (q, λ)-atom, if ak satisfies
∫
I
ak(x)dx = 0,

which is called cancellation property. Zq,λ(T) is a Banach space with the norm ‖·‖Zq,λ . Zorko
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[7] introduced the space Zq,λ(T), and proved that Zq,λ(T) is the predual of Lp,λ(T). Also

she [7] defined L
p,λ

0 (T), and remarked some properties. Adams-Xiao [1] pointed out that

L
p,λ
0 (T) is the predual of Zq,λ(T), but they did not give the reason why they insisted that the

proof is akin to that of H 1-V MO in Stein [5] (cf. [6]). Like Adams-Xiao [1], we think that

Lp,λ(T), Zq,λ(T), L
p,λ

0 (T) are similar to BMO(T),H 1(T), V MO(T), respectively.

In this article, we show some properties of L
p,λ

0 (T), which is similar to that of

V MO(T). Next we give a detailed proof of the fact that L
p,λ

0 (T) is the predual of Zq,λ(T), by
the method of Coifman-Weiss [2]. We expect that our proofs in the case of T may be available
to Euclidean case Rn.

Our results are as follows:

THEOREM 1.1. Let 1 ≤ p < ∞, and 0 < λ < 1. Also let φ be an infinitely dif-

ferentiable function such that supp φ ⊂ [−1, 1], 1
2π

∫ π

−π
φ(x)dx = 1 and φ ≥ 0, and let

φj (x) = jφ(jx) (j = 1, 2, . . . ). Then, the following properties are equivalent:
(1) f ∈ L

p,λ
0 (T)

(2) f ∈ Lp,λ(T) and ‖τyf − f ‖p,λ → 0 (y → 0),
where τyf (x) = f (x − y)

(3) f ∈ Lp,λ(T) and ‖f − f ∗ φj‖p,λ → 0 (j → ∞)

(4) limδ→0 sup|I |≤δ,I⊂T:interval
1

|I |λ
∫
I |f (x)|pdx = 0

THEOREM 1.2. Let 1 < p < ∞, and 0 < λ < 1. Then L
p,λ
0 (T) is the predual of

Zq,λ(T), where 1/p + 1/q = 1.

Throughout this paper, the dual space of a Banach space X is denoted by X∗. For an
interval I , |I | denotes the measure of I with respect to the normalized Haar measure of T .

Also the letter C stands for a constant not necessarily the same at each occurrence. A ∼ B

stands for C−1A ≤ B ≤ CA for some C > 0.

2. Proofs of Main Theorems

2.1. Proof of Theorem 1.1

PROOF. According to Zorko [7], it is easy to prove that (1), (2) and (3) are equivalent.
So, we omit their proofs. We show (4), when we assume (1). By the definition, for f ∈
L

p,λ

0 (T) and for any η > 0 there exists g ∈ C(T) such that ‖f − g‖p,λ < η. Then for an
interval I ⊂ T with |I | ≤ δ, we have

(
1

|I |λ
∫

I

|f (x)|pdx

)1/p

≤
(

1

|I |λ
∫

I

|f (x) − g(x)|pdx

)1/p

+
(

1

|I |λ
∫

I

|g(x)|pdx

)1/p
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≤ η +
(

1

|I |λ
∫

I

|g(x)|pdx

)1/p

≤ η + |I | 1−λ
p ‖g‖C(T)

≤ η + δ
1−λ
p ‖g‖C(T) ,

and

lim
δ→0

sup
|I |≤δ,I :interval

1

|I |λ
∫

I

|f (x)|pdx ≤ ηp .

So we obtain (4). Next we show (3), when we assume (4). For any η > 0, there exists δ0 > 0
such that

sup
|I |≤δ0,I :interval

1

|I |λ
∫

I

|f (x)|pdx < ηp .

Then for |I | ≤ δ0, we have

1

|I |λ
∫

I

|f ∗ φj (x)|pdx ≤ 1

|I |λ
∫

I

(
1

2π

∫ π

−π

|f (x − y)|pφj (y)dy

)
dx

= 1

2π

∫ π

−π

φj (y)
1

|I |λ
∫

I

|f (x − y)|pdxdy

≤ 1

|I |λ
∫

I

|f (x)|pdx

< ηp

by the Hölder inequality. Hence, for an interval I ⊂ T with |I | ≤ δ0, we have

(
1

|I |λ
∫

I

|f (x) − f ∗ φj (x)|pdx

)1/p

≤
(

1

|I |λ
∫

I

|f (x)|pdx

)1/p

+
(

1

|I |λ
∫

I

|f ∗ φj (x)|pdx

)1/p

≤ 2

(
sup

|I |≤δ0,I :interval

1

|I |λ
∫

I

|f (x)|pdx

)1/p

< 2η .

On the other hand, for an interval I ⊂ T with |I | > δ0, we have

1

|I |λ
∫

I

|f (x) − f ∗ φj (x)|pdx ≤ 2π

δλ
0

1

2π

∫ π

−π

|f (x) − f ∗ φj (x)|pdx

= 2π

δλ
0

‖f − f ∗ φj‖p
p .



188 TAKASHI IZUMI, ENJI SATO AND KÔZÔ YABUTA

After all, we obtain

sup
I⊂T:interval

1

|I |λ
∫

I

|f (x) − f ∗ φj (x)|pdx < (2η)p + 2π

δλ
0

‖f − f ∗ φj‖p
p .

Therefore, we have

lim
j→∞ ‖f − f ∗ φj‖p,λ = 0 .

�

REMARK 2.1. Let f be in Zq,λ(T) such that f = ∑∞
k=1 ckak, where

∑
k |ck| <

∞, ak:(q, λ)-block. Then f = ∑
k ckak converges in L1(T) by the definition of Zq,λ(T)

and Hölder’s inequality.

2.2. Proof of Theorem 1.2. For the proof, we give some lemmas.

LEMMA 2.2 (Zorko [7]). Let 1 < p < ∞, 0 < λ < 1 and q the conjugate exponent
of p. Then the dual space of Zq,λ(T) is Lp,λ(T).

LEMMA 2.3. Let 1 < p < ∞ and q be the conjugate exponent. Also let 0 < λ < 1.
Then every f ∈ Zq,λ(T) can be decomposed into a sum of block and atoms:

f = c0a0 +
∞∑

k=1

ckak ,

where ck ∈ C and |c0| + ∑∞
k=1 |ck| ≤ C‖f ‖Zq,λ , a0 is a (q, λ)-block with supp a0 ⊂ T, a′

ks

are (q, λ)-atoms such that supp ak ⊂ Ik satisfying |Ik| ≤ 1
4 .

PROOF. Let T = [0, 2π), and f ∈ Zq,λ(T). Then, f is decomposed so that

f =
∞∑

k=0

c′
k bk ,

where c′
k ∈ C,

∑ |c′
k| ≤ 2‖f ‖Zq,λ , and {bk}∞k=0 are (q, λ)-blocks. Let b(x) be bk(x) for any

k ≥ 0, and A a set of functions defined by

A :=
{
bk

∣∣∣∣ supp bk ⊂ I, ‖bk‖q ≤ 1

|I |λ/p
, and |I | >

1

4

}
.

In the case of |I | ≤ 1
4 , we define b1

1, b
1
2, I1 by

b1
1(x) = b(x) − b(x − |I |)

2
λ−1
p

+1
,

b1
2(x) = b(x) + b(x − |I |)

2
λ−1
p

+1
,
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I1 = I ∪ (I + |I |) .

Then, we have supp b1
j ⊂ I1 (j = 1, 2) and

(∫
I1

|b1
j (x)|qdx

)1/q

=
(

2
∫

I

|b(x)|qdx

)1/q

2− λ−1
p

−1

≤ 2
1
q − λ−1

p −1 1

|I |λ/p

= 2−λ/p 1

|I |λ/p
= 1

|I1|λ/p
(j = 1, 2) ,

which shows that b1
j is a (q, λ)-block (j = 1, 2). We also have

∫ 2π

0
b1

1(x) dx = 0 ,

2
λ−1
p b1

1(x) + 2
λ−1
p b1

2(x) = b(x) − b(x − |I |)
2

+ b(x) + b(x − |I |)
2

= b(x) .

So, b1
1 is a (q, λ)-atom. When we set α = 2

λ−1
p and a1

k (x) = b1
1(x), we have bk(x) =

αa1
k (x) + αb1

2(x). Next, if we have |I1| ≤ 1
4 , there exists a natural number 	 ≥ 3 such that

1
2	 < |I1| ≤ 1

2	−1 . So, we decompose b1
2(x) like b(x) and define a2

k , b
2
2, I2 by

a2
k (x) = b1

2(x) − b1
2(x − |I1|)

2
λ−1
p +1

,

b2
2(x) = b1

2(x) + b1
2(x − |I1|)

2
λ−1
p +1

,

I2 = I1 ∪ (I1 + |I1|) .

Then we have ∫ 2π

0
a2
k (x)dx = 0 ,

b1
2(x) = αa2

k (x) + αb2
2(x) ,

bk(x) = αa1
k (x) + αb1

2(x)

= αa1
k (x) + α2a2

k (x) + α2b2
2(x) ,

and hence, we see that a1
k , a

2
k are (q, λ)-atoms and b2

2 is a (q, λ)-block. In fact,

(∫
I2

|b2
2(x)|qdx

)1/q

≤ 2−λ/p|I1|−λ/p = |I2|−λ/p .
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We repeat this process 	 times until we have |I	| > 1
4 . After all, we get

bk(x) =
	∑

j=1

αj a
j
k (x) + α	b	

2(x) ,

where α = 2
λ−1
p , a

j
k (j = 1, . . . , 	) : (q, λ)-atoms with supp a

j
k ⊂ Ij , and b	

2 : (q, λ)-block

with supp b	
k ⊂ I	. When we set 	k = 	, we have

bk(x) =
	k∑

j=1

αj a
j
k (x) + α	k b

	k

2 (x) .

After we repeat this process for bk , we obtain

f (x) =
∑
bk �∈A

	k∑
	=1

c′
kα

	a	
k(x) +

∑
bk �∈A

c′
kα

	k b
	k

2 (x) +
∑
bk∈A

c′
kbk(x) .

Noting 0 < α < 1, we have

∑
bk �∈A

	k∑
	=1

|c′
k|α	 +

∑
bk �∈A

|c′
k|α	k +

∑
bk∈A

|c′
k| ≤

(
1

1 − α
+ α + 1

) ∞∑
k=0

|c′
k| .

Also when we define

a0(x) =
∑

bk �∈A c′
kα

	k b
	k

2 (x) + ∑
bk∈A c′

kbk(x)

4λ/p
(∑

bk �∈A |c′
k|α	k + ∑

bk∈A |c′
k|

) ,

we have that ‖a0‖q ≤ 1, supp a0 ⊂ T = [0, 2π) and a0 : (q, λ)-block, since

(
1

2π

∫ 2π

0

∣∣∣∣
∑
bk �∈A

c′
kα

	k b
	k

2 (x) +
∑
bk∈A

c′
kbk(x)

∣∣∣∣
q

dx

)1/q

≤ 4λ/p

( ∑
bk �∈A

|c′
k|α	k +

∑
bk∈A

|c′
k|

)
.

Moreover, we obtain

f (x) = 4λ/p

( ∑
bk �∈A

|c′
k|α	k +

∑
bk∈A

|c′
k|

)
a0(x) +

∑
bk �∈A

	k∑
	=1

c′
kα

	a	
k(x)

and

4λ/p

( ∑
bk �∈A

|c′
k|α	k +

∑
bk∈A

|c′
k|

)
+

∑
bk �∈A

	k∑
	=1

|c′
k|α	 ≤ 2

(
4λ/p + 1

1 − α

)
‖f ‖Zq,λ .

�
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LEMMA 2.4. Let n be any positive integer, Bn
j = [ j−1

3n 2π,
j
3n 2π) (j = 1, . . . , 3n),

and B̃n
j = 3Bn

j , where the center of B̃n
j is the same as the center of Bn

j , and |B̃n
j | = 3|Bn

j |.
Also let B0 = B0

1 = [0, 2π), and B̃0 = B̃0
1 = [0, 2π). Then, f ∈ Zq,λ(T) has the represen-

tation

f (x) = λ0a0(x) +
∞∑

n=1

3n∑
j=1

λn
j a

n
j (x) ,

where a0 : (q, λ)-block, an
j : (q, λ)-atoms, supp a0 ⊂ T, supp an

j ⊂ B̃n
j , and |λ0| +∑

j,n |λn
j | ≤ C‖f ‖Zq,λ .

PROOF. By Lemma 2.3, f ∈ Zq,λ(T) can be decomposed into a sum of block and
atoms:

f = c0b0 +
∞∑

k=1

ckbk ,

where ck ∈ C, |c0| + ∑∞
k=1 |ck| ≤ C‖f ‖Zq,λ , and b0 is a (q, λ)-block with supp b0 ⊂ T, and

bk’s are (q, λ)-atoms such that supp bk ⊂ Ik satisfying |Ik| ≤ 1
4 . For Ik with 1

32 < |Ik | ≤ 1
3 ,

there exists j ∈ {1, 2, 3} such that Ik ∩ B1
j �= ∅. For B1

1 we let Λ1
1 be the index set k ∈ N,

determined by those bk with 1
32 < |Ik| ≤ 1

3 and Ik ∩ B1
1 �= ∅. Then, we see that Ik ⊂ B̃1

1 for

k ∈ Λ1
1 and

∥∥∥ ∑
k∈Λ1

1

ckbk

∥∥∥
q

≤
∑
k∈Λ1

1

|ck| ‖bk‖q ≤
∑
k∈Λ1

1

|ck| |B̃1
1 |−λ/p32λ/p .

So, when we define

a1
1 =

∑
k∈Λ1

1
ckbk

32λ/p
∑

k∈Λ1
1
|ck| and λ1

1 =
∑
k∈Λ1

1

|ck|32λ/p ,

we have supp a1
1 ⊂ B̃1

1 , ‖a1
1‖q ≤ 1

|B̃1
1 |λ/p

, and a1
1 satisfies the cancellation property, that is,

a1
1 is a (q, λ)-atom supported by B̃1

1 , and

λ1
1a

1
1 =

∑
k∈Λ1

1

ckbk .

Next for B1
2 we let Λ1

2 be the index set determined by bk in {bj } with 1
32 < |Ik| ≤ 1

3 and

Ik ∩ B1
2 �= ∅, excluding bk which we have already chosen before. We construct (q, λ)-atom

a1
2 in the same way as for B1

1 . Similarly we construct (q, λ)-atom a1
3 for B1

3 . We do this
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process for bk with 1
33 < |Ik| ≤ 1

32 , and obtain the index set Λ2
j , (q, λ)-atoms a2

j with

supp a2
j ⊂ B̃2

j , and numbers λ2
j (j = 1, . . . , 32), satisfying

λ2
j a

2
j =

∑
k∈Λ2

j

ckbk .

After that, we repeat this process. In the n-th step, for bk with 1
3n+1 < |Ik| ≤ 1

3n we obtain

the index set Λn
j , (q, λ)-atoms an

j with supp an
j ⊂ B̃n

j , and numbers λn
j (j = 1, . . . , 3n),

satisfying

λn
j a

n
j =

∑
k∈Λn

j

ckbk .

By the construction of an
j and λn

j , we have

f (x) = λ0a0(x) +
∞∑

n=1

3n∑
j=1

λn
j a

n
j (x),

where a0 = b0 : (q, λ)-block, λ0 = c0, an
j : (q, λ)-atoms, supp a0 ⊂ T, supp an

j ⊂ B̃n
j , and

|λ0| + ∑
j,n |λn

j | ≤ 2 · 32λ/p‖f ‖Zq,λ . �

LEMMA 2.5. Suppose ‖fk‖Zq,λ ≤ 1, k = 1, 2, . . . . Then there exist f ∈ Zq,λ(T) and
a subsequence {fkj } such that

lim
j→∞

1

2π

∫ 2π

0
fkj (x)v(x)dx = 1

2π

∫ 2π

0
f (x)v(x)dx

for all v ∈ C(T).

PROOF. By Lemma 2.4, we may assume that fk ∈ Zq,λ(T) has the representation

fk(x) = λ0(k)a0(k)(x) +
∞∑

n=1

3n∑
j=1

λn
j (k)an

j (k)(x) ,

where a0(k) : (q, λ)-block, an
j (k) : (q, λ)-atoms, supp a0(k) ⊂ T, supp an

j (k) ⊂ B̃n
j , and

|λ0(k)| + ∑
j,n |λn

j (k)| ≤ C. Also we may assume that λ0(k), λn
j (k) ≥ 0, ‖an

j (k)‖q ≤
|B̃n

j |−λ/p, and that there exist λ0, λn
j such that limk→∞ λ0(k) = λ0, limk→∞ λn

j (k) =
λn

j (j, n ≥ 1), and |λ0| + ∑
j,n |λn

j | ≤ C. Let Lq(B̃n
j ) = (Lp(B̃n

j ))∗ be the dual space

of Lp(B̃n
j ) (Lp-space on B̃n

j ). By an
j (k) ∈ Lq(B̃n

j ) and the diagonal argument, there exists

an increasing sequence of natural numbers, k1 < k2 < · · · < kn < · · · and a0 ∈ Lq(B̃0),
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an
j ∈ Lq(B̃n

j ) such that for φ ∈ Lp(T)

lim
	→∞

1

2π

∫ 2π

0
an
j (k	)(x)φ(x)dx = 1

2π

∫ 2π

0
an
j (x)φ(x)dx

and

lim
	→∞

1

2π

∫ 2π

0
a0(k	)(x)φ(x)dx = 1

2π

∫ 2π

0
a0(x)φ(x)dx ,

that is, an
j (k	) → an

j (	 → ∞) in the weak*-topology of σ(Lq(B̃n
j ), Lp(B̃n

j )) (j, n ≥ 1) and

a0(k	) → a0 (	 → ∞) in the weak*-topology of σ(Lq(B̃0), Lp(B̃0)). Here, we define f by

f (x) =
∞∑

n=0

3n∑
j=1

λn
j a

n
j (x) ,

where a0
1 = a0 and λ0

1 = λ0. Then f is in Zq,λ(T) and an
j are (q, λ)-atoms, since supp an

j ⊂
B̃n

j , ‖an
j ‖q ≤ |B̃n

j |−λ/p, |λ0| + ∑
j,n |λn

j | ≤ C, and
∫
B̃n

j
an
j (x)dx = 0. Let v ∈ C(T), and

a0
1(k	) = a0(k	), λ

0
1(k	) = λ0(k	). We define

Jk	 = 1

2π

∫ 2π

0
fk	(x)v(x)dx =

∞∑
n=0

∑
j

λn
j (k	)

1

2π

∫ 2π

0
an
j (k	)(x)v(x)dx ,

and

J = 1

2π

∫ 2π

0
f (x)v(x)dx =

∞∑
n=0

∑
j

λn
j

1

2π

∫ 2π

0
an
j (x)v(x)dx .

Also, for any integer N we define

JN
k	

=
N∑

n=0

∑
j

λn
j (k	)

1

2π

∫ 2π

0
an
j (k	)(x)v(x)dx ,

J
N,∞
k	

=
∞∑

n=N+1

∑
j

λn
j (k	)

1

2π

∫ 2π

0
an
j (k	)(x)v(x)dx ,

JN =
N∑

n=0

∑
j

λn
j

1

2π

∫ 2π

0
an
j (x)v(x)dx ,

and

JN,∞ =
∞∑

n=N+1

∑
j

λn
j

1

2π

∫ 2π

0
an
j (x)v(x)dx .
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Moreover, when the center of B̃n
j (j, n ≥ 1) is denoted by xn

j , we have

J
N,∞
k	

=
∞∑

n=N+1

∑
j

λn
j (k	)

1

2π

∫
B̃n

j

an
j (k	)(x)(v(x) − v(xn

j ))dx ,

since an
j (k) (j, n ≥ 1) are (q, λ)-atoms. Here, we remark that v is uniformly continuous on

T. Hence, for any ε > 0 there exists N0 such that

|JN0,∞
k	

| ≤ ε

∞∑
n=N0+1

∑
j

λn
j (k	)|B̃n

j | 1−λ
p ≤ Cε .

The same conclusion can be drawn for JN0,∞, since an
j are (q, λ)-atoms. Also we have

∣∣∣∣
N0∑
n=0

3n∑
j=1

(
λn

j (k	)
1

2π

∫ 2π

0
an
j (k	)(x)v(x)dx − λn

j

1

2π

∫ 2π

0
an
j (x)v(x)dx

)∣∣∣∣

≤
N0∑
n=0

3n∑
j=1

{
λn

j (k	)

∣∣∣∣ 1

2π

∫ 2π

0
(an

j (k	)(x) − an
j (x))v(x)dx

∣∣∣∣

+|λn
j (k	) − λn

j |
∣∣∣∣ 1

2π

∫ 2π

0
an
j (x)v(x)dx

∣∣∣∣
}

→ 0 ,

as 	 → ∞. Moreover, we obtain

Jk	 − J = (J
N0
k	

− JN0) + (J
N0,∞
k	

− JN0,∞) ,

|JN0,∞
k	

− JN0,∞| ≤ |JN0,∞
k	

| + |JN0,∞|
≤ 2Cε .

Hence, we have lim sup	→∞ |Jk	 − J | ≤ 2Cε, and lim	→∞ Jk	 = J . Therefore, we get the
result:

lim
	→∞

1

2π

∫ 2π

0
fk	 (x)v(x)dx = 1

2π

∫ 2π

0
f (x)v(x)dx (v ∈ C(T)) .

�

LEMMA 2.6. Let f be in Zq,λ(T). Then we have

‖f ‖Zq,λ ∼ ‖f ‖
(L

p,λ
0 )∗ .

PROOF. Let A = ‖f ‖Zq,λ > 0. Then there exists g ∈ Lp,λ(T) such that
∣∣∣∣ 1

2π

∫ 2π

0
f (x)g(x)dx

∣∣∣∣ ≥ A

2
, ‖g‖p,λ ≤ 1 .
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By f ∈ Zq,λ(T), we may assume that

f (x) =
∞∑

k=0

ckak(x) ,

where ak : (q, λ)-block, supp ak ⊂ Bk for some interval Bk , and
∑∞

k=0 |ck| ≤ 2‖f ‖Zq,λ . Also

for any ε > 0 let φε(x) = 1
|Iε |χIε (x), where Iε = [−ε, ε] and χE denotes the characteristic

function of E. When we define gε(x) = g ∗φε(x) for g ∈ Lp,λ(T), it is easy to see gε ∈ C(T)

and ‖gε‖p,λ ≤ ‖g‖p,λ. Now for any integer N ≥ 1 and g ∈ Lp,λ(T), we define

IN
ε =

N∑
k=0

ck
1

2π

∫ 2π

0
ak(x)(g(x) − gε(x))dx ,

and

IIN
ε =

∞∑
k=N+1

ck
1

2π

∫ 2π

0
ak(x)(g(x) − gε(x))dx .

Then, we have

1

2π

∫ 2π

0
f (x)(g(x) − gε(x))dx =

∞∑
k=0

ck
1

2π

∫ 2π

0
ak(x)(g(x) − gε(x))dx

= IN
ε + IIN

ε .

By ‖gε‖p,λ ≤ ‖g‖p,λ, we obtain

|IIN
ε | ≤

∞∑
k=N+1

|ck| ‖ak‖Zq,λ‖g − gε‖p,λ

≤ 2
∞∑

k=N+1

|ck| .

Also for any η > 0, there exists N0 a positive integer such that
∑∞

k=N0+1 |ck| <
η
2 . Hence,

we have |II
N0
ε | < η for all ε > 0. Moreover, we have

|IN0
ε | ≤

N0∑
k=0

|ck| ‖ak‖q‖g − gε‖p

=
N0∑
k=0

|ck| ‖ak‖q‖g − g ∗ φε‖p

→ 0 ,
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as ε → 0. Therefore, we get

lim sup
ε→0

∣∣∣∣ 1

2π

∫ 2π

0
f (x)gε(x)dx − 1

2π

∫ 2π

0
f (x)g(x)dx

∣∣∣∣ ≤ η ,

and

lim
ε→0

1

2π

∫ 2π

0
f (x)gε(x)dx = 1

2π

∫ 2π

0
f (x)g(x)dx .

Hence, there exists ε0 > 0 such that | 1
2π

∫ 2π

0 f (x)gε0(x)dx| ≥ A
3 . So we obtain

sup
‖g‖p,λ≤1,g∈L

p,λ
0

∣∣∣∣ 1

2π

∫ 2π

0
f (x)g(x)dx

∣∣∣∣ ≥ A

3
.

Therefore, we have ‖f ‖Zq,λ ≤ 3‖f ‖
(L

p,λ
0 )∗ . Since the converse is trivial, we get the desired

result. �

Now we are ready to prove Theorem 1.2.

PROOF OF THEOREM 1.2. First we have Zq,λ(T) ⊂ (L
p,λ

0 (T))∗ by Lemma 2.2. Since(
Zq,λ(T)

)∗ = Lp,λ(T) ⊃ L
p,λ

0 (T), we see that the annihilator of Zq,λ(T) is {0}, and hence

Zq,λ(T) is weak∗-dense in (L
p,λ

0 (T))∗ (see Theorem 4.7 (b) in Rudin [4]). By the Banach-

Alaoglu theorem and the separability of L
p,λ

0 (T) we see that the unit ball of (L
p,λ

0 (T))∗ is

weak∗-compact and metrizable (see Theorem 3.16 in Rudin [4]). Thus, if T is in (L
p,λ

0 (T))∗

with ‖T ‖
(L

p,λ

0 (T))∗ ≤ 1, then there exists a sequence {fk} ⊂ Zq,λ(T) with ‖fk‖(L
p,λ

0 (T))∗ ≤ 1

such that fk → T in the weak∗-topology of (L
p,λ
0 (T))∗. Here, we may assume ‖fk‖Zq,λ(T) ≤

1 by Lemma 2.6. Hence, by Lemma 2.5, there exist f ∈ Zq,λ(T) and a subsequence {fkj }
(k1 < k2 < . . . ) such that ‖fkj ‖Zq,λ ≤ 1 and

lim
j→∞

1

2π

∫ 2π

0
fkj (x)g(x)dx = 1

2π

∫ 2π

0
f (x)g(x)dx

for all g ∈ C(T). Hence, we have

〈T , g〉 = 1

2π

∫ 2π

0
f (x)g(x)dx

for all g ∈ C(T). Therefore we get the desired result. �
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