Remarks on a Subspace of Morrey Spaces

Takashi IZUMI, Enji SATO and Kôzô YABUTA*

Yamagata University and Kwansei Gakuin University*

(Communicated by F. Nakano)

Abstract. Let p, λ be real numbers such that $1 , and <math>0 < \lambda < 1$. Also let $L^{p,\lambda}(\mathbf{T})$ be Morrey spaces on the unit circle \mathbf{T} , and $L_0^{p,\lambda}(\mathbf{T})$ the closure of $C(\mathbf{T})$ in $L^{p,\lambda}(\mathbf{T})$. Zorko [7] gave the predual $Z^{q,\lambda}(\mathbf{T})$ (1/p+1/q =1) of $L^{p,\lambda}(\mathbf{T})$. In this article, we show a property of $L_0^{p,\lambda}(\mathbf{T})$ and prove in detail that $L_0^{p,\lambda}(\mathbf{T})$ is the predual of $Z^{q,\lambda}(\mathbf{T})$, whose fact is stated in Adams-Xiao [1].

1. Introduction and Main results

Let p be in $1 , q the conjugate exponent of p, and <math>0 < \lambda < 1$. Also let $L^p(\mathbf{T})$ be the usual L^p -space on the unit circle **T** with respect to the normalized Haar measure. The Morrey spaces $L^{p,\lambda}(\mathbf{T})$ are defined by

$$L^{p,\lambda}(\mathbf{T}) = \left\{ f \mid \|f\|_{p,\lambda} = \sup_{\substack{I \subset \mathbf{T} = [-\pi,\pi) \\ I \neq \emptyset: \text{interval}}} \left(\frac{1}{|I|^{\lambda}} \int_{I} |f|^{p} dx \right)^{1/p} < \infty \right\},$$

and $L_0^{p,\lambda}(\mathbf{T})$ the closure of $C(\mathbf{T})$ in $L^{p,\lambda}(\mathbf{T})$, where $C(\mathbf{T})$ is the set of all continuous functions on **T**. Then it is easy to see that $L^{p,\lambda}(\mathbf{T})$ is a Banach space (cf. Kufner [3], Torchinsky [6; p. 215]). Also $Z^{q,\lambda}(\mathbf{T})$ (1/p + 1/q = 1) are defined by $\{f \mid ||f||_{Z^{q,\lambda}} < \infty\}$, where

$$\|f\|_{Z^{q,\lambda}} = \inf \left\{ \sum_{k=1}^{\infty} |c_k| \ \left| \ f(x) = \sum_{k=1}^{\infty} c_k a_k(x), \ c_k \in \mathbf{C}, \ a_k(x) : (q, \lambda) \text{-block} \right\},\right.$$

where $a_k(x)$ is called (q, λ) -block, if

(1) supp $a_k \subset I$ (2) $||a_k||_q \le \frac{1}{|I|^{\lambda/p}}$, where 1/p + 1/q = 1,

for some interval *I*. In particular, $a_k(x)$ is called (q, λ) -atom, if a_k satisfies $\int_I a_k(x) dx = 0$, which is called cancellation property. $Z^{q,\lambda}(\mathbf{T})$ is a Banach space with the norm $\|\cdot\|_{Z^{q,\lambda}}$. Zorko

Received February 26, 2013; revised September 9, 2013

Key words and phrases: Morrey space, predual, block

The second author was supported in part by Grant-in-Aid for Scientific Research (C).

²⁰¹⁰ Mathematics Subject Classification: 42A45, 42B30

[7] introduced the space $Z^{q,\lambda}(\mathbf{T})$, and proved that $Z^{q,\lambda}(\mathbf{T})$ is the predual of $L_0^{p,\lambda}(\mathbf{T})$. Also she [7] defined $L_0^{p,\lambda}(\mathbf{T})$, and remarked some properties. Adams-Xiao [1] pointed out that $L_0^{p,\lambda}(\mathbf{T})$ is the predual of $Z^{q,\lambda}(\mathbf{T})$, but they did not give the reason why they insisted that the proof is akin to that of H^1 -VMO in Stein [5] (cf. [6]). Like Adams-Xiao [1], we think that $L_0^{p,\lambda}(\mathbf{T}), Z^{q,\lambda}(\mathbf{T}), L_0^{p,\lambda}(\mathbf{T})$ are similar to $BMO(\mathbf{T}), H^1(\mathbf{T}), VMO(\mathbf{T})$, respectively.

In this article, we show some properties of $L_0^{p,\lambda}(\mathbf{T})$, which is similar to that of $VMO(\mathbf{T})$. Next we give a detailed proof of the fact that $L_0^{p,\lambda}(\mathbf{T})$ is the predual of $Z^{q,\lambda}(\mathbf{T})$, by the method of Coifman-Weiss [2]. We expect that our proofs in the case of \mathbf{T} may be available to Euclidean case \mathbf{R}^n .

Our results are as follows:

THEOREM 1.1. Let $1 \le p < \infty$, and $0 < \lambda < 1$. Also let ϕ be an infinitely differentiable function such that supp $\phi \subset [-1, 1], \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(x) dx = 1$ and $\phi \ge 0$, and let $\phi_j(x) = j\phi(jx)$ (j = 1, 2, ...). Then, the following properties are equivalent:

- (1) $f \in L_0^{p,\lambda}(\mathbf{T})$
- (2) $f \in L^{p,\lambda}(\mathbf{T})$ and $\|\tau_y f f\|_{p,\lambda} \to 0 \ (y \to 0)$, where $\tau_y f(x) = f(x - y)$
- (3) $f \in L^{p,\lambda}(\mathbf{T})$ and $||f f * \phi_j||_{p,\lambda} \to 0 \ (j \to \infty)$
- (4) $\lim_{\delta \to 0} \sup_{|I| \le \delta, I \subset \mathbf{T}: \text{interval}} \frac{1}{|I|^{\lambda}} \int_{I} |f(x)|^{p} dx = 0$

THEOREM 1.2. Let $1 , and <math>0 < \lambda < 1$. Then $L_0^{p,\lambda}(\mathbf{T})$ is the predual of $Z^{q,\lambda}(\mathbf{T})$, where 1/p + 1/q = 1.

Throughout this paper, the dual space of a Banach space X is denoted by X^* . For an interval I, |I| denotes the measure of I with respect to the normalized Haar measure of **T**. Also the letter C stands for a constant not necessarily the same at each occurrence. $A \sim B$ stands for $C^{-1}A \leq B \leq CA$ for some C > 0.

2. Proofs of Main Theorems

2.1. Proof of Theorem 1.1

PROOF. According to Zorko [7], it is easy to prove that (1), (2) and (3) are equivalent. So, we omit their proofs. We show (4), when we assume (1). By the definition, for $f \in L_0^{p,\lambda}(\mathbf{T})$ and for any $\eta > 0$ there exists $g \in C(\mathbf{T})$ such that $||f - g||_{p,\lambda} < \eta$. Then for an interval $I \subset \mathbf{T}$ with $|I| \leq \delta$, we have

$$\left(\frac{1}{|I|^{\lambda}} \int_{I} |f(x)|^{p} dx\right)^{1/p} \leq \left(\frac{1}{|I|^{\lambda}} \int_{I} |f(x) - g(x)|^{p} dx\right)^{1/p} + \left(\frac{1}{|I|^{\lambda}} \int_{I} |g(x)|^{p} dx\right)^{1/p}$$

$$\begin{split} &\leq \eta + \left(\frac{1}{|I|^{\lambda}}\int_{I}|g(x)|^{p}dx\right)^{1/p} \\ &\leq \eta + |I|^{\frac{1-\lambda}{p}}\|g\|_{C(\mathbf{T})} \\ &\leq \eta + \delta^{\frac{1-\lambda}{p}}\|g\|_{C(\mathbf{T})} \,, \end{split}$$

and

$$\lim_{\delta \to 0} \sup_{|I| \le \delta, I: \text{interval}} \frac{1}{|I|^{\lambda}} \int_{I} |f(x)|^{p} dx \le \eta^{p}.$$

So we obtain (4). Next we show (3), when we assume (4). For any $\eta > 0$, there exists $\delta_0 > 0$ such that

$$\sup_{|I| \le \delta_0, I: \text{interval}} \frac{1}{|I|^{\lambda}} \int_I |f(x)|^p dx < \eta^p \,.$$

Then for $|I| \leq \delta_0$, we have

$$\begin{split} \frac{1}{|I|^{\lambda}} \int_{I} |f * \phi_{j}(x)|^{p} dx &\leq \frac{1}{|I|^{\lambda}} \int_{I} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x-y)|^{p} \phi_{j}(y) dy \right) dx \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_{j}(y) \frac{1}{|I|^{\lambda}} \int_{I} |f(x-y)|^{p} dx dy \\ &\leq \frac{1}{|I|^{\lambda}} \int_{I} |f(x)|^{p} dx \\ &< \eta^{p} \end{split}$$

by the Hölder inequality. Hence, for an interval $I \subset \mathbf{T}$ with $|I| \leq \delta_0$, we have

$$\begin{split} &\left(\frac{1}{|I|^{\lambda}}\int_{I}|f(x)-f*\phi_{j}(x)|^{p}dx\right)^{1/p} \\ &\leq \left(\frac{1}{|I|^{\lambda}}\int_{I}|f(x)|^{p}dx\right)^{1/p} + \left(\frac{1}{|I|^{\lambda}}\int_{I}|f*\phi_{j}(x)|^{p}dx\right)^{1/p} \\ &\leq 2\left(\sup_{|I|\leq\delta_{0},I:\text{interval}}\frac{1}{|I|^{\lambda}}\int_{I}|f(x)|^{p}dx\right)^{1/p} \\ &< 2\eta \,. \end{split}$$

On the other hand, for an interval $I \subset \mathbf{T}$ with $|I| > \delta_0$, we have

$$\frac{1}{|I|^{\lambda}} \int_{I} |f(x) - f * \phi_{j}(x)|^{p} dx \leq \frac{2\pi}{\delta_{0}^{\lambda}} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - f * \phi_{j}(x)|^{p} dx$$
$$= \frac{2\pi}{\delta_{0}^{\lambda}} \|f - f * \phi_{j}\|_{p}^{p}.$$

After all, we obtain

$$\sup_{I \subset \mathbf{T}: \text{interval}} \frac{1}{|I|^{\lambda}} \int_{I} |f(x) - f * \phi_j(x)|^p dx < (2\eta)^p + \frac{2\pi}{\delta_0^{\lambda}} \|f - f * \phi_j\|_p^p$$

Therefore, we have

$$\lim_{j \to \infty} \|f - f * \phi_j\|_{p,\lambda} = 0.$$

REMARK 2.1. Let f be in $Z^{q,\lambda}(\mathbf{T})$ such that $f = \sum_{k=1}^{\infty} c_k a_k$, where $\sum_k |c_k| < \infty$, $a_k:(q,\lambda)$ -block. Then $f = \sum_k c_k a_k$ converges in $L^1(\mathbf{T})$ by the definition of $Z^{q,\lambda}(\mathbf{T})$ and Hölder's inequality.

2.2. Proof of Theorem 1.2. For the proof, we give some lemmas.

LEMMA 2.2 (Zorko [7]). Let $1 , <math>0 < \lambda < 1$ and q the conjugate exponent of p. Then the dual space of $Z^{q,\lambda}(\mathbf{T})$ is $L^{p,\lambda}(\mathbf{T})$.

LEMMA 2.3. Let $1 and q be the conjugate exponent. Also let <math>0 < \lambda < 1$. Then every $f \in Z^{q,\lambda}(\mathbf{T})$ can be decomposed into a sum of block and atoms:

$$f = c_0 a_0 + \sum_{k=1}^{\infty} c_k a_k \,,$$

where $c_k \in \mathbb{C}$ and $|c_0| + \sum_{k=1}^{\infty} |c_k| \leq C ||f||_{Z^{q,\lambda}}$, a_0 is $a(q, \lambda)$ -block with supp $a_0 \subset \mathbb{T}$, $a'_k s$ are (q, λ) -atoms such that supp $a_k \subset I_k$ satisfying $|I_k| \leq \frac{1}{4}$.

PROOF. Let $\mathbf{T} = [0, 2\pi)$, and $f \in Z^{q,\lambda}(\mathbf{T})$. Then, f is decomposed so that

$$f = \sum_{k=0}^{\infty} c'_k \, b_k \, ,$$

where $c'_k \in \mathbb{C}$, $\sum |c'_k| \le 2 ||f||_{Z^{q,\lambda}}$, and $\{b_k\}_{k=0}^{\infty}$ are (q, λ) -blocks. Let b(x) be $b_k(x)$ for any $k \ge 0$, and A a set of functions defined by

$$A := \left\{ b_k \mid \text{supp } b_k \subset I, \ \|b_k\|_q \le \frac{1}{|I|^{\lambda/p}}, \text{ and } |I| > \frac{1}{4} \right\}.$$

In the case of $|I| \leq \frac{1}{4}$, we define b_1^1, b_2^1, I_1 by

$$b_1^1(x) = \frac{b(x) - b(x - |I|)}{2^{\frac{\lambda - 1}{p} + 1}},$$

$$b_2^1(x) = \frac{b(x) + b(x - |I|)}{2^{\frac{\lambda - 1}{p} + 1}},$$

$$I_1 = I \cup (I + |I|)$$

Then, we have supp $b_j^1 \subset I_1$ (j = 1, 2) and

$$\left(\int_{I_1} |b_j^1(x)|^q dx\right)^{1/q} = \left(2\int_{I} |b(x)|^q dx\right)^{1/q} 2^{-\frac{\lambda-1}{p}-1}$$
$$\leq 2^{\frac{1}{q}-\frac{\lambda-1}{p}-1} \frac{1}{|I|^{\lambda/p}}$$
$$= 2^{-\lambda/p} \frac{1}{|I|^{\lambda/p}} = \frac{1}{|I_1|^{\lambda/p}} \quad (j = 1, 2),$$

which shows that b_j^1 is a (q, λ) -block (j = 1, 2). We also have

$$\int_0^{2\pi} b_1^1(x) \, dx = 0 \,,$$

$$2^{\frac{\lambda-1}{p}} b_1^1(x) + 2^{\frac{\lambda-1}{p}} b_2^1(x) = \frac{b(x) - b(x - |I|)}{2} + \frac{b(x) + b(x - |I|)}{2} = b(x) \,.$$

So, b_1^1 is a (q, λ) -atom. When we set $\alpha = 2^{\frac{\lambda-1}{p}}$ and $a_k^1(x) = b_1^1(x)$, we have $b_k(x) = \alpha a_k^1(x) + \alpha b_2^1(x)$. Next, if we have $|I_1| \le \frac{1}{4}$, there exists a natural number $\ell \ge 3$ such that $\frac{1}{2^{\ell}} < |I_1| \le \frac{1}{2^{\ell-1}}$. So, we decompose $b_2^1(x)$ like b(x) and define a_k^2, b_2^2, I_2 by

$$a_k^2(x) = \frac{b_2^1(x) - b_2^1(x - |I_1|)}{2^{\frac{\lambda - 1}{p} + 1}},$$

$$b_2^2(x) = \frac{b_2^1(x) + b_2^1(x - |I_1|)}{2^{\frac{\lambda - 1}{p} + 1}},$$

$$I_2 = I_1 \cup (I_1 + |I_1|).$$

Then we have

$$\int_{0}^{2\pi} a_{k}^{2}(x)dx = 0,$$

$$b_{2}^{1}(x) = \alpha a_{k}^{2}(x) + \alpha b_{2}^{2}(x),$$

$$b_{k}(x) = \alpha a_{k}^{1}(x) + \alpha b_{2}^{1}(x)$$

$$= \alpha a_{k}^{1}(x) + \alpha^{2} a_{k}^{2}(x) + \alpha^{2} b_{2}^{2}(x),$$

and hence, we see that a_k^1, a_k^2 are (q, λ) -atoms and b_2^2 is a (q, λ) -block. In fact,

$$\left(\int_{I_2} |b_2^2(x)|^q dx\right)^{1/q} \le 2^{-\lambda/p} |I_1|^{-\lambda/p} = |I_2|^{-\lambda/p}.$$

We repeat this process ℓ times until we have $|I_{\ell}| > \frac{1}{4}$. After all, we get

$$b_k(x) = \sum_{j=1}^{\ell} \alpha^j a_k^j(x) + \alpha^{\ell} b_2^{\ell}(x),$$

where $\alpha = 2^{\frac{\lambda-1}{p}}$, a_k^j $(j = 1, ..., \ell) : (q, \lambda)$ -atoms with supp $a_k^j \subset I_j$, and $b_2^\ell : (q, \lambda)$ -block with supp $b_k^\ell \subset I_\ell$. When we set $\ell_k = \ell$, we have

$$b_k(x) = \sum_{j=1}^{\ell_k} \alpha^j a_k^j(x) + \alpha^{\ell_k} b_2^{\ell_k}(x) + \alpha^{\ell_k} b_2^{\ell_k}(x)$$

After we repeat this process for b_k , we obtain

$$f(x) = \sum_{b_k \notin A} \sum_{\ell=1}^{\ell_k} c'_k \alpha^\ell a^\ell_k(x) + \sum_{b_k \notin A} c'_k \alpha^{\ell_k} b^{\ell_k}_2(x) + \sum_{b_k \in A} c'_k b_k(x) \,.$$

Noting $0 < \alpha < 1$, we have

$$\sum_{b_k \notin A} \sum_{\ell=1}^{\ell_k} |c'_k| \alpha^{\ell} + \sum_{b_k \notin A} |c'_k| \alpha^{\ell_k} + \sum_{b_k \in A} |c'_k| \le \left(\frac{1}{1-\alpha} + \alpha + 1\right) \sum_{k=0}^{\infty} |c'_k|.$$

Also when we define

$$a_0(x) = \frac{\sum_{b_k \notin A} c'_k \alpha^{\ell_k} b_2^{\ell_k}(x) + \sum_{b_k \in A} c'_k b_k(x)}{4^{\lambda/p} \left(\sum_{b_k \notin A} |c'_k| \alpha^{\ell_k} + \sum_{b_k \in A} |c'_k| \right)},$$

we have that $||a_0||_q \leq 1$, supp $a_0 \subset \mathbf{T} = [0, 2\pi)$ and $a_0 : (q, \lambda)$ -block, since

$$\left(\frac{1}{2\pi} \int_0^{2\pi} \left| \sum_{b_k \notin A} c'_k \alpha^{\ell_k} b_2^{\ell_k}(x) + \sum_{b_k \in A} c'_k b_k(x) \right|^q dx \right)^{1/q} \le 4^{\lambda/p} \left(\sum_{b_k \notin A} |c'_k| \alpha^{\ell_k} + \sum_{b_k \in A} |c'_k| \right).$$

Moreover, we obtain

$$f(x) = 4^{\lambda/p} \left(\sum_{b_k \notin A} |c'_k| \alpha^{\ell_k} + \sum_{b_k \in A} |c'_k| \right) a_0(x) + \sum_{b_k \notin A} \sum_{\ell=1}^{\ell_k} c'_k \alpha^{\ell} a_k^{\ell}(x)$$

and

$$4^{\lambda/p} \left(\sum_{b_k \notin A} |c_k'| \alpha^{\ell_k} + \sum_{b_k \in A} |c_k'| \right) + \sum_{b_k \notin A} \sum_{\ell=1}^{\ell_k} |c_k'| \alpha^{\ell} \le 2 \left(4^{\lambda/p} + \frac{1}{1-\alpha} \right) \|f\|_{Z^{q,\lambda}}.$$

LEMMA 2.4. Let *n* be any positive integer, $B_j^n = [\frac{j-1}{3^n}2\pi, \frac{j}{3^n}2\pi)$ $(j = 1, ..., 3^n)$, and $\tilde{B}_j^n = 3B_j^n$, where the center of \tilde{B}_j^n is the same as the center of B_j^n , and $|\tilde{B}_j^n| = 3|B_j^n|$. Also let $B^0 = B_1^0 = [0, 2\pi)$, and $\tilde{B}^0 = \tilde{B}_1^0 = [0, 2\pi)$. Then, $f \in Z^{q,\lambda}(\mathbf{T})$ has the representation

$$f(x) = \lambda_0 a_0(x) + \sum_{n=1}^{\infty} \sum_{j=1}^{3^n} \lambda_j^n a_j^n(x),$$

where a_0 : (q, λ) -block, a_j^n : (q, λ) -atoms, supp $a_0 \subset \mathbf{T}$, supp $a_j^n \subset \tilde{B}_j^n$, and $|\lambda_0| + \sum_{j,n} |\lambda_j^n| \leq C \|f\|_{Z^{q,\lambda}}$.

PROOF. By Lemma 2.3, $f \in Z^{q,\lambda}(\mathbf{T})$ can be decomposed into a sum of block and atoms:

$$f = c_0 b_0 + \sum_{k=1}^{\infty} c_k b_k \,,$$

where $c_k \in \mathbb{C}$, $|c_0| + \sum_{k=1}^{\infty} |c_k| \le C ||f||_{Z^{q,\lambda}}$, and b_0 is a (q, λ) -block with supp $b_0 \subset \mathbb{T}$, and b_k 's are (q, λ) -atoms such that supp $b_k \subset I_k$ satisfying $|I_k| \le \frac{1}{4}$. For I_k with $\frac{1}{3^2} < |I_k| \le \frac{1}{3}$, there exists $j \in \{1, 2, 3\}$ such that $I_k \cap B_j^1 \ne \emptyset$. For B_1^1 we let Λ_1^1 be the index set $k \in \mathbb{N}$, determined by those b_k with $\frac{1}{3^2} < |I_k| \le \frac{1}{3}$ and $I_k \cap B_1^1 \ne \emptyset$. Then, we see that $I_k \subset \tilde{B}_1^1$ for $k \in \Lambda_1^1$ and

$$\left\|\sum_{k\in\Lambda_1^1} c_k b_k\right\|_q \le \sum_{k\in\Lambda_1^1} |c_k| \|b_k\|_q \le \sum_{k\in\Lambda_1^1} |c_k| |\tilde{B}_1^1|^{-\lambda/p} 3^{2\lambda/p}.$$

So, when we define

$$a_1^{1} = \frac{\sum_{k \in \Lambda_1^{1}} c_k b_k}{3^{2\lambda/p} \sum_{k \in \Lambda_1^{1}} |c_k|} \text{ and } \lambda_1^{1} = \sum_{k \in \Lambda_1^{1}} |c_k| 3^{2\lambda/p}$$

we have supp $a_1^1 \subset \tilde{B}_1^1$, $||a_1^1||_q \leq \frac{1}{|\tilde{B}_1^1|^{\lambda/p}}$, and a_1^1 satisfies the cancellation property, that is, a_1^1 is a (q, λ) -atom supported by \tilde{B}_1^1 , and

$$\lambda_1^1 a_1^1 = \sum_{k \in \Lambda_1^1} c_k b_k \, .$$

Next for B_2^1 we let Λ_2^1 be the index set determined by b_k in $\{b_j\}$ with $\frac{1}{3^2} < |I_k| \le \frac{1}{3}$ and $I_k \cap B_2^1 \ne \emptyset$, excluding b_k which we have already chosen before. We construct (q, λ) -atom a_2^1 in the same way as for B_1^1 . Similarly we construct (q, λ) -atom a_3^1 for B_3^1 . We do this

process for b_k with $\frac{1}{3^3} < |I_k| \le \frac{1}{3^2}$, and obtain the index set Λ_j^2 , (q, λ) -atoms a_j^2 with supp $a_j^2 \subset \tilde{B}_j^2$, and numbers λ_j^2 $(j = 1, ..., 3^2)$, satisfying

$$\lambda_j^2 a_j^2 = \sum_{k \in \Lambda_j^2} c_k b_k$$

After that, we repeat this process. In the *n*-th step, for b_k with $\frac{1}{3^{n+1}} < |I_k| \le \frac{1}{3^n}$ we obtain the index set Λ_j^n , (q, λ) -atoms a_j^n with supp $a_j^n \subset \tilde{B}_j^n$, and numbers λ_j^n $(j = 1, ..., 3^n)$, satisfying

$$\lambda_j^n a_j^n = \sum_{k \in \Lambda_j^n} c_k b_k \, .$$

By the construction of a_i^n and λ_i^n , we have

$$f(x) = \lambda_0 a_0(x) + \sum_{n=1}^{\infty} \sum_{j=1}^{3^n} \lambda_j^n a_j^n(x),$$

where $a_0 = b_0$: (q, λ) -block, $\lambda_0 = c_0$, $a_j^n : (q, \lambda)$ -atoms, supp $a_0 \subset \mathbf{T}$, supp $a_j^n \subset \tilde{B}_j^n$, and $|\lambda_0| + \sum_{j,n} |\lambda_j^n| \le 2 \cdot 3^{2\lambda/p} ||f||_{Z^{q,\lambda}}$.

LEMMA 2.5. Suppose $||f_k||_{Z^{q,\lambda}} \le 1, k = 1, 2, \dots$ Then there exist $f \in Z^{q,\lambda}(\mathbf{T})$ and a subsequence $\{f_{k_i}\}$ such that

$$\lim_{j \to \infty} \frac{1}{2\pi} \int_0^{2\pi} f_{k_j}(x) v(x) dx = \frac{1}{2\pi} \int_0^{2\pi} f(x) v(x) dx$$

for all $v \in C(\mathbf{T})$.

PROOF. By Lemma 2.4, we may assume that $f_k \in Z^{q,\lambda}(\mathbf{T})$ has the representation

$$f_k(x) = \lambda_0(k)a_0(k)(x) + \sum_{n=1}^{\infty} \sum_{j=1}^{3^n} \lambda_j^n(k)a_j^n(k)(x),$$

where $a_0(k) : (q, \lambda)$ -block, $a_j^n(k) : (q, \lambda)$ -atoms, supp $a_0(k) \subset \mathbf{T}$, supp $a_j^n(k) \subset \tilde{B}_j^n$, and $|\lambda_0(k)| + \sum_{j,n} |\lambda_j^n(k)| \leq C$. Also we may assume that $\lambda_0(k)$, $\lambda_j^n(k) \geq 0$, $||a_j^n(k)||_q \leq |\tilde{B}_j^n|^{-\lambda/p}$, and that there exist λ_0 , λ_j^n such that $\lim_{k\to\infty} \lambda_0(k) = \lambda_0$, $\lim_{k\to\infty} \lambda_j^n(k) = \lambda_j^n(j, n \geq 1)$, and $|\lambda_0| + \sum_{j,n} |\lambda_j^n| \leq C$. Let $L^q(\tilde{B}_j^n) = (L^p(\tilde{B}_j^n))^*$ be the dual space of $L^p(\tilde{B}_j^n)$ (L^p -space on \tilde{B}_j^n). By $a_j^n(k) \in L^q(\tilde{B}_j^n)$ and the diagonal argument, there exists an increasing sequence of natural numbers, $k_1 < k_2 < \cdots < k_n < \cdots$ and $a_0 \in L^q(\tilde{B}^0)$,

 $a_j^n \in L^q(\tilde{B}_j^n)$ such that for $\phi \in L^p(\mathbf{T})$

$$\lim_{\ell \to \infty} \frac{1}{2\pi} \int_0^{2\pi} a_j^n(k_\ell)(x)\phi(x)dx = \frac{1}{2\pi} \int_0^{2\pi} a_j^n(x)\phi(x)dx$$

and

$$\lim_{\ell \to \infty} \frac{1}{2\pi} \int_0^{2\pi} a_0(k_\ell)(x)\phi(x)dx = \frac{1}{2\pi} \int_0^{2\pi} a_0(x)\phi(x)dx$$

that is, $a_j^n(k_\ell) \to a_j^n$ $(\ell \to \infty)$ in the weak*-topology of $\sigma(L^q(\tilde{B}_j^n), L^p(\tilde{B}_j^n))$ $(j, n \ge 1)$ and $a_0(k_\ell) \to a_0$ $(\ell \to \infty)$ in the weak*-topology of $\sigma(L^q(\tilde{B}^0), L^p(\tilde{B}^0))$. Here, we define f by

$$f(x) = \sum_{n=0}^{\infty} \sum_{j=1}^{3^n} \lambda_j^n a_j^n(x) ,$$

where $a_1^0 = a_0$ and $\lambda_1^0 = \lambda_0$. Then f is in $Z^{q,\lambda}(\mathbf{T})$ and a_j^n are (q, λ) -atoms, since supp $a_j^n \subset \tilde{B}_j^n$, $||a_j^n||_q \leq |\tilde{B}_j^n|^{-\lambda/p}$, $|\lambda_0| + \sum_{j,n} |\lambda_j^n| \leq C$, and $\int_{\tilde{B}_j^n} a_j^n(x) dx = 0$. Let $v \in C(\mathbf{T})$, and $a_1^0(k_\ell) = a_0(k_\ell)$, $\lambda_1^0(k_\ell) = \lambda_0(k_\ell)$. We define

$$J_{k_{\ell}} = \frac{1}{2\pi} \int_{0}^{2\pi} f_{k_{\ell}}(x) v(x) dx = \sum_{n=0}^{\infty} \sum_{j} \lambda_{j}^{n}(k_{\ell}) \frac{1}{2\pi} \int_{0}^{2\pi} a_{j}^{n}(k_{\ell})(x) v(x) dx \,,$$

and

$$J = \frac{1}{2\pi} \int_0^{2\pi} f(x)v(x)dx = \sum_{n=0}^\infty \sum_j \lambda_j^n \frac{1}{2\pi} \int_0^{2\pi} a_j^n(x)v(x)dx.$$

Also, for any integer N we define

$$J_{k_{\ell}}^{N} = \sum_{n=0}^{N} \sum_{j} \lambda_{j}^{n}(k_{\ell}) \frac{1}{2\pi} \int_{0}^{2\pi} a_{j}^{n}(k_{\ell})(x)v(x)dx ,$$

$$J_{k_{\ell}}^{N,\infty} = \sum_{n=N+1}^{\infty} \sum_{j} \lambda_{j}^{n}(k_{\ell}) \frac{1}{2\pi} \int_{0}^{2\pi} a_{j}^{n}(k_{\ell})(x)v(x)dx$$

$$J^{N} = \sum_{n=0}^{N} \sum_{j} \lambda_{j}^{n} \frac{1}{2\pi} \int_{0}^{2\pi} a_{j}^{n}(x)v(x)dx ,$$

and

$$J^{N,\infty} = \sum_{n=N+1}^{\infty} \sum_{j} \lambda_{j}^{n} \frac{1}{2\pi} \int_{0}^{2\pi} a_{j}^{n}(x) v(x) dx \,.$$

Moreover, when the center of \tilde{B}_j^n $(j, n \ge 1)$ is denoted by x_j^n , we have

$$J_{k_{\ell}}^{N,\infty} = \sum_{n=N+1}^{\infty} \sum_{j} \lambda_{j}^{n}(k_{\ell}) \frac{1}{2\pi} \int_{\tilde{B}_{j}^{n}} a_{j}^{n}(k_{\ell})(x)(v(x) - v(x_{j}^{n})) dx ,$$

since $a_j^n(k)$ $(j, n \ge 1)$ are (q, λ) -atoms. Here, we remark that v is uniformly continuous on **T**. Hence, for any $\varepsilon > 0$ there exists N_0 such that

$$|J_{k_{\ell}}^{N_{0},\infty}| \leq \varepsilon \sum_{n=N_{0}+1}^{\infty} \sum_{j} \lambda_{j}^{n}(k_{\ell}) |\tilde{B}_{j}^{n}|^{\frac{1-\lambda}{p}} \leq C\varepsilon.$$

The same conclusion can be drawn for $J^{N_0,\infty}$, since a_j^n are (q, λ) -atoms. Also we have

$$\begin{split} & \left| \sum_{n=0}^{N_0} \sum_{j=1}^{3^n} \left(\lambda_j^n(k_\ell) \frac{1}{2\pi} \int_0^{2\pi} a_j^n(k_\ell)(x) v(x) dx - \lambda_j^n \frac{1}{2\pi} \int_0^{2\pi} a_j^n(x) v(x) dx \right) \right| \\ & \leq \sum_{n=0}^{N_0} \sum_{j=1}^{3^n} \left\{ \lambda_j^n(k_\ell) \left| \frac{1}{2\pi} \int_0^{2\pi} (a_j^n(k_\ell)(x) - a_j^n(x)) v(x) dx \right| \right. \\ & \left. + \left| \lambda_j^n(k_\ell) - \lambda_j^n \right| \left| \frac{1}{2\pi} \int_0^{2\pi} a_j^n(x) v(x) dx \right| \right\} \\ & \to 0 \,, \end{split}$$

as $\ell \to \infty$. Moreover, we obtain

$$\begin{split} J_{k_{\ell}} - J &= (J_{k_{\ell}}^{N_0} - J^{N_0}) + (J_{k_{\ell}}^{N_0, \infty} - J^{N_0, \infty}), \\ |J_{k_{\ell}}^{N_0, \infty} - J^{N_0, \infty}| &\leq |J_{k_{\ell}}^{N_0, \infty}| + |J^{N_0, \infty}| \\ &\leq 2C\varepsilon \,. \end{split}$$

Hence, we have $\limsup_{\ell \to \infty} |J_{k_{\ell}} - J| \le 2C\varepsilon$, and $\lim_{\ell \to \infty} J_{k_{\ell}} = J$. Therefore, we get the result:

$$\lim_{\ell \to \infty} \frac{1}{2\pi} \int_0^{2\pi} f_{k_\ell}(x) v(x) dx = \frac{1}{2\pi} \int_0^{2\pi} f(x) v(x) dx \ (v \in C(\mathbf{T})) \,.$$

LEMMA 2.6. Let f be in $Z^{q,\lambda}(\mathbf{T})$. Then we have

$$||f||_{Z^{q,\lambda}} \sim ||f||_{(L_0^{p,\lambda})^*}.$$

PROOF. Let $A = ||f||_{Z^{q,\lambda}} > 0$. Then there exists $g \in L^{p,\lambda}(\mathbf{T})$ such that

$$\left|\frac{1}{2\pi}\int_0^{2\pi} f(x)g(x)dx\right| \ge \frac{A}{2}, \ \|g\|_{p,\lambda} \le 1.$$

By $f \in Z^{q,\lambda}(\mathbf{T})$, we may assume that

$$f(x) = \sum_{k=0}^{\infty} c_k a_k(x) \, ,$$

where $a_k : (q, \lambda)$ -block, supp $a_k \subset B_k$ for some interval B_k , and $\sum_{k=0}^{\infty} |c_k| \le 2 ||f||_{Z^{q,\lambda}}$. Also for any $\varepsilon > 0$ let $\phi_{\varepsilon}(x) = \frac{1}{|I_{\varepsilon}|} \chi_{I_{\varepsilon}}(x)$, where $I_{\varepsilon} = [-\varepsilon, \varepsilon]$ and χ_E denotes the characteristic function of E. When we define $g_{\varepsilon}(x) = g * \phi_{\varepsilon}(x)$ for $g \in L^{p,\lambda}(\mathbf{T})$, it is easy to see $g_{\varepsilon} \in C(\mathbf{T})$ and $||g_{\varepsilon}||_{p,\lambda} \le ||g||_{p,\lambda}$. Now for any integer $N \ge 1$ and $g \in L^{p,\lambda}(\mathbf{T})$, we define

$$I_{\varepsilon}^{N} = \sum_{k=0}^{N} c_k \frac{1}{2\pi} \int_0^{2\pi} a_k(x) (g(x) - g_{\varepsilon}(x)) dx,$$

and

$$II_{\varepsilon}^{N} = \sum_{k=N+1}^{\infty} c_k \frac{1}{2\pi} \int_0^{2\pi} a_k(x)(g(x) - g_{\varepsilon}(x))dx \, .$$

Then, we have

$$\frac{1}{2\pi} \int_0^{2\pi} f(x)(g(x) - g_\varepsilon(x))dx = \sum_{k=0}^\infty c_k \frac{1}{2\pi} \int_0^{2\pi} a_k(x)(g(x) - g_\varepsilon(x))dx$$
$$= I_\varepsilon^N + II_\varepsilon^N .$$

By $||g_{\varepsilon}||_{p,\lambda} \leq ||g||_{p,\lambda}$, we obtain

$$|II_{\varepsilon}^{N}| \leq \sum_{k=N+1}^{\infty} |c_{k}| \|a_{k}\|_{Z^{q,\lambda}} \|g - g_{\varepsilon}\|_{p,\lambda}$$
$$\leq 2 \sum_{k=N+1}^{\infty} |c_{k}|.$$

Also for any $\eta > 0$, there exists N_0 a positive integer such that $\sum_{k=N_0+1}^{\infty} |c_k| < \frac{\eta}{2}$. Hence, we have $|\Pi_{\varepsilon}^{N_0}| < \eta$ for all $\varepsilon > 0$. Moreover, we have

$$|I_{\varepsilon}^{N_{0}}| \leq \sum_{k=0}^{N_{0}} |c_{k}| \|a_{k}\|_{q} \|g - g_{\varepsilon}\|_{p}$$
$$= \sum_{k=0}^{N_{0}} |c_{k}| \|a_{k}\|_{q} \|g - g * \phi_{\varepsilon}\|_{p}$$
$$\to 0,$$

as $\varepsilon \to 0$. Therefore, we get

$$\limsup_{\varepsilon \to 0} \left| \frac{1}{2\pi} \int_0^{2\pi} f(x) g_\varepsilon(x) dx - \frac{1}{2\pi} \int_0^{2\pi} f(x) g(x) dx \right| \le \eta,$$

and

$$\lim_{\varepsilon \to 0} \frac{1}{2\pi} \int_0^{2\pi} f(x) g_\varepsilon(x) dx = \frac{1}{2\pi} \int_0^{2\pi} f(x) g(x) dx$$

Hence, there exists $\varepsilon_0 > 0$ such that $\left|\frac{1}{2\pi} \int_0^{2\pi} f(x) g_{\varepsilon_0}(x) dx\right| \ge \frac{A}{3}$. So we obtain

$$\sup_{\|g\|_{p,\lambda} \le 1, g \in L_0^{p,\lambda}} \left| \frac{1}{2\pi} \int_0^{2\pi} f(x)g(x)dx \right| \ge \frac{A}{3}.$$

Therefore, we have $||f||_{Z^{q,\lambda}} \leq 3||f||_{(L_0^{p,\lambda})^*}$. Since the converse is trivial, we get the desired result.

Now we are ready to prove Theorem 1.2.

PROOF OF THEOREM 1.2. First we have $Z^{q,\lambda}(\mathbf{T}) \subset (L_0^{p,\lambda}(\mathbf{T}))^*$ by Lemma 2.2. Since $(Z^{q,\lambda}(\mathbf{T}))^* = L^{p,\lambda}(\mathbf{T}) \supset L_0^{p,\lambda}(\mathbf{T})$, we see that the annihilator of $Z^{q,\lambda}(\mathbf{T})$ is {0}, and hence $Z^{q,\lambda}(\mathbf{T})$ is weak*-dense in $(L_0^{p,\lambda}(\mathbf{T}))^*$ (see Theorem 4.7 (b) in Rudin [4]). By the Banach-Alaoglu theorem and the separability of $L_0^{p,\lambda}(\mathbf{T})$ we see that the unit ball of $(L_0^{p,\lambda}(\mathbf{T}))^*$ is weak*-compact and metrizable (see Theorem 3.16 in Rudin [4]). Thus, if T is in $(L_0^{p,\lambda}(\mathbf{T}))^*$ with $||T||_{(L_0^{p,\lambda}(\mathbf{T}))^*} \leq 1$, then there exists a sequence $\{f_k\} \subset Z^{q,\lambda}(\mathbf{T})$ with $||f_k||_{(L_0^{p,\lambda}(\mathbf{T}))^*} \leq 1$ such that $f_k \to T$ in the weak*-topology of $(L_0^{p,\lambda}(\mathbf{T}))^*$. Here, we may assume $||f_k||_{Z^{q,\lambda}(\mathbf{T})} \leq 1$ by Lemma 2.6. Hence, by Lemma 2.5, there exist $f \in Z^{q,\lambda}(\mathbf{T})$ and a subsequence $\{f_{k_j}\}$ $(k_1 < k_2 < \dots)$ such that $||f_{k_j}||_{Z^{q,\lambda}} \leq 1$ and

$$\lim_{j \to \infty} \frac{1}{2\pi} \int_0^{2\pi} f_{k_j}(x) g(x) dx = \frac{1}{2\pi} \int_0^{2\pi} f(x) g(x) dx$$

for all $g \in C(\mathbf{T})$. Hence, we have

$$\langle T, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x)g(x)dx$$

for all $g \in C(\mathbf{T})$. Therefore we get the desired result.

References

[1] D. R. ADAMS and J. XIAO, Morrey spaces in harmonic analysis, Ark. Mat. 50 (2012), 201–230.

196

- [2] R. COIFMAN and G. WEISS, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.
- [3] A. KUFNER ET AL., Function Spaces, Academia Publishing House of Czechoslovak Academy of Sciences, 1997.
- [4] W. RUDIN, Functional Analysis, McGraw-Hill, 1973.
- [5] E. M. STEIN, Harmonic Analysis, Princeton Univ. Press, 1993.
- [6] A. TORCHINSKY, Real-Variable Methods in Harmonic Analysis, Academic Press, Inc., 1986.
- [7] C. T. ZORKO, Morrey spaces, Proc. Amer. Math. Soc. 98 (1986), 586–592.

Present Addresses: Takashi Izumi Kojirakawa-Machi 1–5–18, Yamagata, 990–0021 Japan.

ENJI SATO DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, YAMAGATA UNIVERSITY, YAMAGATA, 990–8560 JAPAN. *e-mail*: esato@sci.kj.yamagata-u.ac.jp

Kôzô Yabuta Research Center for Mathematical Sciences, Kwansei Gakuin University, Sanda, 669–1337 Japan.