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Abstract. The unfolding of a polyhedron along its edges is known as a vertex unfolding if adjacent faces are
allowed to be connected not only at an edge but also at a vertex. Demaine et al. [1] showed that every triangulated
polyhedron has a vertex unfolding. We extend this result to a tight polyhedron, where a polyhedron is tight if its
non-triangular faces are mutually non-incident.

1. Introduction

We investigate a procedure to cut open a polyhedron homeomorphic to the 2-sphere
along its edges and unfold it to a connected flat piece without overlap. The unfolding needs
to consist of the faces of the polyhedron joined along the edges. This type of unfolding has
been referred to as an edge unfolding or simply an unfolding. It is known that some non-
convex polyhedra have no edge unfoldings. However, no example of a convex polyhedron
that has no edge unfolding is known. The determination of whether every convex polyhedron
has an edge unfolding is a long-standing open problem. The difficulty of this question led to
the exploration of other unfoldings that have a broader definition of edge unfolding. We pay
attention to a vertex unfolding that permits two faces joined not only at an edge but also at a
vertex, that is, the resulting piece may have a disconnected interior. See [2, §22] for details of
edge unfolding and vertex unfolding.

In [1], Demaine et al. showed the following, where they proved conclusively that P
does not need to be a spherical polyhedron, but may be a connected triangulated 2-manifold,
possibly with boundaries.

THEOREM 1 (Demaine et al [1]). Let P be a polyhedron. If P is triangulated, then it
has a vertex unfolding.

We broadly describe the proof of Theorem 1 here and describe it in detail in Sections 2-4.
Their algorithm [1] first finds a spanning face path from triangle to triangle on the surface of
the polyhedron, connecting through common vertices. Although the face path might “cross”
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FIGURE 1. Vertex unfolding of the pentagonal antiprism

at some vertices, the algorithm converts it into a non-crossing one (see Section 3 for the
definition of “cross”), and further, lays out the triangles along a line without overlap.

Their method is based on the condition that all faces are triangular, and the existences of
the face path and the line-layout of it might actually fail for a polyhedron with non-triangular
faces. For example, the truncated cube has no face path since its six octagons are inadequate
to lay out eight triangles along a line, and if a face path consists of isosceles trapezoids, a local
overlap might occur in a long strip.

In this paper, we fix these problems and make progress on Theorem 1 for a polyhedron
with non-triangular faces. A (possibly non-convex) polyhedron P is tight if no two non-
triangular faces share a vertex. Here, a non-triangular face needs not necessarily be a convex
polygon. Examples of tight polyhedra are the snub cube, snub dodecahedron, pyramids, and
antiprisms. The main theorem in this paper is as follows.

THEOREM 2. Let P be a polyhedron. If P is tight, then it has a vertex unfolding.

Figure 1 shows a vertex unfolding of the pentagonal antiprism. Our proof basically
depend on the method in [1]. Our new result is a graph theoretical part of it, which is contained
in Section 2.

2. Hamiltonian vertex-face tour

In this section, we observe tight polyhedra from a graph theoretical standpoint. We
use standard terminology and notations of graph theory, for example, see [3]. By Steinitz’s
theorem, a surface of a polyhedron corresponds to a 3-connected plane graph. Thus, we also
call a 3-connected plane graph tight if its non-triangular faces are mutually non-incident. We
prepare some more definitions.

Let G be a tight graph. A disjoint union T of closed alternating sequences of vertices vi

and faces fi of G is called a spanning vertex-face tour if each face of G appears exactly once
in T and each closed component (v1, f1, v2, f2, . . . , vk , fk , v1) satisfies that vi and vi+1 are
distinct and both are incident to the face fi for i = 1, 2, . . . , k (indices are taken modulo k).
Some vertex of G may be repeated in T ; conversely, some vertex may not appear in T . If a
spanning vertex-face tour T is connected, then T is called a Hamiltonian vertex-face tour.

Next, we define two operations on a spanning vertex-face tour T . Let f = uvx and f ′ =
uvy be two adjacent triangular faces of G. We refer to the operation of replacing (u, f, x)
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FIGURE 2. Switching operation (left) and reflecting operation (right)

and (v, f ′, y) with (v, f, x) and (u, f ′, y), respectively, as the switching operation, and the
operation of replacing (u, f, x) and (u, f ′, y) with (v, f, x) and (v, f ′, y), respectively, as
the reflecting operation (Figure 2). Note that simultaneous changing of combinations between
vertices and faces at several triangular faces of T , such as in a switching operation or reflecting
operation, may produce another spanning vertex-face tour T ′. In general, we refer to such
operations as triangular recombinations.

First, we prove the following lemma.

LEMMA 3. Let G be a tight graph. Let F ∗ = {f1, f2, . . . , fm} be the set of all non-
triangular faces of G, and let vi and v′

i be distinct vertices of fi for i = 1, 2, . . . ,m. If G has

a spanning vertex-face tour T , then G has a spanning vertex-face tour T ′ containing each
(vi , fi , v′

i ) for i = 1, 2, . . . ,m.

PROOF. For simplicity, let f = v1v2 · · · vn denotes any non-triangular face of G. Let
gi be the triangular face adjacent to f by sharing vivi+1 for i = 1, 2, . . . , n (indices are taken
modulo n), and let ui be the remaining vertex of gi for i = 1, 2, . . . , n.

We only have to show that if T contains (v1, f, vk) for some 2 ≤ k ≤ n − 1, then T can
be converted to a spanning vertex-face tour T ′ containing (v1, f , vk+1) instead of (v1, f, vk)

by performing only triangular recombinations.
Case 1: T contains (uk, gk, vk) or (uk, gk, vk+1).
In this case, we can obtain T ′ from T by replacing (v1, f, vk) with (v1, f , vk+1), and

simultaneously by replacing (uk , gk , vk) with (uk , gk , vk+1) in the former case and (uk , gk ,
vk+1) with (uk, gk , vk) in the latter case.

Case 2: T contains (vk, gk, vk+1).
In this case, we check the triangular faces incident to vi from i = k + 1, k + 2, . . . , n −

1, n, 1, 2, . . . , k in turn. For i = k + 1, k + 2, . . . , n − 1, n, 1, 2, . . . , k, if they exist, let

h1
i , . . . , h

pi−3
i be the triangular faces incident to vi between gi−1 and gi and opposite to f in

cyclic order, where pi = deg vi , and let w1
i , w

2
i , . . . , w

pi−4
i be the vertices incident to vi from

ui−1 to ui .

First, we examine the triangular faces incident to vk+1. If T contains (uk , h1
k+1,

w1
k+1), then the switching operation at gk and h1

k+1 leads this case to Case 1. If T con-

tains (vk+1, h
1
k+1, w

1
k+1), then the reflecting operation at gk and h1

k+1 again leads this case to
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FIGURE 3. Diagonal flip

Case 1. Thus, T must contain (vk+1, h
1
k+1, uk). By repeating this argument, we can say that

T contains (vk+1, gk+1, uk+1).
Second, we check the triangular faces incident to vk+2, and we can say that T con-

tains (vk+2, gk+2, uk+2). Repeating this argument, we finally deduce that T contains

(vk, h
pk−3
k , w

pk−4
k ). Thus, we can apply the reflecting operation at h

pk−3
k and gk , which leads

this case to Case 1. �

REMARK 4. In the proof of Lemma 3, we can choose a triangular face f as a member
of F ∗ if the faces incident to f are all triangular faces.

Next, we prove the following lemma.

LEMMA 5. Let G be a plane triangulation. Then G has a spanning vertex-face tour
T .

In order to prove Lemma 5, we use Wagner’s theorem [4], which states that every trian-
gulation can be transformed into the standard triangulation by a finite sequence of diagonal
flips. Here, the operation diagonal flip is defined as follows. Let uv be an edge of a trian-
gulation G. Let uvx and uvy be the faces incident to uv. Then x and y are distinct vertices
unless G = K3. If x and y are not adjacent, then a diagonal flip is performed to obtain a
new triangulation G′ from G by deleting uv and adding the edge xy (Figure 3). The standard
triangulation is defined as illustrated in Figure 4. Note that the standard triangulation has a
Hamiltonian vertex-face tour.

PROOF. Let f1 = v1v2v3 and f2 = v3v4v1 be two adjacent faces of G, G′ be the
triangulation obtained from G by performing the diagonal flip at v1v3, and f ′

1 = v2v3v4 and

f ′
2 = v4v1v2 be the new faces of G′. >From Wagner’s theorem and the fact in Figure 4,

we only have to show that if G has a spanning vertex-face tour T then G′ has a spanning
vertex-face tour T ′.

Let g1 and g2 be triangular faces of G that are adjacent to f1 by sharing v1v2 and v2v3,
respectively, let g3 and g4 be triangular faces of G that are adjacent to f2 by sharing v3v4 and
v4v1, respectively, and let ui be the remaining vertex of gi for i = 1, 2, 3, 4.
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FIGURE 4. Standard triangulation and Hamiltonian vertex-face tour (gray line)

If they exist, let h1
i , h

2
i , . . . , h

pi−3
i for i = 2, 4 and h1

i , h
2
i , . . . , h

pi−4
i for i = 1, 3 be the

triangular faces that are incident to vi and between gi−1 and gi but opposite to f1 and f2 in

cyclic order, where pi = degG vi . Let w1
i , w

2
i , . . . , w

pi−4
i for i = 2, 4 and w1

i , w
2
i , . . . , w

pi−5
i

for i = 1, 3 be the vertices incident to vi from ui−1 to ui . We divide the proof into four cases.
Case 1: T contains (v2, f1, v3) and (v4, f2, v1).
In this case, we can obtain T ′ from T by replacing (v2, f1, v3) and (v4, f2, v1) with

(v2, f
′
1, v3) and (v4, f

′
2, v1), respectively.

Case 2: T contains (v1, f1, v3) and (v4, f2, v1).
In this case, we can obtain T ′ from T by replacing (v1, f1, v3) and (v4, f2, v1) with

(v3, f
′
1, v2) and (v2, f

′
2, v4), respectively.

Case 3: T contains (v1, f1, v2) and (v4, f2, v1).
In this case, we consider the triangular faces incident to v3 from g2 to g3 in turn. If

T contains (u2, g2, v3), then the switching operation at f1 and g2 leads the case to Case
2. If T contains (u2, g2, v2), then the reflecting operation at f1 and g2 again leads the
case to Case 2. Thus, T must contain (v3, g2, v2). Similarly, we can say that T contains

(v3, h
1
3, u2), (v3, h

2
3, w

1
3), . . . , (v3, g3, u3). Thus, if we perform the switching operation at g3

and f2, the situation becomes a symmetric version of Case 2.
Case 4: T contains (v1, f1, v3) and (v3, f2, v1).
In this case, we can obtain T ′ from T by replacing (v1, f1, v3) and (v3, f2, v1) with

(v2, f
′
1, v4) and (v4, f

′
2, v2), respectively. �

LEMMA 6. Let G be a tight graph. Then G has a spanning vertex-face tour T .

PROOF. We prove this by applying a double-induction on the size and the number of
the maximum face of G.

Case 1: G has no non-triangular faces.
This case follows from Lemma 5.
Case 2: The maximum face size of G is at least four.
Let f = v1v2 · · · vn be a face with the maximum size (n ≥ 4). From the planarity of G,

we may assume that G′ = G + v1v3 is tight. Let f ′ = v1v2v3 and f ′′ = v3v4 · · · vnv1 be the
new faces of G′. From the inductive hypothesis, G′ has a spanning vertex-face tour T ′. We
show that G has a spanning vertex-face tour T .
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From Lemma 3 and Remark 4, we may assume that T ′ contains (v1, f
′′, v3). There-

fore, if T ′ contains (v2, f
′, v1), then we can obtain T from T ′ by replacing (v2, f

′, v1) and
(v1, f

′′, v3) with (v2, f, v3); the case where T ′ contains (v2, f
′, v3) is similar. Thus, we may

assume that T ′ contains (v1, f
′, v3).

We consider the triangular faces incident to vi from i = 3, 4, . . . , n in turn. Let g2 be the
triangular face adjacent to f ′ sharing v2v3, and for i = 3, 4, . . . , n, let gi be the triangular face
adjacent to f ′′ sharing vivi+1 (indices are taken modulo n). Further, let ui be the remaining
vertex of gi for i = 2, 3, . . . , n.

First, we examine the triangular faces incident to v3 from g2 to g3. If they exist, let

h1
3, h2

3, . . . , h
p3−4
3 be the triangular faces between g2 and g3 in cyclic order, where p3 =

degG′ v3, and let h1
3 = v3u2w

1
3, h

j

3 = v3w
j−1
3 w

j

3 for j = 2, 3, . . . , p − 6, and h
p−4
3 =

v3w
p−5
3 u3. If T ′ contains (v2, g2, u2), then the switching operation at f ′ and g2 yields a

new spanning vertex-face tour containing (v1, f
′, v2), and if T ′ contains (v3, g2, u2), then the

reflecting operation at f ′ and g2 yields a new vertex-face tour containing (v1, f
′, v2), and in

both cases, we can obtain T by replacing (v1, f
′, v2) and (v1, f

′′, v3) with (v2, f, v3). Thus,

T ′ must contain (v3, g2, v2). By repeating this argument from h1
3 to g3, we can say that T ′

contains (v3, g3, u3). Thus, we can obtain a new vertex-face tour by replacing (v1, f
′′, v3)

and (v3, g3, u3) with (v1, f
′′, v4) and (v4, g3, u3), respectively. In this case, we can obtain T

by replacing (v1, f
′, v3), (v1, f

′′, v4) with (v3, f, v4). �

LEMMA 7. Let G be a tight graph. Let F ∗ = {f1, f2, . . . , fm} be the set of all non-
triangular faces of G, and let vi and v′

i be distinct vertices of fi for i = 1, 2, . . . ,m. If G has

a spanning vertex-face tour T ′ containing each (vi , fi , v′
i ) for i = 1, 2, . . . ,m, then G has a

Hamiltonian vertex-face tour T ′′ containing each (vi , fi , v′
i ) for i = 1, 2, . . . ,m.

PROOF. We show that T ′ can be converted to be a connected spanning vertex-face tour
by performing only a series of triangular recombinations. Suppose that T ′ is disconnected
at two adjacent faces g and f . We may assume that g = v1v2u1 is a triangular face. Let
f = v1v2 · · · vn. We divide the proof into two cases.

Case 1: n = 3.
In this case, we may assume that two components of T ′ containing (v1, g, u1) and

(v2, f, v3) are disconnected. Thus, we can make the two components connected by perform-
ing the switching operation at g and f .

Case 2: n ≥ 4.
Suppose that T ′ contains (vk1 , f, vk2 ) for some k1 and k2. Then T ′ must contain

(vk1 , h
l
k1

, wl) for some triangular face hl
k1

incident to vk1 , and for some vertex wl of hl
k1

.

Now, hl
k1

is connected to g by a path of triangular faces, and it holds from Case 1 that they

can become connected by triangular recombinations. �

Our goal is the following.
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THEOREM 8. Let G be a tight graph. Let F ∗ = {f1, f2, . . . , fm} be the set of all non-
triangular faces of G, and let vi and v′

i be distinct vertices of fi for i = 1, 2, . . . ,m. Then G

has a Hamiltonian vertex-face tour containing each (vi , fi , v′
i ) for i = 1, 2, . . . ,m.

PROOF. Let G be a tight graph. >From Lemma 6, G has a spanning vertex-face tour T .
Then, from Lemma 3, G has a spanning vertex-face tour T ′ containing each (vi , fi , v′

i ). Thus,

from Lemma 7, G has a Hamiltonian vertex-face tour T ′′ containing each (vi , fi , v′
i ). �

3. Non-crossing Hamiltonian face path

For a polyhedron P and its graph G, a Hamiltonian vertex-face tour of G guar-
antees an existence of a path of the faces of P . We call it a Hamiltonian face path
of P . However, the path might cross itself in the sense that it contains the pattern
(. . . , f1, v, f3, . . . , f2, v, f4, . . . ) with the faces f1, f2, f3, f4 incident to a vertex v appear-
ing in cyclic order. This make it physically impossible for the faces of an unfolding to be a
single piece. Hence, we need to detect a non-crossing path. A face path of P (likewise, a
vertex-face tour of G) is non-crossing if it has no patterns as that described above.

LEMMA 9. In Theorem 8, any Hamiltonian vertex-face tour of G can be converted to
a non-crossing one.

PROOF. This is contained in [1]. The key point of the proof is as follows. Suppose that
a Hamiltonian vertex-face tour T crosses at a vertex v. Let f1, f2, . . . be the faces passing
through v in T in cyclic order. We remove the face path of (. . . , f1, v, f2, . . . ) from T as
depicted in Figure 5. If the resulting tour is disconnected, then we remove the face path of
(. . . , f2, v, f3, . . . ) instead of the above from T such that the resulting tour is connected. By
repeating this operation at every vertex of G, we obtain a non-crossing Hamiltonian vertex-
face tour. �

FIGURE 5. Converting a Hamiltonian vertex-face tour into a non-crossing one
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4. Layout of a face path

In this section, we exhibit the procedure to lay out the faces of a tight polyhedron P to
form a vertex unfolding. First, we show the following.

LEMMA 10. Let F be a ( possibly non-convex) polygon with four sides or more. Then,
there are two vertices u, v of F and an arrangement of F in a vertical interval of the plane
with u and v on its left and right boundaries, respectively.

PROOF. We only have to choose u and v such that the length of segment uv is longest
among all diagonals and edges of F . �

PROOF OF THEOREM 2. Let P be a tight polyhedron. Consider the graph G of P .
From Lemma 9, G has a non-crossing Hamiltonian vertex-face tour T . Let T be the corre-
sponding face path of P . We may assume from Theorem 8 that T uses the vertices of Lemma
10 in each non-triangular face.

Now, we can arrange the faces as follows; this is a consequence of Lemma 22.6.2 in
textbook [2]. Suppose inductively that P has been laid out along a line up to face fi−1 with
all faces left of vertex vi , which is the rightmost vertex of fi−1. Let (vi , fi , vi+1) be the next
face in T . If fi is a triangular face, rotate fi around vi such that fi lies horizontally between
or at the same horizontal coordinate as vi and vi+1. If fi is a non-triangular face, we can use
Lemma 10. Repeating this process along T produces a non-overlapping layout of the faces of
P . Thus, P has a vertex unfolding. �
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