Infinitesimal Deformations and Brauer Group of Some Generalized Calabi–Eckmann Manifolds

Indranil BISWAS, Mahan MJ* and Ajay Singh THAKUR

Tata Institute of Fundamental Research and RKM Vivekananda University* (Communicated by N. Suwa)

Abstract. Let X be a compact connected Riemann surface. Let $\xi_1 : E_1 \longrightarrow X$ and $\xi_2 : E_2 \longrightarrow X$ be holomorphic vector bundles of rank at least two. Given these together with a $\lambda \in \mathbb{C}$ with positive imaginary part, we construct a holomorphic fiber bundle $S_{\lambda}^{\xi_1,\xi_2}$ over X whose fibers are the Calabi–Eckmann manifolds. We compute the Picard group of the total space of $S_{\lambda}^{\xi_1,\xi_2}$. We also compute the infinitesimal deformations of the total space of $S_{\lambda}^{\xi_1,\xi_2}$. The cohomological Brauer group of $S_{\lambda}^{\xi_1,\xi_2}$ is shown to be zero. In particular, the Brauer group of $S_{\lambda}^{\xi_1,\xi_2}$ vanishes.

1. Introduction

Let X be compact connected Riemann surface. Let $\xi_1 : E_1 \longrightarrow X$ and $\xi_2 : E_2 \longrightarrow X$ be holomorphic vector bundles of rank m and n respectively, with m, $n \ge 2$. Let E_1^0 (respectively, E_2^0) be the complement of the image of the zero section in E_1 (respectively, E_2). Fix a complex number λ with positive imaginary part.

The group **C** acts on the fiber product $E_1^0 \times_X E_2^0$ as follows:

$$t \cdot (z, w) = (\exp(t) \cdot z, \exp(t(\lambda - 1)/\lambda) \cdot w), \quad t \in \mathbf{C}, (z, w) \in E_1^0 \times_X E_2^0.$$

The quotient for this action is a compact complex manifold; we denote this complex manifold by $S_{\lambda}^{\xi_1,\xi_2}$. Each fiber of the natural projection $p : S_{\lambda}^{\xi_1,\xi_2} \longrightarrow X$ is a Calabi–Eckmann manifold.

Define the elliptic curve $T := \mathbf{C}/(\mathbf{Z} \oplus \lambda \cdot \mathbf{Z})$.

We prove the following (see Theorem 3.6 and Corollary 5.2):

THEOREM 1.1. The Picard group of $S_{\lambda}^{\xi_1,\xi_2}$ fits in a short exact sequence

$$0 \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(S_{\lambda}^{\xi_1,\xi_2}) \longrightarrow H^1(T, \mathcal{O}_T) \longrightarrow 0.$$

Received November 27, 2012; revised May 10, 2013

²⁰⁰⁰ Mathematics Subject Classification: 14F22, 32Q55, 32G05

Key words and phrases: Calabi-Eckmann manifold, infinitesimal deformation, Brauer group, Borel spectral sequence

The injective homomorphism $\operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(S_{\lambda}^{\xi_1,\xi_2})$ sends any holomorphic line bundle L to its pullback p^*L .

THEOREM 1.2. The cohomological Brauer group $Br'(S_{\lambda}^{\xi_1,\xi_2})$ vanishes. In particular, the Brauer group $Br(S_{\lambda}^{\xi_1,\xi_2})$ vanishes.

Assume that all endomorphisms of the holomorphic vector bundles E_1 and E_2 are scalar multiplications. Also, assume that the genus of X is at least two. We prove the following (see Corollary 4.4):

THEOREM 1.3. The dimension of the space of all infinitesimal deformations of the complex manifold $S_{\lambda}^{\xi_1,\xi_2}$ is $(m^2 + n^2 + 2)(g - 1) + 2$, where g is the genus of X.

In fact we compute the infinitesimal deformations of $S_{\lambda}^{\xi_1,\xi_2}$ explicitly.

The infinitesimal deformations of Calabi–Eckmann manifolds were computed by Akao in [1].

2. Generalized Calabi-Eckmann manifolds

We briefly recall the construction of the Calabi-Eckmann manifolds (see [2]). Take integers $m, n \ge 2$, and take $\lambda \in \mathbb{C}$ with $\text{Im}\lambda > 0$. Consider $(\mathbb{C}^m \setminus \{0\}) \times (\mathbb{C}^n \setminus \{0\})$. The additive group \mathbb{C} acts on this product as follows:

$$t \cdot (z, w) = (\exp(t)z, \exp(t(\lambda - 1)/\lambda)w), t \in \mathbf{C}, (z, w) \in (\mathbf{C}^m \setminus \{0\}) \times (\mathbf{C}^n \setminus \{0\})$$

The quotient

(2.1)
$$M_{\lambda}^{m,n} := ((\mathbf{C}^m \setminus \{0\}) \times (\mathbf{C}^n \setminus \{0\}))/\mathbf{C}$$

is a Calabi–Eckmann manifold. Let S^{2m-1} and S^{2n-1} be the unit spheres in \mathbb{C}^m and \mathbb{C}^n respectively. The composition of maps

 $S^{2m-1} \times S^{2n-1} \hookrightarrow (\mathbb{C}^m \setminus \{0\}) \times (\mathbb{C}^n \setminus \{0\}) \longrightarrow M_{\lambda}^{m,n}$

is a diffeomorphism. Let

(2.2)
$$T_{\lambda} := \mathbf{C}/(\mathbf{Z} \oplus \lambda \cdot \mathbf{Z})$$

be the complex elliptic curve. The natural projection

 $(\mathbf{C}^m \setminus \{0\}) \times (\mathbf{C}^n \setminus \{0\}) \longrightarrow \mathbf{C}\mathbf{P}^{m-1} \times \mathbf{C}\mathbf{P}^{n-1}$

descends to a projection to $\mathbb{CP}^{m-1} \times \mathbb{CP}^{n-1}$ of the above quotient space $M_{\lambda}^{m,n}$. This projection $M_{\lambda}^{m,n} \longrightarrow \mathbb{CP}^{m-1} \times \mathbb{CP}^{n-1}$ makes $M_{\lambda}^{m,n}$ a holomorphic principal T_{λ} -bundle over $\mathbb{CP}^{m-1} \times \mathbb{CP}^{n-1}$. We will extend this construction to a family parametrized by a Riemann surface.

Let X be a compact connected Riemann surface of genus g. Let

$$\xi_1: E_1 \longrightarrow X$$
 and $\xi_2: E_2 \longrightarrow X$

be two holomorphic vector bundles over *X* of rank *m* and *n* respectively; as before, $m, n \ge 2$. Let $E_i^0, i = 1, 2$, be the complement of the image of the zero section in the total space of E_i . Take $\lambda \in \mathbf{C}$ as above. The additive group **C** acts on the fiber product $E_1^0 \times_X E_2^0$ as follow:

$$t \cdot (z, w) = (\exp(t) \cdot z, \exp(t(\lambda - 1)/\lambda) \cdot w), \quad t \in \mathbf{C}, (z, w) \in E_1^0 \times_X E_2^0.$$

It is easy to check that this C-action is free and proper. Hence the corresponding quotient

(2.3)
$$S_{\lambda}^{\xi_1,\xi_2} := (E_1^0 \times_X E_2^0)/\mathbf{C}$$

is a compact complex manifold (see, for example, [5, Proposition 2.1.13]). The projection $(\xi_1, \xi_2)|_{E_1^0 \times E_2^0} : E_1^0 \times E_2^0 \longrightarrow X$ descends to a holomorphic projection

$$(2.4) p: S_{\lambda}^{\xi_1,\xi_2} \longrightarrow X.$$

This projection makes $S_{\lambda}^{\xi_1,\xi_2}$ a holomorphic fiber bundle over X with fiber $M_{\lambda}^{m,n}$ (constructed in (2.1)). The complex manifold $M_{\lambda}^{m,n}$ is not Kähler because $H^2(M_{\lambda}^{m,n}, \mathbf{R}) = 0$. Hence $S_{\lambda}^{\xi_1,\xi_2}$ is also not Kähler (any complex submanifold of a Kähler manifold is Kähler).

For i = 1, 2, let $P(E_i)$ be the holomorphic projective bundles over X parametrizing all the lines in E_i . The natural projection of $E_1^0 \times_X E_2^0$ to $P(E_1) \times_X P(E_2)$ descends to a projection

(2.5)
$$\varphi: S_{\lambda}^{\xi_1,\xi_2} \longrightarrow P(E_1) \times_X P(E_2).$$

We note that $P(E_1) \times_X P(E_2)$ is a complex projective manifold. The projection p in (2.4) is the composition of φ with the natural projection

$$(2.6) q: P(E_1) \times_X P(E_2) \longrightarrow X.$$

The projection φ makes $S_{\lambda}^{\xi_1,\xi_2}$ a holomorphic principal T_{λ} bundle over $P(E_1) \times_X P(E_2)$, where T_{λ} is defined in (2.2). To see this, consider the action of the multiplicative group $\mathbf{C}^* = \mathbf{C}/(2\pi\sqrt{-1}\cdot\mathbf{Z})$ on $E_1^0 \times_X E_2^0$ defined by $t \cdot (z, w) = (t \cdot z, t \cdot w)$. This action commutes with the above action of \mathbf{C} on $E_1^0 \times_X E_2^0$. Therefore, we get an action of \mathbf{C}^* on the quotient $S_{\lambda}^{\xi_1,\xi_2}$. This action of \mathbf{C}^* on $S_{\lambda}^{\xi_1,\xi_2}$ factors through the quotient group $T_{\lambda} = \mathbf{C}^*/\langle \exp(2\pi\sqrt{-1}\cdot\lambda) \rangle$. Using this action of T_{λ} , the projection φ is a holomorphic principal T_{λ} -bundle over $P(E_1) \times_X P(E_2)$.

Fix Hermitian structures h_1 and h_2 on the vector bundles E_1 and E_2 respectively. Let

$$S(\xi_1) := \{ v \in E_1 | h_1(v) = 1 \}$$
 and $S(\xi_2) := \{ v \in E_2 | h_2(v) = 1 \}$

be the corresponding unit sphere bundles over X. Let

$$S(\xi_i) \longrightarrow P(E_i) = E_i^0 / \mathbb{C}^*$$

be the restriction of the quotient map $E_i^0 \longrightarrow P(E_i)$. It makes $S(\xi_i)$ a principal S^1 -bundle over $P(E_i)$ (in particular, $S(\xi_i)$ is a circle bundle over $P(E_i)$). The composition of maps

$$S(\xi_1) \times_X S(\xi_2) \hookrightarrow E_1^0 \times_X E_2^0 \longrightarrow S_{\lambda}^{\xi_1,\xi_2}$$

is a diffeomorphism of fiber bundles over X. The complex structure on $S_{\lambda}^{\xi_1,\xi_2}$ produces a complex structure on $S(\xi_1) \times_X S(\xi_2)$ using this diffeomorphism.

3. The Picard group

For notational conveniences, T_{λ} , $M_{\lambda}^{m,n}$ and $S_{\lambda}^{\xi_1,\xi_2}$ will be denoted by T, M and S respectively. The fiber product $P(E_1) \times_X P(E_2)$ will be denoted by Y.

Fix a point of S. Let $i : T \hookrightarrow S$ be the orbit of this point (recall that S is a principal T-bundle over Y).

PROPOSITION 3.1. Let $T \xrightarrow{i} S \xrightarrow{\varphi} Y$ be the principal bundle in (2.5). Then we have the following short exact sequence:

$$0 \longrightarrow H^1(Y, \mathcal{O}_Y) \xrightarrow{\varphi^*} H^1(S, \mathcal{O}_S) \xrightarrow{i^*} H^1(T, \mathcal{O}_T) \longrightarrow 0$$

where φ^* and i^* are induced homomorphisms of cohomologies.

PROOF. Consider the Borel spectral sequence (see Appendix 2 (page 202) of [4]) associated with the above principal bundle

$$T \stackrel{i}{\hookrightarrow} S \stackrel{\varphi}{\longrightarrow} Y$$

for the trivial holomorphic line bundle over Y. We have

From the Leray–Hirsch theorem for the fiber bundle in (2.6) it follows that the cohomology algebra $H^*(Y, \mathbb{C})$ is generated by $H^2(X, \mathbb{C})$ together with $c_1(\mathcal{O}_{P(E_1)})$ and $c_1(\mathcal{O}_{P(E_2)})$ (see [3, p. 432, Theorem 4D.1] for the Leray–Hirsch theorem). Therefore, $H^2(Y, \mathbb{C}) = H^{1,1}(Y)$. In other words, $H^{0,2}(Y, \mathcal{O}_Y) = 0$.

As no element of ${}^{0,1}E_r^{1,0}$ and ${}^{0,1}E_r^{0,1}$ is d_r -boundary for $r \ge 2$, we have ${}^{0,1}E_2^{1,0} = {}^{0,1}E_{\infty}^{1,0}$ and ${}^{0,1}E_2^{0,1} = {}^{0,1}E_{\infty}^{0,1}$. We have a filtration

$$H^1(S, \mathcal{O}_S) = D^1 \supset D^0 \supset 0,$$

where $D^0 = {}^{0,1}E_{\infty}^{1,0}$ and $D^1/D^0 = {}^{0,1}E_{\infty}^{0,1}$. The corresponding graded object is

$$\operatorname{Gr} H^1(S, \mathcal{O}_S) = {}^{0,1}E_{\infty}^{1,0} \oplus {}^{0,1}E_{\infty}^{0,1}$$

Hence, the natural homomorphism

$$\varphi^* : H^1(Y, \mathcal{O}_Y) = {}^{0,1}E_2^{1,0} \longrightarrow {}^{0,1}E_\infty^{1,0} = D^0 \subseteq H^1(S, \mathcal{O}_S)$$

is injective, and the natural homomorphism

$$i^*: H^1(S, \mathcal{O}_S) = D^1 \longrightarrow D^1/D^0 = {}^{0,1}E^{0,1}_{\infty} = {}^{0,1}E^{0,1}_2 = H^1(T, \mathcal{O})$$

is surjective. So we have the exact sequence

$$0 \longrightarrow H^1(Y, \mathcal{O}_Y) \xrightarrow{\varphi^*} H^1(S, \mathcal{O}_S) \xrightarrow{i^*} H^1(T, \mathcal{O}_T) \longrightarrow 0.$$

This completes the proof.

LEMMA 3.2. For the projection q in (2.6), the homomorphism

$$q^*: H^1(X, \mathcal{O}_X) \longrightarrow H^1(Y, \mathcal{O}_Y)$$

is an isomorphism. In particular, dim $H^1(Y, \mathcal{O}_Y) = g$.

PROOF. Since the fibers of q are connected and simply connected, the long exact sequence of homotopy groups for q gives that the homomorphism $\pi_1(Y) \longrightarrow \pi_1(X)$ induced by q is an isomorphism. Hence $q^* : H^1(X, \mathbb{Q}) \longrightarrow H^1(Y, \mathbb{Q})$ is an isomorphism. Since both X and Y are Kähler, this implies the lemma.

Proposition 3.1 and Lemma 3.2 together have the following corollary:

COROLLARY 3.3. The dimension of $H^1(S, \mathcal{O}_S)$ is g + 1.

LEMMA 3.4. For the projection p in (2.4), the homomorphism

$$p_*: \pi_1(S) \longrightarrow \pi_1(X)$$

is an isomorphism. In particular, the pullback homomorphism

$$p^*: H^1(X, \mathbf{Z}) \longrightarrow H^1(S, \mathbf{Z})$$

is an isomorphism.

PROOF. The fiber $M_{\lambda}^{m,n}$ of p is connected and simply connected (it is a product of two spheres of dimensions at least three). Hence from the homotopy exact sequence it follows that the above homomorphism p_* is an isomorphism. Therefore, the homomorphism

$$H_1(S, \mathbf{Z}) \longrightarrow H_1(X, \mathbf{Z})$$

given by p is an isomorphism. Now from the universal coefficient theorem for cohomologies it follows that the homomorphism p^* in the lemma is an isomorphism.

PROPOSITION 3.5. The pullback homomorphism

$$p^*: H^2(X, \mathbb{Z}) \longrightarrow H^2(S, \mathbb{Z})$$

is an isomorphism.

PROOF. Let

$$M \stackrel{l}{\hookrightarrow} S \stackrel{p}{\longrightarrow} X$$

be the fiber bundle in (2.4). Consider the Serre spectral sequence associated to this fiber bundle for the constant sheaf **Z**. We will show that the local system $R^i p_* \mathbf{Z}$ is constant for all *i*. Recall that the fibers of *p* are $M = S^{2m-1} \times S^{2n-1}$. For the action of U(m) on $S^{2m-1} = \{v \in \mathbb{C}^m |||v||^2 = 1\}$, the action of U(m) on $H^*(S^{2m-1}, \mathbf{Z})$ is trivial. Similarly, U(n) acts trivially on $H^*(S^{2n-1}, \mathbf{Z})$. Therefore, the local system $R^i p_* \mathbf{Z}$ is constant for all *i*.

Consequently, we have

$$E_2^{0,2} = H^0(X, \mathbf{Z}) \otimes H^2(M, \mathbf{Z}) = 0,$$

$$E_2^{1,1} = H^1(X, \mathbf{Z}) \otimes H^1(M, \mathbf{Z}) = 0,$$

$$E_2^{2,0} = H^2(X, \mathbf{Z}) \otimes H^0(M, \mathbf{Z}) = H^2(X, \mathbf{Z})$$

Further,

$$d_2: E_2^{0,1} = 0 \longrightarrow E_2^{2,0}.$$

is a zero map. This implies that

$$E_{\infty}^{0,2} = 0, E_{\infty}^{1,1} = 0 \text{ and } E_{\infty}^{2,0} = H^2(X, \mathbb{Z}).$$

Hence the pullback homomorphism

$$p^*: H^2(X, \mathbf{Z}) = E_{\infty}^{2,0} \longrightarrow H^2(S, \mathbf{Z})$$

is an isomorphism.

THEOREM 3.6. The Picard group of S fits in a short exact sequence

$$0 \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(S) \longrightarrow H^{1}(T, \mathcal{O}_{T}) \longrightarrow 0.$$

The injective homomorphism $\operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(S)$ sends any holomorphic line bundle L to p^*L .

PROOF. Let \mathcal{O}_S^* be the multiplicative sheaf on S of nowhere zero holomorphic functions. Consider the following short exact sequence of sheaves on S

$$0 \longrightarrow \mathbf{Z} \longrightarrow \mathcal{O}_S \longrightarrow \mathcal{O}_S^* \longrightarrow 0$$

66

where the surjective homomorphism is $f \mapsto \exp(2\pi \sqrt{-1} \cdot f)$. From the long exact sequence of cohomologies associated to it we conclude that $\operatorname{Pic}(S)$ fits in the exact sequence

$$H^1(S, \mathbb{Z}) \longrightarrow H^1(S, \mathcal{O}_S) \longrightarrow \operatorname{Pic}(S) \longrightarrow H^2(S, \mathbb{Z}) \longrightarrow H^1(S, \mathcal{O}_S)$$
.

We have the exact sequence

$$H^1(X, \mathbb{Z}) \longrightarrow H^1(X, \mathcal{O}_X) \longrightarrow \operatorname{Pic}(X) \longrightarrow H^2(X, \mathbb{Z}) \longrightarrow 0$$

which is constructed from the short exact sequence

$$0\longrightarrow \mathbf{Z}\longrightarrow \mathcal{O}_X\longrightarrow \mathcal{O}_X^*\longrightarrow 0$$

on X.

Consider the pullback homomorphism p^* : Pic(X) \longrightarrow Pic(S) defined by $L \longmapsto p^*L$. Since $H^1(X, \mathcal{O}_X) \subset H^1(S, \mathcal{O}_S)$ (see Proposition 3.1 and Lemma 3.2), $H^1(S, \mathbb{Z}) = H^1(X, \mathbb{Z})$ (see Lemma 3.4) and $H^2(S, \mathbb{Z}) = H^2(X, \mathbb{Z})$ (see Proposition 3.5) with the homomorphisms given by pullback, we conclude from the above two exact sequences that the homomorphism p^* makes Pic(X) a subgroup of Pic(S). Since $H^1(S, \mathcal{O}_S)/H^1(X, \mathcal{O}_X) = H^1(T, \mathcal{O}_T)$ by Proposition 3.1 and Lemma 3.2, we conclude that Pic(S)/ $p^*(\text{Pic}(X)) = H^1(T, \mathcal{O}_T)$. (The argument is same as the proof of five lemma.)

4. Infinitesimal deformations of the complex structure

In this section, we make the following assumptions:

(1) The two holomorphic vector bundles E_1 and E_2 are simple, meaning

$$H^{0}(X, End(E_{1})) = \mathbf{C} = H^{0}(X, End(E_{2})).$$

(2) genus(X) = $g \ge 2$.

We note that any stable holomorphic vector bundle is simple.

LEMMA 4.1. Let θ_Y be the holomorphic tangent bundles of $Y = P(E_1) \times_X P(E_2)$. Then $H^0(Y, \theta_Y) = 0$.

PROOF. For i = 1, 2, let $ad(E_i) \subset End(E_i)$ be the holomorphic subbundle of co-rank one defined by the sheaf of endomorphisms of E_i of trace zero. So, $End(E_i) = ad(E_i) \oplus \mathcal{O}_X$. We note that

(4.1)
$$H^0(X, \operatorname{ad}(E_i)) = 0$$

because E_i is simple.

Consider the projection q in (2.6). Let $\theta_{Y/X} \subset \theta_Y$ be the relative holomorphic tangent bundle for q. We note that

(4.2)
$$q_*\theta_{Y/X} = \operatorname{ad}(E_1) \oplus \operatorname{ad}(E_2).$$

The short exact sequence of holomorphic vector bundles

(4.3)
$$0 \longrightarrow \theta_{Y/X} \longrightarrow \theta_Y \longrightarrow q^* \theta_X \longrightarrow 0,$$

where θ_X is the holomorphic tangent bundle of X, produces a short exact sequence

$$(4.4) 0 \longrightarrow q_* \theta_{Y/X} \longrightarrow q_* \theta_Y \longrightarrow \theta_X \longrightarrow 0$$

on X because $R^1 q_* \theta_{Y/X} = 0$.

From (4.1) and (4.2) it follows that $H^0(X, q_*\theta_{Y/X}) = 0$. We also have $H^0(X, \theta_X) = 0$ because $g \ge 2$. Therefore, from the long exact sequence of cohomologies associated to (4.4) it follows that $H^0(X, q_*\theta_Y) = 0$. This implies that $H^0(Y, \theta_Y) = 0$.

LEMMA 4.2. The cohomology $H^1(Y, \theta_Y)$ fits in a natural short exact sequence

$$0 \longrightarrow H^{1}(X, \mathrm{ad}(E_{1})) \oplus H^{1}(X, \mathrm{ad}(E_{2})) \longrightarrow H^{1}(Y, \theta_{Y}) \longrightarrow H^{1}(X, \theta_{X}) \longrightarrow 0$$

PROOF. Consider the short exact sequence in (4.3). We note that $R^i q_* \theta_{Y/X} = 0$ for all $i \ge 1$. From the projection formula, and the fact that $H^i(\mathbb{CP}^N, \mathcal{O}_{\mathbb{CP}^N}) = 0$ for all $i \ge 1$ and all N, we conclude that

$$R^i q_* q^* \theta_X = \theta_X \otimes R^i q_* \mathcal{O}_Y = 0$$

for all $i \ge 1$. Therefore,

$$H^{J}(Y, \theta_{Y/X}) = H^{J}(X, q_{*}\theta_{Y/X}) = H^{J}(X, \operatorname{ad}(E_{1}) \oplus \operatorname{ad}(E_{2}))$$

(see (4.2) for the second equality) and

$$H^{j}(Y, q^{*}\theta_{X}) = H^{j}(X, q_{*}q^{*}\theta_{X}) = H^{j}(X, \theta_{X})$$

for all $j \ge 0$. In particular, $H^0(Y, q^*\theta_X) = H^0(X, \theta_X) = 0$ (because $g \ge 2$), and $H^2(Y, \theta_{Y/X}) = H^2(X, q_*\theta_{Y/X}) = 0$. Therefore, the long exact sequence of cohomologies for (4.3) gives the short exact sequence

$$0 \longrightarrow H^1(Y, \theta_{Y/X}) = H^1(X, \operatorname{ad}(E_1) \oplus \operatorname{ad}(E_2)) \longrightarrow H^1(Y, \theta_Y)$$

$$\longrightarrow H^1(Y, q^*\theta_X) = H^1(X, \theta_X) \longrightarrow 0$$

From this the lemma follows because $H^1(X, \operatorname{ad}(E_1) \oplus \operatorname{ad}(E_2)) = H^1(X, \operatorname{ad}(E_1)) \oplus H^1(X, \operatorname{ad}(E_2))$.

PROPOSITION 4.3. Let θ_S be the holomorphic tangent bundles of S. Then $H^0(S, \theta_S) = \mathbb{C}$.

The cohomology $H^1(S, \theta_S)$ fits in a natural short exact sequence

$$0 \longrightarrow H^1(S, \mathcal{O}_S) \longrightarrow H^1(S, \theta_S) \longrightarrow H^1(Y, \theta_Y) \longrightarrow 0$$
.

PROOF. Consider the Borel spectral sequence associated to φ for the tangent bundle *TY*. We have

$${}^{0,0}E^{0,0}_{\infty} = {}^{0,0}E^{0,0}_2 = H^0(Y,\theta_Y).$$

Now, Lemma 4.1 says that $H^0(Y, \theta_Y) = 0$. Hence

(4.5)
$$H^0(S, \varphi^* \theta_Y) = {}^{0,0} E_{\infty}^{0,0} = 0.$$

Let $\theta_{S/Y} \subset \theta_S$ be the relative tangent bundle for the projection φ . We note that $\theta_{S/Y} = \mathcal{O}_S$ using the action of *T* on *S*. Consider the long exact sequence of cohomologies associated to the short exact sequence of vector bundles

$$(4.6) 0 \longrightarrow \theta_{S/Y} = \mathcal{O}_S \longrightarrow \theta_S \longrightarrow \varphi^* \theta_Y \longrightarrow 0$$

Since $H^0(S, \varphi^* \theta_Y) = 0$, we conclude that the homomorphism

$$H^0(S, \theta_{S/Y}) = H^0(S, \mathcal{O}_S) \longrightarrow H^0(S, \theta_S)$$

in the long exact sequence is an isomorphism. Therefore, the first statement of the proposition is proved.

To prove the second part of the proposition, first note that

$${}^{0,1}E_2^{0,1} = H^{0,0}(Y,\theta_Y) \otimes H^{0,1}(T,\mathcal{O}_T) = 0$$

because $H^0(Y, \theta_Y) = 0$. Hence ${}^{0,1}E^{0,1}_{\infty} = 0$. Further, since

$${}^{0,1}E_2^{1,0} = H^{0,1}(Y,\theta_Y) \xrightarrow{d_2} {}^{0,2}E_2^{3,-1} = 0,$$

we conclude that ${}^{0,1}E_{\infty}^{1,0} = H^{0,1}(Y, \theta_Y).$

Now, let

$$H^1(S, \varphi^* \theta_Y) = D^1 \supset D^0 \supset 0$$

be the natural filtration for which the corresponding graded object is

$$\operatorname{Gr} H^1(S, \varphi^* \theta_X) = {}^{0,1} E_{\infty}^{1,0} \oplus {}^{0,1} E_{\infty}^{0,1}$$

more precisely, $D^0 = {}^{0,1}E^{1,0}_{\infty}$ and $D^1/D^0 = {}^{0,1}E^{0,1}_{\infty}$. Since ${}^{0,1}E^{0,1}_{\infty} = 0$, we have $D^1 = D^0$. This implies that the natural homomorphism

(4.7)
$$\varphi^* : H^1(Y, \theta_Y) = {}^{0,1}E_2^{1,0} \longrightarrow {}^{0,1}E_\infty^{1,0} = D^0 = D^1 = H^1(S, \varphi^* \theta_Y)$$

is an isomorphism.

Consider the long exact sequence of cohomologies

(4.8)
$$H^0(S, \varphi^* \theta_Y) \longrightarrow H^1(S, \mathcal{O}_S) \longrightarrow H^1(S, \theta_S) \stackrel{\phi}{\longrightarrow} H^1(S, \varphi^* \theta_Y)$$

associated to the short exact sequence in (4.6). Since $H^0(S, \varphi^* \theta_Y) = 0$ (see (4.5)) and $H^1(S, \varphi^* \theta_Y) = H^1(Y, \theta_Y)$ (see (4.7)), to prove the second part of the proposition it suffices to show that the homomorphism ϕ in (4.8) is surjective.

From Lemma 4.2 we know that all the infinitesimal deformations of Y are given by the infinitesimal deformations of the two vector bundles E_1 and E_2 and the infinitesimal deformations of the Riemann surface X. The subspaces

$$H^1(X, \operatorname{ad}(E_1)) \subset H^1(Y, \theta_Y)$$
 and $H^1(X, \operatorname{ad}(E_2)) \subset H^1(Y, \theta_Y)$

in Lemma 4.2 correspond to the infinitesimal deformations of the projective bundle $P(E_1)$ and $P(E_2)$ respectively (keeping the Riemann surface X fixed). The infinitesimal deformations of E_1 (respectively, E_2) is given by $H^1(X, End(E_1))$ (respectively, $H^1(X, End(E_2))$). The natural map from the infinitesimal deformations of E_i to the infinitesimal deformations of $P(E_i)$ corresponds to the projection $H^1(X, End(E_i)) \longrightarrow H^1(X, ad(E_i))$ given by the decomposition $End(E_i) = ad(E_i) \oplus \mathcal{O}_X$. The projection $H^1(Y, \theta_Y) \longrightarrow H^1(X, \theta_X)$ corresponds to the infinitesimal deformations of X. All these infinitesimal deformations give rise to infinitesimal deformations of S. Hence the homomorphism ϕ in (4.8) is surjective. \Box

COROLLARY 4.4. The dimension of $H^{1}(S, \theta_{S})$ is $(m^{2} + n^{2} + 2)(g - 1) + 2$.

PROOF. Since $H^0(X, \operatorname{ad}(E_1)) = 0 = H^0(X, \operatorname{ad}(E_2))$ (recall that E_1 and E_2 are both simple), from the Riemann–Roch theorem we have

dim
$$H^1(X, \operatorname{ad}(E_1)) = (m^2 - 1)(g - 1)$$
 and dim $H^1(X, \operatorname{ad}(E_2)) = (n^2 - 1)(g - 1)$.

Therefore, Proposition 4.3 and Lemma 4.2,

$$\dim H^1(S, \theta_S) = (m^2 + n^2 + 1)(g - 1) + \dim H^1(S, \mathcal{O}_S) \,.$$

Now the corollary follows from Corollary 3.3.

5. Computation of the Brauer group

Let *M* be a compact connected complex manifold. Let \mathcal{O}_M^* be the multiplicative sheaf on *M* of nowhere zero holomorphic functions. The *cohomological Brauer group* Br'(*M*) is the group of torsion elements in $H^2(M, \mathcal{O}_M^*)$.

To define the Brauer group of M, consider all holomorphic principal PGL (r, \mathbb{C}) -bundles on M for all $r \ge 1$. Let

$$\operatorname{GL}(r, \mathbf{C}) \times \operatorname{GL}(r', \mathbf{C}) \longrightarrow \operatorname{GL}(rr', \mathbf{C})$$

be the homomorphism given by the natural action of any $A \times B \in GL(r, \mathbb{C}) \times GL(r', \mathbb{C})$ on $\mathbb{C}^r \otimes \mathbb{C}^{r'}$. This homomorphism descends to a homomorphism

$$\gamma : \operatorname{PGL}(r, \mathbb{C}) \times \operatorname{PGL}(r', \mathbb{C}) \longrightarrow \operatorname{PGL}(rr', \mathbb{C}).$$

Given a holomorphic principal PGL(r, **C**)–bundle \mathcal{A} on M and a holomorphic principal PGL(r', **C**)–bundle \mathcal{B} on M, the homomorphism γ produces a holomorphic principal PGL(rr', **C**)–bundle on M by extension of structure group. This holomorphic principal PGL(rr', **C**)–bundle will be denoted by $\mathcal{A} \otimes \mathcal{B}$. The two principal bundles \mathcal{A} and \mathcal{B} will be called *equivalent* if there are holomorphic vector bundles V and W on M such that $\mathcal{A} \otimes P(V)$ is holomorphically isomorphic to $\mathcal{B} \otimes P(W)$.

The equivalence classes of projective bundles form a group. The addition operation is given by the tensor product, and the inverse is given by the automorphism $A \mapsto (A^t)^{-1}$ of PGL(r, \mathbb{C}) (it corresponds to taking the dual projective bundles). (See [6, Section 1] for the details.) This group is called the *Brauer group* of M, and it is denoted by Br(M).

The Brauer group Br(M) is a subgroup of the cohomological Brauer group Br'(M) [6, p. 878].

Let *T* denote the torsion part of $H^3(M, \mathbb{Z})$. Let

$$\gamma: H^1(M, \mathcal{O}_M^*) \longrightarrow H^2(M, \mathbb{Z})$$

be the homomorphism that sends any holomorphic line bundle on M to its first Chern class. Let

$$A := H^2(M, \mathbf{Z}) / \gamma(H^1(M, \mathcal{O}_M^*))$$

be the quotient. The cohomological Brauer group Br'(M) fits in a short exact sequence

$$(5.1) 0 \longrightarrow A \otimes (\mathbf{Q}/\mathbf{Z}) \longrightarrow Br'(M) \longrightarrow T \longrightarrow 0$$

(see [6, p. 878, Proposition 1.1]).

PROPOSITION 5.1. Let $M \stackrel{\iota}{\hookrightarrow} S \stackrel{p}{\longrightarrow} X$ be the holomorphic fiber bundle in (2.4). Then the cohomology group $H^3(S, \mathbb{Z})$ is torsionfree.

PROOF. The proof is similar to the proof of Proposition 3.5. Consider the Serre spectral sequence associated to the fiber bundle

$$M \stackrel{\iota}{\hookrightarrow} S \stackrel{p}{\longrightarrow} X$$

for the constant sheaf **Z**. We have seen in the proof of Proposition 3.5 that the local system $R^i p_* \mathbf{Z}$ is constant for all *i*.

We have

$$\begin{split} E_2^{0,3} &= H^0(X, \mathbf{Z}) \otimes H^3(M, \mathbf{Z}) = H^3(M, \mathbf{Z}) \,, \\ E_2^{2,1} &= H^2(X, \mathbf{Z}) \otimes H^1(M, \mathbf{Z}) = 0 \,, \\ E_2^{1,2} &= H^1(X, \mathbf{Z}) \otimes H^2(M, \mathbf{Z}) = 0 \,, \\ E_2^{3,0} &= H^3(X, \mathbf{Z}) \otimes H^0(M, \mathbf{Z}) = 0 \,. \end{split}$$

With a similar argument as above, we can conclude that

$$H^{3}(S, \mathbf{Z}) = E_{\infty}^{0,3} = E_{2}^{0,3} = H^{3}(M, \mathbf{Z})$$

Since $M = S^{2m-1} \times S^{2n-1}$ with $m, n \ge 2$, it thus follows that $H^3(S, \mathbb{Z})$ is torsionfree. \Box

COROLLARY 5.2. The cohomological Brauer group Br'(S) vanishes. The Brauer group Br(S) vanishes.

PROOF. Every element of $H^2(X, \mathbb{Z})$ is the first Chern class of a holomorphic line bundle on X. Therefore, from Proposition 3.5 it follows that each element of $H^2(S, \mathbb{Z})$ is the first Chern class of a holomorphic line bundle on S. Now the first statement follows from (5.1) and Proposition 5.1. The second statement follows from the first statement because $Br(S) \subset Br'(S)$.

References

- [1] K. AKAO, On deformations of the Calabi–Eckmann manifolds, Proc. Japan Acad. 51 (1975), 365–368.
- [2] E. CALABI and B. ECKMANN, A class of compact, complex manifolds which are not algebraic, Ann. of Math. 58 (1953), 494–500.
- [3] A. HATCHER, Algebraic topology, Cambridge University Press, 2002.
- [4] F. HIRZEBRUCH, Topological methods in algebraic geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
- [5] D. HUYBRECHTS, Complex geometry. an introduction, Universitext, Springer-Verlag, Berlin, 2005.
- [6] S. SCHRÖER, Topological methods for complex-analytic Brauer groups, Topology 44 (2005), 875–894.

Present Addresses: INDRANIL BISWAS SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, BOMBAY 400005, INDIA. *e-mail*: indranil@math.tifr.res.in

MAHAN MJ RKM VIVEKANANDA UNIVERSITY, BELUR MATH, WB 711202, INDIA. *e-mail*: mahan.mj@gmail.com; mahan@rkmvu.ac.in

AJAY SINGH THAKUR SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, BOMBAY 400005, INDIA. *e-mail*: athakur@math.tifr.res.in