Токуо J. Матн. Vol. 36, No. 1, 2013

Simple Ribbon Moves and Primeness of Knots

Dedicated to Professor Kazuaki Kobayashi on his 70th birthday

Tetsuo SHIBUYA* and Tatsuya TSUKAMOTO[†]

Osaka Institute of Technology (Communicated by K. Taniyama)

Abstract. In [3], local moves, called *simple ribbon moves* for links are defined. In this paper, we study primeness of knots which can be transformed into the trivial knot by a single simple ribbon move.

1. Introduction

All links are assumed to be ordered and oriented, and they are considered up to ambient isotopy in an oriented 3-sphere S^3 . A knot which is the connected sum of two non-trivial knots is said to be *composite*. A non-trivial knot which is not composite is said to be *prime*. It is known that any knot with unknotting number one is prime by [5]. The local moves as illustrated in Figure 1 are called the *pass move* ([1]) and the Δ -move ([4]). There is a non-prime knot which can be transformed into the trivial knot O by a single pass-move. The square knot is an example (see Figure 2). On the other hand, it is not known whether any knot which can be transformed into the trivial knot by a single Δ -move is prime.

In [3], local moves, called *simple ribbon moves* or *SR-moves* for links are defined. In this paper, we study primeness of knots which can be transformed into the trivial knot by a single simple ribbon move.

Let *H* be a 3-ball in S^3 and $\mathcal{D} = D_1 \cup \cdots \cup D_m$ (resp. $\mathcal{B} = B_1 \cup \cdots \cup B_m$) a union of mutually disjoint disks in int *H* (resp. *H*) satisfying the following:

FIGURE 1

Received September 26, 2011; revised August 19, 2012; revised October 1, 2012

^{*} partially supported by JSPS, Grant-in-Aid for Scientific Research (C) (#22540104).

[†] partially supported by JSPS, Grant-in-Aid for Young Scientists (B) (#22740050).

- (i) $B_i \cap \partial H = \partial B_i \cap \partial H$ is an arc;
- (ii) $B_i \cap \partial \mathcal{D} = \partial B_i \cap \partial D_i$ is an arc; and
- (iii) $B_i \cap \text{int } \mathcal{D} = B_i \cap \text{int } D_{\pi(i)}$ is a single arc of ribbon type (Figure 3), where π is a certain permutation on $\{1, 2, \ldots, m\}$.

Then we call $\bigcup_i (\partial (B_i \cup D_i) - \operatorname{int} (B_i \cap \partial H))$ an *SR-tangle* and denote it by \mathcal{T} , and we call each B_i a band.

FIGURE 3

Let ℓ be a link in S^3 such that $\ell \cap H = \ell \cap \partial H$ consists of arcs. Take an SR-tangle \mathcal{T} such that $\mathcal{B} \cap \partial H = \ell \cap \partial H$. Then let L be the link obtained from ℓ by substituting \mathcal{T} for $\ell \cap \partial H$. We call the transformation either from ℓ to L or from L to ℓ a simple ribbon-move or an SR-move, and H (resp. T) the associated 3-ball (resp. tangle) of the SR-move. The transformation from ℓ to L (resp. from L to ℓ) is called an SR^+ -move (resp. SR^- -move)(see Figure 4 for an example).

Since every permutation is a product of cyclic permutations, we rename the indices of the bands and disks as

$$\mathcal{B} = \bigcup_{k=1}^{n} \mathcal{B}^{k} = \bigcup_{k=1}^{n} (\bigcup_{i=1}^{m_{k}} B_{i}^{k}) \text{ and } \mathcal{D} = \bigcup_{k=1}^{n} \mathcal{D}^{k} = \bigcup_{k=1}^{n} (\bigcup_{i=1}^{m_{k}} D_{i}^{k}), \text{ where }$$

- (1) $1 \le m_1 \le m_2 \le \dots \le m_n$; (2) $B_i^k \cap \partial \mathcal{D} = \partial B_i^k \cap \partial D_i^k$ is an arc; and
- (3) $B_i^k \cap \operatorname{int} \mathcal{D} = B_i^k \cap \operatorname{int} D_{i+1}^k$ is a single arc of ribbon type, where the lower indices are considered modulo m_k .

SIMPLE RIBBON MOVES AND PRIMENESS OF KNOTS

FIGURE 4

For an *SR*-tangle \mathcal{T} , we call $\bigcup_{i=1}^{m_k} (\partial (B_i^k \cup D_i^k) - \operatorname{int} (B_i^k \cap \partial H))$ the (*k*-th) *component* of the *SR*-move or of the *SR*-tangle, denote it by \mathcal{T}^k , and call m_k the *index* of the component ($k = 1, 2, \ldots, n$). The *type* of the *SR*-move or of the *SR*-tangle is the ordered set (m_1, m_2, \ldots, m_n) of the indices.

Let $T_i^k = \partial(B_i^k \cup D_i^k) - \operatorname{int} (B_i^k \cap \partial H)$. We say that the string T_i^k of the *SR*-tangle is *trivial* if $T_i^k \cup (B_i^k \cap \partial H)$ bounds a non-singular disk in *H* whose interior is in int *H* and does not intersect with \mathcal{T} . We say that the *k*-th component \mathcal{T}^k of the *SR*-tangle is *trivial* if T_i^k is trivial for any *i*. In fact, \mathcal{T}^k is trivial if T_i^k is trivial for some *i*, which is easy to see. We say that an *SR*-tangle is *reducible* if T_i^k is trivial for a pair of *i* and *k*. Otherwise we say that the *SR*-tangle is *irreducible*. We say that an *SR*-tangle is *trivial* if T_i^k is trivial for any *i* and *k*.

Consider an *SR*-move transforming ℓ into *L*. We say that a string T_i^k of the *SR*-move is *trivial* if $T_i^k \cup (B_i^k \cap \partial H)$ bounds a non-singular disk in S^3 whose interior does not intersect with *L*. We say that the *k*-th component \mathcal{T}^k of the *SR*-move is *trivial* if T_i^k is trivial for any *i*. We say that an *SR*-move is *reducible* if T_i^k is trivial for a pair of *i* and *k*. Otherwise we say that the *SR*-move is *irreducible*. We say that an *SR*-move is *trivial* if T_i^k is trivial for any *i* and *k*. Clearly any trivial *SR*-move does not change the link type.

From the definitions, an SR-move is reducible (resp. trivial) if its associated tangle is

reducible (resp. trivial). The opposite holds for non-split links.

PROPOSITION 1.1 ([3, Theorem 1.11]). An SR-move on a non-split link is reducible (resp. trivial) if and only if its associated tangle is reducible (resp. trivial).

It is easy to see that any *SR*-move of type (1) is trivial. Thus any knot which can be transformed into the trivial knot by a single SR^- -move of type (1) is trivial, and hence not prime. Let *K* be the knot as illustrated in Figure 6, which can be transformed into the trivial knot by a single SR^- -move of type (2). It is easily to see that *K* is the square knot (Figure 2), and thus *K* is not prime.

FIGURE 6

An *SR*-tangle is said to be *separable* if there exists a non-singular disk *F* properly embedded in H - T such that each component of H - F contains a component of T. Then the following is our main theorem.

THEOREM 1.2. Let K be a knot in S^3 which is not the square knot. If K can be transformed into the trivial knot by a single SR^- -move whose associated tangle is neither type (1) nor separable, then K is prime.

REMARK 1.3. From Corollaries 1.12, 1.15, 1.21 of [3], K in the statement is non-trivial.

The following is used in the proof of the theorem.

LEMMA 1.4 ([3, Corollary 1.20]). If an SR-tangle is reducible, then it is separable.

2. Proof of Theorem 1.2

Let *K* be a composite knot in S^3 which is not the square knot and can be transformed into the trivial knot by a single SR^- -move whose associated tangle is not separable. Let $\mathcal{B} \cup \mathcal{D}$ be the set of bands and disks which gives the SR^- -move. Since *K* can be transformed into the trivial knot by a single SR^- -move, there exist a non-singular disk $D_0 \subset (S^3 - H)$ such that ∂D_0 is a certain trivial knot and a set of bands $\mathcal{B}' = \bigcup_{k=1}^n (\bigcup_{i=1}^{m_k} B'_i^k) \subset (S^3 - \operatorname{int} H)$ such that each band B'_i^k satisfies that $B'_i^k \cap \partial H = \partial B'_i^k \cap \partial H$ is an arc, that $B'_i^k \cap \partial D_0 = \partial B'_i^k \cap \partial D_0$

is an arc, and that $B'_i^k \cap \operatorname{int} D_0$ consists of arcs of ribbon type (may be empty). Then we have a ribbon disk $\mathcal{C} = D_0 \cup (\mathcal{B} \cup \mathcal{B}') \cup \mathcal{D}$ for *K*. For a convenience, in the following we denote $B_i^k \cup B'_i^k$ by B_i^k , and $\mathcal{B} \cup \mathcal{B}'$ by \mathcal{B} .

Let $f_{\mathcal{C}}: D_0^* \cup (\cup_{i,k} D_i^{k*}) \cup (\cup_{i,k} B_i^{k*}) \to S^3$ be an immersion of a disk such that $f_{\mathcal{C}}(D_0^*) = D_0$, $f_{\mathcal{C}}(D_i^{k*}) = D_i^k$ and $f_{\mathcal{C}}(B_i^{k*}) = B_i^k$. We denote $(\cup_{i,k} D_i^{k*})$ (resp. $(\cup_{i,k} B_i^{k*})$) by \mathcal{D}^* (resp. \mathcal{B}^*) and $D_0^* \cup \mathcal{D}^* \cup \mathcal{B}^*$ by \mathcal{C}^* . In the followings, we omit the upper index k unless we need to emphasize it. Denote the arc of $B_{i-1} \cap \operatorname{int} D_i$ by α_i , and the pre-image of α_i on D_i^* (resp. B_{i-1}^*) by α_i^* (resp. $\dot{\alpha}_i^*$). Denote the arc of $B_i \cap \partial H$ by $\beta_{i,0}$, and the pre-image of $\beta_{i,0}$ on B_i^* by $\beta_{i,0}^*$. Each B_i may intersect with $\operatorname{int} D_0$, and then denote the arc of $B_i \cap \operatorname{int} D_0$ by $\beta_{i,1}, \ldots, \beta_{i,k_i}$, and their pre-images on B_i^* (resp. on D_0^*) by $\beta_{i,1}^*, \ldots, \beta_{i,k_i}^*$ (resp. $\dot{\beta}_{i,1}^*, \ldots, \dot{\beta}_{i,k_i}^*$), where we assign the indices so that $\beta_{i,j}^*$ is closer to $\beta_{i,0}^*$ than $\beta_{i,l}^*$ on B_i^* if j < l (see Figure 7).

FIGURE 7

Since K is composite, there is a decomposing sphere Σ for K such that $K = k_1 \sharp k_2$. We may assume that Σ intersects with C and with ∂H transversely. Since Σ intersects with $K = \partial C$ in two points, the pre-image S^* of $\Sigma \cap C$ on C^* consists of an arc γ^* and loops, which are mutually disjoint. Let n_C be the number of such loops and n_H be the number of loops of $\Sigma \cap \partial H$. Since D and D_0 are in intH and in $S^3 - H$, respectively, a triple point of $\Sigma \cup C \cup \partial H$ is made of Σ , B_i , and one from D_0 , D_j , and ∂H . Let n_t be the number of the triple points and let n_d the number of intersections of Σ and $\partial B \cap \partial D_0$. Define the *complexity* of Σ as the lexicographically ordered set (n_C, n_H, n_t, n_d) .

PROOF OF THEOREM 1.2. Suppose that there exists a composite knot K in S^3 which is not the square knot and can be transformed into the trivial knot by a single SR^- -move whose associated tangle is not separable. Take a ribbon disk $C(= D_0 \cup D \cup B)$ for K so that the number of intersections of $B \cap D_0$ is minimal among such ribbon disks. Then take a decomposing sphere Σ for K with the minimal complexity.

First take a look at $\mathcal{S}^* \cap (\mathcal{D}^* \cup \mathcal{B}^*)$. Let ρ^* be a connected component of it, and $\rho = f_{\mathcal{C}}(\rho^*)$. Assume that ρ^* is on $D_i^* \cup B_i^*$.

CLAIM 2.1. ρ^* is not a loop which bounds a disk in $D_i^* \cup B_i^* - (\alpha_i^* \cup \dot{\alpha}_{i+1}^* \cup \beta_{i,0}^* \cup \cdots \cup \beta_{i,t_i}^*)$.

PROOF. Assume otherwise. We may assume that ρ^* is innermost on $D_i^* \cup B_i^*$, i.e., the disk δ^* which ρ^* bounds on $D_i^* \cup B_i^*$ does not contain any other loops of $\mathcal{S}^* \cap (D_i^* \cup B_i^*)$.

Then replacing a neighborhood of ρ in Σ with two parallel copies of δ , we can obtain two 2-spheres Σ_1 and Σ_2 one of which, say Σ_1 , intersects with *K* twice. Then Σ_1 is another decomposing sphere with less complexity than that of Σ , which contradicts that Σ has the minimal complexity.

CLAIM 2.2. ρ^* does not have a subarc which bounds a disk on $D_i^* \cup B_i^*$ with a subarc of $\alpha_i^*, \dot{\alpha}_{i+1}^*, or \beta_{i,j}^*$ whose interior does not intersect with $\alpha_i^*, \dot{\alpha}_{i+1}^*, or \beta_{i,j}^*$.

PROOF. Assume otherwise. Then there may exist several such subarcs, each of which is of ρ^* or of another connected component of $S^* \cap (D_i^* \cup B_i^*)$. Take a subarc which is innermost among such subarcs, that is, it bounds a disk δ^* on $D_i^* \cup B_i^*$ with a subarc of α_i^* (resp. $\dot{\alpha}_i^*, \beta_{i,j}^*$) whose interior does not intersect with any other such subarcs. Here we may assume that the subarc is of ρ^* , and R_1 and R_2 are the ends of the subarc. Since δ^* does not contain any loops from Claim 2.1, we can deform Σ along δ by isotopy so to eliminate R_1 and R_2 (see Figure 8), which contradicts that Σ has the minimal complexity.

FIGURE 8

CLAIM 2.3. ρ^* is not a loop.

PROOF. Suppose that ρ^* is a loop. Then, there are two cases by Claims 2.1 and 2.2: ρ^* bounds a disk in D_i^* which contains α_i^* or only one end of α_i^* . Here we may assume that ρ^* is innermost on $D_i^* \cup B_i^*$, i.e., the disk δ^* which ρ^* bounds on $D_i^* \cup B_i^*$ does not contain any other loops of $S^* \cap (D_i^* \cup B_i^*)$.

Consider the former case. Since δ intersects with K in two points, one of the two components of $\Sigma - \rho$ does not intersect with K. Let Σ_{ρ} be the closure of the component and T_i the string $\partial (D_i \cup B_i) \cap H$. Then $T_i \cup (B_i \cap \partial H)$ bounds a non-singular disk $(D_i - \delta) \cup \Sigma_{\rho} \cup (B_i \cap H)$ in S^3 whose interior does not intersect with K. Thus the *SR*-move is reducible. Therefore the associated tangle of the *SR*-move is separable from Proposition 1 and Lemma 1, which is a contradiction.

In the latter case, replacing a neighborhood of ρ in Σ with two parallel copies of δ , we can obtain two 2-spheres Σ_1 and Σ_2 each of which intersects with *K* twice. Since Σ is a decomposing sphere, either Σ_1 or Σ_2 is also a decomposing sphere, which induces a contradiction that Σ has the minimal complexity.

From Claim 2.3, ρ^* is an arc. Now let $\xi_{i,1}^*$ be the subarc of $\partial (D_i^* \cup B_i^*) - \partial D_0^*$ such that $\partial \xi_{i,1}^* = \partial \dot{\alpha}_{i+1}^*$ and $\xi_{i,2}^*$ the arc $\partial B_i^* \cap \partial D_0^*$. Let $\xi_{i,3}^*$ be one of the two arcs of $\partial (D_i^* \cup B_i^*) - int(\xi_{i,1}^* \cup \xi_{i,2}^*)$ and $\xi_{i,4}^*$ the other arc (Figure 9). Here we may assume that ρ^* does not have an end on any of $\partial \dot{\alpha}_{i+1}^*$, $\partial \beta_{i,0}^*$, ..., $\partial \beta_{i,t}^*$, and $\partial \xi_{i,2}^*$.

FIGURE 9

CLAIM 2.4. The ends of ρ^* are on $\xi_{i,1}^* \cup \xi_{i,2}^*$.

PROOF. Assume otherwise. Then ρ^* has an end p on $\xi_{i,3}^*$ or $\xi_{i,4}^*$. It is sufficient to consider the former case from the symmetry. Let Δ^* be the closure of the component of $B_i^* - (\dot{\alpha}_{i+1}^* \cup \beta_{i,0}^* \cup \cdots \cup \beta_{i,t_i}^* \cup \xi_{i,2}^*)$ which contains p. Then we have that ρ^* is in Δ^* or not. If ρ^* is in Δ^* , then we have two cases that the other end of ρ^* than p is on $\xi_{i,3}^*$ or on $\xi_{i,4}^*$.

In the former case, ρ^* bounds a disk δ^* in Δ^* with a subarc of $\xi_{i,3}^*$. Here note that δ^* does not contain any other components of $S^* \cap (D_i^* \cup B_i^*)$ from Claim 2.1 and that Σ intersects with K in two points. Then $\partial \delta - \rho$ is one of the two components of $K - \Sigma$ and trivial, since δ is an embedded disk in the closure of a component of $S^3 - \Sigma$. Thus it contradicts that Σ is a decomposing sphere for K. In the latter case, let δ^* be the closure of the component of $(D_i^{k*} \cup B_i^{k*}) - \rho^*$ which contains D_i^{k*} . From Claim 2.3 and that Σ intersects with K in two points, we have that $\operatorname{int}\delta^* \cap S^* = \emptyset$, and thus $\partial \delta - \operatorname{int}\rho$ is the arc of $K \cap \Omega$, where Ω is the closure of the component of $S^3 - \Sigma$ containing δ . Then $\partial \alpha_i^k$ is on $\partial \delta - \operatorname{int}\rho$, since $\partial \alpha_i^k = \operatorname{int}\delta \cap K$. Therefore we have that $\alpha_i^k = \alpha_{i+1}^k$, which tells us that $m_k = 1$. Then we may consider $\partial \delta - \operatorname{int}\rho$ as an SR-tangle of type (1) in Ω , and thus it is trivial. However this contradicts that Σ is a decomposing sphere.

If ρ^* is not in Δ^* , then let q be the point of $\rho^* \cap (\partial \Delta^* - (\xi_{i,3}^* \cup \xi_{i,4}^*))$ such that the interior of the subarc ρ_{pq}^* of ρ^* bounded by p and q does not intersect with $\partial \Delta^* - (\xi_{i,3}^* \cup \xi_{i,4}^*)$. Let ζ be the one of $\dot{\alpha}_{i+1}^*$, $\beta_{i,0}^*$, ..., β_{i,t_i}^* , and $\xi_{i,2}^*$ which contains q. Let s be the point $\zeta \cap \xi_{i,3}^*$, and let ξ_{ps}^* (resp. ζ_{qs}) the subarc of $\xi_{i,3}^*$ (resp. ζ) bounded by p (resp. q) and s. Then ρ_{pq}^* , ξ_{ps}^* , and ζ_{qs} bound a disk δ^* . If int $\delta^* \cap S^* = \emptyset$, then we can deform Σ along δ by isotopy so to reduce the complexity of Σ as illustrated in Figure 10, which is a contradiction. If int $\delta^* \cap S^* \neq \emptyset$, then $\delta^* \cap S^*$ consists of ρ_{pq}^* and a subarc of an arc which has an end on the interior of ξ_{ps}^* and intersects with the interior of ζ_{qs} from Claims 2.2 and 2.3 and that Σ intersects with K in two points. In this case, we can reduce the complexity of Σ by 2 using the deformation as illustrated in Figure 10 twice, which is also a contradiction.

FIGURE 10

CLAIM 2.5. $\partial \rho^*$ is not contained in $\xi_{i,1}^*$.

PROOF. Assume otherwise. Then ρ^* bounds a disk δ^* with a subarc μ^* of $\xi_{i,1}^*$ in the subdisk of $D_i^* \cup B_i^*$ bounded by $\xi_{i,1}^*$ and $\dot{\alpha}_{i+1}^*$ from Claim 2.2. From Claim 2.3 and that Σ intersects with K in two points, we have that $\operatorname{int}\delta^* \cap S^* = \emptyset$, and thus μ is the arc of $K \cap \Omega$, where Ω is the closure of the component of $S^3 - \Sigma$ containing δ . Moreover note that μ^* is in $\operatorname{int}\xi_{i,1}^*$, and thus $\partial \dot{\alpha}_{i+1}^*$ is not on μ^* . Hence δ^* does not contain any ends of α_i^* , since otherwise $\Omega \cap K$ consists of more than one string. Thus μ is a trivial tangle in Ω , which contradicts that Σ is a decomposing sphere for K.

From Claims 2.4 and 2.5, $S^* \cap (D_i^* \cup B_i^*)$ consists of at most two arcs each of which has an end on both of $\xi_{i,1}^*$ and $\xi_{i,2}^*$ and arcs whose boundaries are on $\xi_{i,2}^*$. If an arc whose boundary is on $\xi_{i,2}^*$ bounds with a subarc of $\xi_{i,2}^*$ a disk δ^* on $D_i^* \cup B_i^*$ which does not contain an end of α_i^* , then from Claim 2.2, the arc is in the component of $B_i^* - (\dot{\alpha}_{i+1}^* \cup \beta_{i,0}^* \cup \cdots \cup \beta_{i,t_i}^*)$ which contains $\xi_{i,2}^*$. However then we can deform Σ along δ by isotopy so to eliminate δ^* , which contradicts that Σ has the minimal complexity. Thus a connected component of $S^* \cap (D_i^* \cup B_i^*)$ is either

- an arc which has an end on both of $\xi_{i,1}^*$ and $\xi_{i,2}^*$ and which intersects with each of α_i^* , $\dot{\alpha}_{i+1}^*, \beta_{i,0}^*, \ldots, \beta_{i,t_i}^*$ once,
- an arc whose boundary is on ξ^{*}_{i,2} and which intersects with each of α^{*}_{i+1}, β^{*}_{i,0}, ..., β^{*}_{i,ti} twice and bounds with a subarc of ξ^{*}_{i,2} a disk on D^{*}_i ∪ B^{*}_i containing α^{*}_i, or
- an arc whose boundary is on $\xi_{i,2}^*$ and which intersects with α_i^* once and intersects with each of $\dot{\alpha}_{i+1}^*, \beta_{i,0}^*, \ldots, \beta_{i,t_i}^*$ twice.

Take a look at the number $\sharp(S^* \cap \alpha_i^{k*})$ of intersections of S^* and α_i^{k*} $(1 \le i \le m_k)$. If an arc ρ^* of $S^* \cap (D_i^{k*} \cup B_i^{k*})$ is of the first type (resp. last two types), then we have that $\sharp(\rho^* \cap \dot{\alpha}_{i+1}^*) = \sharp(\rho^* \cap \alpha_i^*)$ (resp. $\sharp(\rho^* \cap \dot{\alpha}_{i+1}^*) > \sharp(\rho^* \cap \alpha_i^*)$). Thus we have that $\sharp(S^* \cap \alpha_{i+1}^*) = \sharp(S^* \cap \dot{\alpha}_{i+1}^*) \ge \sharp(S^* \cap \alpha_i^*)$, since $f_{\mathcal{C}}(\dot{\alpha}_i^*) = f_{\mathcal{C}}(\alpha_i^*)$. Here note that we

have that $\sharp(\mathcal{S}^* \cap \alpha_{i+m_k}^*) = \sharp(\mathcal{S}^* \cap \alpha_i^*)$, since $i + m_k \equiv i$ modulo m_k . Hence we have that $\sharp(\mathcal{S}^* \cap \alpha_{m_k}^*) = \sharp(\mathcal{S}^* \cap \alpha_{m_{k-1}}^*) = \cdots = \sharp(\mathcal{S}^* \cap \alpha_1^*)$. Therefore $\mathcal{S}^* \cap (\mathcal{D}^* \cup \mathcal{B}^*)$ does not have arcs of the last two types.

Hence $S^* \cap (\mathcal{D}^* \cup \mathcal{B}^*)$ consists of at most two arcs of the first type of the above, each of which is a component of $\gamma^* \cap (\mathcal{D}^* \cup \mathcal{B}^*)$, since Σ intersects with *K* in two points. Therefore we have the following five cases with respect to γ^* :

(Case A) $\partial \gamma^*$ is on $\partial D_0^* - \partial \mathcal{B}^*$, and thus γ^* is on D_0^* and $\mathcal{S}^* \cap (\mathcal{D}^* \cup \mathcal{B}^*) = \emptyset$;

(Case B) γ^* has an end on both of ∂D_1^{k*} and ∂D_1^{l*} with $m_k = m_l = 1$;

(Case C) γ^* has an end on both of $\partial D_0^* - \partial \mathcal{B}^*$ and ∂D_1^{k*} with $m_k = 1$;

(Case D) $\partial \gamma^*$ is on ∂D_1^{k*} with $m_k = 1$; or

(Case E) γ^* has an end on both of ∂D_1^{k*} and ∂D_2^{k*} with $m_k = 2$.

Now we know that S^* consists of γ^* and loops on D_0^* . In the followings, we also take a look at the intersections of $\Sigma \cap (\mathcal{C} \cup \partial H)$ on Σ , which consists of γ , the loops of $\Sigma \cap D_0$, and the loops of $\Sigma \cap \partial H$.

CLAIM 2.6. Each loop of $\Sigma \cap D_0$ and $\Sigma \cap \partial H$ on Σ intersects with γ .

PROOF. Assume otherwise and take an innermost loop λ of the loops on Σ which do not intersect with γ , and let Σ_{λ} be the subdisk of Σ bounded by λ which does not contain γ . Thus $(int\Sigma_{\lambda}) \cap (\mathcal{C} \cup \partial H) = \emptyset$.

If λ is a loop of $\Sigma \cap D_0$, then let δ be the subdisk of D_0 which λ bounds and B_{λ} the 3-ball which $\Sigma_{\lambda} \cup \delta$ bounds in $S^3 - \partial D_0$. Here δ may intersect with \mathcal{B} or Σ . If $\delta \cap \mathcal{B} \neq \emptyset$, then let δ' be a subdisk of δ such that $\delta' \subset \operatorname{int} \delta$ and $(\operatorname{int} \delta - \delta') \cap (\mathcal{B} \cup \Sigma) = \emptyset$. Let D'_0 be the disk obtained from D_0 by replacing δ' with a parallel copy Σ'_{λ} of Σ_{λ} such that $\partial \Sigma'_{\lambda} = \partial \delta'$ and the interior of the 3-ball bounded by Σ_{λ} , Σ'_{λ} , and $\delta - \operatorname{int} \delta'$ does not intersect with $\mathcal{C} \cup \Sigma \cup H$. Then we obtain another ribbon disk $D'_0 \cup \mathcal{D} \cup \mathcal{B}$ such that the number of intersections of \mathcal{B} and D'_0 is less than that of \mathcal{B} and D_0 , which contradicts the minimality of the number of intersections of \mathcal{B} and D_0 . If $\delta \cap \mathcal{B} = \emptyset$, then let λ' be an innermost loop of $\Sigma \cap D_0$ in δ (λ' may be λ) and let δ' the subdisk of D_0 which λ' bounds. Replacing a neighborhood of λ' in Σ with two parallel copies of δ' , we obtain two 2-spheres Σ_1 and Σ_2 one of which, say Σ_1 , intersects with K twice. Then Σ_1 is another decomposing sphere with less complexity than that of Σ , which contradicts that Σ has the minimal complexity.

If λ is a loop of $\Sigma \cap \partial H$, then λ separates ∂H into two disks δ_1 and δ_2 such that $\delta_1 \cup \delta_2 = \partial H$ and $\delta_1 \cap \delta_2 = \lambda$. If δ_1 (resp. δ_2) does not intersect with C, then replacing a neighborhood of λ in Σ with two parallel copies of δ_1 (resp. δ_2), we obtain two 2-spheres Σ_1 and Σ_2 one of which, say Σ_1 , intersects with K twice. Then Σ_1 is another decomposing sphere with less complexity than that of Σ , which contradicts that Σ has the minimal complexity. Thus both of δ_1 and δ_2 intersect with C. We have that Σ_{λ} is either in H or in $\overline{S^3 - H}$.

In the former case, Σ_{λ} divide *H* into two 3-balls, one of which is bounded by Σ_{λ} and δ_1 , say H_1 , and the other of which is bounded by Σ_{λ} and δ_2 , say H_2 . Since both of δ_1 and δ_2 intersect with C and $\Sigma_{\lambda} \cap C = \emptyset$, both of H_1 and H_2 contain a component of the *SR*-tangle. However then the *SR*-tangle is separable, which contradicts the assumption.

In the latter case, Σ_{λ} divide $\overline{S^3 - H}$ into two 3-balls, one of which is bounded by Σ_{λ} and δ_1 and the other of which is bounded by Σ_{λ} and δ_2 . This is impossible to occur, since both of δ_1 and δ_2 intersect with $\mathcal{C}, \mathcal{C} \cap \overline{S^3 - H}$ is a (singular) disk, and $\Sigma_{\lambda} \cap \mathcal{C} = \emptyset$.

(Case A) Since γ is on D_0 and D_0 is in $S^3 - H$, neither a loop of $D_0 \cap \Sigma$ nor a loop of $\partial H \cap \Sigma$ intersects with γ . However this contradicts Claim 2.6. Thus there are no loops on Σ , which induces that S^* consists of only γ^* and Σ is in $S^3 - H$. Therefore if each component of $\partial D_0^* - \gamma^*$ contains a component of $\partial B^* \cap \partial D_0^*$, then each component of $S^3 - \Sigma$ contains $D_i^k \cup B_i^k$ for a certain pair of i and k. However, this is impossible, since \mathcal{D} is contained in H and Σ is in $S^3 - H$ and thus a component of $S^3 - \Sigma$ is in $S^3 - H$. Hence one of the two components of $\partial D_0^* - \gamma^*$, say μ^* , does not contain any components of $\partial B^* \cap \partial D_0^*$. Therefore μ is the arc of $K \cap \Omega$, where Ω is the closure of a component of $S^3 - \Sigma$. Now let δ^* be the subdisk of D_0^* bounded by γ^* and μ^* . Since S^* consists of only γ^* , we have that int $\delta^* \cap S^* = \emptyset$. Thus δ is an embedded disk in Ω . Moreover δ^* does not contain an end of $\dot{\beta}_i^{k*}$ for any pair of i and k, since otherwise $\Omega \cap K$ consists of more than one string. Hence μ is trivial in Ω , which contradicts that Σ is a decomposing sphere for K.

(Case B and C) Let ρ^* be the arc of $S^* \cap (D_1^{k*} \cup B_1^{k*})$, let A^* (resp. \dot{A}^*) the intersection of ρ^* with α_1^{k*} (resp. with $\dot{\alpha}_1^{k*}$), and let ρ_0^* the subarc of ρ^* bounded by A^* and \dot{A}^* (see the leftside of Figure 12). Note that ρ_0 bounds a disk δ on Σ , and that δ does not contain any loop intersections from Claim 2.6. Then we can deform $D_1^k \cup B_1^k$ along δ to eliminate α_1^k by isotopy, which tells us the *k*-th component of our *SR*-tangle is trivial. This contradicts that our *SR*-tangle is not separable from Lemma 1.4 (Case D) Let ρ_1^* and ρ_2^* be the two arcs of $\gamma^* \cap (D_1^{k*} \cup B_1^{k*})$. If ρ_1 and ρ_2 does not intersect each other, then we can obtain a contradiction as the previous case. Thus ρ_1 and ρ_2 intersect in two points $A = f_C(A^*) = f_C(\dot{A}^*)$ and $B = f_C(B^*) = f_C(\dot{B}^*)$, where $A^* = \rho_1^* \cap \alpha_1^{k*}, \dot{A}^* = \rho_2^* \cap \dot{\alpha}_1^{k*}, B^* = \rho_2^* \cap \alpha_1^{k*}$, and $\dot{B}^* = \rho_1^* \cap \dot{\alpha}_1^{k*}$ (see the rightside of Figure 12). Let δ_1^* be the subdisk of $D_1^{k*} \cup B_1^{k*}$ bounded by the subarc ζ_1^* of ρ_1^* bounded by $A^* \cup \dot{B}^*$, the subarc of $\dot{\alpha}_1^{k*}$ bounded by $\dot{B}^* \cup \dot{A}^*$, the subarc ζ_2^* of ρ_2^* bounded by $\dot{A}^* \cup B^*$, and the subarc of α_1^{k*} bounded by $B^* \cup A^*$. From Claim 2.1, we have that $int\delta_1 \cap \Sigma = \emptyset$. Thus δ_1 is properly embedded in the closure of the component of $S^3 - \Sigma$. However then, take a subdisk δ_2 of Σ bounded by ζ_1 and ζ_2 . Since δ_1 is a Möbius band, $\delta_1 \cup \delta_2$ is a projective plane, which cannot be embedded in S^3 . Thus we have a contradiction.

FIGURE 12

In the rest of the paper, we devote ourselves to Case E. We omit the upper index k of D_i^k and B_i^k (i = 1, 2) unless we need to emphasize it.

(Case E) In this case γ^* can be divided into five subarcs as $\gamma^* = \gamma_{D_1}^* \cup \gamma_{B_1}^* \cup \gamma_{D_0}^* \cup \gamma_{B_2}^* \cup \gamma_{D_2}^*$, where γ_X^* is $\gamma^* \cap X^*$. Take a look at $S^* \cap D_0^*$, which consists of $\gamma_{D_0}^*$ and the pre-images of the loops of $\Sigma \cap D_0$. Then $\gamma_{D_0}^*$ may intersect with $\dot{\beta}_{i,j}^*$, and each loop of $S^* \cap D_0^*$ intersects with $\dot{\beta}_{i,j}^*$ from Claim 2.6 (see Figure 13 for an example).

Now take a look at the intersections of $\Sigma \cap (\mathcal{C} \cup \partial H)$ on Σ , which consists γ , the loops of $\Sigma \cap D_0$, and the loops of $\Sigma \cap \partial H$. Here note that each of the five subarcs of γ is simple, that γ_{D_i} intersects with $\gamma - \gamma_{D_i}$ only in a point on $\gamma_{B_{i+1}}$, and that γ_{B_i} intersects with $\gamma - \gamma_{B_i}$ in a point on $\gamma_{D_{i+1}}$ and in points on γ_{D_0} (i = 1, 2).

CLAIM 2.7. We have that $int(\gamma_{B_1} \cup \gamma_{B_2}) \cap int\gamma_{D_0} = \emptyset$.

PROOF. Assume otherwise. Then γ_{B_i} has a subarc ζ which bounds a disk δ_{ζ} on Σ with a subarc of γ_{D_0} (i = 1, 2), where we may assume that δ_{ζ} does not contain any subarcs of γ_{B_1} and of γ_{B_2} . Here δ_{ζ} may intersect with a loop of $\Sigma \cap D_0$ in an arc whose ends are on ζ . However then, we can eliminate the intersections from an outermost one by deforming \mathcal{B} along the subdisk of δ_{ζ} bounded by the intersections of $\mathcal{B} \cap D_0$. Hence $\operatorname{int} \delta_{\zeta} \cap \mathcal{C} = \emptyset$. Now we have two cases that an end of ζ is on $\partial \gamma_{B_i} \cap \partial \gamma_{D_0}$ or not. In either case, we can

FIGURE 13

deform B_i along δ_{ζ} by isotopy so to eliminate the intersection(s) of $\operatorname{int} \gamma_{B_i}$ and $\operatorname{int} \gamma_{D_0}$ (an end or the ends of ζ). However this also contradicts the minimality of the number of intersections of $\mathcal{B} \cap D_0$.

FIGURE 14

CLAIM 2.8. Each loop on Σ intersects with γ exactly in two points $\beta_{1,j} \cap \Sigma$ and $\beta_{2,j} \cap \Sigma$ $(j = 0, 1, ..., t_1 = t_2)$.

PROOF. Let B'_1 (resp. B'_2) be the closure of the component of $B_1 - \alpha_2$ (resp. $B_2 - \alpha_1$) which intersects with ∂H , and let λ a loop on Σ . Note that λ intersects with γ from Claim 2.6, moreover only in $\gamma_{B'_1}$ or $\gamma_{B'_2}$, since $\beta_{i,j}$ is on B'_i ($i = 1, 2, j = 0, 1, ..., t_i$). First we claim that λ intersects with $\gamma_{B'_i}$ at most once (i = 1, 2). If λ is of $\Sigma \cap \partial H$, then it is clear, since each band of \mathcal{B} intersects with ∂H only once. Assume that λ is of $\Sigma \cap D_0$ and intersects with $\gamma_{B'_i}$ in more than once. Such a loop has a subarc which bounds a disk on Σ with a subarc of $\gamma_{B'_i}$ (i = 1, 2). Let δ be an innermost disk among such disks. We may assume that δ is bounded by a subarc of λ and a subarc of $\gamma_{B'_1}$. Then we can deform B_1 along δ by isotopy so

to eliminate the two intersections. However this contradicts the minimality of the number of intersections of $\mathcal{B} \cap D_0$.

Therefore we complete the proof, since $\gamma_{B_1} \cup \gamma_{D_0} \cup \gamma_{B'_2}$ and a subarc of γ_{D_1} form a cycle on Σ .

FIGURE 15

From Claim 2.8, we have that $\Sigma \cap \partial H$ consists of only one loop, i.e., the loop of $\Sigma \cap \partial H$ which intersects with γ_{B_1} is the loop of $\Sigma \cap \partial H$ which intersects with γ_{B_2} , and thus $\Sigma \cap H$ is a disk Σ_H . Note that $\Sigma_H \cap \mathcal{C} = \Sigma_H \cap (\mathcal{B}^k \cup \mathcal{D}^k)$. Therefore the *SR*-tangle consists of only one component, since otherwise we can take a disk $\Sigma_H \times \{1\}$ or $\Sigma_H \times \{-1\}$ to separate the *k*-th component from another component.

FIGURE 16

CLAIM 2.9. There do not exist loops of $\Sigma \cap D_0$.

PROOF. Assume otherwise. Then take an innermost one, say λ on Σ , i.e., a loop which bounds a disk on Σ that contains the loop of $\Sigma \cap \partial H$ but does not contain any other loops of $\Sigma \cap D_0$. Let A_{λ} be the annulus on Σ bounded by λ and the loop of $\Sigma \cap \partial H$ and let $B_{i,1}$

the subband of B_i bounded by $\beta_{i,0}$ and $\beta_{i,1}$ (i = 1, 2), where note that $\beta_{i,1}$ intersects with λ . Then we have that $(H \cup A_{\lambda} \cup B_{1,1} \cup B_{2,1}) \cap D_0 = \lambda \cup \beta_{1,1} \cup \beta_{2,1}$.

Now let δ_{λ} be the subdisk of D_0 bounded by λ and take a subdisk δ of D_0 such that $\delta \cap (\mathcal{B} \cup \Sigma) = (\delta_{\lambda} \cup \beta_{1,1} \cup \beta_{2,1}) \cap (\mathcal{B} \cup \Sigma)$. Then take a disk δ' with $\partial \delta' = \partial \delta$ and $\operatorname{int} \delta' \cap (\mathcal{C} \cup \Sigma \cup H) = \emptyset$ which bounds a 3-ball with δ containing $H \cup A_{\lambda} \cup B_{1,1} \cup B_{2,1}$. Let $D'_0 = (D_0 - \delta) \cup \delta'$, and then $(\mathcal{B} \cup \mathcal{D}) \cup D'_0$ is another ribbon disk for K such that the number of intersections of \mathcal{B} and D'_0 is less than that of \mathcal{B} and D_0 , which is a contradiction.

FIGURE 17

Therefore we have that $\mathcal{B} \cap D_0 = \emptyset$ and $\Sigma \cap \mathcal{C} = \gamma$, and thus $\mathcal{C} \cup H \cup \Sigma$ is as illustrated in Figure 18. Then we know that *K* is the square knot, which contradicts the assumption.

FIGURE 18

Hence we can conclude that there does not exist a composite knot which is not the square knot and can be transformed into the trivial knot by a single SR^- -move whose associated tangle is not separable. This completes the proof.

ACKNOWLEDGEMENT. The authors would like to thank the referee for careful reading.

References

- [1] L. H. KAUFFMAN, On knots, Ann. of Math. Studies 115, Princeton Univ. Press, Princeton, New Jersey 1987.
- [2] A. KAWAUCHI and K. YOSHIDA, Topology of prion proteins, preprint.

SIMPLE RIBBON MOVES AND PRIMENESS OF KNOTS

- [3] K. KOBAYASHI, T. SHIBUYA and T. TSUKAMOTO, Simple ribbon moves for links, preprint.
- [4] H. MURAKAMI and Y. NAKANISHI, On a certain move generating link-homology, Math. Ann. 284 (1989), 75–89.
- [5] M. G. SCHARLEMANN, Unknotting number one knots are prime, Invent. Math. 82 (1985), 37–55.

Present Addresses: TETSUO SHIBUYA DEPARTMENT OF MATHEMATICS, OSAKA INSTITUTE OF TECHNOLOGY, ASAHI, OSAKA, 535–8585 JAPAN. *e-mail*: shibuya@ge.oit.ac.jp

TATSUYA TSUKAMOTO DEPARTMENT OF MATHEMATICS, OSAKA INSTITUTE OF TECHNOLOGY, ASAHI, OSAKA, 535–8585 JAPAN. *e-mail*: tsukamoto@ge.oit.ac.jp