Simple Ribbon Moves and Primeness of Knots

Dedicated to Professor Kazuaki Kobayashi on his 70th birthday

Tetsuo SHIBUYA* and Tatsuya TSUKAMOTO ${ }^{\dagger}$

Osaka Institute of Technology
(Communicated by K. Taniyama)

Abstract

In [3], local moves, called simple ribbon moves for links are defined. In this paper, we study primeness of knots which can be transformed into the trivial knot by a single simple ribbon move.

1. Introduction

All links are assumed to be ordered and oriented, and they are considered up to ambient isotopy in an oriented 3 -sphere S^{3}. A knot which is the connected sum of two non-trivial knots is said to be composite. A non-trivial knot which is not composite is said to be prime. It is known that any knot with unknotting number one is prime by [5]. The local moves as illustrated in Figure 1 are called the pass move ([1]) and the Δ-move ([4]). There is a nonprime knot which can be transformed into the trivial knot O by a single pass-move. The square knot is an example (see Figure 2). On the other hand, it is not known whether any knot which can be transformed into the trivial knot by a single Δ-move is prime.

In [3], local moves, called simple ribbon moves or $S R$-moves for links are defined. In this paper, we study primeness of knots which can be transformed into the trivial knot by a single simple ribbon move.

Let H be a 3-ball in S^{3} and $\mathcal{D}=D_{1} \cup \cdots \cup D_{m}$ (resp. $\mathcal{B}=B_{1} \cup \cdots \cup B_{m}$) a union of mutually disjoint disks in int H (resp. H) satisfying the following:

Figure 1

[^0]

Figure 2
(i) $B_{i} \cap \partial H=\partial B_{i} \cap \partial H$ is an arc;
(ii) $B_{i} \cap \partial \mathcal{D}=\partial B_{i} \cap \partial D_{i}$ is an arc; and
(iii) $B_{i} \cap$ int $\mathcal{D}=B_{i} \cap$ int $D_{\pi(i)}$ is a single arc of ribbon type (Figure 3), where π is a certain permutation on $\{1,2, \ldots, m\}$.
Then we call $\underset{i}{\cup}\left(\partial\left(B_{i} \cup D_{i}\right)-\operatorname{int}\left(B_{i} \cap \partial H\right)\right)$ an $S R$-tangle and denote it by \mathcal{T}, and we call each B_{i} a band.

Figure 3

Let ℓ be a link in S^{3} such that $\ell \cap H=\ell \cap \partial H$ consists of arcs. Take an $S R$-tangle \mathcal{T} such that $\mathcal{B} \cap \partial H=\ell \cap \partial H$. Then let L be the link obtained from ℓ by substituting \mathcal{T} for $\ell \cap \partial H$. We call the transformation either from ℓ to L or from L to ℓ a simple ribbon-move or an $S R$-move, and H (resp. \mathcal{T}) the associated 3-ball (resp. tangle) of the $S R$-move. The transformation from ℓ to L (resp. from L to ℓ) is called an $S R^{+}$-move (resp. $S R^{-}$-move)(see Figure 4 for an example).

Since every permutation is a product of cyclic permutations, we rename the indices of the bands and disks as

$$
\mathcal{B}=\bigcup_{k=1}^{n} \mathcal{B}^{k}=\bigcup_{k=1}^{n}\left(\bigcup_{i=1}^{m_{k}} B_{i}^{k}\right) \text { and } \mathcal{D}=\bigcup_{k=1}^{n} \mathcal{D}^{k}=\bigcup_{k=1}^{n}\left(\bigcup_{i=1}^{m_{k}} D_{i}^{k}\right) \text {, where }
$$

(1) $1 \leq m_{1} \leq m_{2} \leq \cdots \leq m_{n}$;
(2) $B_{i}^{k} \cap \partial \mathcal{D}=\partial B_{i}^{k} \cap \partial D_{i}^{k}$ is an arc; and
(3) $B_{i}^{k} \cap \operatorname{int} \mathcal{D}=B_{i}^{k} \cap$ int D_{i+1}^{k} is a single arc of ribbon type, where the lower indices are considered modulo m_{k}.

Figure 4
 $S R$-move or of the $S R$-tangle, denote it by \mathcal{T}^{k}, and call m_{k} the index of the component $(k=$ $1,2, \ldots, n)$. The type of the $S R$-move or of the $S R$-tangle is the ordered set $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ of the indices.

Let $T_{i}^{k}=\partial\left(B_{i}^{k} \cup D_{i}^{k}\right)-\operatorname{int}\left(B_{i}^{k} \cap \partial H\right)$. We say that the string T_{i}^{k} of the $S R$-tangle is trivial if $T_{i}^{k} \cup\left(B_{i}^{k} \cap \partial H\right)$ bounds a non-singular disk in H whose interior is in int H and does not intersect with \mathcal{T}. We say that the k-th component \mathcal{T}^{k} of the $S R$-tangle is trivial if T_{i}^{k} is trivial for any i. In fact, \mathcal{T}^{k} is trivial if T_{i}^{k} is trivial for some i, which is easy to see. We say that an $S R$-tangle is reducible if T_{i}^{k} is trivial for a pair of i and k. Otherwise we say that the $S R$-tangle is irreducible. We say that an $S R$-tangle is trivial if T_{i}^{k} is trivial for any i and k.

Consider an $S R$-move transforming ℓ into L. We say that a string T_{i}^{k} of the $S R$-move is trivial if $T_{i}^{k} \cup\left(B_{i}^{k} \cap \partial H\right)$ bounds a non-singular disk in S^{3} whose interior does not intersect with L. We say that the k-th component \mathcal{T}^{k} of the $S R$-move is trivial if T_{i}^{k} is trivial for any i. We say that an $S R$-move is reducible if T_{i}^{k} is trivial for a pair of i and k. Otherwise we say that the $S R$-move is irreducible. We say that an $S R$-move is trivial if T_{i}^{k} is trivial for any i and k. Clearly any trivial $S R$-move does not change the link type.

Figure 5

From the definitions, an $S R$-move is reducible (resp. trivial) if its associated tangle is
reducible (resp. trivial). The opposite holds for non-split links.
Proposition 1.1 ([3, Theorem 1.11]). An $S R$-move on a non-split link is reducible (resp. trivial) if and only if its associated tangle is reducible (resp. trivial).

It is easy to see that any $S R$-move of type (1) is trivial. Thus any knot which can be transformed into the trivial knot by a single $S R^{-}$-move of type (1) is trivial, and hence not prime. Let K be the knot as illustrated in Figure 6, which can be transformed into the trivial knot by a single $S R^{-}$-move of type (2). It is easily to see that K is the square knot (Figure 2), and thus K is not prime.

Figure 6

An $S R$-tangle is said to be separable if there exists a non-singular disk F properly embedded in $H-\mathcal{T}$ such that each component of $H-F$ contains a component of \mathcal{T}. Then the following is our main theorem.

THEOREM 1.2. Let K be a knot in S^{3} which is not the square knot. If K can be transformed into the trivial knot by a single $S R^{-}$-move whose associated tangle is neither type (1) nor separable, then K is prime.

REMARK 1.3. From Corollaries 1.12, 1.15, 1.21 of [3], K in the statement is nontrivial.

The following is used in the proof of the theorem.
Lemma 1.4 ([3, Corollary 1.20]). If an $S R$-tangle is reducible, then it is separable.

2. Proof of Theorem 1.2

Let K be a composite knot in S^{3} which is not the square knot and can be transformed into the trivial knot by a single $S R^{-}$-move whose associated tangle is not separable. Let $\mathcal{B} \cup \mathcal{D}$ be the set of bands and disks which gives the $S R^{-}$-move. Since K can be transformed into the trivial knot by a single $S R^{-}$-move, there exist a non-singular disk $D_{0} \subset\left(S^{3}-H\right)$ such that ∂D_{0} is a certain trivial knot and a set of bands $\mathcal{B}^{\prime}=\bigcup_{k=1}^{n}\left(\bigcup_{i=1}^{m_{k}} B_{i}^{\prime k}\right) \subset\left(S^{3}-\operatorname{int} H\right)$ such that each band $B_{i}^{\prime k}$ satisfies that $B_{i}^{\prime k} \cap \partial H=\partial B_{i}^{\prime k} \cap \partial H$ is an arc, that $B_{i}^{\prime k} \cap \partial D_{0}=\partial B_{i}^{k} \cap \partial D_{0}$
is an arc, and that $B_{i}^{\prime k} \cap \operatorname{int} D_{0}$ consists of arcs of ribbon type (may be empty). Then we have a ribbon disk $\mathcal{C}=D_{0} \cup\left(\mathcal{B} \cup \mathcal{B}^{\prime}\right) \cup \mathcal{D}$ for K. For a convenience, in the following we denote $B_{i}^{k} \cup B^{\prime}{ }_{i}^{k}$ by B_{i}^{k}, and $\mathcal{B} \cup \mathcal{B}^{\prime}$ by \mathcal{B}.

Let $f_{\mathcal{C}}: D_{0}^{*} \cup\left(\cup_{i, k} D_{i}^{k *}\right) \cup\left(\cup_{i, k} B_{i}^{k *}\right) \rightarrow S^{3}$ be an immersion of a disk such that $f_{\mathcal{C}}\left(D_{0}^{*}\right)=$ $D_{0}, f_{\mathcal{C}}\left(D_{i}^{k *}\right)=D_{i}^{k}$ and $f_{\mathcal{C}}\left(B_{i}^{k *}\right)=B_{i}^{k}$. We denote $\left(\cup_{i, k} D_{i}^{k *}\right)$ (resp. $\left(\cup_{i, k} B_{i}^{k *}\right)$) by \mathcal{D}^{*} (resp. \mathcal{B}^{*}) and $D_{0}^{*} \cup \mathcal{D}^{*} \cup \mathcal{B}^{*}$ by \mathcal{C}^{*}. In the followings, we omit the upper index k unless we need to emphasize it. Denote the arc of $B_{i-1} \cap \operatorname{int} D_{i}$ by α_{i}, and the pre-image of α_{i} on D_{i}^{*} (resp. B_{i-1}^{*}) by $\alpha_{i}^{*}\left(\right.$ resp. $\left.\dot{\alpha}_{i}^{*}\right)$. Denote the arc of $B_{i} \cap \partial H$ by $\beta_{i, 0}$, and the pre-image of $\beta_{i, 0}$ on B_{i}^{*} by $\beta_{i, 0}^{*}$. Each B_{i} may intersect with int D_{0}, and then denote the arc of $B_{i} \cap \operatorname{int} D_{0}$ by $\beta_{i, 1}, \ldots$, $\beta_{i, t_{i}}$, and their pre-images on $B_{i}^{*}\left(\right.$ resp. on $\left.D_{0}^{*}\right)$ by $\beta_{i, 1}^{*}, \ldots, \beta_{i, t_{i}}^{*}$ (resp. $\dot{\beta}_{i, 1}^{*}, \ldots, \dot{\beta}_{i, t_{i}}^{*}$), where we assign the indices so that $\beta_{i, j}^{*}$ is closer to $\beta_{i, 0}^{*}$ than $\beta_{i, l}^{*}$ on B_{i}^{*} if $j<l$ (see Figure 7).

Figure 7

Since K is composite, there is a decomposing sphere Σ for K such that $K=k_{1} \sharp k_{2}$. We may assume that Σ intersects with \mathcal{C} and with ∂H transversely. Since Σ intersects with $K=\partial \mathcal{C}$ in two points, the pre-image \mathcal{S}^{*} of $\Sigma \cap \mathcal{C}$ on \mathcal{C}^{*} consists of an arc γ^{*} and loops, which are mutually disjoint. Let $n_{\mathcal{C}}$ be the number of such loops and n_{H} be the number of loops of $\Sigma \cap \partial H$. Since \mathcal{D} and D_{0} are in int H and in $S^{3}-H$, respectively, a triple point of $\Sigma \cup \mathcal{C} \cup \partial H$ is made of Σ, B_{i}, and one from D_{0}, D_{j}, and ∂H. Let n_{t} be the number of the triple points and let n_{d} the number of intersections of Σ and $\partial \mathcal{B} \cap \partial D_{0}$. Define the complexity of Σ as the lexicographically ordered set $\left(n_{\mathcal{C}}, n_{H}, n_{t}, n_{d}\right)$.

Proof of Theorem 1.2. Suppose that there exists a composite knot K in S^{3} which is not the square knot and can be transformed into the trivial knot by a single $S R^{-}$-move whose associated tangle is not separable. Take a ribbon disk $\mathcal{C}\left(=D_{0} \cup \mathcal{D} \cup \mathcal{B}\right)$ for K so that the number of intersections of $\mathcal{B} \cap D_{0}$ is minimal among such ribbon disks. Then take a decomposing sphere Σ for K with the minimal complexity.

First take a look at $\mathcal{S}^{*} \cap\left(\mathcal{D}^{*} \cup \mathcal{B}^{*}\right)$. Let ρ^{*} be a connected component of it, and $\rho=$ $f_{\mathcal{C}}\left(\rho^{*}\right)$. Assume that ρ^{*} is on $D_{i}^{*} \cup B_{i}^{*}$.

CLAIM 2.1. ρ^{*} is not a loop which bounds a disk in $D_{i}^{*} \cup B_{i}^{*}-\left(\alpha_{i}^{*} \cup \dot{\alpha}_{i+1}^{*} \cup \beta_{i, 0}^{*} \cup\right.$ $\cdots \cup \beta_{i, t_{i}}^{*}$).

Proof. Assume otherwise. We may assume that ρ^{*} is innermost on $D_{i}^{*} \cup B_{i}^{*}$, i.e., the disk δ^{*} which ρ^{*} bounds on $D_{i}^{*} \cup B_{i}^{*}$ does not contain any other loops of $\mathcal{S}^{*} \cap\left(D_{i}^{*} \cup B_{i}^{*}\right)$.

Then replacing a neighborhood of ρ in Σ with two parallel copies of δ, we can obtain two 2 -spheres Σ_{1} and Σ_{2} one of which, say Σ_{1}, intersects with K twice. Then Σ_{1} is another decomposing sphere with less complexity than that of Σ, which contradicts that Σ has the minimal complexity.

CLAIM 2.2. $\quad \rho^{*}$ does not have a subarc which bounds a disk on $D_{i}^{*} \cup B_{i}^{*}$ with a subarc of $\alpha_{i}^{*}, \dot{\alpha}_{i+1}^{*}$, or $\beta_{i, j}^{*}$ whose interior does not intersect with $\alpha_{i}^{*}, \dot{\alpha}_{i+1}^{*}$, or $\beta_{i, j}^{*}$.

Proof. Assume otherwise. Then there may exist several such subarcs, each of which is of ρ^{*} or of another connected component of $\mathcal{S}^{*} \cap\left(D_{i}^{*} \cup B_{i}^{*}\right)$. Take a subarc which is innermost among such subarcs, that is, it bounds a disk δ^{*} on $D_{i}^{*} \cup B_{i}^{*}$ with a subarc of α_{i}^{*} (resp. $\dot{\alpha}_{i}^{*}, \beta_{i, j}^{*}$) whose interior does not intersect with any other such subarcs. Here we may assume that the subarc is of ρ^{*}, and R_{1} and R_{2} are the ends of the subarc. Since δ^{*} does not contain any loops from Claim 2.1, we can deform Σ along δ by isotopy so to eliminate R_{1} and R_{2} (see Figure 8), which contradicts that Σ has the minimal complexity.

Figure 8

Claim 2.3. ρ^{*} is not a loop.

Proof. Suppose that ρ^{*} is a loop. Then, there are two cases by Claims 2.1 and 2.2: ρ^{*} bounds a disk in D_{i}^{*} which contains α_{i}^{*} or only one end of α_{i}^{*}. Here we may assume that ρ^{*} is innermost on $D_{i}^{*} \cup B_{i}^{*}$, i.e., the disk δ^{*} which ρ^{*} bounds on $D_{i}^{*} \cup B_{i}^{*}$ does not contain any other loops of $\mathcal{S}^{*} \cap\left(D_{i}^{*} \cup B_{i}^{*}\right)$.

Consider the former case. Since δ intersects with K in two points, one of the two components of $\Sigma-\rho$ does not intersect with K. Let Σ_{ρ} be the closure of the component and T_{i} the string $\partial\left(D_{i} \cup B_{i}\right) \cap H$. Then $T_{i} \cup\left(B_{i} \cap \partial H\right)$ bounds a non-singular disk $\left(D_{i}-\delta\right) \cup \Sigma_{\rho} \cup\left(B_{i} \cap H\right)$ in S^{3} whose interior does not intersect with K. Thus the $S R$-move is reducible. Therefore the associated tangle of the $S R$-move is separable from Proposition 1 and Lemma 1, which is a contradiction.

In the latter case, replacing a neighborhood of ρ in Σ with two parallel copies of δ, we can obtain two 2 -spheres Σ_{1} and Σ_{2} each of which intersects with K twice. Since Σ is a decomposing sphere, either Σ_{1} or Σ_{2} is also a decomposing sphere, which induces a contradiction that Σ has the minimal complexity.

From Claim 2.3, ρ^{*} is an arc. Now let $\xi_{i, 1}^{*}$ be the subarc of $\partial\left(D_{i}^{*} \cup B_{i}^{*}\right)-\partial D_{0}^{*}$ such that $\partial \xi_{i, 1}^{*}=\partial \dot{\alpha}_{i+1}^{*}$ and $\xi_{i, 2}^{*}$ the $\operatorname{arc} \partial B_{i}^{*} \cap \partial D_{0}^{*}$. Let $\xi_{i, 3}^{*}$ be one of the two arcs of $\partial\left(D_{i}^{*} \cup B_{i}^{*}\right)-$ $\operatorname{int}\left(\xi_{i, 1}^{*} \cup \xi_{i, 2}^{*}\right)$ and $\xi_{i, 4}^{*}$ the other arc (Figure 9). Here we may assume that ρ^{*} does not have an end on any of $\partial \dot{\alpha}_{i+1}^{*}, \partial \beta_{i, 0}^{*}, \ldots, \partial \beta_{i, t_{i}}^{*}$, and $\partial \xi_{i, 2}^{*}$.

Figure 9

CLAIM 2.4. The ends of ρ^{*} are on $\xi_{i, 1}^{*} \cup \xi_{i, 2}^{*}$.
Proof. Assume otherwise. Then ρ^{*} has an end p on $\xi_{i, 3}^{*}$ or $\xi_{i, 4}^{*}$. It is sufficient to consider the former case from the symmetry. Let Δ^{*} be the closure of the component of $B_{i}^{*}-\left(\dot{\alpha}_{i+1}^{*} \cup \beta_{i, 0}^{*} \cup \cdots \cup \beta_{i, t_{i}}^{*} \cup \xi_{i, 2}^{*}\right)$ which contains p. Then we have that ρ^{*} is in Δ^{*} or not. If ρ^{*} is in Δ^{*}, then we have two cases that the other end of ρ^{*} than p is on $\xi_{i, 3}^{*}$ or on $\xi_{i, 4}^{*}$.

In the former case, ρ^{*} bounds a disk δ^{*} in Δ^{*} with a subarc of $\xi_{i, 3}^{*}$. Here note that δ^{*} does not contain any other components of $\mathcal{S}^{*} \cap\left(D_{i}^{*} \cup B_{i}^{*}\right)$ from Claim 2.1 and that Σ intersects with K in two points. Then $\partial \delta-\rho$ is one of the two components of $K-\Sigma$ and trivial, since δ is an embedded disk in the closure of a component of $S^{3}-\Sigma$. Thus it contradicts that Σ is a decomposing sphere for K. In the latter case, let δ^{*} be the closure of the component of $\left(D_{i}^{k *} \cup B_{i}^{k *}\right)-\rho^{*}$ which contains $D_{i}^{k *}$. From Claim 2.3 and that Σ intersects with K in two points, we have that $\operatorname{int} \delta^{*} \cap \mathcal{S}^{*}=\emptyset$, and thus $\partial \delta-\operatorname{int} \rho$ is the arc of $K \cap \Omega$, where Ω is the closure of the component of $S^{3}-\Sigma$ containing δ. Then $\partial \alpha_{i}^{k}$ is on $\partial \delta-\operatorname{int} \rho$, since $\partial \alpha_{i}^{k}=\operatorname{int} \delta \cap K$. Therefore we have that $\alpha_{i}^{k}=\alpha_{i+1}^{k}$, which tells us that $m_{k}=1$. Then we may consider $\partial \delta-\operatorname{int} \rho$ as an $S R$-tangle of type (1) in Ω, and thus it is trivial. However this contradicts that Σ is a decomposing sphere.

If ρ^{*} is not in Δ^{*}, then let q be the point of $\rho^{*} \cap\left(\partial \Delta^{*}-\left(\xi_{i, 3}^{*} \cup \xi_{i, 4}^{*}\right)\right)$ such that the interior of the subarc $\rho_{p q}^{*}$ of ρ^{*} bounded by p and q does not intersect with $\partial \Delta^{*}-\left(\xi_{i, 3}^{*} \cup \xi_{i, 4}^{*}\right)$. Let ζ be the one of $\dot{\alpha}_{i+1}^{*}, \beta_{i, 0}^{*}, \ldots, \beta_{i, t_{i}}^{*}$, and $\xi_{i, 2}^{*}$ which contains q. Let s be the point $\zeta \cap \xi_{i, 3}^{*}$, and let $\xi_{p s}^{*}$ (resp. $\zeta_{q s}$) the subarc of $\xi_{i, 3}^{*}$ (resp. ζ) bounded by p (resp. q) and s. Then $\rho_{p q}^{*}, \xi_{p s}^{*}$, and $\zeta_{q s}$ bound a disk δ^{*}. If int $\delta^{*} \cap \mathcal{S}^{*}=\emptyset$, then we can deform Σ along δ by isotopy so to reduce the complexity of Σ as illustrated in Figure 10 , which is a contradiction. If int $\delta^{*} \cap \mathcal{S}^{*} \neq \emptyset$, then $\delta^{*} \cap \mathcal{S}^{*}$ consists of $\rho_{p q}^{*}$ and a subarc of an arc which has an end on the interior of $\xi_{p s}^{*}$ and intersects with the interior of $\zeta_{q s}$ from Claims 2.2 and 2.3 and that Σ intersects with K
in two points. In this case, we can reduce the complexity of Σ by 2 using the deformation as illustrated in Figure 10 twice, which is also a contradiction.

Figure 10

CLAIM 2.5. $\partial \rho^{*}$ is not contained in $\xi_{i, 1}^{*}$.
Proof. Assume otherwise. Then ρ^{*} bounds a disk δ^{*} with a subarc μ^{*} of $\xi_{i, 1}^{*}$ in the subdisk of $D_{i}^{*} \cup B_{i}^{*}$ bounded by $\xi_{i, 1}^{*}$ and $\dot{\alpha}_{i+1}^{*}$ from Claim 2.2. From Claim 2.3 and that Σ intersects with K in two points, we have that $\operatorname{int} \delta^{*} \cap \mathcal{S}^{*}=\emptyset$, and thus μ is the arc of $K \cap \Omega$, where Ω is the closure of the component of $S^{3}-\Sigma$ containing δ. Moreover note that μ^{*} is in $\operatorname{int} \xi_{i, 1}^{*}$, and thus $\partial \dot{\alpha}_{i+1}^{*}$ is not on μ^{*}. Hence δ^{*} does not contain any ends of α_{i}^{*}, since otherwise $\Omega \cap K$ consists of more than one string. Thus μ is a trivial tangle in Ω, which contradicts that Σ is a decomposing sphere for K.

From Claims 2.4 and 2.5, $\mathcal{S}^{*} \cap\left(D_{i}^{*} \cup B_{i}^{*}\right)$ consists of at most two arcs each of which has an end on both of $\xi_{i, 1}^{*}$ and $\xi_{i, 2}^{*}$ and arcs whose boundaries are on $\xi_{i, 2}^{*}$. If an arc whose boundary is on $\xi_{i, 2}^{*}$ bounds with a subarc of $\xi_{i, 2}^{*}$ a disk δ^{*} on $D_{i}^{*} \cup B_{i}^{*}$ which does not contain an end of α_{i}^{*}, then from Claim 2.2, the arc is in the component of $B_{i}^{*}-\left(\dot{\alpha}_{i+1}^{*} \cup \beta_{i, 0}^{*} \cup \cdots \cup \beta_{i, t_{i}}^{*}\right)$ which contains $\xi_{i, 2}^{*}$. However then we can deform Σ along δ by isotopy so to eliminate δ^{*}, which contradicts that Σ has the minimal complexity. Thus a connected component of $\mathcal{S}^{*} \cap\left(D_{i}^{*} \cup B_{i}^{*}\right)$ is either

- an arc which has an end on both of $\xi_{i, 1}^{*}$ and $\xi_{i, 2}^{*}$ and which intersects with each of α_{i}^{*}, $\dot{\alpha}_{i+1}^{*}, \beta_{i, 0}^{*}, \ldots, \beta_{i, t_{i}}^{*}$ once,
- an arc whose boundary is on $\xi_{i, 2}^{*}$ and which intersects with each of $\dot{\alpha}_{i+1}^{*}, \beta_{i, 0}^{*}, \ldots, \beta_{i, t_{i}}^{*}$ twice and bounds with a subarc of $\xi_{i, 2}^{*}$ a disk on $D_{i}^{*} \cup B_{i}^{*}$ containing α_{i}^{*}, or
- an arc whose boundary is on $\xi_{i, 2}^{*}$ and which intersects with α_{i}^{*} once and intersects with each of $\dot{\alpha}_{i+1}^{*}, \beta_{i, 0}^{*}, \ldots, \beta_{i, t_{i}}^{*}$ twice.
Take a look at the number $\sharp\left(\mathcal{S}^{*} \cap \alpha_{i}^{k *}\right)$ of intersections of \mathcal{S}^{*} and $\alpha_{i}^{k *}\left(1 \leq i \leq m_{k}\right)$. If an arc ρ^{*} of $\mathcal{S}^{*} \cap\left(D_{i}^{k *} \cup B_{i}^{k *}\right)$ is of the first type (resp. last two types), then we have that $\sharp\left(\rho^{*} \cap \dot{\alpha}_{i+1}^{*}\right)=\sharp\left(\rho^{*} \cap \alpha_{i}^{*}\right)$ (resp. $\left.\sharp\left(\rho^{*} \cap \dot{\alpha}_{i+1}^{*}\right)>\sharp\left(\rho^{*} \cap \alpha_{i}^{*}\right)\right)$. Thus we have that $\sharp\left(\mathcal{S}^{*} \cap \alpha_{i+1}^{*}\right)=\sharp\left(\mathcal{S}^{*} \cap \dot{\alpha}_{i+1}^{*}\right) \geq \sharp\left(\mathcal{S}^{*} \cap \alpha_{i}^{*}\right)$, since $f_{\mathcal{C}}\left(\dot{\alpha}_{i}^{*}\right)=f_{\mathcal{C}}\left(\alpha_{i}^{*}\right)$. Here note that we

Figure 11
have that $\sharp\left(\mathcal{S}^{*} \cap \alpha_{i+m_{k}}^{*}\right)=\sharp\left(\mathcal{S}^{*} \cap \alpha_{i}^{*}\right)$, since $i+m_{k} \equiv i$ modulo m_{k}. Hence we have that $\sharp\left(\mathcal{S}^{*} \cap \alpha_{m_{k}}^{*}\right)=\sharp\left(\mathcal{S}^{*} \cap \alpha_{m_{k}-1}^{*}\right)=\cdots=\sharp\left(\mathcal{S}^{*} \cap \alpha_{1}^{*}\right)$. Therefore $\mathcal{S}^{*} \cap\left(\mathcal{D}^{*} \cup \mathcal{B}^{*}\right)$ does not have arcs of the last two types.

Hence $\mathcal{S}^{*} \cap\left(\mathcal{D}^{*} \cup \mathcal{B}^{*}\right)$ consists of at most two arcs of the first type of the above, each of which is a component of $\gamma^{*} \cap\left(\mathcal{D}^{*} \cup \mathcal{B}^{*}\right)$, since Σ intersects with K in two points. Therefore we have the following five cases with respect to γ^{*} :
(Case A) $\partial \gamma^{*}$ is on $\partial D_{0}^{*}-\partial \mathcal{B}^{*}$, and thus γ^{*} is on D_{0}^{*} and $\mathcal{S}^{*} \cap\left(\mathcal{D}^{*} \cup \mathcal{B}^{*}\right)=\emptyset$;
(Case B) γ^{*} has an end on both of $\partial D_{1}^{k *}$ and $\partial D_{1}^{l *}$ with $m_{k}=m_{l}=1$;
(Case C) γ^{*} has an end on both of $\partial D_{0}^{*}-\partial \mathcal{B}^{*}$ and $\partial D_{1}^{k *}$ with $m_{k}=1$;
(Case D) $\partial \gamma^{*}$ is on $\partial D_{1}^{k *}$ with $m_{k}=1$; or
(Case E) γ^{*} has an end on both of $\partial D_{1}^{k *}$ and $\partial D_{2}^{k *}$ with $m_{k}=2$.
Now we know that \mathcal{S}^{*} consists of γ^{*} and loops on D_{0}^{*}. In the followings, we also take a look at the intersections of $\Sigma \cap(\mathcal{C} \cup \partial H)$ on Σ, which consists of γ, the loops of $\Sigma \cap D_{0}$, and the loops of $\Sigma \cap \partial H$.

CLAIM 2.6. Each loop of $\Sigma \cap D_{0}$ and $\Sigma \cap \partial H$ on Σ intersects with γ.

Proof. Assume otherwise and take an innermost loop λ of the loops on Σ which do not intersect with γ, and let Σ_{λ} be the subdisk of Σ bounded by λ which does not contain γ. Thus $\left(\operatorname{int} \Sigma_{\lambda}\right) \cap(\mathcal{C} \cup \partial H)=\emptyset$.

If λ is a loop of $\Sigma \cap D_{0}$, then let δ be the subdisk of D_{0} which λ bounds and B_{λ} the 3-ball which $\Sigma_{\lambda} \cup \delta$ bounds in $S^{3}-\partial D_{0}$. Here δ may intersect with \mathcal{B} or Σ. If $\delta \cap \mathcal{B} \neq \emptyset$, then let δ^{\prime} be a subdisk of δ such that $\delta^{\prime} \subset \operatorname{int} \delta$ and $\left(\operatorname{int} \delta-\delta^{\prime}\right) \cap(\mathcal{B} \cup \Sigma)=\emptyset$. Let D_{0}^{\prime} be the disk obtained from D_{0} by replacing δ^{\prime} with a parallel copy $\Sigma_{\lambda}^{\prime}$ of Σ_{λ} such that $\partial \Sigma_{\lambda}^{\prime}=\partial \delta^{\prime}$ and the interior of the 3-ball bounded by $\Sigma_{\lambda}, \Sigma_{\lambda}^{\prime}$, and $\delta-\operatorname{int} \delta^{\prime}$ does not intersect with $\mathcal{C} \cup \Sigma \cup H$.

Then we obtain another ribbon disk $D_{0}^{\prime} \cup \mathcal{D} \cup \mathcal{B}$ such that the number of intersections of \mathcal{B} and D_{0}^{\prime} is less than that of \mathcal{B} and D_{0}, which contradicts the minimality of the number of intersections of \mathcal{B} and D_{0}. If $\delta \cap \mathcal{B}=\emptyset$, then let λ^{\prime} be an innermost loop of $\Sigma \cap D_{0}$ in $\delta\left(\lambda^{\prime}\right.$ may be λ) and let δ^{\prime} the subdisk of D_{0} which λ^{\prime} bounds. Replacing a neighborhood of λ^{\prime} in Σ with two parallel copies of δ^{\prime}, we obtain two 2 -spheres Σ_{1} and Σ_{2} one of which, say Σ_{1}, intersects with K twice. Then Σ_{1} is another decomposing sphere with less complexity than that of Σ, which contradicts that Σ has the minimal complexity.

If λ is a loop of $\Sigma \cap \partial H$, then λ separates ∂H into two disks δ_{1} and δ_{2} such that $\delta_{1} \cup \delta_{2}=$ ∂H and $\delta_{1} \cap \delta_{2}=\lambda$. If δ_{1} (resp. δ_{2}) does not intersect with \mathcal{C}, then replacing a neighborhood of λ in Σ with two parallel copies of δ_{1} (resp. δ_{2}), we obtain two 2 -spheres Σ_{1} and Σ_{2} one of which, say Σ_{1}, intersects with K twice. Then Σ_{1} is another decomposing sphere with less complexity than that of Σ, which contradicts that Σ has the minimal complexity. Thus both of δ_{1} and δ_{2} intersect with \mathcal{C}. We have that Σ_{λ} is either in H or in $\overline{S^{3}-H}$.

In the former case, Σ_{λ} divide H into two 3-balls, one of which is bounded by Σ_{λ} and δ_{1}, say H_{1}, and the other of which is bounded by Σ_{λ} and δ_{2}, say H_{2}. Since both of δ_{1} and δ_{2} intersect with \mathcal{C} and $\Sigma_{\lambda} \cap \mathcal{C}=\emptyset$, both of H_{1} and H_{2} contain a component of the $S R$-tangle. However then the $S R$-tangle is separable, which contradicts the assumption.

In the latter case, Σ_{λ} divide $\overline{S^{3}-H}$ into two 3-balls, one of which is bounded by Σ_{λ} and δ_{1} and the other of which is bounded by Σ_{λ} and δ_{2}. This is impossible to occur, since both of δ_{1} and δ_{2} intersect with $\mathcal{C}, \mathcal{C} \cap \overline{S^{3}-H}$ is a (singular) disk, and $\Sigma_{\lambda} \cap \mathcal{C}=\emptyset$.
(Case A) Since γ is on D_{0} and D_{0} is in $S^{3}-H$, neither a loop of $D_{0} \cap \Sigma$ nor a loop of $\partial H \cap \Sigma$ intersects with γ. However this contradicts Claim 2.6. Thus there are no loops on Σ, which induces that \mathcal{S}^{*} consists of only γ^{*} and Σ is in $S^{3}-H$. Therefore if each component of $\partial D_{0}^{*}-\gamma^{*}$ contains a component of $\partial \mathcal{B}^{*} \cap \partial D_{0}^{*}$, then each component of $S^{3}-\Sigma$ contains $D_{i}^{k} \cup B_{i}^{k}$ for a certain pair of i and k. However, this is impossible, since \mathcal{D} is contained in H and Σ is in $S^{3}-H$ and thus a component of $S^{3}-\Sigma$ is in $S^{3}-H$. Hence one of the two components of $\partial D_{0}^{*}-\gamma^{*}$, say μ^{*}, does not contain any components of $\partial \mathcal{B}^{*} \cap \partial D_{0}^{*}$. Therefore μ is the arc of $K \cap \Omega$, where Ω is the closure of a component of $S^{3}-\Sigma$. Now let δ^{*} be the subdisk of D_{0}^{*} bounded by γ^{*} and μ^{*}. Since \mathcal{S}^{*} consists of only γ^{*}, we have that $\operatorname{int} \delta^{*} \cap \mathcal{S}^{*}=\emptyset$. Thus δ is an embedded disk in Ω. Moreover δ^{*} does not contain an end of $\dot{\beta}_{i}^{k *}$ for any pair of i and k, since otherwise $\Omega \cap K$ consists of more than one string. Hence μ is trivial in Ω, which contradicts that Σ is a decomposing sphere for K.
(Case B and C) Let ρ^{*} be the arc of $\mathcal{S}^{*} \cap\left(D_{1}^{k *} \cup B_{1}^{k *}\right)$, let A^{*} (resp. \dot{A}^{*}) the intersection of ρ^{*} with $\alpha_{1}^{k *}$ (resp. with $\dot{\alpha}_{1}^{k *}$), and let ρ_{0}^{*} the subarc of ρ^{*} bounded by A^{*} and \dot{A}^{*} (see the leftside of Figure 12). Note that ρ_{0} bounds a disk δ on Σ, and that δ does not contain any loop intersections from Claim 2.6. Then we can deform $D_{1}^{k} \cup B_{1}^{k}$ along δ to eliminate α_{1}^{k} by isotopy, which tells us the k-th component of our $S R$-tangle is trivial. This contradicts that our $S R$-tangle is not separable from Lemma 1.4
(Case D) Let ρ_{1}^{*} and ρ_{2}^{*} be the two arcs of $\gamma^{*} \cap\left(D_{1}^{k *} \cup B_{1}^{k *}\right)$. If ρ_{1} and ρ_{2} does not intersect each other, then we can obtain a contradiction as the previous case. Thus ρ_{1} and ρ_{2} intersect in two points $A=f_{\mathcal{C}}\left(A^{*}\right)=f_{\mathcal{C}}\left(\dot{A}^{*}\right)$ and $B=f_{\mathcal{C}}\left(B^{*}\right)=f_{\mathcal{C}}\left(\dot{B}^{*}\right)$, where $A^{*}=\rho_{1}^{*} \cap \alpha_{1}^{k *}, \dot{A}^{*}=\rho_{2}^{*} \cap \dot{\alpha}_{1}^{k *}, B^{*}=\rho_{2}^{*} \cap \alpha_{1}^{k *}$, and $\dot{B}^{*}=\rho_{1}^{*} \cap \dot{\alpha}_{1}^{k *}$ (see the rightside of Figure 12). Let δ_{1}^{*} be the subdisk of $D_{1}^{k *} \cup B_{1}^{k *}$ bounded by the subarc ζ_{1}^{*} of ρ_{1}^{*} bounded by $A^{*} \cup \dot{B}^{*}$, the subarc of $\dot{\alpha}_{1}^{k *}$ bounded by $\dot{B}^{*} \cup \dot{A}^{*}$, the subarc ζ_{2}^{*} of ρ_{2}^{*} bounded by $\dot{A}^{*} \cup B^{*}$, and the subarc of $\alpha_{1}^{k *}$ bounded by $B^{*} \cup A^{*}$. From Claim 2.1, we have that int $\delta_{1} \cap \Sigma=\emptyset$. Thus δ_{1} is properly embedded in the closure of the component of $S^{3}-\Sigma$. However then, take a subdisk δ_{2} of Σ bounded by ζ_{1} and ζ_{2}. Since δ_{1} is a Möbius band, $\delta_{1} \cup \delta_{2}$ is a projective plane, which cannot be embedded in S^{3}. Thus we have a contradiction.

Figure 12

In the rest of the paper, we devote ourselves to Case E. We omit the upper index k of D_{i}^{k} and $B_{i}^{k}(i=1,2)$ unless we need to emphasize it.
(Case E) In this case γ^{*} can be divided into five subarcs as $\gamma^{*}=\gamma_{D_{1}}^{*} \cup \gamma_{B_{1}}^{*} \cup \gamma_{D_{0}}^{*} \cup \gamma_{B_{2}}^{*} \cup$ $\gamma_{D_{2}}^{*}$, where γ_{X}^{*} is $\gamma^{*} \cap X^{*}$. Take a look at $\mathcal{S}^{*} \cap D_{0}^{*}$, which consists of $\gamma_{D_{0}}^{*}$ and the pre-images of the loops of $\Sigma \cap D_{0}$. Then $\gamma_{D_{0}}^{*}$ may intersect with $\dot{\beta}_{i, j}^{*}$, and each loop of $\mathcal{S}^{*} \cap D_{0}^{*}$ intersects with $\dot{\beta}_{i, j}^{*}$ from Claim 2.6 (see Figure 13 for an example).

Now take a look at the intersections of $\Sigma \cap(\mathcal{C} \cup \partial H)$ on Σ, which consists γ, the loops of $\Sigma \cap D_{0}$, and the loops of $\Sigma \cap \partial H$. Here note that each of the five subarcs of γ is simple, that $\gamma_{D_{i}}$ intersects with $\gamma-\gamma_{D_{i}}$ only in a point on $\gamma_{B_{i+1}}$, and that $\gamma_{B_{i}}$ intersects with $\gamma-\gamma_{B_{i}}$ in a point on $\gamma_{D_{i+1}}$ and in points on $\gamma_{D_{0}}(i=1,2)$.

CLAIM 2.7. We have that $\operatorname{int}\left(\gamma_{B_{1}} \cup \gamma_{B_{2}}\right) \cap \operatorname{int} \gamma_{D_{0}}=\emptyset$.

Proof. Assume otherwise. Then $\gamma_{B_{i}}$ has a subarc ζ which bounds a disk δ_{ζ} on Σ with a subarc of $\gamma_{D_{0}}(i=1,2)$, where we may assume that δ_{ζ} does not contain any subarcs of $\gamma_{B_{1}}$ and of $\gamma_{B_{2}}$. Here δ_{ζ} may intersect with a loop of $\Sigma \cap D_{0}$ in an arc whose ends are on ζ. However then, we can eliminate the intersections from an outermost one by deforming \mathcal{B} along the subdisk of δ_{ζ} bounded by the intersection and a subarc of ζ by isotopy, which contradicts the minimality of the number of intersections of $\mathcal{B} \cap D_{0}$. Hence int $\delta_{\zeta} \cap \mathcal{C}=\emptyset$. Now we have two cases that an end of ζ is on $\partial \gamma_{B_{i}} \cap \partial \gamma_{D_{0}}$ or not. In either case, we can

Figure 13
deform B_{i} along δ_{ζ} by isotopy so to eliminate the intersection(s) of int $\gamma_{B_{i}}$ and int $\gamma_{D_{0}}$ (an end or the ends of ζ). However this also contradicts the minimality of the number of intersections of $\mathcal{B} \cap D_{0}$.

Figure 14

CLAIM 2.8. Each loop on Σ intersects with γ exactly in two points $\beta_{1, j} \cap \Sigma$ and $\beta_{2, j} \cap \Sigma\left(j=0,1, \ldots, t_{1}=t_{2}\right)$.

Proof. Let B_{1}^{\prime} (resp. B_{2}^{\prime}) be the closure of the component of $B_{1}-\alpha_{2}$ (resp. $B_{2}-\alpha_{1}$) which intersects with ∂H, and let λ a loop on Σ. Note that λ intersects with γ from Claim 2.6, moreover only in $\gamma_{B_{1}^{\prime}}$ or $\gamma_{B_{2}^{\prime}}$, since $\beta_{i, j}$ is on $B_{i}^{\prime}\left(i=1,2, j=0,1, \ldots, t_{i}\right)$. First we claim that λ intersects with $\gamma_{B_{i}^{\prime}}$ at most once $(i=1,2)$. If λ is of $\Sigma \cap \partial H$, then it is clear, since each band of \mathcal{B} intersects with ∂H only once. Assume that λ is of $\Sigma \cap D_{0}$ and intersects with $\gamma_{B_{i}^{\prime}}$ in more than once. Such a loop has a subarc which bounds a disk on Σ with a subarc of $\gamma_{B_{i}^{\prime}}(i=1,2)$. Let δ be an innermost disk among such disks. We may assume that δ is bounded by a subarc of λ and a subarc of $\gamma_{B_{1}^{\prime}}$. Then we can deform B_{1} along δ by isotopy so
to eliminate the two intersections. However this contradicts the minimality of the number of intersections of $\mathcal{B} \cap D_{0}$.

Therefore we complete the proof, since $\gamma_{B_{1}} \cup \gamma_{D_{0}} \cup \gamma_{B_{2}^{\prime}}$ and a subarc of $\gamma_{D_{1}}$ form a cycle on Σ.

Figure 15

From Claim 2.8, we have that $\Sigma \cap \partial H$ consists of only one loop, i.e., the loop of $\Sigma \cap \partial H$ which intersects with $\gamma_{B_{1}}$ is the loop of $\Sigma \cap \partial H$ which intersects with $\gamma_{B_{2}}$, and thus $\Sigma \cap H$ is a disk Σ_{H}. Note that $\Sigma_{H} \cap \mathcal{C}=\Sigma_{H} \cap\left(\mathcal{B}^{k} \cup \mathcal{D}^{k}\right)$. Therefore the $S R$-tangle consists of only one component, since otherwise we can take a disk $\Sigma_{H} \times\{1\}$ or $\Sigma_{H} \times\{-1\}$ to separate the k-th component from another component.

Figure 16

Claim 2.9. There do not exist loops of $\Sigma \cap D_{0}$.
Proof. Assume otherwise. Then take an innermost one, say λ on Σ, i.e., a loop which bounds a disk on Σ that contains the loop of $\Sigma \cap \partial H$ but does not contain any other loops of $\Sigma \cap D_{0}$. Let A_{λ} be the annulus on Σ bounded by λ and the loop of $\Sigma \cap \partial H$ and let $B_{i, 1}$
the subband of B_{i} bounded by $\beta_{i, 0}$ and $\beta_{i, 1}(i=1,2)$, where note that $\beta_{i, 1}$ intersects with λ. Then we have that $\left(H \cup A_{\lambda} \cup B_{1,1} \cup B_{2,1}\right) \cap D_{0}=\lambda \cup \beta_{1,1} \cup \beta_{2,1}$.

Now let δ_{λ} be the subdisk of D_{0} bounded by λ and take a subdisk δ of D_{0} such that $\delta \cap(\mathcal{B} \cup \Sigma)=\left(\delta_{\lambda} \cup \beta_{1,1} \cup \beta_{2,1}\right) \cap(\mathcal{B} \cup \Sigma)$. Then take a disk δ^{\prime} with $\partial \delta^{\prime}=\partial \delta$ and int $\delta^{\prime} \cap(\mathcal{C} \cup \Sigma \cup H)=\emptyset$ which bounds a 3-ball with δ containing $H \cup A_{\lambda} \cup B_{1,1} \cup B_{2,1}$. Let $D_{0}^{\prime}=\left(D_{0}-\delta\right) \cup \delta^{\prime}$, and then $(\mathcal{B} \cup \mathcal{D}) \cup D_{0}^{\prime}$ is another ribbon disk for K such that the number of intersections of \mathcal{B} and D_{0}^{\prime} is less than that of \mathcal{B} and D_{0}, which is a contradiction.

Figure 17

Therefore we have that $\mathcal{B} \cap D_{0}=\emptyset$ and $\Sigma \cap \mathcal{C}=\gamma$, and thus $\mathcal{C} \cup H \cup \Sigma$ is as illustrated in Figure 18. Then we know that K is the square knot, which contradicts the assumption.

Figure 18

Hence we can conclude that there does not exist a composite knot which is not the square knot and can be transformed into the trivial knot by a single $S R^{-}$-move whose associated tangle is not separable. This completes the proof.

Acknowledgement. The authors would like to thank the referee for careful reading.

References

[1] L. H. Kauffman, On knots, Ann. of Math. Studies 115, Princeton Univ. Press, Princeton, New Jersey 1987.
[2] A. KaWauchi and K. Yoshida, Topology of prion proteins, preprint.
[3] K. Kobayashi, T. Shibuya and T. Tsukamoto, Simple ribbon moves for links, preprint.
[4] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989), 75-89.
[5] M. G. Scharlemann, Unknotting number one knots are prime, Invent. Math. 82 (1985), 37-55.

Present Addresses:
Tetsuo Shibuya
Department of Mathematics,
Osaka Institute of Technology,
ASAHI, OSAKA, 535-8585 JAPAN.
e-mail: shibuya@ge.oit.ac.jp
Tatsuya Tsukamoto
Department of Mathematics,
Osaka Institute of Technology,
ASAhI, OsaKa, 535-8585 Japan.
e-mail: tsukamoto@ge.oit.ac.jp

[^0]: Received September 26, 2011; revised August 19, 2012; revised October 1, 2012

 * partially supported by JSPS, Grant-in-Aid for Scientific Research (C) (\#22540104).
 ${ }^{\dagger}$ partially supported by JSPS, Grant-in-Aid for Young Scientists (B) (\#22740050).

