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Abstract. We prove some generalization of a lemma by Schmitt and Vogel which yields the arithmetical rank
in cases that could not be settled by the existing methods. Our results are based on divisibility conditions and exploit
both combinatorial and linear algebraic considerations. They mainly apply to ideals generated by monomials.

Introduction

Given a commutative noetherian ring with identity R, the arithmetical rank of an ideal
I of R, denoted by ara I , is defined as the minimum number of elements generating I up to
radical, i.e., of elements that generate an ideal having the same radical as I . Determining this
number is, in general, a very hard open problem; a trivial lower bound is given by the height
of I , but this is the actual value of ara I only in special cases. There are, however, techniques
which allow us to provide upper bounds. Some results in this direction have been proved by
Schmitt and Vogel ([6]) and Barile ([1], [2], [3]). These are essentially based on the following
criterion by Schmitt and Vogel.

LEMMA 1. Let R be a commutative ring with identity and Q be a finite subset of
elements of R . Let Q0, . . . ,Qr be subsets of Q such that:

(i)
⋃r

j=0 Qj = Q;

(ii) Q0 has exactly one element;
(iii) if q and q ′′ are different elements of Qj (0 < j ≤ r) there is an integer i with

0 ≤ i < j and an element q ′ ∈ Qi such that q ′ divides the product qq ′′.
We set fj = ∑

q∈Qj
qe(q) with e(q) ≥ 1 integers. We will write (Q) for the ideal of R

generated by the elements of Q. Then we get√
(Q) = √

(f0, . . . , fr ) .

In many cases Lemma 1 is not enough to obtain an optimal value. In this paper we want
introduce new generalizations of Lemma 1. The first is the proposition in Section 1: it is based
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on divisibility conditions. Though its statement appears to be complicated, it will be enable
us to determine the arithmetical rank of certain ideals which could not be treated by the above
lemma. In Section 2 we give another result which generalizes Barile’s technique ([1], [3]). It
could be used to compute the arithmetical rank of monomial ideals (i.e. ideals generated by
monomials) in a polynomial ring over a field.

1. The main result and some applications

We present a result which provides an algorithm for determining the arithmetical rank of
certain ideals.

PROPOSITION 1. Let R be a unique factorization domain (UFD). Let P be a subset
of R and let Q0, . . . ,Qr , P1, . . . , Pr be subsets of P . For all 0 ≤ j ≤ r we set Qj =
{q(j)

1 , . . . , q
(j)
sj } with sj ≥ 1 and for all 1 ≤ j ≤ r we set Pj = {p(j)

1 , . . . , p
(j)
tj

} with tj ≥ 0.

We suppose that
(i) Q0 ∪ ⋃r

j=1(Pj ∪ Qj) = P ;

(ii) for all 1 ≤ j ≤ r there exist elements z
(j)

1 , . . . , z
(j)
tj

of R that are pairwise coprime

which satisfy the following two conditions

(a) for all 1 ≤ i ≤ tj there exists an index k
(j)
i ≤ sj−1 such that p

(j)
i is divisible

by
q

(j−1)

k
(j)
i

z
(j)
i

;

(b) for all 1 ≤ j ≤ r every f ∈ Qj−1 ∪ Qj is divisible by the product

z
(j)

1 · · · z(j)
tj

;

we denote the product z
(j)

1 · · · z(j)
tj

by Mj ;

(iii) the radical ideal
√(∑s0

i=1 q
(0)
i , . . . ,

∑sr
i=1 q

(r)
i

)
is the same as the radical of the

ideal generated by all elements of
⋃r

i=0 Qi , whenever, for all i and j ,
√

(q
(j)
i ) =√

(q
(j)

i ) (i.e., q
(j)

i and q
(j)

i have the same prime factors).

We write I for the ideal generated by all elements of P . Then we have

ara I ≤ r + 1 . (1)

Concretely, we obtain r + 1 generators of I up to radical in the following way. Let

Pji = {p(j)

h ∈ Pj |k(j)

h = i as in (ii, a)} ,

let p
(j)
ih be the elements of the set Pji , for all i = 1, . . . , sj−1, with h = 1, . . . , |Pji | and set

p
(j)
ih = 0 if h > |Pji |. Let

mj = max{|Pji |
∣∣ i = 1, . . . , sj−1} .
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If we write z
(j)
ih for the elements z

(j)
a associated with p

(j)
ih as in (ii, a) (if p

(j)
ih = 0 we set

z
(j)

ih = 1), then a set of r + 1 generators of I up to radical is given by

g0 = β1f1; gj =
( sj−1∑

i=1

mj∑
h=1

p
(j)

ih fj

q
(j−1)
i

)
+ βj+1fj+1

for all j = 1, . . . , r where for all k = 1, . . . , r

fk =
sk−1∑
i=1

q
(k−1)
i · Mk∏mk

h=1 z
(k)
ih

; fr+1 =
sr∑

i=1

q
(r)
i

and for l = 1, . . . , r + 1 βl is an arbitrary element of R such that
√

(βlfl) = √
(fl).

PROOF. We set I = √
(g0, . . . , gr ). For all j = 1, . . . , r , we rewrite gj as follows

gj =
( sj−1∑

i=1

mj∑
h=1

p
(j)

ih fj

q
(j−1)
i

)
+ βj+1fj+1

=
( sj−1∑

i=1

mj∑
h=1

α
(j)
ih fj

z
(j)

ih

)
+ βj+1fj+1

=
( sj−1∑

i=1

mj∑
h=1

sj−1∑
i′=1

α
(j)
ih q

(j−1)
i′ · Mj

z
(j)
ih

∏mj

h′=1 z
(j)

i′h′

)
+ βj+1fj+1 ,

where α
(j)
ih = p

(j)
ih z

(j)
ih

q
(j−1)
i

. All summands of gj in the last equation are in I . This is certainly true

for βj+1fj+1. So there remains to consider the other summands for j ≥ 1. If i = i ′ then

the summand is divisible by p
(j)

ih , else the summand is divisible by q
(j−1)
i′ since

Mj∏mj

h′=1
z
(j)

i′h′
is

divisible by z
(j)
ih .

Therefore, I ⊆ √
I is trivial. We prove the opposite inclusion in several steps.

Step 1 : for all j = 0, . . . , r we prove that all summands
α

(j)
ih fj

z
(j)
ih

and βj+1fj+1 of gj are

in I . We proceed by induction on j ≥ 0. For j = 0 there is nothing to prove. Now suppose
that j ≥ 1 and that the claim is true for all smaller of values j . We know that

gj =
( sj−1∑

i=1

mj∑
h=1

α
(j)
ih fj

z
(j)

ih

)
+ βj+1fj+1 ∈ I .

Note that the product of any two different summands of gj is divisible by
f 2

j

z
(j)
ih z

(j)

i′h′
or by

fj fj+1

z
(j)
ih

,

so it is divisible by fj , because all z(j) are pairwise coprime and divide both q(j−1) and q(j)
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by (ii, b). Now, by induction, fj ∈ I , because βjfj is a summand of gj−1, and, applying
Lemma 1, we thus conclude that all elements

α
(j)

ih fj

z
(j)
ih

(1 ≤ i ≤ sj−1; 1 ≤ h ≤ mj)

and βj+1fj+1 belong to I .

Step 2 : for all i = 0, . . . , r , we prove that all elements of Qi belong to I . From (ii,b)

we know that, for all indices i and j ,
q

(j−1)
i Mj∏mj
i=1 z

(j)
ih

has the same prime factors as q
(j−1)
i . In view

of (iii), this implies that all elements of
⋃r

i=0 Qi belong to
√

(f1, . . . , fr ) . But in Step 1 we

have proven that this ideal is contained in I .

Step 3 : for all j = 1, . . . , r , we prove that all elements of Pj belong to I . For all j ≤ r ,
we know from Step 1 that all summands

sj−1∑
i′=1

α
(j)
ih q

(j−1)

i′ · Mj

z
(j)

ih

∏mj

h′=1 z
(j)

i′h′

belong to I . For every i ′ �= i we have that Mj∏mj

h′=1
z
(j)

i′h′
is divisible by z

(j)
ih . Therefore, the

product of any two distinct summands is divisible by some q
(j−1)

i′ ∈ I , whence, applying

Lemma 1, we deduce that all summands belong to I . In particular, if i = i ′, we obtain

p
(j)
ih · Mj∏mj

h′=1 z
(j)

ih′
∈ I . (2)

Since
Mj∏mj

h′=1
z
(j)

ih′
divides

q
(j−1)
i

z
(j)
ih

and the latter divides p
(j)
ih , by relation (2) we have that (p

(j)
ih )2 ∈

I , whence p
(j)
ih ∈ I .

We have just shown that all elements of Q0, . . . ,Qr , P1, . . . , Pr belong to I , which
completes the proof. �

This proposition requires at point (iii) the existence of special elements of R that de-
termine the same radical as the ideal generated by the elements of Q0, . . . ,Qr . Now we
present a simple generalization of Lemma 1, whose assumption implies the existence of such
elements.

LEMMA 2. Let R be commutative ring with identity and let Q be a subset of elements
of R. Let Q0, . . . ,Qr be subsets of Q such that:

(i)
⋃r

j=0 Qj = Q;

(ii) Qr has exactly one element;
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(iii) if q and q ′′ are two different elements of Qj (0 ≤ j < r) there is an integer i with
j < i ≤ r and an element q ′ ∈ Qi such that q ′ divides the product qq ′′.

We set fj = ∑
q∈Qj

q · h
(j)
q , with h

(j)
q ∈ R such that

√
(q) =

√
(q · h

(j)
q ) . We will write (Q)

for the ideal of R generated by the elements of Q. Then we get√
(Q) = √

(f0, . . . , fr ) .

The proof is essentially the same of proof of Lemma 1 (see Lemma in [6]): it suffices to
use q · hq instead of q with relative indexes and to set e(g) = 1.

It is clear that if Q0, . . . ,Qr are sets as in Lemma 2, then they satisfy assumption (iii) of
Proposition 1.

Now we present some examples in which we use the previous results.

EXAMPLE 1. Let K be a field and let I be the ideal of R = K[x0, . . . , x11] generated
by the following monomials:

x0x1x2x3x6x7, x0x1x2x4, x0x1x3x5, x1x2x3x6x7x8, x0x2x3x6x7x9

x0x1x3x4, x0x1x2x5, x1x3x4x10, x0x2x5x11 .

We note that the ideal (x2, x4, x5) is a minimal prime ideal of I . Its height is 3, therefore
ara I ≥ 3. We prove that ara I = 3.

We define the following sets

Q0 = {x0x1x2x3x6x7, x0x1x2x4, x0x1x3x5} ;
P1 = {x1x2x3x6x7x8, x0x2x3x6x7x9} ;
Q1 = {x0x1x3x4, x0x1x2x5} ;
P2 = {x1x3x4x10, x0x2x5x11} ;
Q2 = {x0x1x3x4} .

These sets satisfy the assumption of Proposition 1, with z
(1)
1 = x0, z

(1)
2 = x1, z(2)

1 = x0, z
(2)
2 =

x1 and the sets Q0,Q1,Q2 satisfy the assumption of Lemma 2. With the notation of Propo-
sition 1 we get

f1 = x0x1x2x3x6x7 + x2
0x2

1x2x4 + x2
0x2

1x3x5 ;
f2 = x0x

2
1x3x4 + x2

0x1x2x5 ;
f3 = x0x1x3x4 ;

g1 = x8
f1

x0
+ x9

f1

x1
+ β2f2 ;

g2 = x10
f2

x0
+ x11

f2

x1
+ β3f3 ;
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Then we have
√

I = √
(f1, g1, g2) . If we choose β2 = x0 and β3 = x0 we get that f1, g1, g2

are all homogeneous polynomials. Note that the sets Q1 and Q2 contain the same element
x0x1x3x4.

EXAMPLE 2. For all n ≥ 1 let In be the ideal of R = K[x0, . . . , x3n+4], where K is a
field, generated by following monomials



xkxk+1xk+2xk+3 for all k = 0, . . . , n ,

xkxk+1xk+2xk+4 for all k = 1, . . . , n − 1 ,

xkxk+2xk+3xn+2k+4 for all k = 0, . . . , n − 1 ,

xkxk+1xk+4xn+2k+5 for all k = 1, . . . , n − 1 ,

x1x2x4x3n+4, x1x4xn+5x3n+4 .

We prove that, for all n ≥ 1, ara In = n + 1.
We define

Q0 = {x0x1x2x3, x1x2x4x3n+4} , Qn = {xnxn+1xn+2xn+3} ,

and, for all k = 1, . . . , n − 1,

Qk = {xkxk+1xk+2xk+3, xkxk+1xk+2xk+4} .

Moreover, we set

P1 = {x0x2x3xn+4, x1x4xn+5x3n+4} ,

and, for all k = 1, . . . , n − 1,

Pk+1 = {xkxk+2xk+3xn+2k+4, xkxk+1xk+4xn+2k+5} .

Note that the sets Q0, . . . ,Qn, P1, . . . , Pn satisfy the assumption of Proposition 1 (the sets

Q0, . . . ,Qr obviously fulfil the assumption of Lemma 2) with z
(k)
1 = xk and z

(k)
2 = xk+1 for

all k = 1, . . . , n. With notation of Proposition 1, we set

f1 = x0x1x
2
2x3 + x2

1x2x4x3n+4 ;
for all k = 1, . . . , n − 1,

fk+1 = xkxk+1x
2
k+2xk+3 + xkx

2
k+1xk+2xk+4 ;

and finally

fn+1 = xnxn+1xn+2xn+3 .

Moreover, we define

g1 = xn+4

x1
f1 + xn+5

x2
f1 + β2f2 ;

and, for all k = 1, . . . , n − 1,

gk+1 = xn+2k+4

xk+1
fk+1 + xn+2k+5

xk+2
fk+1 + βk+2fk+2 .
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We have that

In = √
(f1, g1, . . . , gn) .

Therefore ara In ≤ n+1. By choosing βn+1 = xn (or xn+1, xn+2, xn+3) and βk = 1 for k ≤ n

we have that all g1, . . . , gn are homogeneous polynomials of degree 5.
Now we prove the opposite inequality by presenting a minimal prime ideal of In that is

generated by exactly n + 1 indeterminates.
Let M be the set of the following indeterminates:


xk for 1 ≤ k ≤ n + 2 , k ≡ 1 mod 3 ;
xn+2k+4 for 0 ≤ k ≤ n − 1 , k ≡ 0 mod 3 ;
xn+2k+5 for 2 ≤ k ≤ n − 1 , k ≡ 2 mod 3 .

It is clear that M has exactly n+1 elements: for all k = 0, . . . , n−1, exactly one indeterminate
among xk, xn+2k+4, xn+2k+5, is in M; moreover exactly one indeterminate among xn, xn+1,
xn+2, is in M . We show that the prime ideal generated by the elements of M is a minimal
prime ideal of In.

All elements of Q0 are divisible by x1 ∈ M . All indeterminates xk , xk+1, xk+2, divide
both elements of Qk (1 ≤ k ≤ n) and exactly one of these indeterminates is in M . Since
x1 ∈ M and xn+4 ∈ M (k = 0 ≡ 0 mod 3), every element in P1 contains an indeterminate of
M . Finally, it is clear from the assumption that all elements of Pk+1, with k = 1, . . . , n − 1,
contain an indeterminate of M . We have to show that is not possible to delete any indetermi-
nate in M without losing the condition In ⊆ (M).

If we delete xk for some 1 ≤ k ≤ n, k ≡ 1 mod 3, then we will have that xk−1xkxk+1xk+2

has no indeterminate in M;
If we delete xk for some n + 1 ≤ k ≤ n + 2, k ≡ 1 mod 3, then we will have that

xk−2xk−1xkxk+1 has no indeterminate in M;
If we delete xn+2k+4 for some 0 ≤ k ≤ n − 1, k ≡ 0 mod 3, then we will have that

xkxk+2xk+3xn+2k+4 has no indeterminate in M;
If we delete xn+2k+5 for some 2 ≤ k ≤ n − 1, k ≡ 2 mod 3, then we will have that

xkxk+1xk+4xn+2k+5 has no indeterminate in M .
Therefore ara In ≥ n + 1, so that ara In = n + 1.

For n = 2 we have the following polynomials:

f1 = x0x1x
2
2x3 + x2

1x2x4x10 ;
g1 = x0x

2
2x3x6 + x1x2x4x6x10 + x0x1x2x3x7 + x2

1x4x7x10 + x1x2x
2
3x4 + x1x

2
2x3x5 ;

g2 = x1x
2
3x4x8 + x1x2x3x5x8 + x1x2x3x4x9 + x1x

2
2x5x9 + x2

2x3x4x5 ;
and for n = 3 we have the following polynomials:

f1 = x0x1x
2
2x3 + x2

1x2x4x13 ;
g1 = x0x

2
2x3x7 + x1x2x4x7x13 + x0x1x2x3x8 + x2

1x4x8x13 + x1x2x
2
3x4 + x1x

2
2x3x5 ;
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g2 = x1x
2
3x4x9 + x1x2x3x5x9 + x1x2x3x4x10 + x1x

2
2x5x10 + x2x3x

2
4x5 + x2x

2
3x4x6 ;

g3 = x2x
2
4x5x11 + x2x3x4x6x11 + x2x3x4x5x12 + x2x

2
3x6x12 + x2

3x4x5x6 .

REMARK 1. Generally, we can improve Proposition 1 by means of Lemma 2. With
the notation of Proposition 1, we consider the sets Pr+1, . . . , Pr+r ′ such that, for all j =
r + 1, . . . , r + r ′, if p and p′ are different elements of Pj , then there is an element p′′ ∈⋃r

i=0 Qi ∪⋃j−1
i=0 Pi such that p′′ divides the product pp′. Then, for all j = r + 1, . . . , r + r ′,

we set

gj =
∑
p∈Pj

hpp ,

where for all elements p, hp ∈ R is such that
√

(p) = √
(hp · p). Let I be the ideal generated

by all elements of Q0, . . . ,Qr, P1, . . . , Pr+r ′ . Then we get√
(I) = √

(g0, g1, . . . , gr+r ′) .

For the next example we use the construction shown in Remark 1.

EXAMPLE 3. Let I be the ideal of R = K[x0, . . . , x10], where K is a field, generated
by the following monomials

x0x1x2x3, x1x2x3x4, x1x2x3x5, x1x2x4x6, x1x2x5x6 ,

x1x5x6x7, x1x5x6x8, x2x3x4x9, x2x3x4x10 ;
We note that the ideal (x1, x9, x10) is a minimal prime ideal of I . Its height is 3, therefore
ara I ≥ 3. We prove that ara I = 3. Using the notation of Proposition 1 and Remark 1, we
define the following sets

Q0 = {x1x2x3x4, x1x2x5x6} ;
P1 = {x2x3x4x9, x1x5x6x7} ;
Q1 = {x1x2x3x5} ;
P2 = {x0x1x2x3, x1x2x4x6, x1x5x6x8, x2x3x4x10} .

The sets Q0, P1,Q1 satisfy the assumption of the previous proposition (Q0,Q1 satisfy the

assumption of Lemma 2), with z
(1)
1 = x1, z

(1)
2 = x2, and P2 satisfies the condition presented

in Remark 1. We get (choose β2 = x1):

f1 = x1x
2
2x3x4 + x2

1x2x5x6 ;
g1 = x2

2x3x4x9 + x2
1x5x6x7 + x1x2x5x6x9 + x1x2x3x4x7 + x2

1x2x3x5 ;
g2 = x2

0x1x2x3 + x2
1x2x4x6 + x2

1x5x6x8 + x2
2x3x4x10 ;

Then we have that
√

I = √
(f1, g1, g2). We finally remark that applying Lemma 1 by itself

would not yield the exact upper bound ara I ≤ 3 (it suffices to note that any two elements of
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each of the sets {x2x3x4x9, x2x3x4x10, x1x2x3x4} and {x1x5x6x7, x1x5x6x8, x1x2x5x6} cannot
belong to the same set among those which fulfil the assumption of Lemma 1).

2. Further results applied to monomial ideals

In this section, we consider the polynomial ring R = K[x0, . . . , xn] where K is a field.
We show a result that generalizes both Proposition 1 in [3] and Proposition 1 in [1].

PROPOSITION 2. Let G ⊂ R be a set of monomials. Let Q0, . . . ,Qr be subsets of
G. For i = 0, . . . , r let ci be the cardinality of Qi . Let n0, . . . , nr be positive integers and
suppose that

(i)
⋃r

i=0 Qi = G;

(ii) there exists j ∈ {0, . . . , r} such that cj ≤ nj ;

(iii) the following recursive procedure can always be performed and always comes to
an end regardless of the choice of the indeterminates xih and the index j at each
step:
(a) set T = Qj ;

(b) set m = |T |;
(c) if t1, . . . , tm are the elements of T , pick indeterminates xi1, . . . , xim , not nec-

essarily pairwise distinct, such that xih divides th for all h = 1, . . . ,m;

(d) delete all monomials that are divisible by xih for some h ∈ {1, . . . ,m};
(e) if no element of G is left, then end. Else, pick an index j (we suppose it

exists) such that Qj contains at most nj elements (and at least one) and set
T = Qj ;

(f ) go to (b).

For all j = 0, . . . , r , let A(j) = (a
(j)

hk ) be a nj × cj matrix with entries in R such that all its
maximal minors are invertible in R. For all q ∈ G, let gq be a monomial, deg gq ≥ 0, such

that
√

(q · gq) = √
(q) . For all j = 0, . . . , r and h = 1, . . . , nj set Qj = {q(j)

1 , . . . , q
(j)
cj

}
and

fjh =
cj∑

k=1

a
(j)
hk · g

q
(j)
k

· q(j)
k .

Let J be the ideal generated by the elements fjh, 0 ≤ j ≤ r , 1 ≤ h ≤ nj . Then√
(G) = √

J ,

where (G) denotes the ideal generated by the elements of G. In particular,

ara(G) ≤
r∑

j=0

nj .
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PROOF. It suffices to prove (G) ⊆ √
J , because the opposite inclusion is trivial. Let

v(j) be the cj -dimensional column vector with entries g
q

(j)
1

· q
(j)

1 , . . . , g
q

(j)
cj

· q
(j)
cj

. According

to Hilbert’s Nullstellensatz (see [5], Theorem 5.4), it suffices to show that, whenever all the

elements of J vanish at some x ∈ K
n
, where K is the algebraic closure of K , the same is true

for all q ∈ G. In the sequel, as long as this does not cause any ambiguity, we will denote a
polynomial and its value at x by the same symbol. Since all generators of J vanish, we obtain,
for all j = 0, . . . , r ,

A(j)v(j) = 0 . (3)

We argue by induction on r ≥ 0. If r = 0, after deleting some rows, if necessary, by

assumption A(0) is a square invertible matrix. By Cramer’s Rule, from (3) we get v(0) = 0,
which proves the claim. So take r ≥ 1 and suppose the claim true for r − 1. Then, by

assumption, there exists j ∈ {0, . . . , r} such that A(j) is a square invertible matrix, up to

deleting some rows. From (3) we derive v(j) = 0, therefore, for all h = 1, . . . , cj , there

exists an indeterminate xih such that xih = 0 and q
(j)
i is divisible by xih . Then all monomials

of G divisible by some of these indeterminates vanish at x. Let G be the set of all monomials
of G not divisible by the indeterminate xih , for all h = 1, . . . , cj . We have to show that all

elements of G vanish at x. If G = ∅ there is nothing to prove. Else, for all i = 0, . . . , r ,

i �= j set Qi = Qi ∩ G. By assumption, there exists an index j such that Qj has positive

cardinality and at most nj elements. Then G and all its subsets Qi , for i = 0, . . . , r , and

i �= j , fulfil the assumption of the proposition with r − 1 instead of r . Let A
(j)

and v(j) be

the matrix and the column vector obtained deleting the kth column in A(j) and the kth row in

v(j) for each deleted monomial q
(j)

k , respectively. Then from (3) we get A
(j)

v(j) = 0 and, by

induction, all the elements of G vanish. �

If we take n0 = 1, we obtain Proposition 1 in [1] for the case of monomial ideals. Taking
nj = 1 for all j = 0, . . . , r , we get Proposition 1 in [3], that is already a generalization of
Lemma 1.

REMARK 2. If Q0, . . . ,Qr satisfy the assumption of Proposition 2 with n0 = · · · =
nr = 1 and a

(j)

1,k = 1 for all j = 0, . . . , r and k = 1, . . . , cj , then these sets satisfy condition

(iii) of Proposition 1.

EXAMPLE 4. Let R be the polynomial ring K[x0, . . . , x8], where K is a field. Let I

be the ideal of R generated by following monomials

x0x1x2x3, x0x1x4x5, x1x2x3x7, x0x4x5x8, x0x1x3x4, x0x1x5x6, x2x6 .

We note that the ideal (x0, x3, x6) is a minimal prime ideal of I . Its height is 3, therefore
ara I ≥ 3. We prove that ara I = 3.
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We define the following sets:

Q0 = {x0x1x2x3, x0x1x4x5} ;
P1 = {x1x2x3x7, x0x4x5x8} ;
Q1 = {x0x1x3x4, x0x1x5x6} ;
P2 = ∅ ;
Q2 = {x2x6} .

These sets satisfy assumption of Proposition 1, and the sets Q0,Q1,Q2 satisfy the assumption
of Proposition 2 (n0 = n1 = n2 = 1). Using the notation of Proposition 1 we get

f1 = x0x
2
1x2x3 + x2

0x1x4x5 ;
f2 = x0x1x3x4 + x0x1x5x6 ;
f3 = x2x6 ;

g1 = x7
f1

x0
+ x8

f1

x1
+ β2f2 ;

g2 = β3f3 .

Then we have
√

I = √
(f1, g1, g2) .

By choosing β2 = x0 and β3 = x3
2 , all polynomials f1, g1, g2 are homogeneous of degree 5.

In the next example we show that the algorithm in Proposition 1 does not always give
the exact value of the arithmetical rank of an ideal.

EXAMPLE 5. For all n ≥ 1 let In be the ideal of K[x0, . . . , x2n−1] generated by the
following monomials

A = {µ1 = x0 · · · xn−1, µ2 = x1 · · · xn, . . . , µn+1 = xn · · · x2n−1} .

In [1], Proposition 3.1, it is shown that ara In = 2 and that for all n ≥ 3 the linear combinations
of generators are not sufficient to estimate the exact value of the arithmetical rank of In. It is
easy to show that for all n ≥ 5 it is impossible to obtain two generators from Proposition 1
and Proposition 2.

If Q0,Q1, P1 satisfy Proposition 1 and Q0,Q1 satisfy Proposition 2 with n0 = n1 = 1,
(in this case it is the same as Lemma 1), then we will have that |(Q0 ∪ Q1) ∩ A| ≤ 3 and
|P1 ∩ A| ≤ 2. Therefore, if A is a subset of Q0 ∪ Q1 ∪ P1, then necessarily n < 5.

We finally consider the following algorithm, presented in [2], Proposition 1.

PROPOSITION 3. Let I be an ideal of K[x1, . . . , xn] generated by squarefree mono-
mials, and let N be a positive integer. Let Γ1(I) be the set of minimal generators of I , and for
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all i = 2, . . . , N − 1 let Γi(I) be the set of all minimal elements of

Gi(I) = {lcm(µ, ν)|µ, ν ∈ Γi−1(I), µ �= ν}
(if Γi−1(I) has only one element, we set Gi(I) = Γi−1(I)). Let

ν = GCD{µ ∈ GN(I)}
If ν ∈ I , then

I =
√

ν,
∑

µ∈ΓN−1(I )

µ, . . . ,
∑

µ∈Γ1(I )

µ .

Now we apply Proposition 1 to the sets in this algorithm. Set Qi = Γi+1(I) and Pi+1 =
∅ for all i = 0, . . . , N − 2, and set QN−1 = {ν}. These sets satisfy the assumption of
Proposition 1. We obtain the same generating elements that arise from Proposition 3. For
the monomials of Example 5, for n ≥ 3, we can improve the algorithm. We set Γ ′

1 =
{x1 · · · xn, . . . , xn−1 · · · x2n−2} and Γ ′

i as in Proposition 3. We set Qi = Γ ′
i+1 for all i =

0, . . . , N − 2, QN−1 = {ν}; P1 = {x0 · · · xn−1, xn · · · x2n−1}, Pi = ∅ for all 2 ≤ i ≤ N − 1.

In this case we have z
(1)
1 = xn, z

(1)
2 = xn−1. It is clear that for all values of n ≥ 3, the number

of elements obtained is strictly less than the number of elements obtained using Proposition
3; in particular, we get the exact upper bound ara I ≤ 2 for n = 3 and n = 4.
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