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Pictures and Littlewood-Richardson Crystals
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Abstract. We shall describe the one-to-one correspondence between the set of pictures and the set of
Littlewood-Richardson crystals.

1. Introduction

The notion of pictures is initiated by James and Peel [6] and Zelevinsky [12], which
is roughly a bijective map between two skew Young diagrams with certain conditions (See
Sect.2). Let λ,µ, ν be Young diagrams with |µ| = |ν \ λ| and denote the set of pictures from
µ to ν \ λ by P(µ, ν \ λ). Then one has the following remarkable result:

(1.1) �P(µ, ν \ λ) = cν
λ,µ,

where cν
λ,µ, is the usual Littlewood-Richardson number, which is shown in [4].

The theory of crystal bases is introduced by Kashiwara ([7], [8]), which is widely applied
to many areas in mathematics and physics, in particular, combinatorial representation theory.
In [10], it is revealed that crystal bases for classical Lie algebras are presented by ‘Young
tableaux’ and in [11] by the first author it is shown that so-called Littlewood Richardson rule
for tensor products of representations are described by crystal bases (see Sect.3). So, together
with (3.1) we deduced certain one to one correspondence between pictures and crystal bases,
which is given in Theorem 4.1.

This article is organized as follows. In Sect.2, we introduce pictures. In Sect.3, we
review the crystal bases of type An and the description of Littlewood-Richardson rule in terms
of crystal bases. In Sect.4, we shall state the main theorem, namely, we shall give an explicit
one to one correspondence between pictures and Littlewood-Richardson crystals of type An.
In the subsequent three sections, we shall give a proof of the theorem. In the last section, we
shall generalize the notion of pictures and give certain conjecture on it.
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2. Young Tableaux and Pictures

2.1. Young Tableaux. Let λ = (λ1, λ2, . . . , λm) be a Young diagram or a parti-
tion, which satisfies λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. Define |λ| := λ1 + · · · + λm for
λ = (λ1, λ2, . . . , λm). We usually write a Young diagram by using square boxes:

EXAMPLE 2.1. For λ = (2, 2, 1), write λ = .

In this article we frequently use the following coordinated expression for a Young dia-
gram, that is, we identify a Young diagram with a subset of N × N:

1 2 3 4

1
2
3
4

a
. In this diagram, the coordinate of a is (2, 3).

EXAMPLE 2.2. For a Young diagram λ = , its coordinated expression is λ =
{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1)}.

DEFINITION 2.3. A numbering of a Young diagram λ is called a Young tableau of
shape λ if it satisfies.

(i) In each row, all entries weakly increase from left to right.
(ii) In each column, all entries increase from top to bottom.

Note that it is also called ‘semi-standard tableau’. In this article, we prefer Young tableau
to semi-standard tableau following [4].

For a Young tableau T of shape λ, we also consider a coordinate like as λ. Then an entry
of T in (i, j) is denoted by Ti,j and called (i, j)-entry. For k > 0, define

(2.1) T (k) = {(l,m) ∈ λ|Tl,m = k} .

REMARK. Note that in T (k), there is no two elements in one column. Thus, we can
write

T (k) = {(a1, b1), (a2, b2), . . . , (am, bm)} ,

with a1 ≤ a2 ≤ · · · am and b1 > b2 > · · · > bm. If (i, j)-entry in a tableau T is k and

(i, j) = (ap, bp) in T (k) as above, we define a function p(T ; i, j) by

(2.2) p(T ; i, j) = p,

that is, p(T ; i, j) is the number of (i, j)-entry from the right in T (k). It is immediate from the
definition:

(2.3) If Ti,j = Tx,y and p(T ; i, j) = p(T ; x, y), then (i, j) = (x, y) .
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EXAMPLE 2.4. For T = 1 2
2 3
4

, we have T1,1 = 1, T1,2 = 2, T2,1 = 2,

T2,2 = 3, T3,1 = 4, p(T ; 1, 2) = 1, p(T ; 2, 1) = 2.

DEFINITION 2.5. Let λ and µ be Young diagrams with µ ⊂ λ. A skew diagram λ \ µ

is obtained by removing µ from λ.

EXAMPLE 2.6. For λ = (2, 2), µ = (1), we have λ \ µ = .

2.2. Picture. Now, let us introduce the notion of pictures.

DEFINITION 2.7. (Orders <P and <J ) We define the following two kinds of orders
on a subset X ⊂ N × N: For (a, b), (c, d) ∈ X,
(1) ≤P : (a, b) ≤P (c, d) iff a ≤ c and b ≤ d .
(2) ≤J : (a, b) ≤J (c, d) iff a < c, or a = c and b ≥ d .

Note that the order ≤P is a partial order and ≤J is a total order.

DEFINITION 2.8 ([12]). Let X,Y ⊂ N × N.
(1) A map f : X → Y is said to be PJ-standard if it satisfies

For (a, b), (c, d) ∈ X, if (a, b) ≤P (c, d), then f (a, b) ≤J f (c, d) .

(2) A map f : X → Y is a picture if it is bijective and both f and f −1 are PJ-standard.

Taking three Young diagrams λ,µ, ν ⊂ N × N, denote the set of pictures by:

P(µ, ν \ λ) := {f : µ → ν \ λ | f is a picture} .

For a picture f ∈ P(µ, ν \ λ), we define f1 (resp. f2) to be the map from µ to N given as a
row (resp. column) number of the image of f in ν \ λ.

3. Crystal Bases and Young tableaux

We shall review the theory of crystal bases briefly (for more details, see [7, 8, 10]).
Let g be a semisimple Lie algebra and Uq(g) the associated quantum algebra generated by

{ei, fi , t
±
i |i ∈ {1, . . . , n := rank(g)}} with certain commutation relations. Let M be a finite

dimensional Uq(g)-module. We can define linear maps ẽi , f̃i ∈ End(M) (i ∈ {1, . . . , n}),
which are called the Kashiwara operators ([7, 8]). Then, using the Kashiwara operators,
we obtain the crystal base for arbitrary finite dimensional Uq(g)-module. One of the most
remarkable properties of crystal bases is the tensor product structure. More detailed statement
is as follows: let M1,M2 be finite dimensional Uq(g)-modules and B1, B2 their crystal bases.
Then B1 ⊗ B2 turns out to be the crystal bases of M1 ⊗ M2.

Let V (λ) be the irreducible finite-dimensional Uq(g)-module with highest weight λ and
B(λ) the associated crystal base. Due to the tensor product structure, the crystal base B(λ) of
type An (and of other classical types) is realized in terms of Young tableaux ([10]) as follows.
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Let Λi (resp. αi , hi)(i = 1, 2, . . . , n) be the fundamental weight (resp. simple root, simple
coroot) of type An. Let B1 := { i |i = 1, 2, . . . , n + 1} be the crystal of type An for the
fundamental weight Λ1. A dominant, weight λ is identified with a Young diagram in usual
way. Then, we use the same notation for a dominant weight and the corresponding Young
diagram. Let λ be a Young diagram with a depth at most n and |λ| = N . Then the crystal

B(λ) is embedded in B⊗N
1 and realized by Young tableaux ([10]) . This embedding, say

reading, is not unique. Now, we introduce two of them. One is the middle-eastern reading
and the other is the far-eastern reading ([5]).

DEFINITION 3.1. Let T be a Young tableau of shape λ with entries {1, 2, . . . , n + 1}.
(i) We read the entries in T each row from right to left and from the top row to the

bottom row. Then the resulting sequence of the entries i1, i2, . . . , iN gives the
embedding of crystals:

B(λ) ↪→ B⊗N
1 (T �→ i1 ⊗ · · · ⊗ iN ) ,

which is called middle-eastern reading and denoted by ME.
(ii) We read the entries in T each column from the top to the bottom and from the right-

most column to the left-most column. Then the resulting sequence of the entries
i1, i2, . . . , iN gives the embedding of crystals:

B(λ) ↪→ B⊗N
1 (T �→ i1 ⊗ · · · ⊗ iN ) ,

which is called far-eastern reading and denoted by FE.

EXAMPLE 3.2. For a Young tableau T = 1 2 2 3
2 3 4
5

, we have

ME(T ) = 3 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ 4 ⊗ 3 ⊗ 2 ⊗ 5 ,

FE(T ) = 3 ⊗ 2 ⊗ 4 ⊗ 2 ⊗ 3 ⊗ 1 ⊗ 2 ⊗ 5 .

DEFINITION 3.3. (Addition) For i ∈ {1, 2, . . . , n + 1} and a Young diagram λ =
(λ1, λ2, . . . , λn), we define

λ[i] := (λ1, λ2, . . . , λi + 1, . . . , λn)

which is said to be an addition of i to λ. In general, for i1, i2, . . . , iN ∈ {1, 2, . . . , n + 1} and
a Young diagram λ, we define

λ[i1, i2, . . . , ıN ] := (· · · ((λ[i1])[i2]) · · · )[iN ] ,

which is called an addition of i1, . . . , iN to λ.

EXAMPLE 3.4. For a sequence i = 31212, the addition of i to λ = is:

3
−→ 1 −→ 2 −→ 1 −→ 2 .
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REMARK. For a Young diagram λ, an addition λ[i1, . . . , iN ] is not necessarily a Young
diagram.

EXAMPLE 3.5. For a sequence i′ = 22133, the addition of i′ to λ = is

2 −→ 2 −→ 1 −→
3

−→
3

.

Then we see that λ[2, 2] is not a Young digram.

3.1. Littlewood-Richardson rule. As an application of the description of crystal
bases of type An, we see so-called “Littlewood-Richardson rule” of type An.

For a sequence i1, i2, . . . , iN ∈ {1, 2, . . . , n + 1} and a Young diagram λ, let λ̃ :=
λ[i1, i2, . . . , iN ] be an addition of i1, i2, . . . , iN to λ. Then set

B(λ̃) =
{

B(λ̃) if λ[i1, . . . , ik] is a Young diagram for any k = 1, 2, . . . , N ,

∅ otherwise .

THEOREM 3.6 ([11]). Let λ and µ be Young diagrams with at most n rows. Then we
have

(3.1) B(λ) ⊗ B(µ) ∼=
⊕

T ∈ B(µ), where

FE(T ) = i1 ⊗ · · · ⊗ iN

B(λ[i1, i2, . . . , iN ]) .

Note that this also holds for ME.
Let cν

λ,µ be the multiplicity of B(ν) in B(λ) ⊗ B(µ), which is denoted by cν
λ,µ and called

the Littlewood-Richardson number. We have the following:

THEOREM 3.7 ([4]). �P(µ, ν \ λ) = cν
λ,µ.

For Young diagrams λ,µ, ν, we define

B(µ)νλ :=

⎧⎪⎪⎨
⎪⎪⎩T ∈ B(µ)

For any k = 1, . . . , N,

λ[i1, . . . , ik] is a Young diagram and
λ[i1, . . . , iN ] = ν, where
ME(T ) = i1 ⊗ i2 ⊗ · · · ⊗ ik ⊗ · · · ⊗ iN .

⎫⎪⎪⎬
⎪⎪⎭ ,

whose element is called a Littlewood-Richardson crystal with respect to a triplet (λ, µ, ν).
Then by Theorem 3.6, we have

COROLLARY 3.8. �P(µ, ν \ λ) = �B(µ)νλ.

We shall see an explicit one-to-one correspondence between P(µ, ν \ λ) and B(µ)νλ in
the next section.
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4. Main Theorem

For Young diagrams λ,µ, ν, we have two sets: P(µ, ν\λ) and B(µ)νλ. In case |λ|+|µ| =
|ν|, we define the following map Φ : P(µ, ν \ λ) → B(µ)νλ: For f = (f1, f2) ∈ P(µ, ν \ λ),
set

Φ(f )i,j := f1(i, j) ,

that is, Φ(f ) is a filling of shape µ and its (i, j)-entry is given as f1(i, j).
Furthermore, for a crystal T ∈ B(µ)νλ, define a map Ψ : B(µ)νλ → P(µ, ν \ λ) by

Ψ (T ) : (i, j) ∈ µ �→ (Ti,j , λTi,j + p(T ; i, j)) ∈ ν \ λ ,

where p(T ; i, j) as in (2.2).
The following is the main theorem in this article.

THEOREM 4.1. For Young diagrams λ,µ, ν as above, the map Φ : P(µ, ν \ λ) →
B(µ)νλ is a bijection and the map Ψ is the inverse of Φ.

EXAMPLE 4.2. Take λ = (3, 1, 1) = , µ = (3, 2) = and ν =

(4, 3, 2, 1) = . As subsets in N × N, we have

µ = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2)}, ν \ λ = {(1, 4), (2, 2), (2, 3), (3, 2), (4, 1)}.
In this case �P(µ, ν \ λ) = 2. Set P(µ, ν \ λ) = {f, f ′} and their explicit forms are

f = µ (1, 1) (1, 2) (1, 3) (2, 1) (2, 2)

ν \ λ (1, 4) (2, 3) (2, 2) (3, 2) (4,1)

f ′ = µ (1, 1) (1, 2) (1, 3) (2, 1) (2, 2)

ν \ λ (1, 4) (2, 2) (4, 1) (2, 3) (3,2)
.

We have

B(µ)νλ = {T = 1 2 2
3 4 , T ′ = 1 2 4

2 3 } ,

and Φ(f ) = T , Φ(f ′) = T ′.

In the subsequent sections, let us give the proof of Theorem 4.1, which consists in the
following three steps:

(i) Well-definedness of the map Φ.
(ii) Well-definedness of the map Ψ .

(iii) Bijectivity of Φ and Ψ = Φ−1.

5. Well-definedness of Φ

For the well-definedness of Φ, it suffices to show:
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PROPOSITION 5.1. Let λ,µ and ν be Young diagrams with |λ| + |µ| = |ν|.
(i) For any f ∈ P(µ, ν\λ), Φ(f ) is a Young tableau of shape µ, that is, Φ(f ) ∈ B(µ).

(ii) Writing ME(Φ(f )) = i1 ⊗ i2 ⊗ · · · ⊗ ik ⊗ · · · ⊗ iN , for any k = 1, . . . , N ,
λ[i1, i2, . . . , ik] is a Young diagram and λ[i1, . . . , iN ] = ν.

5.1. Proof of Proposition 5.1(i). For f ∈ P(µ, ν \ λ), it is immediate from the def-
inition of Φ that the shape of Φ(f ) is µ. Next, in order to see that Φ(f ) is a Young tableau,
we may show

(a) Φ(f )i,j ≤ Φ(f )i,j+1.
(b) Φ(f )i,j < Φ(f )i+1,j .
By the definition of Φ, one has

Φ(f )i,j = f1(i, j), Φ(f )i,j+1 = f1(i, j + 1) .

Since (i, j) <P (i, j + 1) and f is a picture,

(f1(i, j), f2(i, j)) <J (f1(i, j + 1), f2(i, j + 1)) .

Then, by the definition of <J one gets

Φ(f )i,j = f1(i, j) ≤ f1(i, j + 1) = Φ(f )i,j+1

which shows (a).
By the definition of Φ again, one has

Φ(f )i,j = f1(i, j) and Φ(f )i+1,j = f1(i + 1, j) .

Since (i, j) <P (i + 1, j) and f is a picture,

(f1(i, j), f2(i, j)) <J (f1(i + 1, j), f2(i + 1, j)) ,

which implies f1(i, j) ≤ f1(i + 1, j). Here, suppose that f1(i, j) = f1(i + 1, j). It follows
from the definition of <J that

f2(i, j) > f2(i + 1, j) .

This means

(f1(i, j), f2(i, j))P > (f1(i + 1, j), f2(i + 1, j)) .

Since f is a picture, applying f −1 to this one has

(i, j)J > (i + 1, j) ,

which derives a contradiction. Thus, one gets f1(i, j) < f1(i + 1, j), that is, Φ(f )i,j <

Φ(f )i+1,j , or equivalently, (b). Now, we obtain Φ(f ) ∈ B(µ).



500 TOSHIKI NAKASHIMA AND MIKI SHIMOJO

5.2. Addition and Picture. Before showing Proposition 5.1(2), we prepare the
lemma as below:

LEMMA 5.2. Let f : µ → ν \λ be a picture and set ME(Φ(f )) = i1 ⊗ i2 ⊗· · ·⊗ ik ⊗
· · · ⊗ iN . Let (pk, qk) ∈ µ be the place of ik in Φ(f ) ∈ B(µ) and (ak, bk) ∈ ν the place of
the k-th addition in λ[i1, . . . , iN ]. Then we have f (pk, qk) = (ak, bk) for any k = 1, . . . , N .

EXAMPLE 5.3. For a picture f = µ (1, 1) (1, 2) (1, 3) (2, 1) (2, 2)

ν \ λ (1, 4) (2, 3) (2, 2) (3, 2) (4, 1)

as in Example 4.2, we have Φ(f ) = 1 2 2
3 3 and ME(Φ(f )) = 2 ⊗ 2 ⊗ 1 ⊗ 3 ⊗ 3 .

Now, let us see the second i2 = 2 . This is added to the second row of λ by the addition:

2 , and then it is placed in (2, 3) ∈ ν.

The place of i2 = 2 in µ is (1, 2) and f (1, 2) = (2, 3).

PROOF. Set m := ik. List the m-th row in ν\λ according to the order <P :

(m, λm + 1) <P (m, λm + 2) <P · · · <P (m, λ + cm) = (m, νm) .

Since f is a picture, one has

f −1(m, λm + 1) <J f −1(m, λm + 2) <J · · · <J f −1(m, νm) .

Since the middle-eastern reading follows the order <J , (p, q) := f −1(m, λm + j) (j =
1, . . . , νm −λm) is added j -th to the m-th row of λ, which implies that the entry in (p, q) ∈ µ

is added to (m, λm + j) ∈ ν.
On the other-hand f (p, q) = f (f −1(m, λm + j)) = (m, λm + j), which completed the

proof of the lemma. �

5.3. Proof of Proposition 5.1 (ii). Due to the definition of Φ, it is easy to see that the
number of entry i (i = 1, . . . , n + 1) is equal to νi − λi , which implies λ[i1, . . . , iN ] = ν.

Writing ME(Φ(f )) = i1 ⊗ i2 ⊗ · · · ⊗ ik ⊗ · · · ⊗ iN , let us show that λ[i1, . . . , ik] is a
Young diagram for any k by the induction on k.

In case k = 1. Denote Φ(f ) by T . Let us show that λ[i1] = λ[T1,µ1] is a Young
diagram. Since (1, µ1) is the minimum element in µ with respect to the order <J and f is
a picture, f (1, µ1) = (f1(1, µ1), f2(1, µ1)) must be minimal with respect to the order <P .
Set s := f1(1, µ1). Then, by Lemma 5.2 we have f2(1, µ1) = λs + 1. Assume that there is
no box above (s, λs + 1) in λ[i1]. ν = λ[i1, . . . , iN ] is a Young diagram, which means that
there is some j such that ij is added above (s, λs + 1). Since f (1, µ1) is minimal in ν\λ with
respect to <P , in the addition of ME(Φ(f )) to λ, nothing is added above (s, λs + 1) after i1,
which derives a contradiction. Then, we know that there is originally a box above (s, λs + 1)

and then shows

λs−1 − λs > 0 .
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Therefore, λ[i1] is a Young diagram.
In case k = m > 1. Suppose λ′ := λ[i1, i2, . . . , im−1] to be a Young diagram and set

im := Tx,y , namely, im is the (x, y)-entry in T . By considering similarly to the case k = 1,
f (x, y) must be minimal in ν\λ′ with respect to the order <P . By Lemma 5.2, the destination
of im by the addition is f (x, y) = (im, λ′

im
+ 1). Then, nothing comes above f (x, y) after im.

Thus, by arguing similarly to the case k = 1, we have

λ′
im−1 − λ′

im
> 0 ,

and then λ′[im] is a Young diagram. �

6. Well-definedness of Ψ

In this section, we shall show the well-definedness of Ψ , that is, the image Ψ (B(µ)νλ) is
in P(µ, ν \ λ). Let λ,µ, ν be as above.

PROPOSITION 6.1. For T ∈ B(µ)νλ, we have
(i) Ψ (T ) is a map from µ to ν\λ and Ψ (T )(µ) = ν \ λ.

(ii) Ψ (T ) is a bijection.

(iii) Both Ψ (T ) and Ψ (T )−1 are PJ-standard.

Before starting the proof, we prepare one lemma:

LEMMA 6.2. For T ∈ B(µ)νλ and (i, j) ∈ µ, define (p, q) := Ψ (T )(i, j). Then we
have that the destination of (i, j) by the addition of ME(T ) is equal to (p, q).

PROOF. Set m := Ti,j and let (i, j) be the p-th element in T (m) from the right, where

T (m) is as in (2.1). Then, by the addition, Ti,j is added p-th to the m-th row in ν. By the
definition of Ψ , one has Ψ (T )(i, j) = (m, λm + p). This shows the lemma. �

6.1. Proof of Proposition 6.1 (i). It is clear from the definition of Ψ that Ψ (T ) is a
map from µ. Since T ∈ B(µ)νλ, one has that for any j = 1, . . . , n the number of j in T is
equal to νj − λj . Then it follows from Lemma 6.2 that Ψ (T )(µ) = ν\λ. Thus, we have (1).

6.2. Proof of proposition 6.1 (ii). Since |µ| = |ν \ λ| and Ψ (T ) = ν \ λ by Propo-
sition 6.1 (1), it suffices to show that f := Ψ (T ) is injective. By the definition of Ψ , for
(i, j), (x, y) ∈ µ there are some p and q such that

f (i, j) = (Ti,j , λTi,j + p) , f (x, y) = (Tx,y, λTx,y + q) .

Indeed, p = p(T ; , i, j) and q = p(T ; x, y). Suppose that f (i, j) = f (x, y). One has

Ti,j = Tx,y, λTi,j + p = λTx,y + q .

Then p = q . Hence, by (2.3) one has (i, j) = (x, y) and then f is injective.
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6.3. Proof of Proposition 6.1 (iii). First, let us see f = Ψ (T ) to be PJ-standard. For
the purpose, we may show for any (i, j) ∈ µ,

(a) f (i, j) <J f (i, j + 1).
(b) f (i, j) <J f (i + 1, j).

(a) For (i, j), (i, j + 1) ∈ µ, there are some p and q such that

f (i, j) = (Ti,j , λTi,j + p), f (i, j + 1) = (Ti,j+1, λTi,j+1 + q) .

Since T is a Young tableau, one has

Ti,j ≤ Ti,j+1 .

If Ti,j < Ti,j+1, this implies f (i, j) <J f (i, j + 1) and then there is nothing to show. So,

assume Ti,j = Ti,j+1 =: m. In this case, (i, j), (i, j + 1) ∈ T (m) and they are neighboring
each other. Thus, we have p = q + 1 and then

λTi,j + p > λTi,j+1 + q .

This shows f (i, j) <J f (i, j + 1).
(b) For (i, j), (i + 1, j) ∈ µ, there are some p and r such that

f (i, j) = (Ti,j , λTi,j + p), f (i + 1, j) = (Ti+1,j , λTi+1,j
+ r) .

Since T is a Young tableau, we have

Ti,j < Ti+1,j ,

which means f (i, j) <J f (i + 1, j) and then f is PJ-standard.

Next, let us show f −1 to be PJ-standard. It is sufficient to see that for (a, b), (a, b +
1), (a + 1, b) ∈ ν\λ:

(c) f −1(a, b) <J f −1(a, b + 1) .

(d) f −1(a, b) <J f −1(a + 1, b) .

Set

(i, j) := f −1(a, b), (x, y) := f −1(a, b + 1), (s, t) := f −1(a + 1, b) .

(c) There exist p and q such that

(a, b) = f (i, j) = (Ti,j , λTi,j + p), (a, b + 1) = f (x, y) = (Tx,y, λTx,y + q) .

Thus, we have

Ti,j = Tx,y = a, λa + p = b, λa + q = b + 1 ,

which implies q = p + 1. Then we know that (i, j) and (x, y) are neighboring in T (a) and
then i = x and j > y, or i < x. Therefore,

f −1(a, b) = (i, j) <J (x, y) = f −1(a, b + 1) ,
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and then we show (c).
(d) There is (a, b) just above (a + 1, b) in the same column in ν\λ. It follows from Lemma
6.2 that in the addition of ME(T ), Ti,j is added earlier than Ts,t . Since the middle-eastern
reading follows the order <J , we have

f −1(a, b) = (i, j) <J (s, t) = f −1(a + 1, b) ,

which implies (d). Hence, both f and f −1 are PJ-standard and then f = Ψ (T ) ∈ P(µ, ν \λ).
Now, we have completed the proof of Proposition 6.1. �

7. Bijectivity of Φ and Ψ

In order to show Φ and Ψ to be bijective, we shall prove
(e) Ψ ◦ Φ = idP(µ,ν\λ).

(f) Φ ◦ Ψ = idB(µ)νλ
.

(e) For f = (f1, f2) ∈ P(µ, ν \ λ), set g := Ψ ◦ Φ(f ). Φ(f ) is a Young tableau whose
(s, t)-entry Φ(f )s,t is equal to f1(s, t). Let m := Φ(f )s,t be the p-th entry from the right in

Φ(f )(m) and then

g(s, t) = (Φ(f )s,t , λΦ(f )s,t + p) = (f1(s, t), λf1(s,t) + p) .

We can easily see from Lemma 5.2 that f (s, t) = (Φ(f )s,t , λΦ(f )s,t + p) =
(f1(s, t), λf1(s,t) + p). Hence, we have g = f and then Ψ ◦ Φ = idP(µ, ν \ λ).

(f) Take T ∈ B(µ)νλ. By the definition of Ψ , Ψ (T ) is a map which sends (i, j) to (Ti,j , νTi,j +
p), where p = p(T ; i, j). Furthermore, by the definition of Φ, Φ ◦ Ψ (T ) is a Young tableau
in the shape µ with a entry Ti,j in a box (i, j). This means T = Φ ◦ Ψ (T ) and then Φ ◦ Ψ =
idB(µ)νλ

.

Now, we have completed the proof of Theorem 4.1. �

EXAMPLE 7.1. Set f := µ (1, 1) (1, 2) (1, 3) (2, 1) (2, 2)

ν \ λ (1, 4) (2, 2) (4, 1) (2, 3) (3, 2)

∈ P(µ, ν \λ). We have Φ(f ) = 1 2 4
2 3 . Let us apply Ψ to this. The number of entries 1, 3, 4

in Φ(f ) is one and then their destinations are determined uniquely: 1 �→ (1, 4), 3 �→ (3, 2)

and 4 �→ (4, 1). There are two entries 2 in Φ(f ). Since 2 in (1, 2) is right to the one in (2, 1),
it goes to (2, 2) and the other goes to (2, 3). Hence we have,

Ψ ◦ Φ(f ) = µ (1, 1) (1, 2) (1, 3) (2, 1) (2, 2)

ν \ λ (1, 4) (2, 2) (4, 1) (2, 3) (3,2)
= f .

This shows Ψ ◦ Φ = idP(µ,ν\λ).

EXAMPLE 7.2. Set T := 1 2 4
2 3 ∈ B(µ)νλ. We have



504 TOSHIKI NAKASHIMA AND MIKI SHIMOJO

Ψ (T ) = µ (1, 1) (1, 2) (1, 3) (2, 1) (2, 2)

ν \ λ (1, 4) (2, 2) (4, 1) (2, 3) (3,2)
.

By the definition of Φ, we obtain: Φ ◦ Ψ (T ) = 1 2 4
2 3 . Hence, Φ ◦ Ψ = idB(µ)νλ

.

8. Conjecture

We define a total order on a subset X in N × N, called “admissible order” and denoted
by <A.

DEFINITION 8.1.

(i) A total order <A on X ⊂ N × N is called admissible if it satisfies:

For any (a, b), (c, d) ∈ X if a ≤ c and b ≥ d then (a, b) <A (c, d) .

(ii) For X,Y ⊂ N × N and a map f : X → Y , if f satisfies that if (a, b) <P (c, d),
then f (a, b) <A f (c, d) for any (a, b), (c, d) ∈ X, then f is called PA-standard.

REMARK. Note that for fixed X ⊂ N × N, there can be several admissible orders on
X. For example, the order <J is one of admissible orders on X. If we define the total order
<F by

(a, b) <F (c, d) iff b > d, or b = d and a < c ,

then this is also admissible.

Let λ,µ, ν be Young diagrams as above and <A (resp. <A′ ) an admissible order on ν \λ

(resp. µ). Note that we do not assume <A = <A′ . We define a set (A,A′)-pictures
P(µ, ν \ λ : A,A′) by

P(µ, ν \ λ : A,A′) :=
{
f : µ → ν \ λ | f is PA-standard and bijective,

and f −1 is PA′-standard.

}
.

DEFINITION 8.2. Let A be an admissible order on a Young diagram µ with |µ| = N .
For T ∈ B(µ), by reading the entries in T according to A, we obtain the map

RA : B(µ) −→ B⊗N (T �→ i1 ⊗ · · · ⊗ iN )) ,

which is called an admissible reading associated with the order A. It is known that the map
RA is an embedding of crystals([5]).

Here note that Theorem 3.6 is valid for an arbitrary reading RA, that is, in (3.1) we can
replace FE(T ) with RA(T ). Define

B(µ)νλ[A] :=

⎧⎪⎪⎨
⎪⎪⎩T ∈ B(µ)

For any k = 1, . . . , N,

λ[i1, . . . , ik] is a Young diagram and
λ[i1, . . . , iN ] = ν, where
RA(T ) = i1 ⊗ i2 ⊗ · · · ⊗ ik ⊗ · · · ⊗ iN .

⎫⎪⎪⎬
⎪⎪⎭ .



PICTURES AND LITTLEWOOD-RICHARDSON CRYSTALS 505

It is shown in [5] that for any admissible order on µ,

(8.1) B(µ)νλ[A] = B(µ)νλ .

CONJECTURE 8.3. Let A (resp. A′) be an admissible order on ν \ λ (resp. µ). There
exists a bijection

Ψ : B(µ)νλ[A′] −→ P(µ, ν \ λ : A,A′) ,

where Ψ is the same as in 4.1.

If we show the conjecture, together with (8.1), we have

COROLLARY 8.4. For arbitrary admissible orders A on ν \ λ and A′ on µ,

P(µ, ν \ λ) = P(µ, ν \ λ : A,A′) .

This has been shown in [2] and [3] by some purely combinatorial way.
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