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Abstract. We give a reduction theorem for the codimension of a compact n-dimensional minimal proper CR

submanifold M immersed in a complex projective space CP m with complex structure J , under the assumption that
the Ricci curvature of M is equal to or greater than n − 1. Moreover, we classify compact n-dimensional minimal
CR submanifolds whose Ricci tensor S satisfies S(X,X) ≥ (n − 1)g(X,X) + kg(PX,PX), k = 0, 1, 2, for any
vector field X tangent to M, where PX is the tangential part of JX.

1. Introduction

The purpose of the present paper is to study the pinching problem in terms of Ricci
curvatures of minimal CR submanifolds immersed in a complex projective space.

Let CPm denote the complex projective space of real dimension 2m (complex dimen-
sion m) with constant holomorphic sectional curvature 4 and Kähler structure (J, g). Let M

be a real n-dimensional Riemannian manifold isometrically immersed in CPm with induced
metric g . If there exist a differentiable holomorphic distribution H : x �→ Hx ⊂ Tx(M) and
complementary orthogonal anti-invariant distribution H⊥, then M is called a CR submani-
fold. In particular, when M satisfies JTx(M)⊥ ⊂ Tx(M) for any point x of M , M is called a
generic submanifold. Any real hypersurface is obviously generic.

In [8], Kon proved that if the Ricci tensor S of a compact n-dimensional minimal CR

submanifold M of CPm satisfies S(X,X) ≥ (n − 1)g(X,X) + 2g(PX,PX), then M is a
real projective space RPn, or a complex projective space CPn/2, or a pseudo-Einstein real

hypersurface π(Sk(1/
√

2) × Sk(1/
√

2)) (k = (n + 1)/2) of some CP (n+1)/2 in CPm, where

Sk(r) is a k-dimensional sphere of radius r , π is the Hopf fibration and PX is the tangential
part of JX (see also [7]). For a minimal real hypersurface M of CPm (m ≥ 3), Maeda [9]
studied the pinching problem in terms of Ricci curvatures of M . He proved that if the Ricci
tensor S of a minimal real hypersurface satisfies (2m − 2)g(X,X) ≤ S(X,X) ≤ 2mg(X,X),

then it is locally congruent to π(Sm(1/
√

2) × Sm(1/
√

2)).
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On the other hand, Yamagata-Kon [14] proved that if the Ricci tensor S of a compact
n-dimensional minimal generic submanifold M of CPm, which is not totally real, satisfies
S(X,X) ≥ (n − 1)g(X,X), then M is a real hypersurface of CPm, that is, 2m − n = 1.

In this paper, we prove a reduction theorem for the codimension of a compact n-
dimensional minimal proper CR submanifold M in CPm. We prove that if the Ricci cur-
vature of M is equal to or greater than n − 1, then M is a real hypersurface of some

CP(n+1)/2 in CPm (Theorem 2). Using this result, we classify compact n-dimensional
minimal CR submanifolds M immersed in CPm whose Ricci tensors S satisfy S(X,X) ≥
(n − 1)g(X,X) + kg(PX,PX), k = 0, 1, 2, for any vector field X tangent to M (Theorem
3, 4, 5).

The author would like to express her sincere gratitude to the referee for valuable sugges-
tions.

2. Preliminaries

Let CPm denote the complex projective space of complex dimension m with constant
holomorphic sectional curvature 4. We denote by J the complex structure, and by g the metric
of CPm.

Let M be a real n-dimensional Riemannian manifold isometrically immersed in CPm.
We denote by the same g the Riemannian metric on M induced from g , and by p the codi-
mension of M , that is, p = 2m − n.

We denote by Tx(M) and Tx(M)⊥ the tangent space and the normal space of M at x,
respectively.

DEFINITION 1. A submanifold M of a Kähler manifold M̃ with complex structure J

is called a CR submanifold of M̃ if there exists a differentiable distribution H : x �→ Hx ⊂
Tx(M) on M satisfying the following conditions:

(i) H is holomorphic, i.e., JHx = Hx for each x ∈ M , and

(ii) the complementary orthogonal distribution H⊥ : x �→ H⊥
x ⊂ Tx(M) is anti-

invariant, i.e. JH⊥
x ⊂ Tx(M)⊥ for each x ∈ M .

In the following, we put dim Hx=h and dim H⊥
x = q . If q = 0 (resp. h = 0), then the

CR submanifold M is a complex submanifold (resp. totally real submanifold) of M̃ . If h > 0
and q > 0, then a CR submanifold M is said to be proper.

We denote by ∇̃ the operator of covariant differentiation in CPm, and by ∇ that in
M determined by the induced metric. Then the Gauss and Weingarten formulas are given
respectively by

∇̃XY = ∇XY + B(X, Y ) , ∇̃XV = −AV X + DXV

for any vector fields X and Y tangent to M and any vector field V normal to M , where D

denotes the normal connection. We call both A and B the second fundamental form of M and
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are related by g(B(X, Y ), V ) = g(AV X, Y ). The second fundamental forms A and B are
symmetric with respect to X and Y .

The mean curvature vector of M is defined to be the trace of the second fundamental
form B, that is, trB = ∑

i B(ei , ei), {ei} being an orthonormal basis of Tx(M). If the mean
curvature vector vanishes identically, then M is said to be minimal.

The covariant derivative (∇XA)V Y of A is defined by

(∇XA)V Y = ∇X(AV Y ) − ADXV Y − AV ∇XY .

If (∇XA)V Y = 0 for any vector fields X and Y tangent to M , then the second fundamental
form of M is said to be parallel in the direction of the normal vector V. If the second funda-
mental form is parallel in any direction, it is said to be parallel. A vector field V normal to M

is said to be parallel if DXV = 0 for any vector field X tangent to M .
For x ∈ M , the first normal space N1(x) is the orthogonal complement in Tx(M)⊥ of

the set N0(x) = {V ∈ Tx(M)⊥ : AV = 0}. If DXV ∈ N1(x) for any vector field V with
Vx ∈ N1(x) and any vector field X of M at x, then the first normal space N1(x) is said to be
parallel with respect to the normal connection.

In the sequel, we assume that M is a CR submanifold of CPm. The tangent space
Tx(M) of M is decomposed as Tx(M) = Hx + H⊥

x at each point x of M . Similarly, we see

that Tx(M)⊥ = JH⊥
x + Nx , where Nx is the orthogonal complement of JH⊥

x in Tx(M)⊥.
For any vector field X tangent to M , we put

JX = PX + FX ,

where PX is the tangential part of JX and FX the normal part of JX. For any vector field
V normal to M , we put

JV = tV + f V ,

where tV is the tangential part of JV and f V the normal part of JV . Then we see that
FP = 0, f F = 0, tf = 0 and P t = 0.

We define the covariant derivatives of P , F , t and f by (∇XP)Y = ∇X(PY ) − P∇XY ,
(∇XF)Y = DX(FY ) − F∇XY , (∇Xt)V = ∇X(tV ) − tDXV and (∇Xf )V = DX(f V ) −
f DXV , respectively. We then have

(∇XP)Y = AFY X + tB(X, Y ) , (∇XF)Y = −B(X,PY ) + fB(X, Y ) ,

(∇Xt)V = −PAV X + Af V X, (∇Xf )V = −FAV X − B(X, tV ) .

For any vectors X and Y in H⊥
x = tTx(M)⊥, we obtain AFXY = AFYX.

The Riemannian curvature tensor R̃ of a complex projective space CPm is given by

R̃(X, Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX

−g(JX,Z)JY + 2g(X, JY )JZ
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for any vector fields X, Y and Z of CPm. Then the equation of Gauss and the equation of
Codazzi are given respectively by

R(X, Y )Z = g(Y,Z)X − g(X,Z)Y + g(PY,Z)PX − g(PX,Z)PY

−2g(PX, Y )PZ + AB(Y,Z)X − AB(X,Z)Y

and

g((∇XA)V Y,Z) − g((∇Y A)V X,Z)

= g(Y, PZ)g(X, tV ) − g(X, PZ)g(Y, tV ) − 2g(X, PY )g(Z, tV )

for any vector fields X,Y and Z tangent to M and V normal to M , where R is the Riemannian
curvature tensor field of M .

We denote by S the Ricci tensor field of M . Then

S(X, Y ) = (n − 1)g(X, Y ) + 3g(PX,PY )

+
∑
a

tr Aag(AaX, Y ) −
∑
a

g(A2
aX, Y ) ,

where Aa is the second fundamental form in the direction of va , {v1, . . . , vp} being an or-

thonormal basis of Tx(M)⊥, and tr denotes the trace of an operator. If the Ricci tensor S

satisfies S(X, Y ) = αg(X, Y ) for some constant α, then M is called an Einstein manifold.
When M is a real hypersurface of CPm with a unit normal vector field V , if the Ricci tensor
S satisfies S(X, Y ) = αg(X, Y ) + βg(X, tV )g(Y, tV ) for some constants α and β, then M is
said to be pseudo-Einstein.

We define the curvature tensor R⊥ of the normal bundle T (M)⊥ of M by

R⊥(X, Y )V = DXDY V − DY DXV − D[X,Y ]V .

Then we have the equation of Ricci:

g(R⊥(X, Y )V,U) + g([AU,AV ]X,Y )

= g(FY, V )g(FX,U) − g(FX,V )g(FY,U) + 2g(X, PY )g(f V,U) ,

where [ , ] denotes the commutator and [AV ,AU ] = AV AU − AUAV .
We need the following examples of CR submanifolds in CPm.

EXAMPLE 1 ([1]). An n-dimensional complete totally geodesic submanifold M of

CPm is either a complex projective space CPn/2 or a real projective space RPn of constant
curvature 1. A real projective space RPn is a totally real submanifold of CPm.

EXAMPLE 2. Let z0, z1, . . . , zm be homogeneous coordinates of CPm. The complex

quadric Qm−1 is a complex hypersurface of CPm defined by the equation

(z0)2 + (z1)2 + · · · + (zm)2 = 0 .
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Then Qm−1 is a Kähler manifold. Moreover, Qm−1 is an Einstein manifold with Ricci curva-
ture 2(m − 1) (see [13]).

EXAMPLE 3. For an integer k and for 0 < r < π/2, we define M(k, r) in S2m+1 by

k∑
j=0

|zj |2 = cos2 r,

m∑
j=k+1

|zj |2 = sin2 r .

M(k, r) is a standard product S2k+1(cos r) × S2l+1(sin r), l = m − k − 1. We consider the

Hopf fibration π : S2m+1 −→ CPm, where S2m+1 denotes the unit sphere. Then Mc(k, r) =
π(M(k, r)) is a real hypersurface in CPm. For an integer 1 ≤ k ≤ m−2, we see that Mc(k, r)

is the tube of radius r over CPk (see [3]).
When r satisfies cos r = √

(2k + 1)/(2m) and sin r = √
(2l + 1)/(2m), Mc(k, r) is a

minimal real hypersurface of CPm. Moreover, we see that Mc(k, r) is a pseudo-Einstein real
minimal hypersurface of CPm if and only if k = l = (m − 1)/2 and r = π/4. Then the Ricci
tensor S satisfies S(X, Y ) = (2m − 2)g(X, Y ) + 2g(PX,PY ).

3. Integral formula

In this section, for later use, we compute the Laplacian for the square of the length of
the second fundamental form A of an n-dimensional minimal submanifold M immersed in a
complex projective space CPm. In the following, we put ∇i = ∇ei and Di = Dei , where {ei}
being an orthonormal basis of M , to simplify the notation. We use the following (see Simons
[12])

LEMMA 1. Let M be a submanifold of a locally symmetric Riemannian manifold M̄ .
If the mean curvature vector field of M is parallel, then

g((∇2B)(X, Y ), V ) =
∑

i

g((∇i∇iB)(X, Y ), V )

=
∑

i

(2g(R̄(ei, Y )B(X, ei), V ) + 2g(R̄(ei ,X)B(Y, ei ), V )

−g(AV X, R̄(ei, Y )ei) − g(AV Y, R̄(ei ,X)ei) + g(R̄(ei , B(X, Y ))ei , V )

+g(R̄(B(ei , ei ),X)Y, V ) − 2g(AV ei , R̄(ei , X)Y ))

+
∑
a

(tr Aag(AV AaX, Y ) − tr AaAV g(AaX, Y ) + 2g(AaAV AaX, Y )

−g(A2
aAV X, Y ) − g(AV A2

aX, Y ))

for any vectors X, Y tangent to M and any vector V normal to M .
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We compute the equation of Lemma 1 for an n-dimensional minimal submanifold M in
CPm. We notice that CPm is locally symmetric. Using the expression of the curvature tensor

R̃ of CPm, we have the equation of Lemma 1 in the following:

g((∇2B)(X, Y ), V )

=
∑

i

g((∇i∇iB)(X, Y ), V )

= −2g(AFYX, tV ) − 2g(AFXY, tV )

+2
∑

i

g(Y, tV )g(AFei ei, X) + 2
∑

i

g(X, tV )g(AFei ei, Y )

−4g(AfV X,PY ) − 4g(AfV Y, PX) (1)

+ng(AV X, Y ) − 3g(AV X,P 2Y ) − 3g(AV Y, P 2X)

+3g(AF tV X, Y ) − 6g(AV PX,PY )

+
∑
a

(− tr AaAV g(AaX, Y ) + 2g(AaAV AaX, Y )

−g(A2
aAV X, Y ) − g(AV A2

aX, Y )) .

We have g((∇2B)(X, Y ), V ) = g((∇2A)V X, Y ). Hence

g(∇2A,A)

= n
∑
a

tr A2
a − 3

∑
a,b

tr AaAbg(tva, tvb) − 6
∑
a

trP 2A2
a + 6

∑
a

(tr AaP)2

+4
∑
a,b

(g(Aatvb,Abtva) − g(Aatva,Abtvb)) − 8
∑
a

tr AaAfaP

+
∑
a,b

(−(tr AaAb)
2 + 2 tr(AaAb)

2 − 2 tr A2
aA

2
b) ,

where we put Afa = Afva . Moreover we obtain
∑
a,b

tr AaAbg(tva, tvb) =
∑
a

tr A2
a −

∑
a,b

tr AaAbg(f va, f vb)

=
∑
a

tr A2
a −

∑
a,b,c

tr AaAbg(f va, vc)g(f vb, vc)

=
∑
a

tr A2
a −

∑
a,b,c,i

g(Aaei, Abei)g(va, f vc)g(vb, f vc)

=
∑
a

tr A2
a −

∑
a

tr A2
f a ,

2
∑
a,b

(tr A2
aA

2
b − tr(AaAb)

2) =
∑
a,b

|[Aa,Ab]|2 ,
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2
∑
a

(tr(AaP )2 − tr A2
aP

2) =
∑
a

|[P,Aa]|2 ,

where | · | denotes the length of the tensor. Therefore we have the following theorem.

THEOREM 1. Let M be an n-dimensional minimal submanifold of a complex projec-
tive space CPm. Then we have

g(∇2A,A)

= (n − 3)
∑
a

tr A2
a + 3

∑
a

tr A2
f a

+4
∑
a,b

(g(Aatvb,Abtva) − g(Aatva,Abtvb)) − 8
∑
a

tr AaAfaP

+3
∑
a

|[P,Aa]|2 −
∑
a,b

|[Aa,Ab]|2 −
∑
a,b

(tr AaAb)
2 .

4. Reduction of the codimension

In this section we prove the following reduction theorem for the codimension.

THEOREM 2. Let M be a compact n-dimensional minimal proper CR submanifold
of a complex projective space CPm. If the Ricci tensor S of M satisfies S(X,X) ≥
(n − 1)g(X,X) for any vector field X tangent to M , then M is a real hypersurface of some

CP(n+1)/2 in CPm.

First of all, we prove

LEMMA 2. Let M be a compact n-dimensional minimal CR submanifold of CPm

which is not a complex submanifold of CPm. If the Ricci tensor S of M satisfies S(X,X) ≥
(n − 1)g(X,X), then M is a real projective space RPn or q = 1, that is, dim H⊥

x = 1.

PROOF. Since M is minimal, by the assumption, we have

S(X,X) − (n − 1)g(X,X) = 3g(PX,PX) −
∑
a

g(A2
aX,X) ≥ 0 . (2)

If P = 0, then M is a totally real submanifold of CPm. Moreover the above inequality implies
that Aa = 0 for all a. So M is totally geodesic in CPm, and hence M is a real projective space
RPn by a theorem of Abe [1].

We next suppose that P 
= 0. For any normal vector fields U and V , we have AUtV = 0.
Using this,

0 = (∇XA)U tV − AUPAV X + AUAfV X ,

from which

g((∇XA)UY, tV ) = g((∇XA)U tV, Y )
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= g(AUPAV X, Y ) − g(AUAfV X, Y ) .

So the equation of Codazzi implies

−2g(X, PY )g(tU, tV ) = g(AUPAV X, Y ) + g(AV PAUX, Y ) (3)

−g(AUAfV X, Y ) + g(Af V AUX, Y ) .

Since
∑

a g(tva, tva) = q , it follows that

2
∑
a

g(AaPAaX,PX) −
∑
a

g((AaAfa − AfaAa)X,PX)

= 2qg(PX,PX) .

On the other hand, we have

S(PX,PX) = (n + 2)g(PX,PX) −
∑
a

g(AaPX,AaPX) .

These equations imply

∑
a

g(AaPX,AaPX) =
∑
a

g(AaPAaX,PX) − 1

2

∑
a

g((AaAfa − AfaAa)X,PX)

+(n + 2 − q)g(PX,PX) − S(PX,PX) .

Thus we have, for any orthonormal basis {ei} of Tx(M),

1

2

∑
a

|[P,Aa]|2

= (n + 2 − q)h −
∑

i

S(Pei , P ei ) + 1

2

∑
a

trP(AaAf a − AfaAa) (4)

= −hq +
∑
a

trA2
a +

∑
a

trPAaAfa .

By (2), we obtain
∑

a trA2
a ≤ 3h. From these,

1

2

∑
a

|[P,Aa]|2 ≤ h(3 − q) +
∑
a

trPAaAfa .

We take a basis {v1, . . . , vp} of Tx(M)⊥ such that {v1, . . . , vq } is an orthonormal basis of
FTx(M) and {vq+1, . . . , vp} is that of Nx . We denote by the same {v1, . . . , vp} an orthonor-

mal normal vector fields in a neighborhood of x. By (3), we have
∑p

λ=q+1 trPAλAf λ =∑p

λ=q+1 trAλPAλP . From these and

1

2

p∑
a=1

|[P,Aa]|2 = 1

2

q∑
y=1

|[P,Ay]|2 +
p∑

λ=q+1

trAλPAλP −
p∑

λ=q+1

trP 2A2
λ ,
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we obtain

0 ≤ 1

2

q∑
y=1

|[P,Ay]|2 +
n∑

i=1

p∑
λ=q+1

g(AλPei, AλPei) ≤ h(3 − q) .

Thus we see that q ≤ 3. Suppose q = 3. Then, PAy = AyP for y = 1, 2, 3 and AλP = 0
for λ = 4, . . . , p. Hence we have AfV PX=0 for any normal vector V and tangent vector X.
Then, it follows from (3) that

2g(PX,PY )g(tV , tU) = g(AUAV PX,PY ) + g(AV AUPX,PY )

for any tangent vectors X, Y and normal vectors U,V ∈ FTx(M). So we see that if

g(U, V ) = 0, then AUAV + AV AU = 0. Moreover, A2
yX = X and g(AyX,AzX) =

g(X,X)g(tvy , tvz) for any X ∈ Hx and y, z = 1, 2, 3. We denote by H1 and H2 the
eigenspaces of A1 corresponding to 1 and −1, respectively. If X ∈ H1, then A1A2X =
−A2A1X = −A2X and A1A3X = −A3A1X = −A3X. So we have A2X ∈ H2 and
A3X ∈ H2. Similarly, if X ∈ H2, then A2X ∈ H1 and A3X ∈ H1. We can take an orthonor-
mal basis {ei} of H1 which satisfies A1ei = ei , i = 1, . . . , s, where s = dim H1 = dim H2

since M is minimal. Then A1 can be diagonalized with respect to the orthonormal basis
{e1, . . . , es, A2e1, . . . , A2es, e2s+1, . . . , en}. Then, for ei, ej ∈ H1,

g(A2ei , ej ) = 0, g(A2
2ei , A2ej ) = 0, g(A2ei, A2ej ) = δij .

So A2 can be represented by a matrix of the form

A2 =

 0 Is 0

Is 0 0
0 0 0


 ,

where Is denotes the identity matrix of degree s. Similarly,

A3 =

 0 ∗ 0

∗ 0 0
0 0 0


 .

Thus we obtain A2A3 = A3A2. Since A2A3 + A3A2 = 0, we have A2A3 = A3A2 = 0.
Hence A2 = A2

3A2 = 0. This is a contradiction .
Suppose q = 2. We have Afy = 0 for y = 1, 2. Then

∑
y,i,j

g(∇j tvy , ei)g(ej ,∇i tvy)

=
∑
y,i,j

g(−PAyej + tDj vy, ei)g(−PAyei + tDivy, ej )

= −
∑
y,j

g(PAyej ,AyPej ) +
∑
y,i,j

g(tDj vy, ei)g(tDivy, ej )
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=
∑
y

tr(PAy)2 +
∑
y,z,w

g(Dtwvy, vz)g(Dtzvy, vw)

=
∑
y

tr(PAy)2 +
∑
y,z

g(Dtzvy, vz)
2 ,

where y, z,w = 1, 2 and Dty = Dtvy . On the other hand, we have

∑
y

(div tvy )2 =
∑
y,i,j

g(∇i tvy , ei)g(∇j tvy , ej )

=
∑
y,i,j

g(−PAyei + tDivy, ei)g(−PAyej + tDj vy, ej )

=
∑
y,i,j

g(tDivy, ei)g(tDj vy, ej )

=
∑
y,z

g(Dtzvy, vz)
2 .

Since S satisfies

div(∇XX) − div((divX)X)

= S(X,X) +
∑
i,j

g(∇jX, ei)g(ej ,∇iX) − (div X)2

for any tangent vector field X (cf. [15; p. 44]), it follows that
∑
y

(div(∇ty tvy) − div((divtvy)tvy))

=
∑
y

S(tvy , tvy) +
∑
y

tr(PAy)2

= 2(n − 1) + 1

2

∑
y

|[P,Ay]|2 +
∑
y

tr(P 2A2
y)

= 2(n − 1) − 2h +
∑
y

trA2
y +

∑
y

trPAyAfy +
∑
y

tr(P 2A2
y)

≥ 2 .

Here we used (4) and f vy = 0. However, since M is compact, this is a contradiction. So we
have q = 1. �

If M is proper, then h > 0 and q > 0. Then Lemma 2 reduces to

LEMMA 3. Let M be a compact n-dimensional minimal proper CR submanifold of
CPm. If the Ricci tensor S of M satisfies S(X,X) ≥ (n − 1)g(X,X), then q = 1, that is,
dim H⊥

x = 1.
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In the following, we shall prove that the first normal space of M is just FH⊥
x and is of

dimension 1 under the condition of Lemma 3. To prove this, we prepare some lemmas.

LEMMA 4. Let M be a compact n-dimensional minimal proper CR submanifold of
CPm. If the Ricci tensor S of M satisfies S(X,X) ≥ (n−1)g(X,X), then the following hold:

(a) ∇f = 0.
(b) For any X tangent to M and any V ∈ FH⊥, we have DXV ∈ FH⊥.
(c) For any X tangent to M and any U ∈ N , we have DXU ∈ N .

PROOF. By the proof of Lemma 2, if the Ricci tensor S of a minimal CR submanifold
M satisfies S(X,X) ≥ (n − 1)g(X,X) for any tangent vector field X, then AUtV = 0 for
any U and V normal to M . Thus we have

g((∇Xf )V,U) = −g(FAV X,U) − g(B(X, tV ),U)

= g(X,AV tU) − g(AU tV,X)

= 0

for any X tangent to M and any U and V normal to M . This means that f is parallel.
Since M is proper, by Lemma 3, we have dim H⊥

x = 1. Let V be a vector field in FH⊥.
Then we see g(DXV, f U) = −g(V , (∇Xf )U) = 0 for any vector field U ∈ N . This proves
(b).

Next we prove (c). For any vector field U in N , there exists U ′ in N such that U = f U ′.
Therefore we have

DXU = DX(f U ′) = f DXU ′ .

This shows DXU ∈ N . �

LEMMA 5. Let M be a compact n-dimensional minimal proper CR submanifold of
CPm. If the Ricci tensor S of M satisfies S(X,X) ≥ (n − 1)g(X,X), then the second
fundamental form A satisfies the following:

(a) AvPAv = P , where v is a unit vector field in FH⊥.

(b) |[P,Av]|2 = 2 tr A2
v − 2(n − 1), where v is a unit vector field in FH⊥.

(c) AV AU = AUAV for any V ∈ FH⊥ and U ∈ N .
(d) PAU = AfU and PAU + AUP = 0 for any U ∈ N .

PROOF. By Lemma 3, we have dimH⊥
x = 1. Let {v1, . . . , vp} be an orthonormal basis

of Tx(M)⊥ such that v1 = v ∈ FH⊥
x and v2, . . . , vp ∈ Nx .

By (3) and f v = 0, we obtain

2g(AvPAvX, Y ) = −2g(X, PY )g(tv, tv)

for any X and Y tangent to M . Thus we have (a). Using this, we can prove (b) by a straight-
forward computation.

Next we prove (c). From the equation of Ricci and Lemma 4 (b), we see

g([AU,AV ]X,Y )
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= g(Y, tV )g(X, tU) − g(X, tV )g(Y, tU) − 2g(X, PY )g(V , f U)

= 0

for any X and Y tangent to M and V ∈ FH⊥, U ∈ N . This shows (c).
From the Weingarten formula and Lemma 4 (a), we have

∇̃XJU = ∇̃XfU = −AfUX + DXfU = −AfUX + f DXU .

On the other hand, it follows from ∇̃J = 0 and Lemma 4 (c) that

∇̃XJU = J ∇̃XU = −PAUX − FAU X + fDXU ,

from which PAU = AfU . Since AfU is symmetric and P is skew-symmetric, we obtain
PAU + AUP=0. This proves (d). �

Using Theorem 1 and Lemma 5, we next compute the Laplacian for the square of the
length of the second fundamental form of the minimal submanifold in CPm whose Ricci
tensor satisfies S(X,X) ≥ (n − 1)g(X,X) for any tangent vector field X.

LEMMA 6. Let M be a compact n-dimensional minimal proper CR submanifold of
CPm. If the Ricci tensor S of M satisfies S(X,X) ≥ (n − 1)g(X,X), then

g(∇2A,A) = (n + 3)tr A2
v + (n + 4)

∑
a

tr A2
f a − 6(n − 1)

−
∑
a,b

|[Aa,Ab]|2 −
∑
a,b

(tr AaAb)
2 .

PROOF. From Lemma 5, we have
∑

a tr AaAf aP = ∑
a tr A2

f a . Next we compute∑
a |[P,Aa]|2. Using Lemma 5,

∑
a

|[P,Aa]|2 = |[P,Av]|2 +
∑
a≥2

|[P,Aa]|2

= −2(n − 1) + 2 tr A2
v + 4

∑
a

tr A2
f a .

From these equations and Theorem 1, we have our result. �

LEMMA 7. Let M be a compact n-dimensional minimal proper CR submanifold of
CPm. If the Ricci tensor S of M satisfies S(X,X) ≥ (n − 1)g(X,X), then

∑
j

g((∇2A)vej ,Avej ) = (n + 3)tr A2
v − 6(n − 1) − (tr A2

v)
2,

∑
a≥2,j

g((∇2A)aej ,Aaej ) = (n + 4)
∑
a

tr A2
f a −

∑
a,b

|[Aa,Ab]|2 −
∑

a,b≥2

(tr AaAb)
2 .
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PROOF. By Lemma 5 (c) and (d), for any va ∈ N ,

tr AaAv = −tr Af 2aAv = −tr PAf aAv = −tr AfaAvP = −tr AvAfaP

= tr AvPAf a = tr AvAf 2a = −tr AvAa = −tr AaAv .

Hence we have tr AaAv = 0. Thus, using (1) and Lemma 5, we have
∑
j

g((∇2A)vej ,Avej )

=
∑
j

g((∇2B)(ej ,Avej ), v)

= ng
∑
j

g(Avej ,Avej ) − 3
∑
j

g(Avej , P
2Avej )

−3
∑
j

g(A2
vej , P

2ej ) − 3
∑
j

g(Avej ,Avej ) − 6
∑
j

g(AvPej , PAvej )

+
∑
a,j

(−tr AaAvg(Aaej ,Avej ) + 2g(AaAvAaej ,Avej )

−g(A2
aAvej ,Avej ) − g(AvA

2
aej , Avej ))

= (n − 3)tr A2
v + 3|[P,Av]|2 −

∑
a

(tr AaAv)
2 +

∑
a

|[Aa,Av]|2

= (n + 3)tr A2
v − 6(n − 1) − (tr A2

v)
2 .

From this equation and Lemma 6, we obtain
∑

a≥2,j

g((∇2A)aej ,Aaej )

= g(∇2A,A) −
∑
j

g((∇2A)vej ,Avej )

= (n + 4)
∑
a

tr A2
f a −

∑
a,b

|[Aa,Ab]|2 −
∑
a,b

(tr AaAb)
2 + (tr A2

v)
2

= (n + 4)
∑
a

tr A2
f a −

∑
a,b

|[Aa,Ab]|2 −
∑

a,b≥2

(tr AaAb)
2 .

Hence we have our equation. �

Next we give inequalities for
∑

a,b |[Aa,Ab]|2 and
∑

a,b≥2(tr AaAb)
2 in the equation in

Lemma 7.

LEMMA 8. Let M be a compact n-dimensional minimal proper CR submanifold of
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CPm. If the Ricci tensor S of M satisfies S(X,X) ≥ (n − 1)g(X,X), then∑
a,b

|[Aa,Ab]|2 ≤ 4
∑
a

tr A2
f a,

∑
a,b≥2

(tr AaAb)
2 ≤ 1

2

( ∑
a

tr A2
f a

)2

.

PROOF. From (2), we have 3g(PX,PX) ≥ ∑
a g(AaX,AaX) for any X tangent to

M . On the other hand, by Lemma 5,∑
i,a

g(A2
vAfaei, Afaei)

=
∑
i,a

g(AvAfaAvei, Afaei) =
∑
i,a

g(AvPAaAvei, Af aei)

=
∑
i,a

g(AvPAvAaei, Af aei) =
∑
i,a≥2

g(PAaei, PAaei) .

Using these and Lemma 5, we obtain

3
∑
a

tr A2
f a = 3

∑
i,a

g(PAf aei, PAf aei)

≥
∑
i,a,b

g(AbAfaei , AbAfaei)

=
∑
i,a

g(AvAfaei, AvAfaei) +
∑
i,a,b

g(A2
f aA

2
f bei, ei)

=
∑
i,a≥2

g(PAaei, PAaei) + 1

2

∑
a,b

|[Aa,Ab]|2

=
∑
a

tr A2
f a + 1

2

∑
a,b

|[Aa,Ab]|2 ,

from which 4
∑

a tr A2
f a ≥ ∑

a,b |[Aa,Ab]|2. Hence our first inequality holds. In the next

place, we take a basis {v, v2, . . . , vp′ , vp′+1 = f v2, . . . , vp = f vp′ } (p = 2p′ + 1) of

Tx(M)⊥ such that
∑

a,b≥2(tr AaAb)
2 = ∑p

a=2(tr A2
a)

2. Since tr A2
a = tr A2

f a for a ≥ 2, we

have

p∑
a=2

(tr A2
a)

2 = 2
p′∑

a=2

(tr A2
a)

2 = 2

(( p′∑
a=2

tr A2
a

)2

−
p′∑

a,b≥2,a 
=b

tr A2
a tr A2

b

)
.

On the other hand, we see( p∑
a=2

tr A2
a

)2

=
(

2
p′∑

a=2

tr A2
a

)2

= 4

( p′∑
a=2

tr A2
a

)2

.
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Therefore

p∑
a=2

(tr A2
a)

2 = 1

2

( p∑
a=2

tr A2
a

)2

− 2
p′∑

a,b≥2,a 
=b

tr A2
a tr A2

b ≤ 1

2

( p∑
a=2

tr A2
a

)2

,

from which
∑p

a,b≥2(tr AaAb)
2 ≤ (1/2)(

∑
a tr A2

f a)
2. Hence we have the second inequality.

�

Using Lemma 3-Lemma 8, we prove the following lemma.

LEMMA 9. Let M be a compact n-dimensional minimal proper CR submanifold of
CPm. If the Ricci tensor S of M satisfies S(X,X) ≥ (n− 1)g(X,X), then Afa = 0 for all a.

PROOF. From Lemma 7 and Lemma 8, we have

1

2
�

( ∑
a

tr A2
f a

)

=
∑
a≥2,i

g((∇2A)aei, Aaei) +
∑
a≥2,i

g((∇A)aei, (∇A)aei)

≥
∑
a≥2,i

g((∇2A)aei , Aaei)

= (n + 4)
∑
a

tr A2
f a −

∑
a,b

|[Aa,Ab]|2 −
∑

a,b≥2

(tr AaAb)
2

≥
( ∑

a

tr A2
f a

)(
n − 1

2

∑
a

tr A2
f a

)
.

On the other hand, by the assumption, the Ricci tensor S satisfies
∑

i

S(ei , ei ) = (n + 3)(n − 1) − |A|2 ≥ (n − 1)
∑

i

g(ei , ei) ,

which reduces to |A|2 = tr A2
v + ∑

a tr A2
f a ≤ 3(n − 1). Moreover, Lemma 5 (b) implies

tr A2
v ≥ n − 1. Hence we have

∑
a tr A2

f a ≤ 2(n− 1) < 2n. Therefore, by the Hopf’s lemma,∑
a tr A2

f a is constant so that �(
∑

a tr A2
f a) = 0 (cf. [5; p. 338]). Thus we have Afa = 0 for

all a. �

(Proof of Theorem 2)
From Lemma 4 and Lemma 9, the first normal space of M is of dimension 1 and parallel

with respect to the normal connection.
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Let S2m+1 be a (2m + 1)-dimensional unit sphere. We consider the Hopf fibration π :
S2m+1 → CPm. Then the first normal space of M̄ = π−1(M) in S2m+1 is of dimension 1 and
is also parallel with respect to the normal connection. Therefore, there is a totally geodesic

(n + 2)-dimensional submanifold Sn+2 of S2m+1 containing M̄ (cf. [4]). Hence there is a

totally geodesic CP(n+1)/2 of CPm containing M (cf. [15; p. 227]).

5. Pinching theorems for the Ricci curvature

To prove our theorems, we need some well-known results.
In the following, we take the unit normal vector field v of a real hypersurface M in CPm,

and we put ξ = −Jv. Then ξ is the unit tangent vector field of M and P 2X = −X+g(X, ξ)ξ ,
Pξ = 0. We also put Av = A to simplify the notation. Then ∇Xξ = PAX for any vector
field X tangent to M .

PROPOSITION A([3]). Let M be a real hypersurface (with unit normal vector v) of
a complex projective space CPm on which ξ is a principal curvature vector with principal
curvature α = 2 cot 2r and the focal map φr has constant rank on M . Then the following
hold:

(a) M lies on a tube (in the direction η = γ ′(r), where γ (r) = expx(rv) and x is a
base point of the normal vector v) of radius r over a certain Kähler submanifold N

in CPm.
(b) Let cot θ , 0 < θ < π , be a principal curvature of the second fundamental form Aη

at y = γ (r) of the Kähler submanifold N . Then the real hypersurface M has a
principal curvature cot(r − θ) at x = γ (0).

PROPOSITION B([10]). Let M be a real hypersurface of a complex projective space
CPm. If Aξ = 0, except for the null set on which the focal map φr degenerates, M is locally
congruent to one of the following:

(a) a homogeneous real hypersurface which lies on a tube of radius π/4 over a totally
geodesic CPk (1 ≤ k ≤ m − 1),

(b) a nonhomogeneous real hypersurface which lies on a tube of radius π/4 over a
Kähler submanifold N with nonzero principal curvatures 
= ±1.

Using these results, we prove the following

THEOREM 3. Let M be a compact n-dimensional minimal CR submanifold of a com-
plex projective space CPm which is not a complex submanifold of CPm. If the Ricci tensor
S of M satisfies S(X,X) ≥ (n − 1)g(X,X) for any vector field X tangent to M , then M is
congruent to one of the following:

(a) a totally geodesic real projective space RPn of CPm,

(b) a pseudo-Einstein real hypersurface Mc((n − 1)/4, π/4) of some CP(n+1)/2 in
CPm,

(c) a real hypersurface of some CP (n+1)/2 in CPm which lies on a tube of radius π/4
over certain Kähler submanifold N with principal curvatures cot θ , 0 < θ ≤ π/12.
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PROOF. We suppose that M is proper. Then Theorem 2 implies that M is a real hyper-

surface of some totally geodesic complex projective space CP (n+1)/2 in CPm. By the proof
of Lemma 2, we have Aξ = 0. On the other hand, from Lemma 5, we obtain APAX = PX

for any X tangent to M . Thus we see that if AX = λX, then APX = (1/λ)PX. Since

3g(PX,PX) ≥ g(A2X,X), we have λ2 ≤ 3. We also have rankA ≤ n − 1 because Aξ = 0.
A homogeneous real hypersurface which lies on a tube of radius π/4 over a totally geodesic
CPk is minimal if and only if k = (n − 1)/4, that is, M is Mc

k,k . The principal curvatures of

this real hypersurface is ±1 (see [3; p. 493]).
For a nonhomogeneous real hypersurface M which lies on a tube of radius π/4 over

a Kähler submanifold N , by the condition λ2 ≤ 3 and (b) of Proposition A, we see that

cot2(π/4 − θ) ≤ 3. Thus we have 0 < θ ≤ π/12. Consequently, using Proposition A and
Proposition B, we have our theorem. �

REMARK 1. The author does not know any example of a Kähler submanifold N hav-
ing the properties required in Case (c) in Theorem 3.

COROLLARY 1. Let M be a compact n-dimensional minimal proper CR submanifold
of a complex projective space CPm. If the Ricci tensor S of M satisfies S(X,X) ≥ (n −
1)g(X,X), then M is congruent to one of the following:

(a) a pseudo-Einstein real hypersurface Mc((n − 1)/4, π/4) of some CP(n+1)/2 in
CPm,

(b) a real hypersurface of some CP (n+1)/2 in CPm which lies on a tube of radius π/4
over certain Kähler submanifold N with principal curvatures cot θ , 0 < θ ≤ π/12.

Using the theorem in [9], we have

COROLLARY 2. Let M be a compact n-dimensional minimal proper CR submanifold
of a complex projective space CPm, n ≥ 5. If the Ricci tensor S satisfies (n − 1)g(X,X) ≤
S(X,X) ≤ (n + 1)g(X,X), then M is congruent to a pseudo-Einstein real hypersurface

Mc((n − 1)/4, π/4) of some CP (n+1)/2 in CPm.

Next we prove the following

THEOREM 4. Let M be a compact n-dimensional minimal CR submanifold of a com-
plex projective space CPm. If the Ricci tensor S of M satisfies S(X,X) ≥ (n − 1)g(X,X) +
g(PX,PX) for any vector field X tangent to M , then M is congruent to one of the following:

(a) a totally geodesic real projective space RPn of CPm,
(b) a totally geodesic complex projective space CPn/2 of CPm,

(c) a complex (n/2) dimensional complex quadric Q(n/2) of some CPn/2+1 of CPm,
(d) a pseudo-Einstein real hypersurface Mc((n − 1)/4, π/4) of some CP(n+1)/2 in

CPm,
(e) a real hypersurface of some CP (n+1)/2 in CPm which lies on a tube of radius

π/4 over certain Kähler submanifold N with principal curvatures cot θ , where θ

satisfies 0 < sin 2θ ≤ 1/3.
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For the proof of the theorem, we prepare some lemmas for complex submanifolds. We
take an orthonormal basis {v1, . . . , vp, vp+1 = f v1, . . . , v2p = f vp} of Tx(M)⊥.

LEMMA 10 ([6]). Let M be a complex k-dimensional Kähler submanifold of a com-

plex m-dimensional Kähler manifold M̄ . Then

1

k
|A|4 ≤

2p∑
a,b=1

|[Aa,Ab]|2 ≤ |A|4 ,

1

2p
|A|4 ≤

2p∑
a,b=1

(tr AaAb)
2 ≤ 1

2
|A|4 ,

where p = m − k. If M̄ is of constant holomorphic sectional curvature c, then M is Einstein

if and only if
∑2p

a,b=1 |[Aa,Ab]|2 = |A|4/k.

From Theorem 1, we see

LEMMA 11. Let M be a complex k-dimensional Kähler submanifold of CPm. Then

g(∇2A,A) = 2(k + 2)|A|2 −
2p∑

a,b=1

|[Aa,Ab]|2 −
2p∑

a,b=1

(tr AaAb)
2 .

In the following we prove Theorem 4. From Theorem 2, if M is proper, then it is a real

hypersurface of some CP(n+1)/2 in CPm.
Next we suppose that M is a complex (n/2) dimensional complex submanifold of CPm.

Since M is complex minimal submanifold of CPm, we have

S(X, Y ) = (n + 2)g(X, Y ) −
2p∑
a=1

g(A2
aX, Y ) .

Thus we have
∑2p

a=1 g(A2
aX,X) ≤ 2g(X,X), from which |A|2 ≤ 2n. Moreover, we see

that 2I − ∑
a A2

a is a positive semi-definite operator. The symmetricity of Aa implies that∑
a A2

a is positive semi-definite. The operators
∑

a A2
a and 2I − ∑

a A2
a can be transformed

simultaneously by an orthogonal matrix into diagonal forms at each point of M , thus we see

that (
∑

a A2
a)(2I − ∑

a A2
a) is positive semi-definite. Hence we have

tr

( 2p∑
a=1

A2
a

)2

≤ 2|A|2 ≤ 4n . (5)

On the other hand, we obtain

2p∑
a,b=1

|[Aa,Ab]|2 = 2
2p∑

a,b=1

tr A2
aA

2
b = 2 tr

( 2p∑
a=1

A2
a

)2

.
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Therefore we get
∑2p

a,b=1 |[Aa,Ab]|2 ≤ 4|A|2. From Lemma 10, Lemma 11 and these equa-

tions, we have,

1

2
�|A|2 = g(∇2A,A) + |∇A|2 (6)

≥ g(∇2A,A) ≥ |A|2
(

n − 1

2
|A|2

)
≥ 0 .

Hence, by the theorem of E. Hopf, |A|2 is constant so that �|A|2 = 0 (cf. [5; p. 338]). Thus

we have |A| = 0 or |A|2 = 2n. When |A| = 0, M is totally geodesic.

Next we suppose |A|2 = 2n. By (5), we have tr(
∑2p

a=1 A2
a)

2 = 4n, that is,

2p∑
a,b=1

|[Aa,Ab]|2 = 8n = 2|A|4
n

.

From Lemma 10, M is an Einstein complex submanifold of CPm.
For any normal vector field V with Vx ∈ N0(x) = {V ∈ Tx(M)⊥ : AV = 0}, we have

∇Y (AV X) = (∇Y A)V X + ADY V X + AV (∇Y X) = 0

at x ∈ M . Hence ADY V X + (∇Y A)V X = 0. Since the equality of (6) holds, we get ∇A = 0,
from which we see that N0 is parallel with respect to the normal connection. Let V ∈ N0 and
U ∈ N1. Then

Xg(U, V ) = g(DXU,V ) + g(U,DXV ) = 0 .

Hence the first normal space is parallel with respect to the normal connection. On the other

hand, since the equality of (6) holds, we have
∑2p

a,b=1(tr AaAb)
2 = (1/2)|A|4. In the next

place, we take a basis {v1, . . . , vp, vp+1 = f v1, . . . , v2p = f vp} of Tx(M)⊥ such that∑2p

a,b=1(tr AaAb)
2 = ∑2p

a=1(tr A2
a)

2. Then

2p∑
a=1

(tr A2
a)

2 = 1

2
|A|4 − 2

p∑
a 
=b

(tr A2
a)(tr A2

b) ,

and therefore
∑p

a 
=b(tr A2
a)(tr A2

b) = 0. This implies dim N1 = 2. Consequently, M is an

Einstein complex hypersurface of some CPn/2+1 in CPm, that is, a complex quadric Qn/2 of

CPn/2+1 (see [13]). From this and Theorem 3, we have our theorem.

REMARK 2. In 1974, Chen and Ogiue [2] proved that if the Ricci curvature of n-
dimensional Kähler submanifold of CPm is everywhere equal to n/2, then M is locally Qn

in some CPn+1 in CPm (see also [11]).
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We suppose that M is a compact n-dimensional minimal CR submanifold of a complex
projective space CPm. When the Ricci tensor S of M satisfies S(X,X) ≥ (n − 1)g(X,X) +
2g(PX,PX) for any vector X tangent to M , the cases (c) and (e) in Theorem 4 do not occur.
Thus we obtain

THEOREM 5 ([8]). Let M be a compact n-dimensional minimal CR submanifold of
a complex projective space CPm. If the Ricci tensor S of M satisfies S(X,X) ≥ (n −
1)g(X,X) + 2g(PX,PX) for any vector field X tangent to M , then M is congruent to one
of the following:

(a) a totally geodesic real projective space RPn of CPm,
(b) a totally geodesic complex projective space CPn/2 of CPm,
(c) a pseudo-Einstein real hypersurface Mc((n − 1)/4, π/4) of some CP(n+1)/2 in

CPm.
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