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Abstract. We give a reduction theorem for the codimension of a compact n-dimensional minimal proper C R
submanifold M immersed in a complex projective space C P™ with complex structure J, under the assumption that
the Ricci curvature of M is equal to or greater than n — 1. Moreover, we classify compact n-dimensional minimal
CR submanifolds whose Ricci tensor § satisfies S(X, X) > (n — 1)g(X, X) + kg(PX, PX), k = 0, 1, 2, for any
vector field X tangent to M, where P X is the tangential part of JX.

1. Introduction

The purpose of the present paper is to study the pinching problem in terms of Ricci
curvatures of minimal C R submanifolds immersed in a complex projective space.

Let CP™ denote the complex projective space of real dimension 2m (complex dimen-
sion m) with constant holomorphic sectional curvature 4 and Kihler structure (J, g). Let M
be a real n-dimensional Riemannian manifold isometrically immersed in C P with induced
metric g. If there exist a differentiable holomorphic distribution H : x — H, C Ty(M) and
complementary orthogonal anti-invariant distribution H-, then M is called a CR submani-
fold. In particular, when M satisfies J T (M) C Ty (M) for any point x of M, M is called a
generic submanifold. Any real hypersurface is obviously generic.

In [8], Kon proved that if the Ricci tensor S of a compact n-dimensional minimal CR
submanifold M of C P satisfies S(X, X) > (n — 1)g(X, X) + 2¢g(PX, PX), then M is a
real projective space RP", or a complex projective space C P"/2, or a pseudo-Einstein real
hypersurface 7 (S¥(1/+/2) x SK(1/+/2)) (k = (n + 1)/2) of some C P*+D/2 in C P™, where
S¥(r) is a k-dimensional sphere of radius r, 7 is the Hopf fibration and PX is the tangential
part of JX (see also [7]). For a minimal real hypersurface M of C P™ (m > 3), Maeda [9]
studied the pinching problem in terms of Ricci curvatures of M. He proved that if the Ricci
tensor S of a minimal real hypersurface satisfies 2m —2)g(X, X) < S(X, X) <2mg(X, X),
then it is locally congruent to 7 (S™ (1/+/2) x §"™(1/+/2)).
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On the other hand, Yamagata-Kon [14] proved that if the Ricci tensor S of a compact
n-dimensional minimal generic submanifold M of C P™, which is not totally real, satisfies
S(X, X) > (n— 1)g(X, X), then M is a real hypersurface of C P, that is, 2m —n = 1.

In this paper, we prove a reduction theorem for the codimension of a compact n-
dimensional minimal proper CR submanifold M in CP™. We prove that if the Ricci cur-
vature of M is equal to or greater than n — 1, then M is a real hypersurface of some
CP"*D/2 in CP™ (Theorem 2). Using this result, we classify compact n-dimensional
minimal C R submanifolds M immersed in C P whose Ricci tensors S satisfy S(X, X) >
n—1gX,X)+kg(PX, PX), k =0,1,2, for any vector field X tangent to M (Theorem
3,4,5).

The author would like to express her sincere gratitude to the referee for valuable sugges-
tions.

2. Preliminaries

Let CP™ denote the complex projective space of complex dimension m with constant
holomorphic sectional curvature 4. We denote by J the complex structure, and by g the metric
of CP™.

Let M be a real n-dimensional Riemannian manifold isometrically immersed in C P™.
We denote by the same g the Riemannian metric on M induced from g, and by p the codi-
mension of M, thatis, p = 2m — n.

We denote by Ty (M) and Ty (M )L the tangent space and the normal space of M at x,
respectively.

DEFINITION 1. A submanifold M of a Kihler manifold M with complex structure .J

is called a CR submanifold of M if there exists a differentiable distribution H : x — H v C
Ty (M) on M satisfying the following conditions:
(i) H is holomorphic,i.e., J Hy = H, foreach x € M, and
(i) the complementary orthogonal distribution H L.x - HXl c Tx(M) is anti-
invariant, i.e. JHj- C Ty (M)* foreachx € M.

In the following, we put dim H,=h and dim HXJ- =gq. If ¢ = 0 (resp.h = 0), then the
C R submanifold M is a complex submanifold (resp. totally real submanifold) of M. If h > 0
and g > 0, then a C R submanifold M is said to be proper.

We denote by V the operator of covariant differentiation in C P, and by V that in
M determined by the induced metric. Then the Gauss and Weingarten formulas are given
respectively by

VxY =VxY +B(X,Y), VxV=—AyX+ DxV

for any vector fields X and Y tangent to M and any vector field V normal to M, where D
denotes the normal connection. We call both A and B the second fundamental form of M and
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are related by g(B(X,Y), V) = g(Ay X, Y). The second fundamental forms A and B are
symmetric with respectto X and Y.

The mean curvature vector of M is defined to be the trace of the second fundamental
form B, thatis, trB = ), B(e;, e;), {e;} being an orthonormal basis of 7y (M). If the mean
curvature vector vanishes identically, then M is said to be minimal.

The covariant derivative (VxA)yY of A is defined by

(VxA)vY =Vx(AyY) — Ap,vY — AyVxY.

If (VxA)yY = 0 for any vector fields X and Y tangent to M, then the second fundamental
form of M is said to be parallel in the direction of the normal vector V. If the second funda-
mental form is parallel in any direction, it is said to be parallel. A vector field V normal to M
is said to be parallel if Dx V = 0 for any vector field X tangent to M.

For x € M, the first normal space N1i(x) is the orthogonal complement in Ty (M )L of
the set No(x) = {V € T, (M)+ : Ay = 0}. If DxV € Nj(x) for any vector field V with
V¢ € Ni(x) and any vector field X of M at x, then the first normal space Nj(x) is said to be
parallel with respect to the normal connection.

In the sequel, we assume that M is a CR submanifold of C P™. The tangent space
T (M) of M is decomposed as Ty (M) = H, + HXl at each point x of M. Similarly, we see
that T, (M)* = JH} + N,, where N, is the orthogonal complement of J H" in Ty (M)*.

For any vector field X tangent to M, we put

JX=PX+FX,

where PX is the tangential part of J X and F X the normal part of JX. For any vector field
V normal to M, we put

JV=1tV+ [V,

where ¢tV is the tangential part of JV and fV the normal part of JV. Then we see that
FP=0,fF=0,tf =0and Pt =0.

We define the covariant derivatives of P, F, t and f by (Vx P)Y = Vx(PY) — PVxY,
(VxF)Y = Dx(FY) — FVxY, (Vxt)V = Vx(tV) —tDxV and (Vx f)V = Dx(fV) —
fDxV,respectively. We then have

(VxP)Y = Apy X +1B(X,Y), (VxF)Y =—B(X,PY)+ fB(X,Y),
(Vxt)V=—PAyX+ArvX, (Vxf)V=—-FAyX—B(X,tV).

For any vectors X and Y in HXL =17, (M)L, we obtain ApxY = Ay X.
The Riemannian curvature tensor R of a complex projective space C P is given by
R(X,Y)Z=g(Y,Z)X — ¢(X, Z)Y + g(JY, Z)J X
—g9(JX,Z2)JY +29(X,JY)JZ
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for any vector fields X, Y and Z of CP™. Then the equation of Gauss and the equation of
Codazzi are given respectively by

R(X,Y)Z=g(Y,2)X — g(X, Z)Y + g(PY, Z)PX — g(PX, Z)PY

—29(PX,Y)PZ 4+ Apwy,2)X — Apx,2)Y

and

g(VxAWY, Z) — g(VyA)v X, Z)

=9, PZ)g(X,tV) — g(X, PZ)g(Y,1V) — 29(X, PY)g(Z,1V)

for any vector fields X, Y and Z tangentto M and V normal to M, where R is the Riemannian

curvature tensor field of M.
We denote by S the Ricci tensor field of M. Then

S(X,Y)=(m—1)g(X,Y) +3g(PX, PY)
+ ) rAg(AX Y) =) g(ALX.Y),

where A, is the second fundamental form in the direction of v4, {v1, ..., v,} being an or-

thonormal basis of 7y (M), and tr denotes the trace of an operator. If the Ricci tensor §
satisfies S(X,Y) = ag(X,Y) for some constant ¢, then M is called an Einstein manifold.
When M is a real hypersurface of C P™ with a unit normal vector field V/, if the Ricci tensor
S satisfies S(X,Y) = ag(X,Y)+ Bg(X,tV)g(Y, tV) for some constants « and 8, then M is
said to be pseudo-Einstein.

We define the curvature tensor R+ of the normal bundle 7' (M)* of M by

RY(X,Y)V = DxDyV — DyDxV — Dix.y1V .
Then we have the equation of Ricci:
g(R-(X, V)V, U) + g([Au, AVIX, Y)
=g(FY,V)g(FX,U) — g(FX,V)g(FY,U) +29(X, PY)g(fV,U),

where [ , | denotes the commutator and [Ay, Ay] = AvAy — AyAy.
We need the following examples of C R submanifolds in C P™.

EXAMPLE 1 ([1]). An n-dimensional complete totally geodesic submanifold M of
C P™ is either a complex projective space C P™/? or a real projective space RP”" of constant
curvature 1. A real projective space R P" is a totally real submanifold of C P™.

EXAMPLE 2. Letz% z', ..., 7" be homogeneous coordinates of C P™. The complex
quadric Q"= is a complex hypersurface of C P defined by the equation

O+ @Y+ -+ @2 =0.
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Then Q" ! is a Kihler manifold. Moreover, Q™! is an Einstein manifold with Ricci curva-
ture 2(m — 1) (see [13]).

EXAMPLE 3. For an integer k and for 0 < r < /2, we define M (k, r) in $2"*! by

k m
Z|Zj|2=COS2I’, Z Iz]-|2=sin2r.
j=0 Jj=k+1
Mk, r) is a standard product S2k+1(cos r) X SZH‘l(sin r),l = m —k — 1. We consider the
Hopf fibration r : S Zm+l __, Cp™m where St denotes the unit sphere. Then M€(k,r) =
(M (k, r)) is areal hypersurfacein C P". For an integer 1 < k < m—2, we see that M(k, r)
is the tube of radius r over C P* (see [3]).

When r satisfies cosr = +/(2k + 1)/(2m) and sinr = /2 + 1)/2m), M (k,r) is a
minimal real hypersurface of C P". Moreover, we see that M€ (k, r) is a pseudo-Einstein real
minimal hypersurface of C P" if and only if k = = (m — 1)/2 and r = /4. Then the Ricci
tensor S satisfies S(X,Y) = @2m —2)g(X,Y) +2g(PX, PY).

3. Integral formula

In this section, for later use, we compute the Laplacian for the square of the length of
the second fundamental form A of an n-dimensional minimal submanifold M immersed in a
complex projective space C P™. In the following, we put V; = V,, and D; = D,,, where {¢;}
being an orthonormal basis of M, to simplify the notation. We use the following (see Simons

[12])

LEMMA 1. Let M be a submanifold of a locally symmetric Riemannian manifold M.
If the mean curvature vector field of M is parallel, then

g(V*B)(X,Y), V) = Z g((ViViB)(X,Y), V)

=Y Qg(R(ei, Y)B(X, €;), V) + 2g(R(e;, X)B(Y, €)), V)

1
—g(AvX, R(ei, Y)ei) — g(AvY, R(ei, X)ei) + g(R(ei, B(X, Y))ei, V)
+9(R(B(e;, e), X)Y, V) — 2g(Ave;, R(ei, X)Y))
+Z(trAag(AVAaX, Y) —trAsAvg(AlX,Y) +29(AAvALX,Y)

a
—g(AJAVX.Y) — g(AvAZX, Y))

for any vectors X, Y tangent to M and any vector V normal to M.
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We compute the equation of Lemma 1 for an n-dimensional minimal submanifold M in
C P™. We notice that C P™ is locally symmetric. Using the expression of the curvature tensor
R of CP™, we have the equation of Lemma 1 in the following:

g((V2B)(X,Y), V)
=Y 9(ViViB)(X, Y), V)

=—29(AfryX,tV) —2g(ApxY,tV)
423 gV tV)g(Apgei, X) +2)  g(X, tV)g(Apgei, ¥)

1 1

—4g(Afrv X, PY) —4g(AsvY, PX) (D
+ng(AvX,Y) —3g(Av X, P2Y) — 3g(AvY, P*X)
+39(AFvX,Y) —6g(AyPX, PY)

+ D (—trAgAvg(AdX, Y) +2g(AcAvAX, Y)
a

—g(A2AyX,Y) — g(AyAZX, Y)).

We have g((VZB)(X,Y), V) = g((V2A)y X, Y). Hence

g(VZA, A)
=nY trA2 =3 trAgApg(tva. tvp) —6 Y trP?AZ+6) (tr Ay P)?
a a,b a a
+4) " (g(Aatvp, Aptvg) — g(Aatva, Aptvp)) —8 ) trAgA g, P
a,b a
+ > (—(tr AgAp)® +2tr(AgAp)* — 2tr AZA7) |
a,b

where we put A s, = A fy,. Moreover we obtain

Dt AgApg(tva. tvy) = > A7 — > tr AgApg(fra. fop)
a a,b

a,b

= ZtrAi — Z tr AgApg(fvg, ve)g(fop, ve)
a

a,b,c

=Y wAZ— Y g(Asei, Aper)g(va, f)g(vp, fue)

a,b,c,i
= ZtrAZ — ZtrA%a ,
a a

2 (wAZAL — w(AgAp)D) = ) I[Aa, Abl,
a,b a,b
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2 (tr(AP)* —tr AZPY) =Y [P, A,
a a

where | - | denotes the length of the tensor. Therefore we have the following theorem.

THEOREM 1. Let M be an n-dimensional minimal submanifold of a complex projec-
tive space C P™. Then we have

g(V2A, A)
=(n-3)) wAZ+3) waj,
a a

+4> "(g(Aatvp, Aptvg) — g(Aatva, Aptvp)) —8 Y trAgA o P

a,b a

3 IR, AP =) I[Aa, AplIP = ) (tr AgAp)* .
a a,b

a,b

4. Reduction of the codimension

In this section we prove the following reduction theorem for the codimension.

THEOREM 2. Let M be a compact n-dimensional minimal proper CR submanifold
of a complex projective space CP™. If the Ricci tensor S of M satisfies S(X, X) >
(n — Dg(X, X) for any vector field X tangent to M, then M is a real hypersurface of some
CpPtO/2 iy Cpm,

First of all, we prove

LEMMA 2. Let M be a compact n-dimensional minimal CR submanifold of C P™
which is not a complex submanifold of C P™. If the Ricci tensor S of M satisfies S(X, X) >
(n — D g(X, X), then M is a real projective space RP" or g = 1, that is, dim HXJ- =1.

PROOF. Since M is minimal, by the assumption, we have

S(X. X) — (n — g(X, X) =3g(PX, PX) = Y _g(A;X.X) > 0. 2)

If P = 0, then M is a totally real submanifold of C P”". Moreover the above inequality implies
that A, = Oforall a. So M is totally geodesic in C P™, and hence M is a real projective space
R P" by a theorem of Abe [1].

We next suppose that P # 0. For any normal vector fields U and V, we have AytV = 0.
Using this,

0= (VxA)ytV — AyPAyX + AUAfo R
from which

g(VxA)yY,tV)=g(VxA)ytV,Y)
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=g(AyPAyX,Y) — g(AyAsvX,Y).
So the equation of Codazzi implies

—29(X, PY)g(tU,tV)=g(AyPAvX,Y) + g(Av PAy X, Y) €))
—g(AuAfv X, Y) + g(ArvAu X, Y).

Since ), g(tva, tva) = q, it follows that
23 " g(APAX, PX) =Y g((AqAfa — AfaAd) X, PX)
a a

=2qg9(PX, PX).
On the other hand, we have

S(PX,PX)=m+2)9(PX, PX) — Zg(AaPX, A, PX).

a

These equations imply
Y 9(APX, AdPX) =) g(AqPAX, PX) — : > 9((AuAfa — ApaAd)X. PX)
a a 2 a

+(n+2—q)g(PX, PX) — S(PX, PX).

Thus we have, for any orthonormal basis {e;} of Ty (M),

1
5 2P, AdlP?

1
=(m+2—q)h— Z S(Pe;, Pe;) + 3 Xa:trP(AaAfa — AfaAd) 4)

1

=—hq+Y wAZ+Y trPAAf.
a a
By (2), we obtain ), trA(% < 3h. From these,
1
5 2 P AP <h(G =)+ ) wPAAsq.
a a

We take a basis {vi,...,v,} of T (M)* such that {vy, ..., vy} is an orthonormal basis of
FT,(M) and {vg441, ..., vp} is that of Nx. We denote by the same {v1, ..., vp} an orthonor-

mal normal vector fields in a neighborhood of x. By (3), we have Zf=q+1 trtPAyAf) =
Zf:qﬂ trA, P A, P. From these and

1 14 1 q 14 14
SR AP =2 Y P AP+ Y wAPAP = 7 wP?AT,
a=1 y=1 r=q+1 r=q+1



COMPACT MINIMAL C R SUBMANIFOLDS 423

we obtain

| 4 ) n p
0=3D P AP+ ), g(ArPei APer) <h(G—q).
y=1 i=1 A=g+1
Thus we see that ¢ < 3. Suppose ¢ = 3. Then, PAy, = AyPfory =1,2,3and AP =0
forA =4, ..., p. Hence we have A yy P X=0 for any normal vector V and tangent vector X.
Then, it follows from (3) that

29(PX, PY)g(tV,tU) = g(AyAvPX, PY)+ g(AvAy PX, PY)

for any tangent vectors X, Y and normal vectors U,V € FTy(M). So we see that if
g(U,V) = 0, then AyAy + AvAy = 0. Moreover, A7X = X and g(A,X, A;X) =
g9(X, X)g(tvy, tv;) for any X € Hy and y,z = 1,2,3. We denote by H; and H; the
eigenspaces of Aj corresponding to 1 and —1, respectively. If X € Hj, then AjA2X =
—A2A1X = —AyX and A1A3X = —A3A1X = —A3X. So we have A»X € H, and
A3zX € H,. Similarly, if X € H,, then A2 X € Hy and A3X € H;. We can take an orthonor-
mal basis {e;} of H; which satisfies Aje; =¢;, i = 1,...,s, where s = dim H| = dim H,
since M is minimal. Then A; can be diagonalized with respect to the orthonormal basis
{e1,...,e5, Azer, ..., Ases, e2511, ..., ¢y} Then, fore;, e; € Hi,

g(Azei,ej) =0, g(Adei, Arej) =0, g(Azei, Azej) = 6ij .

So Aj can be represented by a matrix of the form

0L |O
Ay = I, |00 ,
0(01|O0

where I denotes the identity matrix of degree s. Similarly,

0|%|0
Az = *[0]0
01010

Thus we obtain ApA3 = A3A;. Since AyA3 + A3A = 0, we have AyA3 = A3z3Ar = 0.
Hence A; = A%Az = 0. This is a contradiction .
Suppose g = 2. We have Ay, = 0for y =1, 2. Then

Z g(Vjtvy, ei)g(ej, Vitvy)
Vi j
= Z g(—PAye;j +tDjvy,e;))g(—PAye; +tDjvy, e;)
RN

=— g(PAyej. AyPej) + Y g(tDjvy. e)g(tDvy, ej)
y.J Voisj
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=Y tr(PA)* + ) g(Duvy. v:)g(Dy:vy, vi)

y y.ow
= Ztr(PAy)2 + Z g(Dyzvy, Uz)2 s
y y.z

where y, z, w = 1,2 and D,y = Dy, . On the other hand, we have

> (divevy)r =" g(Vitvy, e)g(Vtvy, e))
¥ yii,j
= Z g(—PAye; +tDjvy,e;)g(—PAye; +tDjvy, ej)
Vi J
= Z g(tDjvy, e))g(tDjvy, e))
Vi J
_ 2
= Z g(Dyzvy, v)".
y,Z
Since S satisfies
div(Vx X) — div((divX)X)
= S(X. X)+ Y _g(V; X, ei)glej. ViX) — (divX)?
i,j
for any tangent vector field X (cf. [15; p. 44]), it follows that

D (div(Viytvy) — div((divev,)ivy))
S

= Z S(tvy, tvy) + Z tr(PAy)2
y y
1
=201 -+ D OIP AP+ ) w(P?AY)
y y

=201 —1)=2h+ Y A3+ > wPAAs + Y tr(P?A)
y y y
>2.

Here we used (4) and fv, = 0. However, since M is compact, this is a contradiction. So we
have g = 1. O

If M is proper, then 4 > 0 and ¢ > 0. Then Lemma 2 reduces to

LEMMA 3. Let M be a compact n-dimensional minimal proper C R submanifold of
CP™. If the Ricci tensor S of M satisfies S(X, X) > (n — 1)g(X, X), then q = 1, that is,
dimH! = 1.
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In the following, we shall prove that the first normal space of M is just F HXl and is of
dimension 1 under the condition of Lemma 3. To prove this, we prepare some lemmas.

LEMMA 4. Let M be a compact n-dimensional minimal proper C R submanifold of
C P™. Ifthe Ricci tensor S of M satisfies S(X, X) > (n—1)g(X, X), then the following hold:

(@ Vf=0.

(b) Forany X tangentto M and any V € FH"', we have DxV € FH*.

(c) Forany X tangent to M and any U € N, we have DxU € N.

PROOF. By the proof of Lemma 2, if the Ricci tensor S of a minimal C R submanifold
M satisfies S(X, X) > (n — 1)g(X, X) for any tangent vector field X, then AytV = 0 for
any U and V normal to M. Thus we have

g(Vx IV, U)=—g(FAy X, U) — g(B(X,1V),U)
=g9(X, AytU) — g(AytV, X)
=0

for any X tangent to M and any U and V normal to M. This means that f is parallel.

Since M is proper, by Lemma 3, we have dim H- = 1. Let V be a vector field in FH*.
Then we see g(DxV, fU) = —g(V, (Vx f)U) = 0 for any vector field U € N. This proves
(b).

Next we prove (c). For any vector field U in N, there exists U’ in N such that U = fU’.
Therefore we have

DxU = Dx(fU") = fDxU’".
This shows DxU € N. g

LEMMA 5. Let M be a compact n-dimensional minimal proper CR submanifold of
CP™. If the Ricci tensor S of M satisfies S(X,X) > (n — 1)g(X, X), then the second
fundamental form A satisfies the following:

(a) AyPA, = P, where v is a unit vector field in FHL.

() [P, Al|? =2tr A2 — 2(n — 1), where v is a unit vector field in F H*.

() AvAy = AyAy foranyV € FH+ and U € N.

(d PAy=Afyand PAy +AyP =0foranyU € N.

PROOF. By Lemma 3, we have dimeJ- = 1. Let {vy, ..., vp} be an orthonormal basis
of TX(M)l such that vy = v € FHXL and vy, ..., v, € Ny.
By (3) and fv = 0, we obtain
29(AyPALX,Y) = —29(X, PY)g(tv, tv)

for any X and Y tangent to M. Thus we have (a). Using this, we can prove (b) by a straight-
forward computation.
Next we prove (c). From the equation of Ricci and Lemma 4 (b), we see

9([Au, Av]X,Y)
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for any X and Y tangentto M and V € FH+, U € N. This shows (c).
From the Weingarten formula and Lemma 4 (a), we have

VxJU =Vx fU = —ApyX + Dx fU = —AryX + fDxU .
On the other hand, it follows from VJ = 0 and Lemma 4 (c) that
VxJU = JVxU = —PAyX — FAyX + fDxU ,

from which PAy = Ayy. Since A yy is symmetric and P is skew-symmetric, we obtain
PAy + Ay P=0. This proves (d). 0

Using Theorem 1 and Lemma 5, we next compute the Laplacian for the square of the
length of the second fundamental form of the minimal submanifold in C P whose Ricci
tensor satisfies S(X, X) > (n — 1)g(X, X) for any tangent vector field X.

LEMMA 6. Let M be a compact n-dimensional minimal proper C R submanifold of
C P™. If the Ricci tensor S of M satisfies S(X, X) > (n — 1)g(X, X), then

g(VPA, A= +3)r AL+ (n+4) ) A}, —6(n—1)
a
= lAa ApIP =) (tr AgAp)* .
a,b a,b

PROOF. From Lemma 5, we have Y, tr A;AsoP = Y, tr A% . Next we compute
>, I[P, A,]|*. Using Lemma 5,

D OIP, AP =11P, AP + ) IIP, Adll?

a>?2

=20 —1)+20A]+4> A},
a

From these equations and Theorem 1, we have our result. O

LEMMA 7. Let M be a compact n-dimensional minimal proper C R submanifold of
C P™. If the Ricci tensor S of M satisfies S(X, X) > (n — 1)g(X, X), then

D 9(VEA)e), Avej) = (n +3)r AL — 6(n — 1) — (ir A},
i

Y 9(VEAej, Agej) = (n+4) Y tr A7, — Y [[Ag, Apll* — Y (ir AgAp)*.

a>2,j a,b a,b>2
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PROOF. By Lemma 5 (c) and (d), for any v, € N,

rAgAy=—trAp,Ay = -t PAgsAy = —r Apa Ay P = —tr AyAga P
=trAyPAy, = trAUAfza = —trAy,A; = —trA A, .

Hence we have tr A;A, = 0. Thus, using (1) and Lemma 5, we have

> 9(V*A)vej. Ave))
J

= Zg((sz)(e], Avej)s U)

J

=ng Y g(Avej, Avej) =3 g(Ayej, P2Aye))
J J

=3 g(A%ej, PPej) =3 g(Avej, Avej) —6 Y g(A,Pej, PAye;)

J J J
+ Z(—tr AdAvg(Agej, Ave) +2g9(AaAyAe;, Ave))
a’j

—g(AzAvej, Ave)) — g(AyAGe), Ave)))
= (n =3 A} +3|[P, A, 1> = Y (r A4 + ) I[Aa, A1
a a

=(m+3)trA2 —6(n — 1) — (tr A2)2.

From this equation and Lemma 6, we obtain

> 9((V?A)aej, Ae)

ax2,j

= g(V?A, A) =) g((V*A)yej, Avej)
J

=44 AT, = [Aa Apll* = Y (tr A Ap)* + (tr A2)?
a a,b a,b

=44 Y AT, = > l[Aw AplF = ) (trA.Ap).
a a,b

a,b>2

Hence we have our equation. O

Next we give inequalities for Za,b [[Ag, Ab]l2 and Za!bzz(tr AaAb)2 in the equation in
Lemma 7.

LEMMA 8. Let M be a compact n-dimensional minimal proper CR submanifold of
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C P™. If the Ricci tensor S of M satisfies S(X, X) > (n — 1)g(X, X), then

D Aa, Apl> <4 r A%,
a,b a

2
Z (tr A, Ap)? < é(ZtrA%) )

a,b>2

PROOF. From (2), we have 3g(PX, PX) > Y, g(AaX, AsX) for any X tangent to
M. On the other hand, by Lemma 5,

Y 9(ATApaei, Agaei)
i,a

= Z g(AvAfaAveia Afaei) = Zg(AvaaAvei’ Afaei)

i,a i,a
= " g(AyPAAgei, Ajqei) = Y g(PAgei, PAge;).
i,a i,a>2

Using these and Lemma 5, we obtain

3) A7, =3 g(PAsei, PAgqer)
a

i,a

> Z g(ApAgaei, ApAyqe;)

i,a,b
= " g(AvAsaei, AvAsaer) + Y g(A%, AT yei, ei)
i,a i,a,b

1
=D 9(PAgei, PAger) + 5 ij [Aa, Ab]I*
a,

i,a>2
1
=D AT+ 5 ) lAa Al
a a,b

from which 4 )" tr A2 . > > ab [[Aqg, Ab]lz. Hence our first inequality holds. In the next

place, we take a basis {v, v2,..., vy, Vpry1 = fv2,...,vp = fo} (p = 2p" + 1) of
T (M)1 such that Za,bzz(trAaAb)z = 5:2(trA§)2. Since trAé = trA2fa fora > 2, we
have
p P’ P’ 2 P’
YAl =2> (A’ = 2<<Ztr AZ) - > uwA trA,Z,) :
a=2 a=2 a=2 a,b>2,a#b

On the other hand, we see

p 2 P 2 P 2
(ng> =<zzmg) :4(ng> .
a=2 a=2 a=2
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Therefore
p 1/ & 2 P 1/ &L 2
Z(tmg)zzi(ztmg) 2y trAgtrA,zsi(ztrg),
a=2 a=2 a,b>2,a#b a=2

from which 25 poo(tr AaAb)2 <1/ ,tr Aza)z. Hence we have the second inequality.
O

Using Lemma 3-Lemma 8, we prove the following lemma.

LEMMA 9. Let M be a compact n-dimensional minimal proper C R submanifold of
CP™. Ifthe Ricci tensor S of M satisfies S(X, X) = (n —1)g(X, X), then A, = 0 for all a.

PROOF. From Lemma 7 and Lemma 8, we have
1 2
5 A Z tr A a
a

= Y g(VPA)ei, Agei) + Y g((VA)aei, (VA)gei)

a>2,i a>2,i
> 3" g((V?A)gei, Agei)
a>2,i
= +4) ) wAG, = ) l[Aa Al = D (rAqAp)?
a a,b a,b>2

1
> <ZtrA2a) (n -3 ZtrA2a) :
a a
On the other hand, by the assumption, the Ricci tensor § satisfies

Y St e)=n+3)n—D—[AP=@m—1)) gl e),

which reduces to |A|2 = tr A% + >, tr A%a < 3(n — 1). Moreover, Lemma 5 (b) implies

tr A% > n — 1. Hence we have Za tr A%a < 2(n — 1) < 2n. Therefore, by the Hopf’s lemma,

doatr A%a is constant so that A(D_, tr Aza) = 0 (cf. [5; p. 338]). Thus we have A s, = 0 for

all a. O
(Proof of Theorem 2)

From Lemma 4 and Lemma 9, the first normal space of M is of dimension 1 and parallel
with respect to the normal connection.
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Let $2"+1 be a (2m + 1)-dimensional unit sphere. We consider the Hopf fibration 7 :
§2m+l 5 CP™ Then the first normal spaceof M = 7~ 1(M) in §2m+1 is of dimension 1 and
is also parallel with respect to the normal connection. Therefore, there is a totally geodesic
(n + 2)-dimensional submanifold $"12 of §2"+! containing M (cf. [4]). Hence there is a
totally geodesic C P""+1/2 of C P™ containing M (cf. [15; p. 227]).

5. Pinching theorems for the Ricci curvature

To prove our theorems, we need some well-known results.

In the following, we take the unit normal vector field v of a real hypersurface M in C P™,
and we put & = —Jv. Then & is the unit tangent vector field of M and P2X = —X+g(X, £)&,
P& = 0. We also put A, = A to simplify the notation. Then Vx& = PAX for any vector
field X tangent to M.

PROPOSITION A([3]). Let M be a real hypersurface (with unit normal vector v) of
a complex projective space C P™ on which & is a principal curvature vector with principal
curvature o = 2 cot2r and the focal map ¢, has constant rank on M. Then the following
hold:

(a) M lies on a tube (in the direction n = y'(r), where y(r) = exp,(rv) and x is a
base point of the normal vector v) of radius r over a certain Kdhler submanifold N
in CP™.

(b) Letcotf, 0 <60 < m, be a principal curvature of the second fundamental form A,
at'y = y(r) of the Kihler submanifold N. Then the real hypersurface M has a
principal curvature cot(r — 6) at x = y (0).

PROPOSITION B([10]). Let M be a real hypersurface of a complex projective space
CP™. If A& = 0, except for the null set on which the focal map ¢, degenerates, M is locally
congruent to one of the following:
(a) a homogeneous real hypersurface which lies on a tube of radius 1 /4 over a totally
geodesic CP* (1 <k <m —1),

(b) a nonhomogeneous real hypersurface which lies on a tube of radius 7w /4 over a
Kdhler submanifold N with nonzero principal curvatures # +£1.

Using these results, we prove the following

THEOREM 3. Let M be a compact n-dimensional minimal CR submanifold of a com-
plex projective space C P™ which is not a complex submanifold of C P™. If the Ricci tensor
S of M satisfies S(X, X) = (n — 1)g(X, X) for any vector field X tangent to M, then M is
congruent to one of the following:

(a) a totally geodesic real projective space RP" of C P™,

(b) a pseudo-Einstein real hypersurface M((n — 1)/4, 7/4) of some CP"+D/2 iy

cpm,

(¢) a real hypersurface of some C PUHV/2 in C P™ which lies on a tube of radius /4

over certain Kdhler submanifold N with principal curvatures cot6,0 < 6 < 7 /12.



COMPACT MINIMAL C R SUBMANIFOLDS 431

PROOF. We suppose that M is proper. Then Theorem 2 implies that M is a real hyper-
surface of some totally geodesic complex projective space C P"+1D/2 in C P™. By the proof
of Lemma 2, we have A§ = 0. On the other hand, from Lemma 5, we obtain APAX = PX
for any X tangent to M. Thus we see that if AX = AX, then APX = (1/A)PX. Since
39g(PX, PX) > g(A2X, X), we have A2 < 3. We also have rankA < n — 1 because AE =0.
A homogeneous real hypersurface which lies on a tube of radius 7 /4 over a totally geodesic
C P¥ is minimal if and only if k = (n — 1)/4, that is, M is M %k The principal curvatures of
this real hypersurface is £1 (see [3; p. 493]).

For a nonhomogeneous real hypersurface M which lies on a tube of radius /4 over
a Kéahler submanifold N, by the condition 22 < 3 and (b) of Proposition A, we see that
cot?(r/4 — 0) < 3. Thus we have 0 < 6 < 7/12. Consequently, using Proposition A and
Proposition B, we have our theorem. O

REMARK 1. The author does not know any example of a Kédhler submanifold N hav-
ing the properties required in Case (c) in Theorem 3.

COROLLARY 1. Let M be a compact n-dimensional minimal proper CR submanifold
of a complex projective space C P™. If the Ricci tensor S of M satisfies S(X, X) > (n —
1)g(X, X), then M is congruent to one of the following:

(a) a pseudo-Einstein real hypersurface M€((n — 1)/4, 7 /4) of some CP"+TD/2 in

cpm,

(b) a real hypersurface of some C PU+tVD/2 in C P™ which lies on a tube of radius 7 /4

over certain Kahler submanifold N with principal curvatures cot6,0 < 6 < m/12.

Using the theorem in [9], we have

COROLLARY 2. Let M be a compact n-dimensional minimal proper CR submanifold
of a complex projective space C P™, n > 5. If the Ricci tensor S satisfies (n — 1)g(X, X) <
SX,X) < (n+ 1)g(X, X), then M is congruent to a pseudo-Einstein real hypersurface
M¢((n — 1)/4, w/4) of some C P+V/2 i C ™,

Next we prove the following

THEOREM 4. Let M be a compact n-dimensional minimal C R submanifold of a com-
plex projective space C P™. If the Ricci tensor S of M satisfies S(X, X) > (n — 1)g(X, X) +
g(PX, PX) for any vector field X tangent to M, then M is congruent to one of the following:

(a) a totally geodesic real projective space RP" of C P™,

(b) a totally geodesic complex projective space C P"* of C P™,

(¢) acomplex (n/2) dimensional complex quadric Q"/? of some C P"/?>*! of C P™,

(d) a pseudo-Einstein real hypersurface M¢((n — 1)/4, w/4) of some CP" /2 i

cpm,
(e) a real hypersurface of some CP"tVD/2 in CP™ which lies on a tube of radius

1t /4 over certain Kihler submanifold N with principal curvatures cot6, where 6
satisfies 0 < sin26 < 1/3.
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For the proof of the theorem, we prepare some lemmas for complex submanifolds. We
take an orthonormal basis {v1, ..., vp, Vpy1 = fv1, ..., v2p = fvp}of T (M)~L.

LEMMA 10 ([6]). Let M be a complex k-dimensional Kdhler submanifold of a com-
plex m-dimensional Kéihler manifold M. Then

2p

1

A= 0 AL A < 1A,
a,b=1

|A*,

| =

1 20
5|A|4 < Y (trA.Ap)’ <
a,b=1

where p = m — k. If M is of constant holomorphic sectional curvature c, then M is Einstein
. o2
ifand only if 3.5, 1[Aa, Apl|* = |A|*/k.

From Theorem 1, we see

LEMMA 11. Let M be a complex k-dimensional Kéihler submanifold of C P™. Then

2p 2p
gV A, A) =20+ AP = D |[Aq, Apl® = Y (r AgAp)*.
a,b=1 a,b=1

In the following we prove Theorem 4. From Theorem 2, if M is proper, then it is a real
hypersurface of some C P"+1/2 in C P™.

Next we suppose that M is a complex (n/2) dimensional complex submanifold of C P™.
Since M is complex minimal submanifold of C P™, we have

2p
S(X,¥)=(m+2)g(X,¥) =Y g(AIX,Y).
a=1
Thus we have Ziil g(AéX, X) < 2¢9(X, X), from which |A|2 < 2n. Moreover, we see
that 27 — )", Aﬁ is a positive semi-definite operator. The symmetricity of A, implies that

>, A2 is positive semi-definite. The operators Y, A2 and 27 — }_, A2 can be transformed
simultaneously by an orthogonal matrix into diagonal forms at each point of M, thus we see
that (3, Ai)(Z[ - Ai) is positive semi-definite. Hence we have

2p 2
tr(z Ag) <2|A2 <4n. 5)
a=1

On the other hand, we obtain

2p 2p 2p 2
Z I[Ag, Ap]> =2 Z tr A2A2 :2tr(ZA§) )

a,b=1 a,b=1 a=1
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2
a

Therefore we get Y
tions, we have,

f’b=1 [[Aqg, Ab]l2 < 4|A|2. From Lemma 10, Lemma 11 and these equa-

1 2 _ 2 2
SAIAIT=g(V7A, A) +|VA| 6)
1
> g(V?A, A) > |A|2<n _ 5|A|2> 0.

Hence, by the theorem of E. Hopf, |A|? is constant so that A|A|? = 0 (cf. [5; p- 338]). Thus
we have |[A| =0 or |A|2 = 2n. When |A| = 0, M is totally geodesic.
Next we suppose |A|2 = 2n. By (5), we have tr(ZZ’;1 Ag)2 = 4n, that is,

- ) 214l
Y Aa, Apl* = 8n = :

n
a,b=1

From Lemma 10, M is an Einstein complex submanifold of C P™.
For any normal vector field V with V, € No(x) = {V € Tox(M)* : Ay = 0}, we have

Vy(AvX) = (VyA)yX + Ap,v X + Ay (VyX) =0

atx € M. Hence Ap,vX + (VyA)y X = 0. Since the equality of (6) holds, we get VA = 0,
from which we see that Ny is parallel with respect to the normal connection. Let V € Ny and
U € Ni. Then

XgWU,V)=yg(DxU,V)+gU,DxV)=0.
Hence the first normal space is parallel with respect to the normal connection. On the other
20 1t AgAp)? = (1/2)|A]*. In the next
place, we take a basis {vi,...,Vp, Vpy1 = fU1,...,02p = fvp} of TX(M)J- such that
2 2
Yo b AgAp)* =37 (tr A3)%. Then

hand, since the equality of (6) holds, we have >

2p P
1
DAY = SJAF =2 (D A7),
a=1 a#b
and therefore 25 7,éb(tr Aﬁ)(tr A%) = 0. This implies dim Ny = 2. Consequently, M is an
Einstein complex hypersurface of some C P"/?*1 in C P™, that is, a complex quadric Q"/? of

C pr/2tl (see [13]). From this and Theorem 3, we have our theorem.

REMARK 2. In 1974, Chen and Ogiue [2] proved that if the Ricci curvature of n-
dimensional Kédhler submanifold of C P™ is everywhere equal to n/2, then M is locally Q"
in some C P"*! in CP™ (see also [11]).
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We suppose that M is a compact n-dimensional minimal C R submanifold of a complex
projective space C P™. When the Ricci tensor S of M satisfies S(X, X) > (n — 1)g(X, X) +
2g(PX, PX) for any vector X tangent to M, the cases (c) and (e) in Theorem 4 do not occur.
Thus we obtain

THEOREM 5 ([8]). Let M be a compact n-dimensional minimal C R submanifold of
a complex projective space C P™. If the Ricci tensor S of M satisfies S(X, X) > (n —
1)g(X, X) 4+ 29(PX, PX) for any vector field X tangent to M, then M is congruent to one
of the following:

(a) a totally geodesic real projective space R P" of C P™,

(b) a totally geodesic complex projective space C P"/* of C P™,

(¢) a pseudo-Einstein real hypersurface M°((n — 1)/4, w/4) of some CP"+tD/2 jp

cpP™.
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