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Introduction.

A measurable function f(t) over — oo <t<o with the following
property is said to have the nonvanishing property: if there is a func-
tion g(z), z=t+1iy, analytic on a rectangle a<t=<b, 0<y=7r (or a<t=b,
—7r<y<0) and continuous on a<t<b, 0=<y=r (or a=t=<b, —r=y=0)
for some >0 such that f(t)=g(t) almost everywhere in a subinterval
interior to (a, b), then f(t)=g(t) should hold almost everywhere through-
out (@, b). Such f(¢) cannot vanish in any interval unless it is almost
everywhere zero over (—oco, o). The situation has been exhaustively
studied by Levinson [5], [6], [7], [8]. One of his basic theorems is the
following

THEOREM A. Let f(\) be a function of L'(— o, ) and its Fourier
transform be

1.1) 7 :(2x)—1/2§: e F NN
If
(1.2) F&)=0(exp (—0@®))), t—+c,

where 0(t) is a nondecreasing function over (c, ) for some ¢>0 such
that

(1.3) | §°° o) jtrdt = oo

then f(\) has the nonvanishing property.

Let (2, &, P) be the given probability space and let X({, w), ® € 2,
— o <t< o be a measurable weakly stationary process with EX(¢, w)=0,
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—oo<t<eo. Let us denote by &(S, ) (S, Borel set on the real line) and
F(\), the spectral random measure and the spectral distribution function
of X(t, w) respectively. Suppose F(\) satisfies

(1.4) F(co)—F(\)=0(e") , AN— 4+ oo

for some r>0. Then X(¢, ) is the boundary of a random function
(1.5) X(z, w)=§°° e~ g(dn, )

which is well defined and is mean analytic in —7r/2<Imz<0. Fur-
thermore, (1.5) is thought of as a random function which is almost
surely analytic as a function of z. For details and the proof, see
Kawata [4]. As a consequence, the sample functions of X(¢, ®) have
the nonvanishing property almost surely.

The purpose of the present paper is to prove Theorem 1 in §1 which
generalizes the above result, appealing to Theorem A. In §2, we shall
give the essential part of the proof of the theorem. _

. The author has discussed the nonvanishing property of a random
noise process of shot effect in a vacuum tube [2]. It is shown in §3
that the application of Theorem 1 to the random noise process gives the
substantial improvement of the result.

§1. Main theorem.
We are going to prove

THEOREM 1. Suppose 0(t) is a nondecreasing fumction over (c, o)
for some ¢>0 such that (1.3) holds. Then a measurable weakly stationary
process X(t, ®) with the spectral distribution function F(\) satisfying

(2.1) F(o)—~F(\)=0(exp (—0(\))), A— +oo

has the nonvanishing property.

Observe first that X(¢, w) exp (—¢?) is integrable over (— o, =) almost
surely, which is a consequence of measurability of X(¢, w) and

B|" 1X(¢t, )l exp (—tits |~ (BIX(t, )" exp (—tdt
:[F(oo)—F(_oo)]WSl exp (—t)dt < oo .

Then we may define the Fourier transform
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2.2) Q(t, w)=(2m)~\/2 S°° X(u, ®) exp (—u?—itw)du

-—00

almost surely.
Now in order to prove the theorem it is sufficient to show

(2.8) 3 P(max., <., Q1 @)/ >exp (—g.) <,

where a,=n'* and g,=60(a,/2)—8log a,_,. This is seen in the following
way. From (2.3), Borel-Cantelli lemma gives us

(2.4) P(max,, <s.,|Q, ®)|>exp (—g,),i.0.)=0,

so that there is a set 2, with P(2,)=1 such that whenever we 2,
max,, <., Q@ ®)=exp(—g,) for n>N(w) for some Nyw). Let t be
such that ¢>ay,.. Then there is an » with a,_,<t=<a, and we see that
for we 2,

|Q(t, w)|<exp (—g,)<exp (—g(®)),

where g(#)=[6(¢/2)—8log t]. Since S g(t)/t*dt= o, we see from Theorem
A that X(¢, w)exp (—t*) has the r;onvanishing property and so does
X(t, ). This proves the theorem.

Before going to prove (2.3), we note that we may assume, without
loss of generality

(2.5) oY=t .
If not, we may take, in place of 6(t), |
6,(t)=min (6(t), t) .

Obviously 6,t)<t and F(w)—F(\)=0(exp(—6,(n))) and we may show
S 0,(t)/t*dt = (see Levinson, [8] Lemma 19.1, Kawata [3], Lemma 8.3.1).
*  We also remark that Q(t, w) can be written

(2.6) Qt, =27 " exp (—t—ny/0eEN, @) ,

where, as before &(S, w) is the random spectral measure of X(¢, w).
Actually

Q(¢, )= (2m)~*" S°_° exp (—u—itw)du S‘j eig(dn, )

:(271')*‘/2&0_0 &(dn, w)s exp (—u*—itu+ i uw)du .
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The interchange of the order of integrations here is seen to be permis-
sible if one computes the expectation of the square of the absolute value

of the difference of both sides. Since the inner integral is evaluated as
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/2 exp (—(t—N)*/2), (2.6) follows.

3.1)

§2. Proof of (2.3).

We proceed to prove the main part (2.3) of the proof of Theorem 1.

Denote the term of the series in (2.3) by G,.
inequality, we have

G,=P(max,, <z, |, ®)>exp(—g,))

=exp (29,)F max,, <sx.,|QF, o)

| exp(—(v—aya)

=exp (2gn)E maxﬂn—-1<t5“n
xexp {[(v—a,)'— (L~ 1/4)e(@r, @)

=exp (20,)E maX., <ise, || exp (—Ov—ayya)

X 54D 00— a.) (= t7Fean, @)
=exp (29.)E maxa,._lqsﬂ,,[g,o 474k an—t)*

X ’Sm exp (—(v—a,)*/4)(a,+t—2\)E(dN, “’)Hz

-— 00

<exp (20,)B| 3, 47H0e1) (@, —a, "

k

k .
X maxan_1<tSa” Z(l) ( j )(t+a’n)1

J=

|”_ @y exp (—v—any/a)

—_—00

% £(dN, @) , ]

<exp (20.)E| 3,47 (k1) (@, —a, )"

k AV _ 2
x5, (2%),( 1@ exn (- ov-amiar, o)

which is, by repeated applications of Cauchy inequality,

3.2)

<exp (29.)| 3, 476D au—au )" 3, {41 (@, —a, )

=0

x E[é (2a,)f( ’; ) 1 Sl (20)*7 exp (— (h—a,Y/4)E(dN, ®) | ]}

By the Chebishev
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. ] k Tk
<exp(2¢,)exp (s —au-,)/4) ,,ga 475 ) (@ — Cpy)” g& (2a,,)’( p )

2

AR ANTE .
xE 3, (2%),( ; ) 1”@ exp (— /02N, @)

=exp [2¢, + (¢, —a,—,)/4]
o k k k . k
X k2=04—k(k!)_l(an—a’n—1)k :122.‘(4’ (zan)j( j ) : 5z=“0 (2(1”)"( j )

x|”_ @y exp (- aDAFO)
=exp (20, + (0t —as-,)/4) Sl exp [(@p — @u-1)(@n +1/2)(@y +20]
xexp (—(h—a,)}/2)dF(\) .
Setting (@, —@._,)(@,+1/2)=p, and (a,—a,_)(@,+1/2)a,=q,, We write
the integral in (3.2)

(3.3) (So +§.,,,,2+§2a,, +S°° )exp (¢, +2p.\) exp (— (A —a,)*/2)dF(\)

—o0 0 an/2 2aq
=L+ 1L+ 1L+1,

say.
Now we have

1,=(" exp [, +2p.— v+ a)21A— F(—0)
< S:’ exp (g, -+ 2P A — Y2 —ak/2)d(L — F(—N)) .

Here we note that
(3.4) G0y =00 ),  D,=0m7),  g=00).
Because of these estimates, I, is seen to be not greater than
(3.5) exp (—a2/2)- S:’ exp [(—1/2+o(L)N1d(L— F(—\))

<exp (—n'*/2) So_w dF(N)

=C exp (—n'?/2) ,

where C is a constant independent of n larger than some n,.
As to I,, we have
0

L=exp (g, +puat/z—ai/8) | " dF()
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which is, because of (3.4),

3.6) <exp [(—1/9+o(1))az] S: dF(\)
=Cexp (—n'%10) ,

where C is a constant which may differ from C in (3.5) and the constants
that will appear in what follows as well.
We also have
3.7) Lsexp (g, +8p,a3) |~ dFO)
Qy/2
<exp (0™ +om) |™ aFoy
ay/2
=Cexp (—0(a,/2))
=Cexp (—6(n'*/2)) ,
and '

(3.8) Lég

oo

exp (¢, +2p,\*) exp (—\/4)dF(\)

2a

=exp (¢.+(8p,—1)a?) Sj dF(\)

<C r dF(\)
=Cexp (—0(a,/2) .

Altogether we have, from (3.5)-(3.8) and from (8.2), (3.3), noting
(2.5),

G,=Cexp[d(n'*/2)/2— (3/2) log (n—1)+ Cn—%4]
X [exp (—n'/*/10) +exp (—0O(n'/*/2))]
=Cexp[n'*/4—(3/2) log (n —1) + Cn=3¢—22/10]
+Cexp [—(3/2) log (n—1)]
=Cexp[—(3/2) log (n—1)]=C(n—1)"%2

Hence 3’ G, < -, which shows (2.3). This gives us the proof of Theorem
1.

§$3. The nonvanishing of a random noise process.

Let {U,(w), n=0, =1, ---} be a sequence of independently and
- identically distributed nonnegative random variables with finite second
moments and write '
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(4.1) y(t, )= 3, Un(),

where {v, =v,(w), n=0, +1, ---} is a Poisson point process with parameter
¢. Denote EU,=a, EUZ=p and define

(4.2) Y, w)=y(t, ®)—cat , — oo Lt o0
and
(4.3) X(¢, 0)= S"_" Ot —uw)dY(w)

where @(t) is a nonrandom function over (—oco, ) which belongs to
LY(— 0, o0) L} —~c0, ). The stochastic process X(t, w) is called a
random noise process (Rice [9], Doob [1], Kawata [2]). This is seen to
be a strictly stationary process with finite variance and then a weak
stationary process. The corresponding spectral distribution function is
given by
2

@9 Foy=cg | _lptwidu ,
where ¢(u) is the Fourier transform of &(f) (Kawata [2]).

An immediate consequence of Theorem 1 is

THEOREM 2. Suppose
(4.5) [ 16l du=0(exp (—600) , - N> +oo,

where 6(\) is a nondecreasing function over (¢, «) for some ¢>0, satisfy-
ing (1.8). Then the random noise process (4.3) has the nonvanishing
property.

This is a refinement of a theorem we have given in [2], in which
we placed the condition (1.8) with #(A]) for |A|<c and the condition that
#(N)=0(exp (—O(n]))) for large |n| which is stronger than (4.5) because
of more conditions we needed there.
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