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Let $G$ be a finite abelian l-group, where $l$ is a prime number, and
$k$ be an arbitrary number field. The purpose of this paper is to show
that for each prime number $l$ which does not divide the class number
of $k$ , there exist infinitely many algebraic extensions of $k$ whose l-class
groups are isomorphic to $G$ (cf. Theorem and its Corollary). F. Gerth
III [1] solved this problem under the conditions that $G$ is any finite
elementary abelian l-group and $k$ is the field $Q$ of rational numbers. We
extend his result to the general case where the group $G$ is any finite
abelian l-group.

\S 1. Preliminaries.

Throughout this paper, $l$ will denote a fixed prime number and $k$

will denote a number field whose class number is prime to $l$ (by a number
field we shall always mean a finite extension of the field $Q$ of rational
numbers). For an arbitrary number field $L$ , let $S_{L}$ and $E_{L}$ denote the
l-class group of $L$ (i.e., the Sylow l-subgroup of the ideal class group
of $L$) and the group of units in $L$ , respectively. For a Galois extension
$M/L$ of finite degree, $G(M/L)$ denotes its Galois group and $[\mathfrak{P}, M/L]$

denotes the Frobenius symbol for a prime ideal $\mathfrak{P}$ of $M$ in $M/L$ .
Especially, if $M/L$ is an abelian extension, $(\mathfrak{a}, M/L)$ denotes the $\underline{A}rtin$

symbol for an ideal $\mathfrak{a}$ of $L$ in $M/L$ . For a finite abelian group $Gand-$

a natural number $n$ , we shall denote by $|\overline{G}|$ its order and put $G^{n}=$

$\{g^{n};g\in\overline{G}\}$ . Let $Z/l^{n}Z$ be the cyclic group of order $l$“ and $\zeta_{*}$ a primitive
n-th root of unity. Furthermore, we use the following notations:
$h=h_{k}$ : the class number of $k$ ;
$\mathfrak{O}$ : the ring of integers of $k$ :
$(\mathfrak{O}/\mathfrak{M})^{\times}:$ the multiplicative group of the residue class ring $\mathfrak{O}/\mathfrak{M}$ , where
EM is an integral ideal of $k$ ;
$k(n)=k(\{\zeta_{\iota^{n+\delta}}, l^{n}\sqrt{\epsilon}; 1\leqq i\leqq r\})$ , where $l^{\delta}$ is the order of the group of l-
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power-th roots of unity in $k$ , and $\{\epsilon_{i}; 1\leqq i\leqq r\}$ is a system of fundament-
al units in $k$ . For example, $k(n)=k(\zeta_{\iota\sim+\delta})$ if $k=Q$ or an imaginary
quadratic field. Let $\overline{F}$ be a cyclic extension of $k$ of degree $l^{n}$ , and let
$\tau$ be a generator of the cyclic group $G(\overline{F}/k)$ . We put $S_{\frac{1}{F}}^{-\tau}=\{c^{1-\tau};c\in S_{\overline{F}}\}$ ,
$S^{\prime})\{c\in S_{\overline{F}};c^{\tau}=c\}$ and $S_{\frac{(\tau}{F}})_{= ,s}\{c\in S_{\overline{F}};c$ contains an ideal $\mathfrak{a}$ of $\overline{F}$ such that
$\mathfrak{a}^{\tau}=\mathfrak{a}\}$ .

LEMMA 1. Notation being as above, let $K$ be the maximal abelian
l-extension of $k$ contained in the genus field of $\overline{F}/k$ .

Then: (1) The Artin map gives an isomorphism:

$S_{\overline{F}}/S_{\frac{1}{F}}^{-\tau}\simeq G(K/\overline{F})$ .
(2)

$|S_{\frac{(}{F}}^{\prime)}|=|S_{\overline{F}}/S_{\frac{1}{F}}^{-\tau}|=\frac{\tilde{\prod}e(\mathfrak{p})}{l’\cdot[E_{k}:E_{k}\cap N_{\overline{F}/k}(\overline{F}^{\times})]}$ ,

$whe\gamma e$ fi $e(\mathfrak{p})$ is the $p\gamma oduct$ of the ramification indices of all the finite
and the infinite prime divisors in $k$ with respect to $\overline{F}/k$ , and $N_{\overline{F}/k}$ is
the norm map from $\overline{F}$ to $k$ .

For the proof, see Yokoi [4], pp. 35 and 37.

LEMMA 2. Notations being as in Lemma 1, define the map $\varphi:S_{\frac{(\tau}{F}}$
)

$\rightarrow$

$S_{\overline{F}}/S_{\frac{1}{F}}^{-\tau}$ so that the following diagram is commutative.
$inelu\epsilon ion$

$S_{\frac{\langle-}{F}})-\rightarrow S_{\overline{F}}$

$\backslash \cup\varphi\backslash _{\lambda}$ $\downarrow\iota anonical$ surjection

$ S_{\overline{F}}/s_{\frac{1}{F}}-\tau$

Then the following conditions are equivalent:
(1) $\varphi$ is surjective.
(2) $\varphi$ is injective.
(3) $S_{\overline{F}}=S_{\frac{(\tau}{F}}$

)

In these cases, we have $S_{\overline{F}}=S_{\frac{(\tau}{F}}$
)

$\cong S_{\overline{F}}/S_{\frac{1}{F}}^{-\tau}\cong G(K/\overline{F})$ .
PROOF. From the exact sequence $1\rightarrow S_{\frac{(\tau}{F}}$

) $\rightarrow S_{\overline{F}}\rightarrow S_{\overline{F}}\rightarrow S_{\overline{F}}S_{\frac{1}{F}}^{-\tau}\rightarrow 1f$ where
the first map is the natural inclusion, the second map $f$ is defined by $f(c)=$
$c^{1-f}$ for $c\in S_{\overline{F}}$ and the third map is the canonical surjection, we see that
$S_{\frac{(\tau}{F}})$ and $S_{\overline{F}}/S_{\frac{1}{F}}^{-\tau}$ have the same order; hence the equivalence of (1) and
(2) is clear. It is obvious that (3) implies (1). Now suppose that $\varphi$ is
suriective; then $S_{\overline{F}}=S\frac{(\tau}{F}$

)
$S\frac{1}{F}-f=S\frac{(r}{F}$

)
$S_{\frac{(1}{F}=}^{-\tau)^{2}}\cdots=S\frac{(\vee}{F}$

)
$S_{\frac{(1}{F}}^{-\tau)^{l^{*}}}$ . On the other

hand, $l$ divides $(1-\tau)^{l}$“. Hence $S_{\overline{F}}=S\frac{(\tau}{F}$
)

$S\frac{\iota}{F}$ , i.e., $S_{\overline{F}}=S\frac{tr}{F}$‘.
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LEMMA 3. Let $m$ be an integer $\geqq 1$ and $\mathfrak{p}$ a prime ideal of $k$ . Then
the following three conditions are equivalent:

(1) $The\gamma e$ exists a unique cyclic extension of $k$ of $deg\gamma eel^{m}$ in the
$St\gamma ahl$ class field modulo $\mathfrak{p}$ .

(2) $|(\mathfrak{O}/\mathfrak{p})^{\times}/(E_{k}+\mathfrak{p}/\mathfrak{p})|$ is divisible by $l^{m}$ .
(3) The prime ideal $\mathfrak{p}$ is prime to $l$ and splits completely in the

Galois extension $k(m)/k$ .
PROOF. Let $\overline{k(\mathfrak{p})}$ be the Strahl class field modulo $\mathfrak{p}$ . Set
$I_{\mathfrak{p}}=$ { $\mathfrak{a};\mathfrak{a}$ is an ideal of $k$ and $(\mathfrak{a},$ $\mathfrak{p})=1$ },
$P_{\mathfrak{p}}=$ { $(a);(a)$ is a principal ideal generated by $a\in k$ and $((a),$ $\mathfrak{p})=1$ },
$S_{\mathfrak{p}}=$ { $(a);(a)$ is a principal ideal generated by $a\in k$ and $a\equiv 1(mod^{\times}\mathfrak{p})$ },

where $mod^{\times}\mathfrak{p}$ means the multiplicative congruence. By class field theory,
$I_{\mathfrak{p}}/S_{\mathfrak{p}}$ is isomorphic to $G(\overline{k(\mathfrak{p})}/k)$ . On the other hand, it contains the sub-
group $P_{\mathfrak{p}}/S_{\mathfrak{p}}$ of index $h$ which is prime to $l$ by our assumption. Hence
the Galois group of the maximal abelian l-extension of $k$ contained in
$\overline{k(\mathfrak{p})}$ over $k$ , is isomorphic to the Sylow l-subgroup of $P_{\mathfrak{p}}/S_{\mathfrak{p}}$ . For a class
amodpe $(\mathfrak{O}/\mathfrak{p})^{\times}$ , put $f(amod \mathfrak{p})=(a)\in P_{\mathfrak{p}}/S_{\mathfrak{p}}$ , where $(a)$ is the principal
ideal generated by $a$ . Then the map $f:(\mathfrak{O}/\mathfrak{p})^{\times}\rightarrow P_{\mathfrak{p}}/S_{\mathfrak{p}}$ is a well defined,
surjective homomorphism and

$Ker(f)=$ { $amod \mathfrak{p}\in(\mathfrak{O}/\mathfrak{p})^{\times};$ $a\equiv\epsilon(mod \mathfrak{p})$ for some $\epsilon\in E_{k}$ }.

Therefore we have the equivalence of (1) and (2).
(2) $\Rightarrow(3)$ : Let $k_{p}$ be the completion of $k$ with respect to $\mathfrak{p}$ . If we

assume (2), we have $\zeta_{\iota^{m}}\in k_{\mathfrak{p}}$ , since $N\mathfrak{p}\equiv 1(mod l^{m})$ (where $N\mathfrak{p}$ is the absolute
norm of the prime ideal p). And the equation $x^{l^{m}}\equiv\epsilon(mod \mathfrak{p})$ is solvable
in $\mathfrak{O}$ for all $eeE_{k}$ , since the group $(\mathfrak{O}/\mathfrak{p})^{\times}$ is a cyclic group. Therefore
the equation $ x^{l^{m}}=\epsilon$ is solvable in $k_{\mathfrak{p}}$ for all $\epsilon\in E_{k}$ , since $(\iota, \mathfrak{p})=1$ ; this
implies (3).

(3) $\Rightarrow(2)$ : Conversely suppose (3). Then $N\mathfrak{p}\equiv 1(mod l^{m+\delta})$ , since $\zeta_{l^{rn+\delta}}\in$

$k_{\mathfrak{p}}$ and $(\iota, \mathfrak{p})=1$ ;and all $\epsilon\in E_{k}$ are $l^{m}$-th power residues modulo $\mathfrak{p}$ , since
the equation $ x^{l^{m}}=\epsilon$ is solvable in the ring of p-adic integers in $k_{\mathfrak{p}}$ .
Therefore we have (2).

REMARK. There exist infinitely many prime ideals of $k$ which satisfy
the above condition. In fact, there exist infinitely many rational primes
which split completely in $k(m)$ .

COROLLARY. $ Fo\gamma$ a fixed integer $n\geqq 1,$ $the\gamma e$ exist infinitely many
eyclic extensions of $k$ of degree ln whose class numbers are not divisible
by $l$ .
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PROOF. By the above remark, we have infinitely many cyclic ex-
tensions of $k$ of degree $l$“ in which one and only one prime ideal ramifies.
Then their class numbers are not divisible by $l$ , since the class number
of $k$ is prime to $l$ (see Iwasawa [3]).

\S 2. Construction.

Let $e_{1},$ $e_{2},$ $\cdots,$ $e_{i},$ $\cdots,$ $e_{t+1}$ be natural numbers such that $ 1\leqq e_{1}\leqq$

$e_{2}\leqq\cdots\leqq e_{i}\leqq\cdots\leqq e_{\iota+1}$ ; let $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$

$\cdots,$
$\mathfrak{p},$

$\cdots,$ $\mathfrak{p}_{t+1}$ be distinct prime ideals
of $k$ such that $|(\mathfrak{O}/\mathfrak{p})^{\times}/(E_{k}+\mathfrak{p}_{i}/\mathfrak{p}_{i})|$ is divisible by lei for each $i$ . Note
that in the case $k=Q$ , this condition is equivalent to the one that $p_{i}\equiv 1$

$(mod 2\cdot l^{\iota_{i}})$ , where $p_{i}$ is a prime number such that $(p)=\mathfrak{p}$ .
Put $e_{t+1}=n$ and let $k_{i},$ $i=1,2,$ $\cdots,$ $t+1$ , be the unique cyclic extension

of $k$ of degree lei in the Strahl class field modulo $\mathfrak{p}_{i}$ . Let $K=\prod_{i=1}^{t+1}k_{i}$ be
the composite of the fields $k_{i},$ $i=1,2,$ $\cdots,$ $t+1$ . $G(K/k)$ is the direct
product of the cyclic groups $G(k_{i}/k),$ $i=1,2,$ $\cdots,$ $t+1$ . In the follow-
ing, we restrict ourselves to the case $t\geqq 1$ . (When $t=0$ , Corollary of
Lemma 3 says that the l-class group of each intermediate field of $K/k$

is trivial.)
Let $\sigma_{i}$ be a fixed generator of $G(k_{i}/k)$ and let $H$ be the subgroup of

$G(K/k)$ generated by $\{\sigma_{i}\cdot\sigma_{t+1}^{l^{-e}i};1\leqq i\leqq t\}$ . Then the factor group $G(K/k)/H$

is a cyclic group of order $l$“, and $\{\sigma_{c+1}^{j};0\leqq j\leqq l-1\}$ is a full set of re-
presentatives for the cosets modulo $H$ in $G(K/k)$ . Hence the subfield $F$

of $K$ corresponding to $H$ is a cyclic extension of $k$ of degree $l$“. On the
other hand, the inertia group of $\mathfrak{p}$ for $K/k$ is $\langle\sigma_{i}\rangle$ and $\sigma_{i}\equiv\sigma_{t+1}^{-\iota-\ell}{}^{t}(mod H)$ .
Therefore ramification theory shows that the ramified primes of $F/k$ are
$\mathfrak{p}_{i},$ $i=1,2,$ $\cdots,$ $t+1$ , with ramification index $lt$ Moreover $K$ is an un-
ramified abelian extension of $F$, since $H\cap\langle\sigma_{i}\rangle=\{1\}$ holds for all $i=$

$1,2,$ $\cdots,$ $t+1$ . Therefore it follows from Lemma 1 that $K$ coincides with
the maximal abelian l-extension of $k$ contained in the genus field of $F/k$ ,
since the degree of $K$ over $F$ is $\prod_{=\iota}^{t}l^{\ell}$ .

In the following, $F$ always denotes the subfield of $K$ which cor-
responds to $H$. We call this field $F$ the field assoc’iated with the set of
primes $\{\mathfrak{p}_{1}, \mathfrak{p}_{8}, \cdots, \mathfrak{p}_{t+1}\}$ . For the field $F$, we give a condition for $S_{F}$ to
be equal to $S_{F}^{(\tau)}.$ . Let $K_{i}=k\cdot F,$ $1\leqq i\leqq t$ , be the composite of the field
$k_{i}$ and the field $F$. Then we have $K=\prod_{i=1}^{t}K_{i}$ (the composite of $K$ ,
$i=1,2,$ $\cdots,$

$t$), and $G(K/F)$ is the direct product of the cyclic groups
$G(K/F),$ $i=1,2,$ $\cdots,$

$t$ .
LEMMA 4. For each prime ideal $\mathfrak{p}_{i}$ such that $e_{i}<n$ , the following

conditions are equivalent:
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(1) There exists only one prime’ideal of $F$ above $\mathfrak{p}_{i}$ .
(2) $((\prod_{r1_{i}},\mathfrak{B})^{h},$ $K_{i}/F$ ) generates $G(K/F)$ , where $( , K_{i}/F)$ is the

Artin symbol in $K_{i}/F$ and the product is taken over all the prime ideals
$\mathfrak{P}$ of $F$ above $\mathfrak{p}_{i}$ .

PROOF. Let $Z$ (resp. $T$ ) be the decomposition group (resp. the
inertia group) of $\mathfrak{p}_{1}$ for the abelian extension $K_{i}/k$ . $G(K_{i}/k)$ is the direct
product of $G(K_{i}/F)$ and $G(K_{i}/k)$ , since $e_{i}<n$ . Let $\sigma$ (resp. $\rho$) be a
generator of $G(K_{i}/F)$ (resp. $G(K_{i}/k_{i})$). Then $T$ is a cyclic group, since
$(\iota, \mathfrak{p})=1$ . The ramification index of $\mathfrak{p}_{i}$ in $F/k$ (resp. $k_{i}/k$) is lei (resp. $l^{\ell_{i}}$).
So, after replacing $\sigma$ and $\rho$ if necessary, we may assume that $T$ is
generated by $\sigma\cdot\rho^{\iota^{n-e_{i}}}$ . Now suppose (1); then $Z\cdot G(K_{i}/F)=G(K_{i}/k)$ , so
we have $\rho=\sigma^{c}\cdot z$ for some integer $c$ and some $zeZ$ . From the fact
that $T=\langle\sigma\cdot\rho^{t^{n-\epsilon_{i}}}\rangle\subset Z$ it follows that

$\sigma^{1+ol^{n-e}i}=\sigma\cdot\rho^{t^{n-e_{i}}}\cdot z^{-l^{n-e}i}\in Z$ ,

which implies that $\sigma\in Z$ , since $n>e_{i}$ . Hence we have $Z=G(K_{i}/k)$ , i.e.,
there exists only one prime ideal of $K$ above $\mathfrak{p}$ . This implies that
$(\mathfrak{B}^{h}, K_{i}/F)$ generates $G(K_{i}/F)$ , since $K_{i}/F$ is an unramified abelian l-
extension.

To prove (2) $\Rightarrow(1)$ , let $\mathfrak{B}_{j},$ $1\leqq j\leqq l^{\iota}$ , be the prime ideals of $F$ above
$\mathfrak{p}_{i}$ ; then $\mathfrak{B}_{j}=\mathfrak{B}^{a_{j}}$ holds for some $\sigma_{j}\in G(K_{i}/k),$ $1\leqq j\leqq l^{\epsilon}$ . Hence $(\mathfrak{B}_{j}, K/F)=$

$(\mathfrak{B}_{1}, K_{i}/F),$ $1\leqq j\leqq l^{\epsilon}$ , and therefore we have $((\prod_{\mathfrak{P}1\mathfrak{p}_{i}}\mathfrak{P})^{h}, K_{t}/F)=(\mathfrak{P}_{1}^{h}, K_{i}/F)^{\iota*}$ ,
from which it is clear that (2) implies that $l^{\epsilon}=1$ .

REMARK. The condition (1) is equivalent to the one that there exists
only one prime ideal of $F_{0}$ above $\mathfrak{p}_{i}$ , where $F_{0}$ is the subfield of $F$ of
degree $l$ over $k$ .

Through the isomorphism $S_{F}/S_{F}^{1-\tau}\cong G(K/F)\cong\prod_{i=1}^{t}G(K_{i}/F)$ , we may
assume that the image of $\varphi$ is contained in $\prod\ddagger_{=\iota}G(K_{i}/F)$ (see Lemma 2).
It is well known that $S_{F,*}^{(\tau)}$ is generated by $\prod_{R1\mathfrak{p}_{i}}$ cl $(\mathfrak{B})^{h},$ $1\leqq i\leqq t+1$ , where
the product is taken over all the prime ideals as of $F$ above $\mathfrak{p}_{i}$ and cl $(\mathfrak{P})$

denotes the ideal class of the prime ideal $\mathfrak{B}$ . The factor group
$\prod_{=1}^{t}G(K/F)/(\prod_{i=1}^{t}G(K_{i}/F))^{l}$ can be regarded as a vector space over the
finite field with $l$ elements; hence the classes of $\varphi$( $\prod_{\mathfrak{P}1\mathfrak{p}_{i}}$ cl $(\mathfrak{B})^{h}$), $1\leqq i\leqq t+1$ ,
determine a matrix $M$ whose $(i, j)$-th element is $((\prod_{\$ 1\mathfrak{p}}, \mathfrak{B})^{h},$ $K_{j}/F$ )
$mod G(K_{j}/F)^{l},$ $1\leqq i\leqq t+1,1\leqq j\leqq t$ (cf. Gerth [1]).
Therefore: rank $M=t\Leftrightarrow\varphi(S_{F,\epsilon}^{(\tau)})=S_{F}/S_{F}^{1-f}\Leftrightarrow S_{F}=S_{F}^{(\tau)}=S_{F,\epsilon}^{(r)}(\cong\prod_{i\Rightarrow 1}^{t}G(K_{i}/F)$ (see

Lemma 2)).
We are now ready to prove the following
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THEOREM. Let $G$ be a finite abelian l-group with exponent $l^{m},$ $m\geqq 0$ .
Then, for all $n,$ $n\geqq m,$ $n\geqq 1$ , there exist infinitely many cyclic extensions
of $k$ of degree $l$“ whose l-class groups are isomorphic to the group $G$ .

PROOF. If $m=0$ , the statement is equivalent to Corollary of Lemma
3; hence we may assume that $m\geqq 1$ . By the structure theorem for
finite abelian groups, we may assume that $G$ is the direct sum of the
cyclic groups $Z/l^{e_{i}}Z,$ $i=1,2,$ $\cdots,$ $t;1\leqq e_{1}\leqq e_{2}\leqq\cdots\leqq e_{t}=m$ . To prove the
theorem, it is sufficient, by the above arguments, to find infinitely many
sets of $t+1$ prime ideals $\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots, \mathfrak{p}_{t+1}\}$ of $k$ such that rank $M=t$ . In
fact, in this case, $S_{F}\cong\prod_{i=1}^{t}G(K/F)\cong G$ , where $F$ is, as before, a cyclic
extension of $k$ associated with $\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots, \mathfrak{p}_{t+1}\}$ . We will consider two
cases separately. In the following conditions on $\mathfrak{p}_{l},$ $\pi_{i}$ denotes an integer
of $\mathfrak{O}$ such that $\mathfrak{p}_{i}^{h}=(\pi_{i})$ and $C_{i}$ denotes the cyclic group $(\mathfrak{O}/\mathfrak{p}_{i})^{\times}/(E_{k}+\mathfrak{p}_{i}/\mathfrak{p}_{i})$ .

i) Case $n>m$ . The conditions on $\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots, \mathfrak{p}_{\iota+1}\}$ are
(1) $|C_{t+1}|$ is divisible by $l$“,
(2) $|C_{i}|$ is divisible by lei $(1\leqq i\leqq t)$ and
(3) The class of each $\pi_{i},$ $1\leqq i\leqq t$ , in the cyclic group $C_{\iota+1}$ is not

contained in $C_{t+1}^{l}$ .
REMARK. The condition (3) is equivalent to saying that each $\mathfrak{p}_{i}$ ,

$1\leqq i\leqq t$ , is not decomposed in the unique cyclic extension $(k_{+1})_{0}$ of $k$ of
degree $l$ , contained in the Strahl class field modulo $\mathfrak{p}_{t+1}$ : in fact (cf. the
proof of Lemma 3),

the condition (3) $\Leftrightarrow((\pi_{i}), (k_{\iota+1})_{0}/k)\neq 1\Leftrightarrow(\mathfrak{p}_{i}, (k_{\iota+1})_{0}/k)\neq 1$ .
By putting $e_{t+1}=n$ , let $F$ be a cyclic extension of $k$ of degree ln associ-

ated with the above set of primg ideals, and let $F_{0}$ be, as before, subfield
of $F$ of degree $l$ over $k$ . Then we easily see that $F_{0}=(k_{t+1})_{0}$ , since $F_{0}$ is
contained in $\prod_{i=1}^{t+1}k_{i}$ , and since only $\mathfrak{p}_{t+1}$ ramifies in $F_{0}/k$ . On the other
hand, if we identify $G(K_{j}/F)$ with $G(k_{j}/k),$ $j=1,2,$ $\cdots,$

$t$ , we have, by
the translation theorem, $((\prod_{*1\mathfrak{p}_{i}}\mathfrak{B})^{h}, K_{j}/F)=(\mathfrak{p}_{i}, k_{j}/k)^{ht^{n-e_{i}}}$ for every $i\neq j$ .
Therefore, for each prime ideal $\mathfrak{p}_{i}$ such that $e_{i}<n$ , an $(i, j)$-th element
of the matrix $M$ is trivial (cf. [1]) whenever $j\neq i$ . Also Lemma 4 shows
that for such a prime ideal $\mathfrak{p}_{i}$ , an $(i, i)$-th element is trivial if and only
if $\mathfrak{p}_{i}$ is decomposed in $F_{0}$ . Therefore, by the above remark, we see that
$rankM=t$ . Existence of such a set of prime ideals can be seen as
follows. Let $\mathfrak{p}$ be a prime ideal of $k$ which satisfies the condition (1)
and put $\mathfrak{p}_{t+1}=\mathfrak{p}$ . Then we have $k(e_{i})\cap k_{t+1}=k$ , since $\mathfrak{p}_{t+1}$ is unramified in
$k(e)$ by the definition of $k(e_{i})$ . Hence the Galois group $G(k_{t+1}k(e_{l})/k)$ is
the direct product of the subgroups $G(k_{\iota+1}k(e_{i})/k(e_{i}))$ and $G(k_{t+1}k(e_{i})/k_{t+1})$ ;
the former subgroup is a cyclic one of order $l$“. Therefore the
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Tschebotarev density theorem shows that there exist infinitely many
prime ideals $\mathfrak{B}_{i}$ of $k_{t+1}k(e_{i})$ for which

$\langle[\mathfrak{B}_{i}, k_{\iota+1}k(e_{i})/k]\rangle=G(k_{t+1}k(e_{i})/k(e_{i}))$ .
It is easy to see that $\mathfrak{p}_{i}=\mathfrak{P}\cap k$ satisfies both conditions (2) and (3), since
$\mathfrak{p}_{i}$ splits completely in $k(e_{i})$ and since $[\mathfrak{B}_{i}, k_{t+1}k(e_{i})/k]_{1k_{t+1}}=(\mathfrak{p}_{i}, k_{t+1}/k)$

generates the Galois group $G(k_{\iota+\iota}/k)$ . Hence we can obtain distinct prime
ideals $\mathfrak{p}_{i},$ $1\leqq i\leqq t+1$ , of $k$ which satisfy the above conditions (1) $-(3)$ .
Infiniteness is also deduced from the density theorem.

ii) Case $n=m$ . Put $e_{t+1}=n$ , and let $d$ be the largest integer $i$

such that $e_{i}<n$ (if $e_{1}=e_{2}=\cdots=e_{t}=n$ , put $d=1$). Take any prime ideal
$\mathfrak{p}_{d}$ of $k$ such that $|C_{d}|$ is divisible by $l^{e_{d}}$ ; and then take distinct prime
ideals $\mathfrak{p}_{d+1},$ $\mathfrak{p}_{d+2},$ $\cdots,$

$\mathfrak{p}_{t+1}$ of $k$ which satisfy the following conditions. The
conditions on $\mathfrak{p}_{d+1}$ are

(1) $|C_{d+1}|$ is divisible by $l^{n}$ ,
(2) The class of $\pi_{d+1}$ in $C_{d}$ is not contained in $C_{d}^{\iota}$ .

Assume that we can choose prime ideals $\mathfrak{p}_{d},$ $\mathfrak{p}_{d+1},$ $\cdots,$
$\mathfrak{p}_{d+j}(j\geqq 1)$ . The

conditions on $\mathfrak{p}_{d+j+1}$ are
(3) $|C_{d+j+1}|$ is divisible by $l^{n}$ ,
(4) . The class of $\pi_{d+j+1}$ in $C_{d+j}$ is not contained in $C_{d+j}^{\iota}$ ,
(5) The class of $\pi_{d+j+1}$ in $C_{d+i}$ is contained in $C_{d+i}^{l^{n}}$ for all $i=$

$0,1,$ $\cdots,$ $j-1$ .
If $d\geqq 2$ , we choose $d-1$ distinct prime ideals $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$

$\cdots,$
$\mathfrak{p}_{a-1}$ of $k$ which

satisfy the following conditions:
(6) $|C_{i}|$ is divisible by $l^{e_{i}}(1\leqq i\leqq d-1)$ .
(7) The class of each $\pi_{i},$ $1\leqq i\leqq d-1$ , in $C_{d+1}$ is not contained in $C_{d+1}^{l}$ .
(8) The class of each $\pi_{i},$ $1\leqq i\leqq d-1$ , in $C_{d+j}$ is contained in $C_{d+j}^{l^{ll}}$

for all $j=2,3,$ $\cdots,$ $t-d+1$ .
Existence of such a set of prime ideals $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$

$\cdots,$
$\mathfrak{p}_{\iota+1}$ can be seen as

follows. By the same arguments as in the case $n>m$ , existence of $\mathfrak{p}_{d+1}$

is easily verified. We note here that the condition (2) is equivalent to
(2) The Artin symbol $(\mathfrak{p}_{d+1}, k_{d}/k)$ generates $G(k_{d}/k)$ .

Assume now that we can choose prime ideals $\mathfrak{p}_{d},$ $\mathfrak{p}_{d+1},$ $\cdots,$
$\mathfrak{p}_{d+j}(j\geqq 1)$ . By

the density theorem, there exist infinitely many prime ideals $\mathfrak{P}_{d+j+1}$

of $k(n)\cdot(\prod_{i=0}^{j}k_{d+i})$ (the composite of the field $k(n)$ and the fields $k_{d+i}$ ,
$i=0,1,$ $\cdots,$

$j$) for which

$\langle[\mathfrak{B}_{d+i+\iota},$
$k(n)\cdot(\prod_{i=0}^{j}k_{d+i})/k]\rangle=G(k(n)\cdot(\prod_{i=0}^{j}k_{d+i})/k(n)(\prod_{i=0}^{j-1}k_{d+i}))$ .

Then $\mathfrak{p}_{d+j+1}=\mathfrak{B}_{d+j+1}\cap k$ satisfies the conditions (3) $-(5)$ , since the conditions
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(4) and (5) are equivalent respectively to
(4) The Artin symbol $(\mathfrak{p}_{d+j+1}, k_{d+j}/k)$ generates $G(k_{d+j}/k)$ , and
(5) The Artin symbol $(\mathfrak{p}_{d+j+1}, k_{d+i}/k)$ is equal to 1 for all $i=$

$0,1,$ $\cdots,$ $j-1$ .
Therefore existence of $\mathfrak{p}_{d},$ $\mathfrak{p}_{d+1},$

$\cdots,$ $\mathfrak{p}_{t+1}$ is proved. Now suppose that
$d\geqq 2$ . Again the density theorem shows that there exist infinitely many
prime ideals $\mathfrak{B}$ of $k(e)\cdot(\prod_{j=d+1}^{\iota+1}k_{j})$ (the composite for the field $k(e_{i})$ and
the fields $k_{j},$ $d+1\leqq j\leqq t+1$) for which

$\langle[\mathfrak{B}_{i},$ $k(e_{i})(\prod_{j=d+1}^{t+1}k_{j})/k]\rangle=G(k(e_{i})(\prod_{j=d+1}^{t+1}k_{j})/k(e_{i})(\prod_{J=d+2}^{t+1}k_{;))}$ .
We also see that $\mathfrak{p}=\mathfrak{B}_{i}\cap k$ satisfies the conditions (6) $-(8)$ . Hence we can
obtain $t+1$ distinct prime ideals $\mathfrak{p}_{i},$ $1\leqq i\leqq t+1$ , of $k$ .

Let $F$ be a cyclic extension of $k$ of degree ln as in the case $n>m$
associated with the set of prime ideals $\{\mathfrak{p}_{1}, \mathfrak{p}_{g}, \cdots, \mathfrak{p}_{+J}\}$ . For this field $F$,
we shall show that rank $M=t$ . As before, if we identify $G(K_{j}/F)$ with
$G(k_{j}/k),$ $1\leqq j\leqq t$ , then we have $((\prod,|_{i}\mathfrak{B})^{h},$ $K_{j}/F$ ) $=(\mathfrak{p}, k_{j}/k)^{h\iota’*-e_{i}}$ for every
$i\neq j$ . Therefore, by the conditions (2), (4), and (5), theorem is easily
verified for the case of $d=1$ . For the case $d\geqq 2$ , we shall show that
each $\mathfrak{p}_{i},$ $1\leqq i\leqq d-1$ , is not decomposed in $F_{0}$ . As the ramified primes in
$F_{0}/k$ are $\mathfrak{p}_{d+1},$ $\mathfrak{p}_{d+2},$

$\cdots,$
$\mathfrak{p}_{t+1},$ $F_{0}$ is contained in $\prod_{\dot{g}=d+1}^{t+1}k_{j}$ . Therefore, if $\mathfrak{p}_{i}$

splits in $F_{0}/k$ for some $i=1,2,$ $\cdots,$ $d-1$ , then $F_{0}$ is contained in the de-
composition field for $\mathfrak{p}_{i}$ in $\prod_{j=d+1}^{t+1}k_{j}$ . On the other hand, by the condi-
tions (7) and (8), the decomposition field for $\mathfrak{p}_{l}$ is $\prod_{j=d+2}^{t+1}k_{j}$ ; but this
implies that $\mathfrak{p}_{d+1}$ is unramified in $F_{0}/k$ . Hence we have a contradiction.
Now it is easy to see, as in the case $d=1$ , that the rank of the matrix
$M$ is equal to $t$ . As there exist infinitely many fields such as $F$, the
proof of the theorem is completed.

REMARK. If we restrict ourselves to the case $k=Q$ , our theorem-is
also deduced by using the results of A. Frohlich [5]. However it is still
necessary to specify the prime numbers as in our paper, which is kindly
pointed out by Mr. K. Iimura while I was preparing this paper.

$CoROLLARY$ . Let $G$ be the same as in Theorem. Then there exist
infinitely many non-Galois extensions of the field $Q$ of rational numbers
whose l-class groups are isomorphic to the group $G$ .

PROOF. As before, let $k$ be a number field, other than $Q$ , whose
class number is prime to $l$ ; e.g., $k=Q(\sqrt{2})$ . From the proof of Theorem,
it is easy to see that the primes $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$

$\cdots,$ $\mathfrak{p}_{\iota+1}$ can be choosen so that



CONSTRUCTION OF NUMBER FIELDS 283

the following additional conditions are satisfied; there exists some
$1\leqq i\leqq t+1$ such that the prime number $p_{i}$ lying below $\mathfrak{p}_{i}$ , splits com-
pletely in $k$ , and that each $\mathfrak{p}_{j},$ $j\neq i,$ $1\leqq j\leqq t+1$ , is not lying above $p_{t}$ .
Now let $F$ be the field associated with such primes $\mathfrak{p}_{i},$ $1\leqq i\leqq t+1$ . Then
it is clear that $F/Q$ is a non-Galois extension; and by Theorem we have
$S_{F}\cong G$ . Since there exist infinitely many sets of $t+1$ prime ideals
$\{\mathfrak{p}_{1}, \mathfrak{p}_{\mathfrak{g}}, \cdots, \mathfrak{p}_{t+1}\}$ with the property above, we get immediately the asser-
tion of Corollary.

SUPPLEMENTARY NOTE. While preparing this paper, K. Iimura in-
formed me that for each odd prime number $l$ , there exist infinitely many
dihedral extensions $K$ of $Q$ of degree $2\cdot l^{r}$ , with the following property:
For all subfields $L$ of $K$ of degree $l^{m},$ $S_{L}$ are isomorphic to the group
$G$ ; here $l^{m}(m\geqq 1)$ denotes the exponent of $G$ .
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