More on the Schur Index and the Order and Exponent of a Finite Group

Toshihiko YAMADA

Tokyo Metropolitan University
Let G be a finite group and K a field of characteristic 0 . Let χ be an absolutely irreducible character of G and let $m_{K}(\chi)$ denote the Schur index of χ over K. In Fein and Yamada [1], we gave a theorem which relates $m_{Q}(\chi)$ to the order and exponent of G, where \boldsymbol{Q} is the rational field. In this paper, we will give similar results for the case $K=\boldsymbol{Q}_{l}$, the l-adic numbers, where l is a prime. These results are easily derived from the formula of index of an l-adic cyclotomic algebra, which was obtained by the author [4], [5].

For the rest of the paper, k is a cyclotomic extension of \boldsymbol{Q}_{l}, i.e., k is a subfield of a cyclotomic field $\boldsymbol{Q}_{l}\left(\zeta^{\prime}\right)$, where ζ^{\prime} is a root of unity. For a natural number n, ζ_{n} denotes a primitive n-th root of unity. A cyclotomic algebra over k is a crossed product

$$
\begin{gather*}
B=(\beta, k(\zeta) / k)=\sum_{\sigma \in \mathscr{\mathscr { C }}} k(\zeta) u_{\sigma}, \quad\left(u_{1}=1\right), \tag{1}\\
u_{\sigma} x=\sigma(x) u_{\sigma} \quad(x \in k(\zeta)), \quad u_{o} u_{\tau}=\beta(\sigma, \tau) u_{\sigma \tau}, \quad(\sigma, \tau \in \mathscr{G}), \tag{2}
\end{gather*}
$$

where ζ is a root of unity, \mathscr{G} is the Galois group of $k(\zeta)$ over k, and β is a factor set whose values are roots of unity in $k(\zeta)$. Put $L=k(\zeta)$. Let $\varepsilon(L)$ denote the group of roots of unity contained in L. Let $\varepsilon^{\prime}(L)$ (respectively, $\varepsilon_{l}(L)$) denote the subgroup of $\varepsilon(L)$ consisting of those roots of unity in L whose orders are relatively prime to l (respectively, powers of l). We have $\varepsilon(L)=\varepsilon^{\prime}(L) \times \varepsilon_{l}(L)$. Let

$$
\begin{equation*}
\beta(\sigma, \tau)=\alpha(\sigma, \tau) \gamma(\sigma, \tau), \quad \alpha(\sigma, \tau) \in \varepsilon^{\prime}(L), \quad \gamma(\sigma, \tau) \in \varepsilon_{\ell}(L) . \tag{3}
\end{equation*}
$$

Suppose that l is an odd prime. Let $\langle\theta\rangle$ denote the inertia group and ϕ a Frobenius automorphism of the extension $k(\zeta) / k$. The order e of θ has the form $e=l^{t} e^{\prime}, e^{\prime} \mid l-1$. Let f denote the residue class degree of the extension k / \boldsymbol{Q}_{l}, so $\zeta_{l} f_{-1} \in k$.

Theorem 1 (Yamada [4]). Let l be an odd prime and k a cyclotomic extension of $\boldsymbol{Q}_{l} . \quad$ Notation being as above, let $(\beta, k(\zeta) / k) \sim(\alpha, k(\zeta) / k) \boldsymbol{\otimes}_{k}$ $(\gamma, k(\zeta) / k)$ be a cyclotomic algebra over k given by (1)-(3). Then the number

$$
\delta=(\alpha(\theta, \phi) / \alpha(\phi, \theta))^{e /\left(l^{f}-1\right)} \alpha(\theta, \theta) \alpha\left(\theta^{2}, \theta\right) \cdots \alpha\left(\theta^{e-1}, \theta\right)
$$

belongs to k, so that we can write $\delta=\zeta_{1}^{v} f_{-1}$ for a certain integer v. The index of the cyclotomic algebra $(\beta, k(\zeta) / k)$ is equal to $e^{\prime} /\left(v, e^{\prime}\right)$.

Proof. In [4, Theorem 3], this theorem is stated for the case $k(\zeta)=\boldsymbol{Q}_{l}\left(\zeta^{\prime}\right), \zeta^{\prime}$ being some root of unity. But it is easy to see that the same proof is also valid for any extension $k(\zeta) / k, \zeta$ being a root of unity.

Corollary 2. Notation being as in Theorem 1, suppose that the factor set β has all its values equal to roots of unity of order prime to l, i.e., $\beta(\sigma, \tau) \in \varepsilon^{\prime}(k(\zeta))$, for all $\sigma, \tau \in \mathscr{G}$. Furthermore, suppose that $e=e^{\prime}$, i.e., the ramification index e of the extension $k(\zeta) / k$ is not divisible by l. Then the index of the l-adic cyclotomic algebra $(\beta, k(\zeta) / k)=\sum_{o} k(\zeta) u_{\sigma}$ divides the least common multiple of the orders of the elements [u_{θ}, u_{ϕ}] and $u_{j}^{f_{-1}}$, where $\left[u_{\theta}, u_{\phi}\right]=u_{\theta} u_{\phi} u_{\theta}^{-1} u_{\phi}^{-1}$.

Proof. We have $\beta(\sigma, \tau)=\alpha(\sigma, \tau), \gamma(\sigma, \tau)=1$ for any $\sigma, \tau \in \mathscr{G}$. Since $\left[u_{\theta}, u_{\phi}\right]=\beta(\theta, \phi) / \beta(\phi, \theta)$ and $u_{\theta}^{\delta}=\beta(\theta, \theta) \beta\left(\theta^{2}, \theta\right) \cdots \beta\left(\theta^{\theta-1}, \theta\right)$, it follows that [u_{θ}, u_{ϕ}] and u_{θ}^{δ} commute. Since $e=e^{\prime}$ and $e^{\prime} \mid l-1$, then

$$
\begin{aligned}
\delta^{\left(l^{f}-1\right) / e} & =(\beta(\theta, \phi) / \beta(\phi, \theta)) \cdot\left\{\beta(\theta, \theta) \beta\left(\theta^{2}, \theta\right) \cdots \beta\left(\theta^{\theta-1}, \theta\right)\right\}^{\left(l^{f}-1\right) / e} \\
& =\left[u_{\theta}, u_{\phi}\right] \cdot\left(u_{\theta}^{\varepsilon}\right)^{\left(l^{f}-1\right) / e}=\left[u_{\theta}, u_{\phi}\right] \cdot u_{\theta}^{\left(f^{f}-1\right.}
\end{aligned}
$$

Moreover, $\left[u_{\theta}, u_{\phi}\right]$ and $u_{\theta}^{l f-1}$ commute. On the other hand,

$$
\delta^{\left(l^{f}-1\right) / e}=\zeta_{l f-1}^{v\left(f^{f}-1\right) / \theta}=\zeta_{0}^{v}
$$

whose order is equal to $e /(v, e)=e^{\prime} /\left(v, e^{\prime}\right)$, the index of $(\beta, k(\zeta) / k)$. The corollary now follows at once.

Theorem 3. Let G be a finite group and χ an absolutely irreducible character of G. Suppose that l is an odd prime and p is a prime such that $p^{n} \neq 1$ divides the Schur index $m_{Q_{l}}(\chi)$ but p^{n+1} does not divide $m_{Q_{l}}(\chi)$. Then either $p^{2 n}$ divides the exponent of G or p^{n} divides the exponent of G^{\prime}, the commutator subgroup of G, and if $p^{2 n}$ does not divide the exponent of G then $p^{2 n+1}$ divides the order of G. If a Sylow p-subgroup of G is abelian, then $p^{2 n}$ divides the exponent of G.

Proof. By Theorem 1, $p^{n} \mid l-1$. Let s be the exponent of G and
let k be the subfield of $\boldsymbol{Q}_{l}\left(\zeta_{s}\right)$ such that $\boldsymbol{Q}_{l}\left(\zeta_{s}\right) \supset k \supset \boldsymbol{Q}_{l}(\chi),\left[\boldsymbol{Q}_{l}\left(\zeta_{s}\right): k\right]$ is a power of p and $p \nmid\left[k: \boldsymbol{Q}_{l}(\chi)\right]$. By the Brauer-Witt theorem (see [6, p. 31]) there is a hyperelementary subgroup H (at p) of G and an irreducible character ξ of H with the following properties: (1) there is a normal subgroup N of H and a linear character ψ of N such that $\xi=\psi^{H}$; (2) $H / N \cong \mathscr{G}=\operatorname{Gal}(k(\psi) / k)$; (3) $k(\xi)=k$; (4) $m_{k}(\xi)=p^{n}$; (5) for every $h \in H$ there is a $\tau(h) \in \mathscr{G}$ such that $\psi\left(h n h^{-1}\right)=\tau(h)(\psi(n))$ for all $n \in N$; and (6) the simple component $A(\xi, k)$ of the group algebra $k[H]$ corresponding to ξ is isomorphic to the cyclotomic algebra $(\beta, k(\psi) / k)=\sum_{\tau \epsilon \xi} k(\psi) u_{\tau}$ where, if D is a complete set of coset representatives of N in $H(1 \in D)$ with $h h^{\prime}=n\left(h, h^{\prime}\right) h^{\prime \prime}$ for $h, h^{\prime}, h^{\prime \prime} \in D, n\left(h, h^{\prime}\right) \in N$, then $\beta\left(\tau(h), \tau\left(h^{\prime}\right)\right)=\psi\left(n\left(h, h^{\prime}\right)\right)$. Since $\boldsymbol{Q}_{l}\left(\zeta_{s}\right) \supset k(\psi) \supset k$ and $[H: N]=[k(\psi): k]$ is a power of p, we may assume that D is contained in a Sylow p-subgroup of H, and so for any $\tau, \tau^{\prime} \in$ $\mathscr{G}, \beta\left(\tau, \tau^{\prime}\right)$ is a root of unity whose order is a power of p. In particular, the factor set β has all its values equal to roots of unity of order prime to l.

Let N_{0} be the kernel of ψ and ζ a primitive $\left|N / N_{0}\right|$-th root of unity. Then $k(\psi)=k(\zeta)$ and N_{0} is also the kernel of ξ. Moreover, the cyclotomic algebra $(\beta, k(\zeta) / k)=\sum_{\tau} k(\zeta) u_{\tau}$ contains the finite group $F=\left\langle\zeta, u_{\tau}(\tau \in \mathscr{G})\right\rangle$, which is canonically isomorphic to H / N_{0}, i.e., F is a section of G.

Let $\langle\theta\rangle$ denote the inertia group and ϕ a Frobenius automorphism of the extension $k(\zeta) / k$. Let f be the residue class degree of k / Q_{l}. The order of $\langle\theta\rangle$ is a power of p, so is relatively prime to l. Corollary 2 now yields that p^{n}, the index of $(\beta, k(\zeta) / k)$, divides the least common multiple of the orders of the elements $\left[u_{\theta}, u_{\phi}\right]$ and $u_{\theta}^{l^{f}-1}$ of F. Hence either p^{n} divides the exponent of $F^{\prime \prime}$ or $p^{2 n}$ divides the exponent of F, because $l^{f}-1 \equiv l-1 \equiv 0\left(\bmod p^{n}\right)$. If a Sylow p-subgroup of G is abelian, then a Sylow p-subgroup of H is also abelian, and so $h h^{\prime}=h^{\prime} h$ for any $h, h^{\prime} \in D$. By the isomorphism $H / N_{0} \cong F$, this implies $u_{\tau} u_{\tau^{\prime}}=u_{\tau^{\prime}} u_{\tau}$ for any $\tau, \tau^{\prime} \in \mathscr{G}$. In particular, $\left[u_{\theta}, u_{\phi}\right]=1$, and consequently, $p^{2 n}$ divides the order of F.

If $p^{2 n}$ does not divide the exponent of F, then p^{n} divides the order of $\left[u_{\theta}, u_{\phi}\right] \in\langle\zeta\rangle$, so $p^{n} \|\langle\zeta\rangle \mid$. Recall that $F=\left\langle\zeta, u_{\theta}, u_{\phi}\right\rangle \triangleright\langle\zeta\rangle$ and $F /\langle\zeta\rangle \cong$ $\langle\theta, \phi\rangle=\mathscr{G}$. By Theorem 1, p^{n} divides the order of θ, so p^{n+1} divides [$F:\langle\zeta\rangle$]. Hence $p^{2 n+1}| | F \mid$. Since F is a section of G, Theorem 3 is proved.

Next we will give a corresponding result for the 2 -adic number field \boldsymbol{Q}_{2}. It is known that $m_{Q_{2}}(\chi)=1$ or 2 for any irreducible character χ of a finite group G.

Theorem 4. Let G be a finite group and χ an irreducible character
of G. If $m_{\mathbf{Q}_{2}}(\chi)=2$, then 2^{2} divides the exponent of $G, 2$ divides the exponent of G^{\prime}, and 2^{3} divides the order of G.

Proof. As in the proof of Theorem 3, the Brauer-Witt theorem implies that there is a 2-adic cyclotomic algebra $B=(\beta, k(\zeta) / k)=\sum_{\tau \in \xi} k(\zeta) u_{\tau}$, $\mathscr{G}=\operatorname{Gal}(k(\zeta) / k)$, with the following properties: (1) ζ is a root of unity and k is a cyclotomic extension of Q_{2}; (2) the index of B equals 2; (3) if ζ has order $2^{t} r,(2, r)=1$, then $\beta(\sigma, \tau) \in\left\langle\zeta_{2} t\right.$ for $\sigma, \tau \in \mathscr{G}$; (4) B contains a finite group $F=\left\langle\zeta, u_{\tau}(\tau \in \mathscr{G})\right\rangle$, which is isomorphic to a section of G; (5) $F \triangleright\langle\zeta\rangle$ and $F /\langle\zeta\rangle \cong \mathscr{G}$.

Since B has index 2, then $\zeta_{4} \notin k$ (see [3, Satz 12] or [5, Proposition 5.4]). Furthermore, $t \geqq 2$, because if $t \leqq 1$, then $k(\zeta) / k$ would be unramified and the index of B would be equal to 1 . Hence 2^{2} divides the exponent of F. By Theorem 3.1 of [5], we see easily that \mathscr{G} contains an automorphism ι with $\iota\left(\zeta_{2} t\right)=\zeta_{2 t^{-1}}$. Then $u_{\iota} \zeta_{2} t u_{t}^{-1}=\zeta_{2 t}{ }^{1}$ and the commutator $\left[u_{\iota}, \zeta_{2} t\right]=$ $\zeta_{2 t^{2}}{ }^{2} \in F^{\prime \prime}$ has order $2^{t-1} \geqq 2$, i.e., $2 \| F^{\prime \prime} \mid$. Since $\iota \in \mathscr{G}$ has order 2 , then $|F|=$ $[F:\langle\zeta\rangle] \cdot|\langle\zeta\rangle|=|\mathscr{G}| \cdot|\langle\zeta\rangle| \equiv 0(\bmod 8)$, as was to be shown.

Let \boldsymbol{R} be the real numbers. Let G be a finite group and χ an irreducible character of G. Although $m_{R}(\chi)=1$ or 2 , Theorem 4 does not necessarily hold for the case $m_{R}(\chi)=2$. We will give such an example.

Remark. Let $G=\langle a, b\rangle$ be the group of order 12 with the defining relations $a^{6}=1, b^{2}=a^{3}, b a b^{-1}=a^{-1}$. Then $|G|=$ exponent of $G=2^{2} 3,\left|G^{\prime}\right|=3$. It is easy to see that G has a faithful irreducible character χ which is induced from a faithful linear character ψ of $\langle a\rangle$. The simple component of the group algebra $Q[G]$ over the rationals Q which corresponds to χ is canonically isomorphic to the cyclic algebra $\left(-1, \boldsymbol{Q}\left(\zeta_{3}\right) / \boldsymbol{Q}, \iota\right)=\boldsymbol{Q}\left(\zeta_{3}\right)+$ $\boldsymbol{Q}\left(\zeta_{3}\right) u, u^{2}=-1, u \zeta_{3} u^{-1}=\zeta_{3}^{-1}=\ell\left(\zeta_{3}\right)$. This algebra has \boldsymbol{R}-local index 2, and so $m_{R}(\chi)=2$. But 2 does not divide the exponent of G^{\prime} and $2^{3} \nmid|G|$.

THEOREM 5. Let G be a finite group and χ a complex irreducible character of G. Let p be a prime. Suppose $p^{n}(>1)$ divides the Schur index $m_{Q}(\chi)$ of χ over the rationals \boldsymbol{Q} and $p^{n+1} \nmid m_{Q}(\chi)$. Then either $p^{2 n}$ divides the exponent of G or p^{n} divides the exponent of G^{\prime}. If $p^{2 n}$ does not divide the exponent of G, then $p^{2 n+1}$ divides the order of G. If a Sylow p-subgroup of G is abelian then $p^{2 n}$ divides the exponent of G.

Proof. Recall that $m_{Q}(\chi)$ is the least common multiple of the (local) Schur indices $m_{l_{l}}(\chi)$ and $m_{R}(\chi)$, where l ranges over all the primes. If there is an odd prime l such that $m_{e_{l}}(\chi)$ is divisible by p^{n}, then Theorem 5 is immediate from Theorem 3. If there is no odd prime l with $m_{\mathbf{Q}_{l}}(\chi)$ divisible by p^{n}, then p^{n} divides either $m_{Q_{2}}(\chi)$ or $m_{R}(\chi)$. It follows that
$p=2, n=1$. Then by the Fein-Yamada theorem [1], $2^{2}=2^{2 n}$ divides the exponent of G, and Theorem 5 is proved.

Remark. We use the notation of Theorem 5. In [1], we actually proved that either p^{n+1} divides the exponent of G or p^{n} divides the exponent of G^{\prime} (see p. 497 of [1]). The fact that either $p^{2 n}$ divides the exponent of G or p^{n} divides the exponent of G^{\prime} is thus a refinement of part of the Fein-Yamada theorem and was already announced by Ford [2].

References

[1] B. Fein and T. Yamada, The Schur index and the order and exponent of a finite group, J. Algebra, 28 (1974), 496-498.
[2] C. Ford, Theorems relating finite groups and division algebras, in Proceedings of the Conference on Finite Groups, ed. by W. Scott, Academic Press, New York, 1976.
[3] E. Witt, Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper, J. Reine Angew. Math., 190 (1952), 231-245.
[4] T. YAMADA, Characterization of the simple components of the group algebras over the p-adic number field, J. Math. Soc. Japan, 23 (1971), 295-310.
[5] T. Yamada, The Schur subgroup of a p-adic field, J. Algebra, 31 (1974), 480-498.
[6] T. Yamada, The Schur Subgroup of the Brauer Group, Lecture Notes in Math., Vol. 397, Springer, 1974.

