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Calculation of Discriminants of High Degree Equations
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ABSTRACT. Discriminants of equations up to the ninth degree are
calculated by using a computer. The numbers of terms included in the
discriminants are 2, 5, 16, 59, 246, 1103, 5247, and 26059 for equations of
degree two, three, four, five, six, seven, eight, and nine, respectively.
Expressions of discriminants up to the fifth degree are included in this
paper.

Introduction

In various fields of sciences and engineerings, computers are often
used to perform laborious algebraic calculations. Many of such calcula-
tions are performed by formula manipulation systems developed by
computer scientists. We believe the systems are also useful for mathe-
maticians.

In this short article, we would like to show the usefulness of for-
mula manipulation systems to mathematicians through calculating
discriminants of high degree equations. Let f(x) be a polynomial of
degree m: :

f(w):a’nmn+an—1mn—1+ et +a1x+ao, an¢0 .

The equation f(x)=0 has multiple roots if and only if its discriminant
D(f) is equal to zero. Expressions of D(f) are well-known for equations
of degree two and three:

n=2:D(f)=al—4 a,a,,

n=38: D(f)=a§af+18-aaa2a1ao——4-a3a§—4-a§a0—27~q§a’§‘.v

The expression of D(f) becomes very large as n increases, and paper-
and-pencil calculation of such a large expression is quite laborious.
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Our calculation is based on Sylvester’s determinant. We reduce the
2n-th order Sylvester’s determinant for two polynomials of degree % to
a determinant of order ». The resulting determinant is similar to
Bezout’s determinant of order =, but the process of forming our deter-
minant is simpler and easier than that of Bezout’s determinant.

§1. Method of calculation.
Let g(x) be a polynomial of degree m:
g(x)=b,x™+b,_x™ '+ ---+bax+b, b,#0.

The equations f(x)=0 and g(x)=0 have common roots if and only if their
resultant R(f, g) is equal to zero. The R(f, g) is defined by the follow-
ing determinant of order n+m (Sylvester’s determinant [1]):

a, a,,; - . a, Q
a, Q,., * : a, Qo
'Mm rows
an an—l a’l ao
( 1 ) R(.f’ g)= bm bm—l ° ° bl bO
bm bm—l bl bO
% TOWS
bp bp, - - b b
The D(f) is closely related to the resultant of f and f'=df/dx:
(2) R(f, f))=(—1)"""1"%a¢,D(f) .

Since R(f, f') is a homogeneous polynomial of degree 2n—1 with respect
to a; and b,, D(f) is a homogeneous polynomial of degree 2n—2. The
coefficient of the term ajal™ in R(f, f') is (—1)"""n". Hence, D(f)
contains the term (—1)"*-V2prqr-ig>!,

The most preferable method for calculating determinants of multi-
variate polynomial entries is a successive expansion by minors. Since a
combinatorial number of terms are handled in the minor expansion
method, we reduce the order of determinants to be calculated as far
as possible.

If f and f' have common factors then so are f=nf—zf’ and f’,
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and vice versa. That is
R(f, f=0—R(f, f)=0.

Thus, we may use R(f, f’) instead of R(f, f’) to calculate D(f). The
R(f, f') is given by the following determinant:

a,_, 2a,_, -« - (mn—1)a, na,
@y - - - (m—2)a, (n—1a, na,
( 3 ) a’n—-l 2a‘n—2 3a’u——3 ‘ * ° nao
na, m—Va,_, - - - 2a, a,
na, - .- - 3a, 2a, a,
na, (n_l)a/n—l ‘ ‘ ‘ 21
|A B
=lc pl-

Here, A, B, C, and D are matrices of order n—1 such that

(j_i+1)an~(j—i+1) if 157,
A=A f—i4+1— ep s .
A { 0 if i>7,
(n——j-f—i)an-- i if "fé.? ’
Ci.i:CI;i—-i—H:{ 0 " if ’I:>j ,

and so on.

LEMMA 1. The matrices A and C, or B and D, are commutative,
i.e., AC=CA and BD=DB.

PROOF. We first consider A and C. The kl elements of AC and
CA are zero if k>1. For k<l<n, we have

! l
(CA)kl= %CMA;F iz=|kcl,i—k+1A1,l—t+1 .

g
Replacing 12 by l+k—3 in the right-hand side, we have
1 1
(CA)kl= _ZkC1.l—-j+1A1,j—k+1= J_ZijzAkj .
i= =

The right-hand side of this equation is the %kl element of AC. This
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proves the commutativity of A and C. Since the mapping a;—a,_,,
1=0,1, ---, n, transforms A and C into D' and B¢, respectively, the
relation BD=DB is obtained from the commutativity of A and C.

We use Schur’s formula for reducing the determinant (3).

THEOREM (Schur). Let P, Q, R, and S be square matrices of order
m such that |P|+#0. Let 4 be the determinant of the matrix

sl

Then, 4=|PS—PRP~'Q|, and 4=|PS—RQ| if PR=RP.

This theorem is easily proved by the following decomposition:

[P Q:l_[ I 0] [P 0 [I P“‘QJ

R S| |[RP*I]| |0 S—RPQ| |0 I |’

Schur’s formula and Lemma 1 allow us to reduce the determinant (3) as
follows:

(4) R(f, f)=|AD—-CB| .

This is our required formula. The R(f, f’) is a homogeneous polynomial
of degree 2n—2, and the coefficient of the term a: 'a?™ in R(F f') is
(=1 a1 Hence,

(5) D(f)=(=1)"2"22R(F, f)n .

Our method is easily generalized to the calculation of R(f, g).
Suppose n>m. Let f be the pseudo-remainder of f and zg:

ba™f=q-zg+f, deg (H)sm .

We may consider the degree of f to be m: if deg (f)<m, we have only
to add terms of coefficients zero. We first calculate the resultant of f
and g. The R(f, g) is given by a Sylvester’s determinant of order 2m:
AB .

é bl TS E

"1; 4

R(f, 9)=

where ﬁ, E’, 6’, and D are matrices of order m. We can easily prove
the commutativity of A and C, and B and D, and the determinant of
order 2m is readily reduced to a determinant of order m by Schur’s
formula. Since R(f, g) is related to R( S, 9) by the formula
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R(f, 9)=(—1)mmpa-m=-nR(f, g) ,
we can calculate R(f, g) from R(f, 9).

A less complicated method is to reduce Sylvester’s determinant of
order 2n to a determinant of order n. Let us regard g(x) as a poly-
nomial of degree » and denote the formally n-th degree polynomial by
g(x). Then, R(f, §) is represented by Sylvester’s determinant of order
2n, and the determinant is readily reduced to a determinant of order
n by Schur’s formula. Since R(f, §) is related to R(f, g) by the formula

R(f, 9)=a3"R(f, 9) ,

we can obtain R(f, g) easily from R(f, 9).

Regarding the calculation of the resultant, Bezout presented an
efficient way [2]. In his method, R(f, g) is represented by a determi-
nant of order max[n, m]. The order of our determinant is either m or
n. Note that, even for the case m=m, our handling is different from
Bezout’s. For example, for n=m=38, our determinant is

ab,+ab,+ab, ab,+ab, ab,
a3b1 + argbg agbo + a2b1 azbo - ai «— b,; ’
agbg a3b1 a3b0

while Bezout’s determinant is

ash, b, a,b,
,a/3b1 ango + azbl a2b0 —| ;< b‘i
a3b2 a3b1 ast

§ 2. Results of calculations.

Our final work is to calculate the determinant (4) for various values
of m. We used the formula manipulation system REDUCE-2 [3] for
this calculation, since the evaluation of non-numeric determinants is
quite laborious. The REDUCE-2 is equipped with, like most of the
formula manipulation systems, an efficient determinant manipulation
routine, and we are quite easy to calculate discriminants so far as = is
not so large. In Figure 1, we show a REDUCE program for calculating
discriminants. The meaning of the program will be almost apparent to
the reader. We found, however, that even a powerful computer at
present is hard to calculate discriminants for #=10. The largest limi-
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COMMENT, definition of coefficients;
ARRAY U(9);

U(0): =A0;
UQ1):=A1;
U(9): =A9;

COMMENT, definition of matrices A, B, C, and D;
ALGEBRAIC PROCEDURE ABCD (N);
BEGIN CLEAR A, B, C, D;
MATRIX A(N—-1, N-1), B(N—1, N-1), C(N—1, N-1), D(N—1, N—1);
FOR I:=1: (N—1) DO BEGIN
FOR J:=1: (N—1) DO BEGIN
A(I, J):=IF I>J THEN 0 ELSE (1+J—D)*U(N—(J—I+1));
B(I, J):=IF I<J THEN 0 ELSE (N—=(I-D)*U(I-J);
C(I, J):=IF I>J THEN 0 ELSE (N—(J—D))xU(N—(J—1));
D(I, J);:=IF I<J THEN 0 ELSE (1+(I-J)+*UQ+(I-0));
END;
END;
END;

COMMENT, discriminant for equation of degree u;
ALGEBRAIC PROCEDURE DISCR(N);
BEGIN CLEAR X;
MATRIX X(N—1, N—1);

ABCD(N);

X:=AxD—CxB;

RETURN (—1)**((N—1)*(N—2)/2) * DET(X)/N**(N—2);
END;

Ficure 1. REDUCE program for calculating the discriminant of equation of degree
n. Inputting DISCR(5);, for example, gives the discriminant for fifth degree equation.

n No. of terms time (sec)

2 2 0.079

3 5 0.107

4 16 0.182

5 59 0.414

6 246 1.565

7 1103 9.91

8 5247 78.5

9 26059 1932,

TABLE 1. The number of terms in D(f) and the computation time. "

tation is the memory size: we have used 11 mega-byte memory (11X

8x2® bits), and even this huge memory was rather tight for n=09.
Table 1 shows the numbers of terms contained in diseriminants we

have calculated. We also show computation times on a FACOM M-200,
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one of the Japanese representative computers at present. The reader
will recognize the ability of present computers to perform algebraic
computations from these results. We show expressions of discriminants
for n=4 and 5 in appendices. Expressions for n>5 are too large to
write up in this paper. These expressions are stored in a magnetic
tape which will be available from the authers upon request.

Appendix 1. The discriminant of equation of degree four.

256-aiai—192-ala,a,a2 —128-alaiai+144 - ala.ala, —27- ajat + 144 - a,ala.03
—6-a,aiala,—80-a,a,a:a,0,+18-a,0,a,.0}+16-a,050,—4-aaia—27-ala’
+18-aia,a,a,—4-asal—4-aala,+ alala® .

Appendix 2. The diseriminant of equation of degree five.

3125-ajat—2500- aia,a,ai—3750- aia,a.ai+2000-aia,aiai+ 2250 - ajaia,al
—1600-aja.ala,+256-aiat+2000-aiaia.a; — 50 - alaialai+ 2250 - aia,aial
—2050-aia,a.a.0,0:+160-aza,a.aia,—900 - aia,alai + 1020 - aia,azaia,
—192.ala,a,at —900- alaia,a:+825-ataiaiai+ 560 - aiaia.ala, — 128 - alaia}
—630-ala,aia,a,+144-ala.ala+108- alasa,— 27 - aiaia:— 1600 aaia.ad
+160-asaia.a,0i —36-asaiaia, +1020 - aaiaia,al+ 560 - ayaiaaias
—T746-aala,a.aia,+ 144 - aala,af + 24 - aaiaia,a,— 6 - aaiaial
—630-aya.a3a,a:+24 - aa,0iaa,+ 356 - aa,aiaia,a,— 80 - aya,aia.al
—72.a,a,a:050,+18- aa,a;aia:+108- aala; —72- asasa.a,a,+16 - aa5a]
+16-ayaiada,—4- aaiaia +256-atai—192- afasa,a; —128 - ajaial
+144-ata.,ala,—27 - aiat 4144 - alala.ai —6 - aiaiaia,— 80 - aia.aia,a,
+18-ala,a,a}+16-alata,—4- ajaial—27- alaiai+ 18- ajaia.a,a,—4 - ajaial

—4-alaiasa,+ aialaial .
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