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On Projective Normality of Space Curves on
a Non-Singular Cubic Surface in P3
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Introduction

The purpose of this paper is to give a necessary and sufficient
condition for space curves on a non-singular cubic surface in P® to be
arithmetically Cohen-Macaulay. It is known that arithmetically Cohen-
Macaulay curves form a smooth open subset in the Hilbert scheme Hilb2{"
parametrizing curves in P?® ([2], Théorém 2). Also the dimension of the
Hilbert scheme at a point corresponding to such a curve is caleulated in
[2], using the free resolution of the curve. There are essentially twelve
types of arithmetically Cohen-Macaulay curves on a non-singular cubic
surface in P3. We shall prove this in §2 and §3. In §4, we shall
determine free resolutions of these curves. We can determine the arith-
metic genus and the degree of the curve by the free resolution.

The author would like to thank Professors S. Arima, K. Watanabe
and F. Hidaka who gave him useful suggestions.

§1. Statement of the Result.

Let X be a non-singular cubic surface in the projective 3-space P?
over an algebraically closed field of arbitrary characteristic. Then X is
obtained from P* by blowing-up six points P, :---, P, which are not on
a conic and no three of which are collinear. We denote by E, the ex-
ceptional curve corresponding to P; (i=1, ---, 6), and L the total trans-
form of a line in P?. Then Pic X=Z", with free basis [L], [E\], - - -, [ E]
where [L], [E;] are the linear equivalence class of L, E; respectively,
with intersection numbers

(E{'E,‘:"‘BH léi, j§6
~LP=1
,L'Ei=0 1=i<6.
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DEFINITION 1.1. Let D be a divisor on X, and ¥ =¢"(D) be the
corresponding invertible sheaf. We say & (or D) is of type (a, b, b,, b,,
b,, bs, by) if D~aL—>_,b.FE,.

DEFINITION 1.2. A curve C in P® is called arithmetically Cohen-
Macaulay when its affine cone is Cohen-Macaulay. It is equivalent to
that H(P?® .#(m)) vanishes for every n e Z.

REMARK 1.3. X is embedded in P® by the divisor H of type (8,1, 1,
1,1,1, 1), hence () is of type (a+3, b,+1, ---, bs+1) if & is of type
(ar bl, Tty b6)° . .

Then our theorem is

THEOREM 1.4. Let <&© be an tnvertible sheaf on X of type (a, b, - - -, b,)
with b,=b,=---=b,. Then H' (X, ¥ '(1))=0 for every le Z if and only
if (a, b, ---, b;) 18 one of the followings; '

A) @Bn,n,n,n,n nn) neZ

A) Bn,n+1l,n,nnnn) neZ

A) Bn,n,n,nnnn—1) neZ

A) Bn,n+1l,n,nn n n—1) neZ

B) Bn+l,n,nnnnn) necZ

B) Bn+l,n+1l,n,n,n n n) n€Z

B;) Bn+1l,n+1l,n+1,n,nnn) neZ

B) @Gn+l,n+l,n+1l,n+1l,n,n,n) neZ

C) Bn+2,n+l,n+l,n+l,n+1,n+1,n+1) neZ

C) Bn+2,n+1l,n+l,n+l,n+1, n+1,n) neZ

C) Bn+2,n+1,n+1l,n+l,n+1l,n,n) neZ

C) (Bn+2,n+1,n+1l, n+l,n,n n) neZ.

COROLLARY 1.5. Let C be a curve on X. Then C i8 arithmetically
Cohen-Macaulay in P® if and only if C 18 of type A)-C,) in Theo'rem
1.4.

Furthermore, in each type A,)-C,), there exists a non-singular curve
if and only 1f

> {0 (A3), Bl)y Bz); B3); Cz); Cs)y C4))
- 1 (Al)’ Az); A4)’ B4); Cl)) .

PROOF OF COROLLARY 1.5. Let .“% be the ideal sheaf of C in P&3.
Then, we have the following exact commutative diagram.
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0

y

0 O~ C)Rx()

l |

0 — Tps(— X)QZrs(l) — Tps(l) — Tx(l)

|

C—o () e Oul)——  Ofl) ——0

l

Coker (a;) 0

l

0

>0

By the snake lemma, &3(—C)XT%()=Coker (a;). Since H'(P?,
Ops(—X)RTps(1))=0 for every leZ and i=1,2,.C is arithmetically
Cohen-Macaulay if and only if H'(P?® .%(1))=0 for every le€ Z, and this
is equivalent to saying that H'(Z(—C)R(1))=0 for every le Z.

The last part of the corollary follows from the next lemma.

LEMMA 1.6 ([1], p. 407). Let D be a divisor on X. Then the follow-
mgs are equivalent.
(i) |D| contains an irreducible curve,
(ii) |D| contains a mon-singular irreducible curve,
(iii) D 18 ome of the followings,
(a) D 18 one of the 27 lines on X,
(b) D~L—E, for some 1 (1=1<6),
(¢) D-Lz=0 for every line L, and D*>0.

REMARK 1.7. If C is a non-singular curve, then C is arithmetically
Cohen-Macaulay if and only if C is projectively normal.

§ 2. Proof of the ‘““only if’’ part of the Theorem 1.4.

Let 7: X—P* be the projection, and &~ be an invertible sheaf on
X. From the spectral sequece

Er=H*P*, R, &) — H""(X, &¥),

we have the exact sequence
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(2.1)' 00— H'(\ P, n,¥)— HY(X, &¥)— H'(P?, R'n,¥)
— H'(P?, ,.7) .

LEMMA 2.2. Let & be of type (a,b, ---,b). Then for each 1,
(R'7Z)p,=0 if and only if b,=—1.

PROOF. By the formal function theorem, we have

(R'T L)), =lim HY(X,, &)

where X,=XXp: Spec(Z / #7,), and &, is the restsriction of & to X,.
There is a natural exact sequence

0 — TH(—E)"|Ox(— E)*" — Otges— x,— 0.

Furthermore, &y (— E\)"|%(— E)""'= % (n). Tensoring with & we have
the exact sequence

0—‘_’&};‘(”"’1’{)_’%&1 » >0 .
From this follows the exact sequence
H'(E, ﬁE;(n'*-bt)) — HY( X,y Ly)) — H\(X,, &) —0 .

If b,=—1, we have H(E,, T (n+b,))=0 since E,=P'. It follows that
HY(X, ., L) =(HY(X,, £) = - - =H(X,, KA)=H'(E, O%(b,))=0, and that
(R L) p, = (R'7w )5, =0.

Conversely, if (R'r,.#)p,=0, then H(X,, <£,)=0 for every =, since
{H(X,, &)}, is a surjective system. In particular, we have HY(E,,
75, (b))=0 and hence b,= —1.

COROLLARY 2.3. The followings are equivalent.
(i) b=-—1 for every ¢,

(ii) R7,¥=0,

(iii) H'(P? R'w,.¥)=0.

LEMMA 2.4. There 18 an exact sequence
6

0— 7, & — Tmla) — @ Fyp,— 0,
i=1

where we put Oy p,=, [ #Ap:.

PROOF. Since the assertion is local on P? and 7 is an isomorphism
outside {P,, ---, P}, we have only to show that
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O — n«-*ﬁx(aL'—"tht) -_ ﬁpi(a) e ﬁbiPi — 0

is exact for each ¢. When 0,20, 7,T%(aL—b,E,)=_#4)-Tp(a) and the
assertion is obvious. If b,<0, ¢, ,,=0 and we have only to show that
T, x(aL—b,E,) =7 p(at).

There is an exact sequence

0 —> 7, Fx(al—(b;+1)E,) —> 7w, x(aL—b,E;) —> n*ﬁE;(bt) .

T.%(b;) is only supported at P; and (7,%,(b))p,=H (P, 7* 7, (b.)=
H(E, 75,(b))=0 if b,<0. Hence we have 7,7 (aL—bE)=n, x(aL—
(bi+1))g ¢ En*ﬁx(aL)EﬁPZ(a)-

COROLLARY 2.5. If b,=—1 or 0 for every t, then
HY (X, ¥)=0.

REMARK 2.6. Let .&© be of type A,) and & be of type 4,). By the
Serre duality, HYX, &7!(l)) vanishes for every le€Z if and only if
H'(X, £7(1)) vanishes for every le Z. Similarly H (X, & %(l)) vanishes
for every leZ if and only if HYX, £ (1)) vanishes for every le Z,
when &~ is of type B;) and & is of type C,) (1=1<4).

Now, we shall prove the “only if” part of the Theorem. By moving
Il appropriately, we may assume that . (l)=»(D) is of type (a,b,, - - -, by)
with0=<a<2. In thiscase we have HP? 7, x(—D))=H*P? Tp(—a))=0
by Lemma 2.4. Then by (2.1) we see that the followings are equivalent,

(1) HYZX, Z(—D))=0, :

(ii) H'(P? m,x(—D))=0 and H'(P? R'mw,x(—D))=0,

(iii) H(P?, Op(—a)—®i- 7,/ #i—0 is exact and —b,=—1 for
every 1.

(See also Corollary 2.3 and Lemma 2.4.)
If a=0, then we have 3 dim &, /| 4% <h’(P? )=1, and hence

—1<—b<---<—b<0, —b=—1.

The type of Py (—D)R7x(—1) is (-8, —b,—1, ---, —b,—1) and H'(X,
Ox(—D)R7%(—1))=0. Combining (2.1) and Lemma 2.4, this gives

h(P?, R'7t (T (—D)QT(— 1)) Sh*(P?, 7, (Tx(— D)QRQTx(—1)))
—hH(P?, Cp(—3))=1 .

By Lemma 2.2, we have

—b,—1, ++-, —b—1=—1.



336 MASAYUKI WATANABE

Hence we have
1=56,20, b,=b,=b,=b,=0, 0=b=—1. _
If a=1, then we have 3. dim & | ;" <h"(P?, Z»(—1))=0, and hence
—1=-b=<---=—b,=0.

The type of 3 (—D)RX7%(—1) is (—4, —b,—1, ---, —bs—1) and H'(X,
T(—D)YR7x(—1))=0. As above

(P, R (Tx(—D)QT7%(—1)))=3,
and hence we have
1=b,=b,=b,=0, b,=b,=b,=0.

The proof of the only if part of the Theorem is complete (see Remark
2.6).

§3. Proof of the “if’’ part of the Theorem 1.4.

By Remark 2.6 we may restrict ourselves to check the cases A)), A,),
A,) and B)-B,). Furthermore by Remark 1.3, it is sufficient to show
that H'(X, ") vanishes for every n € Z, for the sheaf ¥ of the above
type.

LEMMA 3.1 ([1], V, 4.13). Let & be an invertible sheaf of type
(a, by, ---,b;) on X. Then the followings are equivalent.

(i) ¥ is ample,

(ii) &~ 18 very ample,

(iii) b,>0 for each i, a>b,+b;, for each i,j and 2a>>);..b; for
each 1.

Case A,. Let H be a hyperplane section in general position. Then,
H is arithmetically Cohen-Macaulay and hence HY(X, Zx(—H)RTx(n))=0
for every ne Z, and Z(H)R7x(n) is of type B(n+1), n+1, .-+, n+1).
Case A,. By the Kodaira Vanishing Theorem and Lemma 3.1 we have
only to check the case &= (F,. There is a natural exact sequence

0 — HY(X, Py~ E,)) — HY(X, &y) — HYE, T
s HYX, Of(—E)) — 0 .

Since k%X, Zx(—E,)=0 and k%X, &%)=h"(E, 7,)=1, this sequence im-
plies HY(X, 7x(—E))=0.
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Case A,. Let D~3nL—(n+1)—3} ,nE,—(n—1)E,. There are natural
exact sequences. ' " '4 ; S
- — HY(X, O(— D~ E))) —> H'(X, Z4(~D))
— HY(E,, 7p(—D))— -- | -
- — H(E,, &y (—D+ E,)) — HYX, &(— D))
— HY(X, O%(—D+Ey)) — - -
By the case A,) and A,), H'(X, ox(—D—E))=H'X, &“’X(—D+Eﬁ))=0.
Furthermore,

e (—D)=%(—n—1), hence H'E, o7 (—D)=0 if »=0,
Hence we have H X, c7x(—D))=0 for every neZ.

Case B,. By the Kodaira Vanishing Theorem, Lemma 3.1 and Corol-
lary 2.5, we have only to check the case ¥ =, (—H+L). There is a
natural exact sequence

0 — HYX, Oy(H—L)) — HX, c7x(H)) — H(L, &,(H))
— HY (X, &x(H—L)) — 0 .
Clearly r’(L, <7 (H))=hL, c(3))=4. Furthermore, we have h%(X, &7 (H—
L))=0 since |H—L|=|2L—->¢_, E,|=|2L -3¢, P,|]=¢ by the choice of
P;s, (where L is a line in P?), and (X, ox(H))=4 since |H|=|3L—
S E|=|8L—3¢, P,|. It follows HYX, ~y(H—L))=0.
Case B,. By the Kodaira Vanishing Theorem, Lemma 3.1 and Corol-

lary 2.5, we have only to check the case & =7,(—2L—E). There is a
natural exact sequence

- — HY(X, &%(2L)) — HY(X, &) — H'(E, 2L+ E)) —> --- .
Since —2L is of type B,), H(X, 7x(2L))=0. Clearly h'(E,, g (2L 4+ E,))=
h'(E,, & (—1))=0, then we have H'X, &) =0.

Case B; and B,. Follow also from the Kodaira Vanishing Theorem,
Lemma 3.1 and Corollary 2.5, except the case n=1.
‘ In the case B,, & =3(4L—2E,—2E,—-> , E;) for n=1. Thereisa
natural exact sequence
0 — HYX, Zx(L—E,— E,)) — HYX, Ox(L—E,)) — HE,, ,(L—E),))
— H X, Oy(L—E,—E,)) — HYX, Oy(L—E)) —> - - -

The result in the Case B, and Remark 2.6 imply H'(X, &7 (L—E,))=0.
Also we have (X, (L —E,—E,))=dim|L—E,— E,|+1=dim |L—P,—P,|+
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1=1, r(X, Ox(L—E))=dim|L—E,|+1=dim |L—P,|+1=2, and &%,
O (Li—E))=h"(E, &,)=1. Then it follows H'X, 7 (L—E,—E,))=0.
Hence we have HY(X, ¥ Y)=HYX, 7x(L—E,—E,))’=0. (Where ' denotes
a dual vector apace.)

In the Case B,, & =c4L—>}.,2E,—>%., E;) for n=1. By the
same methods as above, we have H'(X, ¥ “)=HYX, Ox(L—KE,—E,—
E)Y=0.

The proof of the Theorem is complete.

§4. Application.

THEOREM 4.1 ([2], Theorem 2). Let Hilb” be the Hilbert scheme parame-
trizing closed subschemes of codimension 2 in P°. Then,

(i) Arithmetically Cohen-Macaulay closed subschemes form a smooth
open subset in Hilb?.

(ii) Let e=3, and X be a closed subscheme of codimension 2 in P°.
If & has a free homogeneous resolution of degree 0 of the form

0— @ Fr(—1) — @ Fre(—d) — Fpe— Tz — 0,
i= J=

then we have

) n,—d;+e d;—n;+e n,—n;+
jeng n2n;

nizdj e

_ <d;'—d,+e)+1'

dizd; e

Where [ X] denotes a point of Hilb? corresponding to X.

Now let C be an arithmetically Cohen-Macaulay curve in P®. Then,
as an rs-module, <7, has a free homogenous resolution of length 2,

(4.2) o——ﬂ;g?ms(—ni)—“’—»@ﬁm(—d,) s oy —— Ty —— 0 .

We say that the resolution (4.2) is minimal if each entry of the
matrix ¢ has a positive degree.

PROPOSITION 4.8. If C 18 on a mon-singular cubic surface X, the
mainimal resolution of &, 18 one of the followings.
I) 0 es(—(r+8) > Tps(—r)DTps(—8) — Pps— T¢—0, where r=3,
r=s8=2, r=8=1, or r=2 s=1.
II) 0— Zes(— (7 +2))82— Tps(— )P Zps( — )P Tes( — (7 + 3)) > Tps— T o—>
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0, where r=2.
IITI) 0—ps(— (r+2))PZrs(— (1 +8))—Tps( — )P Tps(— (1 + 1))2— P ps—>
Te—0, where r=2.
IV) 00— Zps(—(r+2))8 > Tps( — )P P rs( — (1 + 1)) — P ps— &,—0, where
r=2.
V) 0> Zps(—83)— Pps(—2)¥* — Pps — 7 — 0.
Furthermore, the arithmetic genus and the degree of C is as follows.

2.(C) degree
1) 1+%'rs('r+s—4) re

1) %('r——l)(?yr——Z) 3r—1

1) %r(sr—u 3r+1
V) %f(r—n 3
V) 0 3.

PROOF. Assume that the resolution (4.2) is minimal. If we denote by
I(C) the ideal of C, I(C) is generated by (m —1)-minors of the matrix ¢
([3], §3). Since C is on X, I(C) must contain an irreducible cubic form.
Hence the minimality of (4.2) implies that the matrix (deg @,;)icicmiisism—
is one of the followings,

r
I < > r=3, r=8=2, r=8=1, or r=2, s=1,

8
r—1 r—1
II) ( 2 2 )'rgZ,
1 1
r—1 »r
III) ( 1 2) r=2,
1 2
r—1 r—1 »r—1
1 1 1
IV) ( 1 1 1 r=2,
1 1 1
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The first part of the proposition follows.
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For the second part of the proposition, it is known that 2degC=
mini—230.d; and p,(C)=1+(1/6) 3.r5'ni—> 1, di—2degC, if 7, has a
resolution of the form (4.2) ([3], Proposition 3.1).

Let C be on a non-singular cubic surface X in P°, and for example
of type A,) in Theorem 1.4. Since C~3nL—(n+1)E,—>} , E,—(n—1)E,,

we have p,(C)=(3/2)n(n—1) and deg C=3n ([1], V, 4.8).
with the results of Proposition 4.3, we see that the minimal resolution

Comparing this

of 7 is the type IV) with r=n for n=2, and the type V) for n=1.
(If »<0, there are no effective members in this class.)
Furthermore, by Theorem 4.1 we have

3 3

dim;; Hilb%s=

24
12

—ni+ ?fn+18 n=3

By the similar methods, we have the following theorem.

THEOREM 4.4. For each arithmetically Cohen-Macaulay curve on X,

we have
type existence minimal resolution #(C) dim(;, Hilb%s

. 3 ,.8
A) nz=1 I) with r=38 s=n 2 oM +En+19 n=4
36 n=38
24 n=2
12 n=1

. 3 ,.1
A,) nzl II) with r=n for n=2 3 2" +En+19 n=4
32 n=3
I) with r=2 for n=1 20 n=2
s=1 2 8 n=1

. 3 ,, 5.

As) n=0 III) with r=n for n=38 3 2" +—2-n+19 n=3
By) 28 n=2
Cy) I) with r=8=2 for n=1 2 16 n=1
I) with r=8=1 for n=0 2 4 n=0
Ay) nz=1 1IV) with r=n for n=2 4 %n"+%n+18 n=3
B4) 24 n=2
Cy) V) for n=1 3 12 n=1
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type existence minimal resolution ©(C) dimic1Hilb%s

: 3 ,.9
By) n=0 IV) with r=n+1 for n=1 4 " +En+21 n=2
Cy 24 n=1
V) Sfor n=0 3 12 n=0

. 3 ,. 1
B;) n=0 II) with r=n+1 for n=1 3 S +~2'n+20 n=3
Cs) 32 n=2
20 n=1
I) with r=2 for n=0 2 8 n=0

s=1

(Where 1(C) denotes the number of minimal ginerators of I(C).)
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