On Modules over a Serial Ring Whose Endomorphism Rings are Quasi-Frobenius

Takashi MANO
Sophia University
(Communicated by Y. Kawada)

Introduction

The purpose of this paper is to establish several necessary and sufficient conditions for a module over a serial ring to have a quasiFrobenius endomorphism ring.

In the study of properties of modules, it is greatly important to investigate their endomorphism rings. By Schur's Lemma the endomorphism ring of a simple module is a division ring, and we have enough knowledge about the endomorphism rings of modules over a semi-simple ring. Here we shall investigate the following problem:

Problem. Find a necessary and sufficient condition for a module U over a ring R to have a quasi-Frobenius endomorphism ring.

Quasi-Frobenius rings are one of the most important classes of rings which are not semi-simple; in fact, a group algebra $K G$ of a finite group G over a field K such that char $(K) \| G \mid$ is not semi-simple, but it is quasi-Frobenius. As for the problem in the case U being a faithful module over a quasi-Frobenius ring, C. W. Curtis [1] gave a sufficient condition and K. Morita [6] obtained a necessary and sufficient condition. Recently J. A. Green [4] and H. Sawada [11] showed that a certain nonfaithful module over a group algebra of a finite group with a split (B, N)-pair has a Frobenius endomorphism algebra. Stimulated with Sawada's result [10], Green [4] gave a necessary condition for our problem in the case of U being a module over a group algebra under a certain assumption, and again Sawada [12] extended Green's result. On the other hand, K. Morita gave a sufficient condition for the above problem in the case U being a module over an Artinian ring (cf. Remark 14). However, each of these conditions is not a necessary
and sufficient condition for our problem. Indeed, even a special problem of finding a necessary and sufficient condition for a module to have a division ring as its endomorphism ring has not yet been settled. In this paper, as the first step to solve our problem, we shall restrict ourselves to the case of U being a module over a serial ring, and solve the problem in this case.

Serial rings were introduced by T. Nakayama [8] in 1940 (he called them "generalized uniserial rings") as a generalization of uniserial rings in the sense of G. Köthe. Since then they were studied by H. Kupisch [5], and later by I. Murase [7] and by K. R. Fuller [2, 3]. The class of serial rings seems to be the unique class of rings which is fairly studied, except the class of semi-simple rings and that of quasi-Frobenius rings.

The main theorem of this paper is stated as follows.
Theorem. Let R be an indecomposable serial ring with the radical
J. Write 1 as a sum of mutually orthogonal primitive idempotents

$$
1=\sum_{i=1}^{n} \sum_{j=1}^{k_{i}} e_{i j}
$$

where $R e_{i j} \cong R e_{r t}$ if and only if $i=r . \quad$ Let ${ }_{R} U$ be a faithful module such that

$$
{ }_{R} U=\bigoplus_{i=1}^{s} \bigoplus_{j=1}^{p_{i}} U_{i j}
$$

where each ${ }_{R} U_{i j}$ is indecomposable and ${ }_{R} U_{i j} \cong_{R} U_{r t}$ if and only if $i=r$. Put

$$
\sigma=\left\{i \mid R e_{i 1} / J e_{i 1} \cong T o p\left(U_{k 1}\right) \text { for some } k\right\}
$$

and

$$
e=\sum_{i \in \sigma} e_{i 1}
$$

Assume that $\operatorname{End}_{R}(U)$ is an indecomposable ring. Then the following conditions are equivalent:
(a) $\operatorname{End}_{R}(U)$ is a quasi-Frobenius ring.
(b) $\bigoplus_{i=1}^{*} U_{i 1}$ is a minimal faithful left R-module and
(c) $c\left({ }_{e R_{e} e} U_{i_{1}}\right)=c\left({ }_{e R_{e}} e U_{j_{1}}\right)$ for all i and j, and $\operatorname{Top}\left(U_{i_{1}}\right) \cong \operatorname{Top}\left(U_{j_{1}}\right)$ if and only if $i=j$, where $c(M)$ denotes the composition length of M.

Although there is an additional assumption that $\operatorname{End}_{R}(U)$ is an indecomposable ring, it is not essential as we will point out in Remark 9 of section 3 .

In the first section, we will define some terminology and recall the known results. In the second section, we shall prove our fundamental lemma. In sections 3 and 4, we establish the main theorem stated as above.

The author wishes to express his thanks to Professor Kiiti Morita for his helpful suggestions.

§ 1. Preliminaries.

Throughout this paper, R denotes an Artinian ring with unit element 1. Put $J=\operatorname{Rad}(R)$. Write 1 as a sum of mutually orthogonal primitive idempotents

$$
1=\sum_{i=1}^{n} \sum_{j=1}^{k_{i}} e_{i j}
$$

where $R e_{i j} \cong R e_{s t}$ if and only if $i=s$. For a left R-module ${ }_{R} M, c\left({ }_{R} M\right)$ denotes the composition length of M and $\operatorname{Top}\left({ }_{R} M\right)$ denotes the top of M, i.e., $\operatorname{Top}\left({ }_{R} M\right)=M / J M$. If ${ }_{R} M$ is a uniserial module with the composition factor modules

$$
J^{k-1} M / J^{k} M \cong R e_{i_{k} /} / J e_{i_{k} 1} \quad \text { for } \quad 1 \leqq k \leqq m=c(M)
$$

then we say that the composition type of M is $\left(i_{1}, i_{2}, \cdots, i_{m}\right)$; in particular, the composition type of $R e_{j 1} / J e_{j 1}$ is (j).

Homomorphisms between left R-modules will be written on the right, so that $f g$ is first f, then g; similarly, the endomorphism ring of a left R-module will be act on the right.

For each integer j, [j] denotes the least positive remainder of j modulo n. This notation is very convenient to consider a left Kupisch series of a serial ring.

The terminology is the same as in K. R. Fuller [2]. The following lemmas are useful.

Lemma 1. Each indecomposable module over a serial ring is quasiinjective, quasi-projective and uniserial.

Proof. cf. T. Nakayama [9] and K. R. Fuller [3].
Lemma 2. Let L, M and N be indecomposable left R-modules over a serial ring R.
(i) Let $f: L \rightarrow M$ and $g: L \rightarrow N$ be homomorphisms such that $\operatorname{Ker}(f) \supseteqq \operatorname{Ker}(g)$. If $c(N)+c(\operatorname{Ker}(g)) \leqq c(M)+c(\operatorname{Ker}(f))$, then there exists $h: N \rightarrow M$ such that $g h=f:$

(ii) Let $f: M \rightarrow L$ and $g: N \rightarrow L$ be homomorphisms such that $\operatorname{Im}(g) \supseteqq \operatorname{Im}(f)$. If $c(\operatorname{Ker}(f)) \leqq c(\operatorname{Ker}(g))$, then there exists $h: M \rightarrow N$ such that $h g=f$:

Proof. Obvious by Lemma 1.
Corollary 3. Let M and N be indecomposable modules over a serial ring such that $c(M) \leqq c(N)$. Then
(i) If $\operatorname{Top}(M) \cong \operatorname{Top}(N)$, then there exists an epimorphism $\pi: N \rightarrow M$.
(ii) If $\operatorname{Soc}(M) \cong \operatorname{Soc}(N)$, then there exists a monomorphism $\theta: M \rightarrow N$.

Proof. Obvious from Lemma 2.

§ 2. Fundamental lemma.

First in this section, we shall prove the following lemma.
Lemma 4. Let R be a serial ring and ${ }_{R} U$ be a faithful left R module such that

$$
{ }_{R} U={ }_{R} U_{1} \oplus \cdots \bigoplus_{R} U_{s}
$$

where each ${ }_{R} U_{i}$ is indecomposable. If $\operatorname{End}_{R}(U)$ is a quasi-Frobenius ring, then
(i) $\operatorname{Top}\left({ }_{R} U_{i}\right) \cong \operatorname{Top}\left({ }_{R} U_{j}\right)$ if and only if ${ }_{R} U_{i} \cong{ }_{R} U_{j}$.
(ii) $\operatorname{Soc}\left({ }_{R} U_{i}\right) \cong \operatorname{Soc}\left({ }_{R} U_{j}\right)$ if and only if ${ }_{R} U_{i} \cong{ }_{R} U_{j}$.

Proof. Put $S=\operatorname{End}_{R}(U), N=\operatorname{Rad}(S)$ and let $f_{i}:{ }_{R} U \rightarrow{ }_{R} U_{i}$ be the projection for all i. First notice that

$$
\begin{equation*}
{ }_{s} S f_{i} \cong{ }_{S} S f_{j} \text { if and only if }{ }_{R} U_{i} \cong{ }_{R} U_{j} \tag{1}
\end{equation*}
$$

Proof of (i). Since the 'if' part is trivial, we shall prove the 'only if' part.

Assume $\operatorname{Top}\left(U_{i}\right) \cong \operatorname{Top}\left(U_{j}\right)$. Without loss of generality, we can assume $c\left(U_{i}\right) \geqq c\left(U_{j}\right)$. Then, by Corollary 3, there exists $\pi \in S$ such that $\pi=f_{i} \pi f_{j}$ and it induces an epimorphism $\left.\pi\right|_{U_{i}}: U_{i} \rightarrow U_{j}$. Since S is $Q F$, there exists $S f_{k}$ such that $\operatorname{Soc}\left(S f_{k}\right) \cong S f_{j} / N f_{j}$. Then $f_{j} \cdot \operatorname{Soc}\left(S f_{k}\right) \neq 0$, hence there exists a nonzero element $\varphi \in f_{j} \cdot \operatorname{Soc}\left(S f_{k}\right)$. Since $\operatorname{Soc}\left(S f_{k}\right)$ is a left S-module, $\pi \rho \in \operatorname{Soc}\left(S f_{k}\right)$. On the other hand, $\pi \rho \neq 0$ because $\varphi \neq 0$ and π is an epimorphism. Hence $f_{i} \cdot \operatorname{Soc}\left(S f_{k}\right) \neq 0$, i.e., $S f_{i} / N f_{i}$ is isomorphic to a direct summand of Soc $\left(S f_{k}\right)$. Therefore $S f_{i} / N f_{i} \cong S f_{j} / N f_{j}$, thus $S f_{i} \cong S f_{j}$. Hence $U_{i} \cong U_{j}$.

Proof of (ii). Assume $\operatorname{Soc}\left(S f_{i}\right) \cong \operatorname{Soc}\left(S f_{j}\right)$. Without loss of generality, we can assume $c\left(U_{i}\right) \leqq c\left(U_{j}\right)$. Then, by Corollary 3, there exists $\theta \in S$ such that $\theta=f_{i} \theta f_{j}$ and it induces a monomorphism $\left.\theta\right|_{U_{i}}: U_{i} \rightarrow U_{j}$. Since S is $Q F$, there exists $S f_{k}$ such that $\operatorname{Soc}\left(S f_{i}\right) \cong S f_{k} / N f_{k}$. Then f_{k}. Soc $\left(S f_{i}\right) \neq 0$, hence there exists a nonzero element $\psi \in f_{k} \cdot \operatorname{Soc}\left(S f_{i}\right)$. Since $N(\psi \theta)=(N \psi) \theta=0$, we have $\psi \theta \in \operatorname{Soc}\left(S f_{j}\right)$. On the other hand, $\psi \theta \neq 0$ because $\psi \neq 0$ and θ is a monomorphism. Hence $f_{k} \cdot \operatorname{Soc}\left(S f_{j}\right) \neq 0$, i.e., $S f_{k} / N f_{k}$ is isomorphic to a direct summand of $\operatorname{Soc}\left(S f_{j}\right)$. Since S is $Q F$, we have $S f_{i} \cong S f_{j}$, thus $U_{i} \cong U_{j}$ by (1).

Lemma 5. Let R be a serial ring and ${ }_{R} U$ be a left R-module such that

$$
{ }_{R} U={ }_{R} U_{1} \oplus \cdots \oplus_{R} U_{s}
$$

where each ${ }_{R} U_{i}$ is indecomposable. Assume that $\operatorname{Top}\left(U_{i}\right) \not \equiv \operatorname{Top}\left(U_{j}\right)$ and $\operatorname{Soc}\left(U_{i}\right) \not \equiv \operatorname{Soc}\left(U_{j}\right)$ if $i \neq j$. If $\operatorname{End}_{R}(U)$ is an indecomposable ring, then each U_{i} is not simple.

Proof. If U_{i} is simple, then

$$
\begin{aligned}
\operatorname{Hom}_{R}\left(U_{i}, U_{j}\right) \neq 0 & \Longleftrightarrow U_{i} \cong \operatorname{Soc}\left(U_{j}\right) \Longleftrightarrow i=j \\
& \Longleftrightarrow \operatorname{Top}\left(U_{j}\right) \cong U_{i} \Longleftrightarrow \operatorname{Hom}_{R}\left(U_{j}, U_{i}\right) \neq 0 .
\end{aligned}
$$

Thus $\operatorname{Hom}_{R}\left(U_{i}, U_{j}\right)=0=\operatorname{Hom}_{R}\left(U_{j}, U_{i}\right)$ if $i \neq j$. Therefore

$$
\operatorname{End}_{R}(U)=\operatorname{End}_{R}\left(U_{i}\right) \oplus \operatorname{End}_{R}\left(\bigoplus_{k \neq i} U_{k}\right)
$$

as rings. Thus $\operatorname{End}_{R}(U)$ decomposes.
Now, let us proceed to our fundamental lemma of this paper. Let R be an indecomposable self-basic serial ring with the radical J. Write 1 as a sum of mutually orthogonal primitive idempotents $1=e_{1}+\cdots+e_{n}$ such that $R e_{1}, R e_{2}, \cdots, R e_{n}$ is a left Kupisch series of R.

Let ${ }_{R} U$ be a faithful left R-module such that

$$
{ }_{R} U={ }_{R} U_{1} \oplus \cdots \bigoplus_{R} U_{n}
$$

where each ${ }_{R} U_{i}$ is indecomposable. Assume further that

$$
{ }_{R} U_{i} \cong R e_{i} / J^{m_{i}} e_{i} \quad \text { for all } \quad i\left(m_{i} \neq 0\right)
$$

Put $S=\operatorname{End}_{R}(U), N=\operatorname{Rad}(S)$ and let $f_{i}: U \rightarrow U_{i}$ be the projection. Then ${ }_{R} U_{i} \cong{ }_{R} U_{j}$ if and only if $i=j$, and S is a self-basic ring. Our fundamental lemma is stated as follows:

Lemma 6. Under the above assumptions, if $S=\operatorname{End}_{R}(U)$ is an indecomposable ring, then the following conditions are equivalent:
(a) S is a quasi-Frobenius ring.
(b) R is a quasi-Frobenius ring.
(c) ${ }_{R} U$ is a minimal faithful left R-module.
(d) ${ }_{R} U$ is an injective left R-module.
(e) $c\left({ }_{R} U_{i}\right)=c\left({ }_{R} U_{j}\right)$ for all i and j.

Moreover, if the above conditions are satisfied, then

$$
{ }_{R} U \cong{ }_{R} R \quad \text { and } \quad R \cong \operatorname{End}_{R}(U)
$$

Proof. We shall prove this lemma as in indicated by the following diagram;

$(b) \Rightarrow(c)$. Since R is self-basic, $Q F$ and serial, a minimal faithful left R-module is isomorphic to ${ }_{R} R$. On the other hand, ${ }_{R} U$ is a factor module of ${ }_{R} R$ and faithful, and hence ${ }_{R} U \cong_{R} R$. Thus ${ }_{R} U$ is a minimal faithful left R-module.
$(c) \Rightarrow(d) . \quad$ A minimal faithful module is injective.
$(d) \Rightarrow(e)$. If $m_{i} \neq m_{j}$ for some i and j, then there exists k such that $m_{k} \varsubsetneqq m_{[k+1]}$. By K. R. Fuller [2],

$$
\begin{aligned}
{ }_{R} U_{k} & \cong R e_{k} / J^{m_{k}} e_{k} \cong J e_{[k+1]} / J^{m_{k}+1} e_{[k+1]} \\
& \varsubsetneqq R e_{[k+1]} / J^{m_{k}+1} e_{[k+1]} \cong U_{[k+1]} / J^{m_{k}+1} U_{[k+1]}
\end{aligned}
$$

Since $U_{[k+1]}$ is indecomposable, $U_{[k+1]} / J^{m_{k}+1} U_{[k+1]}$ is also indecomposable. On the other hand, U_{k} is injective. Thus, an indecomposable module $U_{[k+1]} /$ $J^{m_{k}+1} U_{[k+1]}$ has a proper injective submodule U_{k}. This is a contradiction. Hence we have proved that $m_{i}=m_{j}$ for all i and j.
$(e) \Rightarrow(b)$. Let us put $c\left(R e_{i}\right)=\max \left\{c\left(R e_{1}\right), \cdots, c\left(R e_{n}\right)\right\}$. Then $R e_{i}$ is a direct summand of a minimal faithful left R-module (cf. I. Murase [7]), and hence $R e_{i}$ is also isomorphic to a direct summand of U since U is faithful. Since U_{i} is the unique direct summand of U whose top is isomorphic to Top ($R e_{i}$), we have $R e_{i} \cong U_{i}$. Then

$$
\begin{aligned}
c\left(R e_{j}\right) & \geqq c\left(U_{j}\right)=c\left(U_{i}\right)=c\left(R e_{i}\right) \\
& =\max \left\{c\left(R e_{1}\right), \cdots, c\left(R e_{n}\right)\right\} \quad \text { for all } j .
\end{aligned}
$$

Hence $c\left(R e_{i}\right)=c\left(R e_{j}\right)$ for all j. Therefore R is $Q F$ (cf. I. Murase [7]).
$(b) \Rightarrow(a) . \quad$ K. Morita [4], Theorem 16.6.
$(a) \Rightarrow(e)$. Assume (a). First, notice that S is self-basic, and hence $N=\{\varphi \in S \mid \operatorname{Im}(\varphi) \cong J N\}$.

Now we distinguish two cases;
(i) $\operatorname{Soc}\left(U_{i}\right) \cong \operatorname{Soc}\left(U_{j}\right)$ for some i and $j(i \neq j)$,
(ii) $\operatorname{Soc}\left(U_{i}\right) \not \equiv \operatorname{Soc}\left(U_{j}\right)$ for all i and $j(i \neq j)$.

Case (i). In this case, S is not $Q F$ from Lemma 4.
Case (ii). If $m_{i} \neq m_{j}$ for some $i \neq j$, then there exists k such that $m_{k} \varsubsetneqq m_{[k+1]}$. By K. R. Fuller [2],

$$
\begin{aligned}
U_{k} & \cong R e_{k} / J^{m_{k}} e_{k} \cong J e_{[k+1]} J^{m_{k}+1} e_{[k+1]} \\
& \cong J U_{[k+1]} / J^{m_{k}+1} U_{[k+1]}
\end{aligned}
$$

If $m_{k}+1=m_{[k+1]}$, then $\operatorname{Soc}\left(U_{k}\right) \cong \operatorname{Soc}\left(J U_{[k+1]}\right)=\operatorname{Soc}\left(U_{[k+1]}\right)$. This contradicts the assumption (ii). Thus $m_{k}+1 \leqq m_{[k+1]}$.

We shall next prove

$$
\begin{equation*}
\operatorname{Im}(\varphi) \varsubsetneqq J U_{[k+1]} \quad \text { for all } \varphi \in N f_{[k+1]} \tag{2}
\end{equation*}
$$

Since $N=\{\varphi \in S \mid \operatorname{Im}(\varphi) \subseteq J U\}$, we have $\operatorname{Im}(\varphi) \subseteq J U_{[k+1]}$ for all $\varphi \in N f_{[k+1]}$. If $\operatorname{Im}(\varphi)=J U_{[k+1]}$ for some $\varphi \in N f_{[k+1]}$, then $\operatorname{Im}\left(f_{k} \varphi\right)=J U_{[k+1]}$. Therefore

$$
\begin{aligned}
m_{k} & =c\left(U_{k}\right) \geqq c\left(\operatorname{Im}\left(f_{k} \varphi\right)\right)=c\left(J U_{[k+1]}\right) \\
& =c\left(U_{[k+1]}\right)-1=m_{[k+1]}-1
\end{aligned}
$$

This contradicts $m_{k}+1 \varsubsetneqq m_{[k+1]}$. Hence (2) is proved.
Since $\operatorname{Soc}\left(U_{1}\right), \cdots, \operatorname{Soc}\left(U_{n}\right)$ are mutually non-isomorphic, there exists i such that $\operatorname{Soc}\left(U_{i}\right) \cong R e_{k} / J e_{k}$. By Lemma 5, U_{i} is not simple, and hence the composition type of U_{i} is ($i, \cdots, \cdots,[k+1], k$). Then there exists $\psi \in \operatorname{Hom}_{R}\left(U_{[k+1]}, U_{i}\right)$ such that $\operatorname{Im}(\psi)=J^{m_{i}-2} U_{i}$, i.e., $c(\operatorname{Im}(\psi))=2$. Then for all $\varphi \in N f_{[k+1]}$, we have

$$
\begin{aligned}
c(\operatorname{Im}(\varphi \psi)) & =c(\operatorname{Im}(\varphi))-c(\operatorname{Ker}(\psi)) \\
& \supsetneqq c\left(J U_{[k+1]}\right)-\left(c\left(U_{[k+1]}\right)-c(\operatorname{Im}(\psi))\right) \\
& =\left(m_{[k+1]}-1\right)-\left(m_{[k+1]}-2\right)=1
\end{aligned}
$$

Hence $N \psi=N f_{[k+1]} \psi=0$. This means $\psi(\neq 0) \in \operatorname{Soc}\left(S f_{i}\right)$. Thus $f_{[k+1]}$. Soc $\left(S f_{i}\right) \neq 0$. Therefore $S f_{[k+1]} / N f_{[k+1]}$ is isomorphic to a direct summand of $\operatorname{Soc}\left(S f_{i}\right)$. By the same argument, $S f_{k} / N f_{k}$ is isomorphic to a direct summand of Soc $\left(S f_{i}\right)$. Hence $\operatorname{Soc}\left(S f_{i}\right)$ is not simple, and this contradicts that S is $Q F$. Thus we have proved that $m_{i}=m_{j}$ for all i and j.

§ 3. Main theorem.

Let R be an indecomposable serial ring with the radical J, and write 1 as a sum of mutually orthogonal primitive idempotents

$$
1=\sum_{i=1}^{n} \sum_{j=1}^{k_{i}} e_{i j}
$$

where $R e_{i j} \cong R e_{r t}$ if and only if $i=r$. Assume that $R e_{11}, R e_{21}, \cdots, R e_{n 1}$ is a left Kupisch series of R.

Let ${ }_{R} U$ be a faithful left R-module such that

$$
{ }_{R} U=\bigoplus_{i=1}^{s} \bigoplus_{j=1}^{p_{i}} U_{i j}
$$

where each $U_{i j}$ is indecomposable and $U_{i j} \cong U_{r t}$ if and only if $i=r$. Put

$$
\sigma=\left\{i \mid R e_{i 1} / J e_{i 1} \cong \operatorname{Top}\left(U_{k 1}\right) \text { for some } k\right\}
$$

and

$$
e=\sum_{i \in \sigma} e_{i 1}
$$

The following theorem is the main result of this paper.

TheOrem 7. The notations are as above. Assume that $\operatorname{End}_{R}(U)$ is an indecomposable ring. Then the following conditions are equivalent:
(a) $\operatorname{End}_{R}(U)$ is a quasi-Frobenius ring.
(b) $\bigoplus_{i=1}^{s} U_{i 1}$ is a minimal faithful left R-module and

$$
\operatorname{Top}\left(e R e \bigoplus_{i=1}^{s} e U_{i 1}\right) \cong \operatorname{Soc}\left(e R e ~ \bigoplus_{i=1}^{s} e U_{i 1}\right)
$$

(c) $c\left(\left(_{e R e} e U_{i 1}\right)=c\left({ }_{e R e} e U_{j 1}\right)\right.$ for all i and j, and $U_{i j} \cong U_{r t}$ if and only if $\operatorname{Top}\left(U_{i j}\right) \cong \operatorname{Top}\left(U_{r t}\right)$.

Moreover, if the above conditions are satisfied, then the rings $\operatorname{End}_{R}(U)$ and eRe are Morita equivalent.

Theorem 7 is derived from the next theorem.
Theorem 8. The notations are as above. Assume that $\operatorname{End}_{R}(U)$ is an indecomposable ring. Assume further that

$$
\begin{equation*}
U_{i j} \cong U_{r t} \text { if and only if } \operatorname{Top}\left(U_{i j}\right) \cong \operatorname{Top}\left(U_{r t}\right) \tag{3}
\end{equation*}
$$

Then the following conditions are equivalent:
(a) $\operatorname{End}_{R}(U)$ is a quasi-Frobenius ring.
(b) $\operatorname{End}_{e R e}(e U)$ is a quasi-Frobenius ring.
(c) eRe is a quasi-Frobenius ring.
(d) $\oplus_{i=1}^{s} e U_{i 1}$ is a minimal faithful left eRe-module.
(e) $\bigoplus_{i=1}^{i} e U_{i 1}$ is an injective left eRe-module.
(f) $c\left({ }_{e R e} e U_{i_{1}}\right)=c\left({ }_{e R_{e} e} e U_{j_{1}}\right)$ for all i and j.
(g) $\oplus_{i=1}^{s} U_{i 1}$ is a minimal faithful left R-module and

$$
\operatorname{Top}\left(e R e{ }_{i=1} \oplus_{i 1}^{s} e U_{i 1}\right) \cong \operatorname{Soc}\left(e R_{e} \bigoplus_{i=1}^{s} e U_{i 1}\right)
$$

Moreover, if the above conditions are satisfied, then the rings $\operatorname{End}_{R}(U), \operatorname{End}_{e R e}(e U)$ and eRe are Morita equivalent.

Remark 9. Several assumptions in Theorem 7 such as
(i) R is an indecomposable ring,
(ii) ${ }_{R} U$ is faithful,
(iii) $\operatorname{End}_{R}(U)$ is an indecomposable ring,
are not essential. Ad (i): If R decomposes into a direct sum of indecomposable two-sided ideals, then we can apply Theorem 7 over each indecomposable component. Ad (ii): If ${ }_{R} U$ is not faithful, then we have only to consider $R /(0: U)$ instead of R. Ad (iii): If $\operatorname{End}_{R}(U)$ decomposes, then we have only to consider the direct summand of U which corresponds to an indecomposable component of $\operatorname{End}_{R}(U)$.

Here we shall prove Theorem 7 under the assumption that Theorem 8 is true.

Proof of Theorem 7. To prove Theorem 7, it is sufficient to prove $(a) \Rightarrow(3)$ and $(b) \Rightarrow(3)$.
$(a) \Rightarrow(3) . \quad$ This is nothing else than Lemma 4.
$(b) \Rightarrow(3)$. Assume $\operatorname{Top}\left(U_{i 1}\right) \cong \operatorname{Top}\left(U_{j_{1}}\right)$. Without loss of generality, we can assume that $c\left(U_{i 1}\right) \geqq c\left(U_{j_{1}}\right)$. Then there exists an epimorphism $\pi: U_{i 1} \rightarrow U_{j 1}$. Since $U_{j_{1}}$ is a direct summand of a minimal faithful left R-module, $U_{j 1}$ is projective. If π is not an isomorphism, then $U_{i 1}$ is not indecomposable since $U_{j 1}$ is projective. This is a contradiction. Thus we have $U_{i 1} \cong U_{j 1}$.

§4. Proof of Theorem 8.

In this section, we shall prove Theorem 8. Throughout this section, the notations and the assumptions are as in Theorem 8.

Since ' $Q F$ ' is Morita invariant, we have only to prove Theorem 8 for the case where $k_{i}=1$ for $1 \leqq i \leqq n$ and $p_{j}=1$ for $1 \leqq j \leqq s$. In this case, we write

$$
e_{i}=e_{i 1}(1 \leqq i \leqq n), \quad U_{j}=U_{j_{1}}(1 \leqq j \leqq s)
$$

Without loss of generality, we can assume that

$$
\operatorname{Top}\left(U_{i}\right) \cong R e_{q(i)} / J e_{q(i)} \text { for all } i \text { and } q(1) \nsupseteq q(2) \nsupseteq \cdots \nsupseteq q(s)
$$

Here, by the definition, we have

$$
e=\sum_{j=1}^{s} e_{q(j)}
$$

Moreover, put

$$
\begin{aligned}
& m_{i}=c\left({ }_{R} U_{j}\right) \text { for } 1 \leqq j \leqq s \\
& S=\operatorname{End}_{R}(U), \quad N=\operatorname{Rad}(S) \\
& S^{\prime}=\operatorname{End}_{e R e}(e U), \quad N^{\prime}=\operatorname{Rad}\left(S^{\prime}\right)
\end{aligned}
$$

Let $f_{j}:{ }_{R} U \rightarrow{ }_{R} U_{j}$ be the projection and $f_{j}^{\prime}=\left.f_{j}\right|_{e V}:{ }_{\bullet R e} e U \rightarrow{ }_{\text {eRe }} e U_{j}$.
Then there exists a ring homomorphism

$$
\Phi: S=\left.\operatorname{End}_{R}(U) \ni \varphi \longmapsto \varphi\right|_{e U} \in \operatorname{End}_{\epsilon R_{e}}(e U)=S^{\prime}
$$

For any $\varphi \in S, \operatorname{Im}(\varphi) \neq 0$ implies that $e(\operatorname{Im}(\varphi)) \neq 0$ by virtue of the definition of e. Hence we have

$$
\begin{aligned}
\varphi \in \operatorname{Ker}(\Phi) & \left.\Longleftrightarrow \varphi\right|_{e v}=\Phi(\varphi)=0 \\
& \Longleftrightarrow e(\operatorname{Im}(\varphi))=0 \Longleftrightarrow \operatorname{Im}(\varphi)=0 \Longleftrightarrow \varphi=0,
\end{aligned}
$$

and hence we see that Φ is one-to-one. Put $\Phi_{i j}=\left.\Phi\right|_{f_{i} S f_{j}}$; then

$$
\Phi_{i j}\left(f_{i} s f_{j}\right)=\left.f_{i} s f_{j}\right|_{e U_{i}} \quad \text { for all } f_{i} s f_{j} \in f_{i} S f_{j}
$$

and $\Phi_{i j}$ is a module monomorphism.
Lemma 10. The notations and the assumptions are as above. If $m_{i} \geqq m_{j}-[q(j)-q(i)]$, then $\Phi_{i j}$ is onto $(i \neq j)$. (For the notation [], cf. its definition in the first section).

Proof. In this proof, we will identify U_{i} with $R e_{q(i)} / J^{m_{i}} e_{q(i)}$. Let $h_{i}: R e_{q(t)} \rightarrow U_{i}$ be a canonical epimorphism and $h_{i}^{\prime}=\left.h_{i}\right|_{e R e_{q(i)}}$ for all i. Moreover, put
$\Psi:\left.\operatorname{Hom}_{R}\left(R \mathrm{e}_{q(i)}, U_{j}\right) \ni \psi \longmapsto \psi\right|_{e R e_{q(i)}} \in \operatorname{Hom}_{e R e}\left(e R e_{q(i)}, e U_{j}\right)$.
Then we get the following commutative diagram:

Then Ψ is an isomorphism. Put $t=[q(j)-q(i)]$. Then $J^{t} U_{j}$ is the largest submodule of U_{j} whose top is isomorphic to Top $\left(U_{i}\right)$.

For all $\varphi \in \operatorname{Hom}_{e R_{e}}\left(e U_{i}, e U_{j}\right)$, let us put $\varphi^{*}=\left[\Psi^{-1} \circ \operatorname{Hom}\left(h_{i}^{\prime}, 1\right)\right](\varphi)$. If $\varphi \neq 0, \operatorname{Im}\left(\varphi^{*}\right)$ is a submodule of $J^{t} U_{j}$ since $\operatorname{Top}\left(\operatorname{Im}\left(\varphi^{*}\right)\right) \cong \operatorname{Top}\left(R e_{q(i)}\right) \cong$ $\operatorname{Top}\left(U_{i}\right)$. Therefore

$$
c\left(\operatorname{Im}\left(\mathscr{Q}^{*}\right)\right) \leqq c\left(J^{t} U_{j}\right)=m_{j}-t
$$

Since $m_{i} \geqq m_{j}-t$, we have $m_{i} \geqq c\left(\operatorname{Im}\left(\varphi^{*}\right)\right)$ for all $\varphi \in \operatorname{Hom}_{e R_{e}}\left(e U_{i}, e U_{j}\right)$. On the other hand,

$$
\begin{aligned}
\varphi \in \operatorname{Im}\left(\Phi_{i j}\right) & \Longleftrightarrow \varphi^{*} \in \operatorname{Im}\left(\operatorname{Hom}\left(h_{i}, 1\right)\right) \\
& \Longleftrightarrow c\left(\operatorname{Ker}\left(\varphi^{*}\right)\right) \geqq c\left(\operatorname{Ker}\left(h_{i}\right)\right)=c\left(R e_{q(i)}\right)-m_{i} \\
& \Longleftrightarrow m_{i} \geqq c\left(\operatorname{Re}_{q(i)}\right)-c\left(\operatorname{Ker}\left(\varphi^{*}\right)\right)=c\left(\operatorname{Im}\left(\varphi^{*}\right)\right) .
\end{aligned}
$$

Hence Lemma 10 holds.
For all integer $j,[j]^{*}$ denotes the least positive remainder of j modulo s; for example, we will use this notation in the case $U_{[s+1]^{*}}=U_{1}$. Notice that []* is different from []; [j] is the least positive remainder of j modulo n.

Corollary 11. The notations and assumptions are as above. Then
(i) $\Phi_{i i}$ is a ring isomorphism for all i.
(ii) If $c\left({ }_{\text {eRe }} e U_{i}\right) \geqq c\left({ }_{\text {RRe }} e U_{j}\right)$, then $\Phi_{i j}$ is onto.
(iii) If there exist i and j such that $\Phi_{i j}$ is not onto, then there exists k such that

$$
m_{k} \ngtr m_{[k+1]^{*}}-\left[q\left([k+1]^{*}\right)-q(k)\right] .
$$

Proof. (i) Lemma 10 is true in the case $i=j$ (use 0 instead of $[q(j)-q(i)])$.
(ii) If $\Phi_{i j}$ is not onto, then $m_{i} \ngtr m_{j}-[q(j)-q(i)]$ by Lemma 10. Put $t=[q(j)-q(i)]$. Since $c\left(U_{i}\right) \nsupseteq c\left(J^{t} U_{j}\right)$ and $T o p\left(U_{i}\right) \cong \operatorname{Top}\left(J^{t} U_{j}\right)$, there exists an epimorphism $\pi: J^{t} U_{j} \rightarrow U_{i}$ by Corollary 3. Then

$$
\begin{aligned}
& c\left({ }_{e R_{e} e} e U_{j}\right)=c\left({ }_{\text {ere }} e U_{j} / e J^{t} U_{j}\right)+c\left({ }_{\text {eRe }} e J^{t} U_{j}\right) \\
& \supsetneqq c\left({ }_{e R e} e J^{t} U_{j}\right) \geqq c\left({ }_{\text {ere }} e \operatorname{Im}(\pi)\right)=c\left({ }_{\text {eRe }} e U_{i}\right) .
\end{aligned}
$$

(iii) If $m_{k} \geqq m_{[k+1]^{*}}-\left[q\left([k+1]^{*}\right)-q(k)\right]$ for all k, then

$$
\begin{aligned}
& m_{i} \geqq m_{[i+1]^{*}}-\left[q\left([i+1]^{*}\right)-q(i)\right], \\
& 0 \geqq-m_{[i+1]^{*}}+m_{[i+2]^{*}}-\left[q\left([i+2]^{*}\right)-q\left([i+1]^{*}\right)\right], \\
& \quad \vdots \\
& 0 \geqq-m_{[j-1]^{*}}+m_{j}-\left[q(j)-q\left([j-1]^{*}\right)\right]
\end{aligned}
$$

Adding these inequalities, we have

$$
m_{i} \geqq m_{j}-[q(j)-q(i)]
$$

Hence $\Phi_{i j}$ is onto for all i and j by Lemma 10.
LEMMA 12. The notations and the assumptions are as above. Then
(i) If $S^{\prime}=\operatorname{End}_{e R_{0}}(e U)$ is $Q F$, then Φ is onto.
(ii) If $S=\operatorname{End}_{R}(U)$ is $Q F$, then Φ is onto.

Proof. If S^{\prime} is $Q F$, then Φ is onto by Lemma 6 and Corollary 11 (ii).
(ii) Assume that S is $Q F$ and that Φ is not onto. We will show
that these assumptions lead to a contradiction.
Since Φ is not onto, there exists k such that

$$
\begin{equation*}
m_{k} \ngtr m_{[k+1]^{*}}-\left[q\left([k+1]^{*}\right)-q(k)\right] . \tag{4}
\end{equation*}
$$

Put $t=\left[q\left([k+1]^{*}\right)-q(k)\right]$. We divide the proof into several steps.
Step 1. First we shall prove

$$
\begin{equation*}
\operatorname{Im}(\varphi) \varsubsetneqq J^{t} U_{[k+1]^{*}} \quad \text { for all } \varphi \in N f_{[k+1]^{*}} \tag{5}
\end{equation*}
$$

Since $\operatorname{Top}\left(J^{t} U_{[k+1]^{*}}\right) \cong \operatorname{Top}\left(U_{k}\right) \quad$ and $\quad q(1) \varsubsetneqq q(2) \varsubsetneqq \cdots \nsupseteq q(s)$, we have $\operatorname{Top}\left(J^{j} U_{[k+1]^{*}}\right) \not \equiv \operatorname{Top}\left(U_{i}\right)$ for all $i=1, \cdots, s$ and $j=1, \cdots, t-1$. Therefore $\operatorname{Im}(\varphi) \subseteq J^{t} U_{[k+1]^{*}}$ for all $\varphi \in N f_{[k+1]^{*}}$. If $\varphi \in N f_{[k+1]^{*}}$ satisfies the equality $\operatorname{Im}(\varphi)=J^{t} U_{[k+1]^{*}}$, then $\operatorname{Im}\left(f_{k} \varphi\right)=J^{t} U_{[k+1]^{*}}$ since U_{k} is the unique direct summand of U whose top is isomorphic to $\operatorname{Top}\left(J^{t} U_{[k+1]^{*}}\right)$. Thus we have

$$
c\left(U_{k}\right) \geqq c\left(\operatorname{Im}\left(f_{k} \varphi\right)\right)=c\left(U_{[k+1]^{*}}\right)-t
$$

This contradicts (4). Hence (5) is proved.
Step 2. Since S is $Q F$, there exists i such that $\operatorname{Soc}\left(S f_{i}\right) \cong S f_{k} / N f_{k}$. Let $\alpha(\neq 0) \in f_{k} \cdot \operatorname{Soc}\left(S f_{i}\right)$, and fix α.

Step 3. We shall prove that

$$
\begin{equation*}
\operatorname{Im}(\alpha) \varsubsetneqq U_{i} \tag{6}
\end{equation*}
$$

If $\operatorname{Im}(\alpha)=U_{i}$, then $\operatorname{Top}\left(U_{k}\right) \cong \operatorname{Top}(\operatorname{Im}(\alpha))=\operatorname{Top}\left(U_{i}\right)$, and hence $i=k$ from the assumption of Theorem 8. Hence α is an automorphism of U_{i}, and Soc $\left(S f_{i}\right)=S \alpha=S f_{i}$. This implies that $S f_{i}$ is a simple, injective and projective left S-module. Then

$$
\begin{aligned}
& f_{i} S f_{j}=\operatorname{Hom}_{S}\left(S f_{i}, S f_{j}\right)=0 \quad \text { and } \\
& f_{j} S f_{i}=\operatorname{Hom}_{S}\left(S f_{j}, S f_{i}\right)=0
\end{aligned}
$$

for $j \neq i$. This means that S decomposes as a ring, which contradicts the assumption that S is indecomposable as a ring. Thus we have proved (6).

Step 4. From (6), the composition type of U_{i} is $(q(i), \cdots, \cdots$, $\left.q\left([k+1]^{*}\right), \cdots, q(k), \cdots\right)$. Since $c(\operatorname{Im}(\alpha))+t \leqq c\left(U_{k}\right)+t \leqq c\left(U_{[k+1]^{*}}\right)$, there exists $\psi \in \operatorname{Hom}_{R}\left(U_{[k+1]^{*}}, U_{i}\right)$ such that $c(\operatorname{Im}(\psi))=c(\operatorname{Im}(\alpha))+t$ by Corollary 3; in this case, the composition types of $\operatorname{Im}(\alpha), \operatorname{Im}(\psi)$ and U_{i} are respectively

$$
\begin{array}{lr}
\operatorname{Im}(\alpha): & (q(k), \cdots), \\
\operatorname{Im}(\psi): & \left(q\left([k+1]^{*}\right), \cdots, q(k), \cdots\right), \\
U_{i}: & \left(q(i), \cdots, \cdots, q\left([k+1]^{*}\right), \cdots, q(k), \cdots\right) .
\end{array}
$$

Step 5. Applying the functor $\operatorname{Hom}_{R}\left({ }_{R} U_{S},-\right)$, we get the following diagram;

We shall prove

$$
\begin{equation*}
\operatorname{Im}(\operatorname{Hom}(1, \psi)) \supseteqq \operatorname{Im}(\operatorname{Hom}(1, \alpha)) . \tag{8}
\end{equation*}
$$

First, notice that $\operatorname{Im}(\operatorname{Hom}(1, \psi))=S f_{[k+1] * \psi}$ and $\operatorname{Im}(\operatorname{Hom}(1, \alpha))=S f_{k} \alpha$. Assume $S f_{[k+1]^{*}} \psi \not \equiv S f_{k} \alpha$. Then the right annihilator ideal of $S f_{[k+1]^{*}}$ is not contained in the right annihilator ideal of $S f_{k}$ since S is $Q F$. Thus there exists $s \in S$ such that $S f_{[k+1] * \psi s}=0$ and $S f_{k} \alpha s \neq 0$. On the other hand, $U S f_{[k+1]^{*}} \psi=\operatorname{Im}(\psi) \supseteqq \operatorname{Im}(\alpha)=U S f_{k} \alpha$. Hence we have

$$
0=\left(U S f_{[k+1]} \cdot \psi\right) s \supseteq\left(U S f_{k} \alpha\right) s \neq 0
$$

This is a contradiction. Thus we have proved (8).
Step 6. From (8) and the projectivity of ${ }_{S} S f_{k}$, there exists a S homomorphism $\bar{\varphi}:{ }_{s} S f_{k} \rightarrow{ }_{s} S f_{[k+1]^{*}}$ such that $\bar{\varphi} \operatorname{Hom}(1, \psi)=\operatorname{Hom}(1, \alpha)$. Put $\varphi=\left(f_{k}\right) \bar{\varphi} \in f_{k} S f_{[k+1]^{*}} . \quad$ Then $\varphi \psi=\alpha$. Therefore

$$
\begin{aligned}
{\left[q\left([k+1]^{*}\right)-q(k)\right] } & =c(\operatorname{Im}(\psi))-c(\operatorname{Im}(\alpha)) \\
& =c(\operatorname{Coker}(\varphi))=c\left(U_{[k+1]^{*}}\right)-c(\operatorname{Im}(\varphi)) \\
& \geqq m_{[k+1]^{*}}-m_{k}
\end{aligned}
$$

This contradicts (4).
Therefore Φ is onto if S is $Q F$. This completes the proof of Lemma 12.
Now, let us proceed to the proof of Theorem 8.
$(a) \Leftrightarrow(b)$. By Lemma 12, Φ is a ring isomorphism in the case S or S^{\prime} is $Q F$. Thus $(a) \Leftrightarrow(b)$ holds.
$(b) \Leftrightarrow(c) \Leftrightarrow(d) \Leftrightarrow(e) \Leftrightarrow(f)$. Since ${ }_{e R_{e} e} U$ is faithful and Top $\left({ }_{\text {eRe }} e U\right) \cong$ ${ }^{\circ} R_{e}(e R e / e J e)$, Lemma 6 is applicable to the left $e R e$-module $e U$, and we have these equivalences.
$(b) \Rightarrow(g)$. Assume (b). Then by the equivalence of (b) and (f), we have ${ }_{e R_{e} e} R e \cong{ }_{\text {ere }} e U$ and $\operatorname{Top}\left({ }_{e R_{e} e} e U\right) \cong \operatorname{Soc}\left({ }_{e R_{e}} e U\right)$.

We shall prove that U_{i} is isomorphic to a chain end for all i. Since $E\left(R e_{q(i)}\right)$ is isomorphic to a direct summand of a minimal faithful left R-module and ${ }_{R} U$ is faithful, it is also isomorphic to a direct summand
of U. Here, there exists k such that $U_{k} \cong E\left(R e_{q(i)}\right)$. Since U_{i} is a factor module of $R e_{q(i)}$ and $R e_{q(i)}$ is a submodule of U_{k}, we have

$$
c\left({ }_{e R e} e U_{k}\right)=c\left(\left(_{e R e} e U_{i}\right) \leqq c\left(\left(_{e R_{e} e} e R e_{q(i)}\right) \leqq c\left({ }_{e R_{e} e} e U_{k}\right)\right.\right.
$$

by (f). Thus $c\left(\left(_{e R e} e U_{k}\right)=c\left({ }_{e R_{e} e} R e_{q(i)}\right)\right.$, and hence $U_{k}=R e_{q(t)}$ because, if $U_{k} \supseteq R e_{q(i)}$ then the composition lengths are different by at least $c\left({ }_{e R e} \operatorname{Top}\left(e U_{k}\right)\right)$. Then $\operatorname{Top}\left(U_{i}\right) \cong \operatorname{Top}\left(R e_{q(i)}\right) \cong \operatorname{Top}\left(U_{k}\right)$, we have $U_{i}=U_{k}$ from the assumption (3) of Theorem 8. Hence U_{i} is isomorphic to a chain end of R for all i.

Then U_{i} is isomorphic to a direct summand of a minimal faithful left R-module. On the other hand, a minimal faithful left R-module is isomorphic to a direct summand of U. Hence U itself is a minimal faithful left R-module (notice that $U_{i} \neq U_{j}$ if $i \neq j$).
$(g) \Rightarrow(c)$. Assume (g). Then each U_{i} is projective and $U_{i} \cong R e_{q(i)}$. Since $e=\sum_{i} e_{q(i)}$, we have ${ }_{e R_{e} e} e R \cong^{e R_{e} e} e U$. Since $e R e$ is a serial self-basic ring, the condition $\operatorname{Top}\left({ }_{e R e} e R e\right) \cong \operatorname{Soc}\left({ }_{e R e} e R e\right)$ in (g) implies that $e R e$ is a $Q F$ ring. Hence (c) holds.

Thus the proof of Theorem 8 is completed.
Example 13. In the general case, the ring homomorphism Φ defined in Theorem 8 is not onto.

Let R be an indecomposable self-basic serial ring with the radical J. We assume the admissible sequence of R is $3,4,5$, i.e., $1=e_{1}+e_{2}+e_{3}$ where $R e_{1}, R e_{2}, R e_{3}$ is a left Kupisch series of R and $c\left(R e_{1}\right)=3, c\left(R e_{2}\right)=$ 4, $c\left(R e_{3}\right)=5$. Put

$$
U_{1}=R e_{1} / J^{2} e_{1}, \quad U_{2}=R e_{3} \quad \text { and } \quad U=U_{1} \oplus U_{2}
$$

The U is a faithful left R-module $\left(U_{2}=R e_{3}\right.$ is a minimal faithful left R-module). Put $e=e_{1}+e_{3}$. Then it is easy to show that $\operatorname{Hom}_{R}\left(U_{1}, U_{2}\right)=$ 0 and $\operatorname{Hom}_{e R e}\left(e U_{1}, e U_{2}\right) \neq 0$. Thus Φ is not onto. In this case, neither $\operatorname{End}_{R}(U)$ nor $\operatorname{End}_{e R e}(e U)$ is quasi-Frobenius.

Remark 14. K. Morita had proved earlier the following theorem: If U is a finitely generated projective and injective left module over a left Artinian ring R such that simple components of $\operatorname{Top}\left({ }_{R} U\right)$ and those of $\operatorname{Soc}\left(_{R} U\right)$ are coincident in disregard of multiplicity, then $\operatorname{End}_{R}(U)$ is a quasi-Frobenius ring.

He pointed out further that the use of the idempotent e in this paper improves his result as follows:

Let U be a finitely generated projective (resp. injective) left module over an Artinian ring R. Let $e \in R$ (resp. $f \in R$) be an idempotent defined by Top $\left({ }_{R} U\right)$ (resp. $\operatorname{Soc}\left({ }_{R} U\right)$) as in Theorem 7. Then $\operatorname{End}_{R}(U)$ is quasi-Frobenius if and only if ${ }_{\text {eRe }} e U$ is injective (resp. projective).

References

[1] C. W. Curtis, Quasi-Frobenius rings and Galois Theory, Illinois J. Math., 3 (1959), 134-144.
[2] K. R. Fuller, Generalized uniserial rings and their Kupisch series, Math. Z., 106 (1968), 248-260.
[3] K. R. Fuller, On indecomposable injectives over Artinian rings, Pacific J. Math., 29 (1969), 115-135.
[4] J. A. Green, On a theorem of H. Sawada, J. London Math. Soc. (2), 18 (1978), 247-252.
[5] H. Kupiscr, Beiträge zur Theorie nichthalbeinfacher Ringe mit Minimalbedingung, J. Reine Angew. Math., 201 (1959), 100-112.
[6] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 6 (1958), 83-142.
[7] I. Murase, On the structure of generalized uniserial rings I, II and III, Sci. Papers College Gen. Ed. Univ. Tokyo, 13 (1963), 1-22; 131-158; 14 (1964), 14-25.
[8] T. Nakayama, Note on uniserial and generalized uniserial rings, Proc. Imp. Acad. Japan, 16 (1940), 285-289.
[9] T. Nakayama, On Frobeniusean algebras II, Ann. of Math., 42 (1941), 1-21.
[10] H. Sawada, A characterization of the modular representations of finite groups with split (B, N)-pairs, Math. Z., 115 (1977), 29-41.
[11] H. Sawada, Endomorphism rings of split (B, N)-pair, Tokyo J. Math., 1 (1978), 139-148.
[12] H. Sawada, The structure of endomorphism algebras, Tokyo J. Math., 4 (1981), 355-366.

Present Address:
Department of Mathematics
Sophia University
Kiol-cho, Chiyoda-ku, Toryo 102

