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Introduction

The purpose of this paper is to establish several necessary and
sufficient conditions for a module over a serial ring to have a quasi-
Frobenius endomorphism ring.

In the study of properties of modules, it is greatly important to
investigate their endomorphism rings. By Schur’s Lemma the endomor-
phism ring of a simple module is a division ring, and we have enough
knowledge about the endomorphism rings of modules over a semi-simple
ring. Here we shall investigate the following problem:

PROBLEM. Find a necessary and sufficient condition for a module
$U$ over a ring $R$ to have a quasi-Frobenius endomorphism ring.

Quasi-Frobenius rings are one of the most important classes of
rings which are not semi-simple; in fact, a group algebra $KG$ of a
finite group $G$ over a field $K$ such that char $(K)||G|$ is not semi-simple,
but it is quasi-Frobenius. As for the problem in the case $U$ being a
faithful module over a quasi-Frobenius ring, C. W. Curtis [1] gave a
sufficient condition and K. Morita [6] obtained a necessary and sufficient
condition. Recently J. A. Green [4] and H. Sawada [11] showed that
a certain nonfaithful module over a group algebra of a finite group
with a split $(B, N)$-pair has a Frobenius endomorphism algebra. Stim-
ulated with Sawada’s result [10], Green [4] gave a necessary condition
for our problem in the case of $U$ being a module over a group algebra

under a certain assumption, and again Sawada [12] extended Green’s
result. On the other hand, K. Morita gave a sufficient condition for
the above problem in the case $U$ being a module over an Artinian ring
(cf. Remark 14). However, each of these conditions is not a necessary
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and sufficient condition for our problem. Indeed, even a special problem
of finding a necessary and sufficient condition for a module to have a
division ring as its endomorphism ring has not yet been settled. Ir
this paper, as the first step to solve our problem, we shall restrict
ourselves to the case of $U$ being a module over a serial ring, and solve
the problem in this case.

Serial rings were introduced by T. Nakayama [8] in 1940 (he called
them “generalized uniserial rings”) as a generalization of uniserial rings
in the sense of G. K\"othe. Since then they were studied by H. Kupiscb
[5], and later by I. Murase [7] and by K. R. Fuller $[2, 3]$ . The class
of serial rings seems to be the unique class of rings which is fairly
studied, except the class of semi-simple rings and that of quasi-Frobenius
rings.

The main theorem of this paper is stated as follows.

THEOREM. Let $R$ be an indecomposable serial ring with the radical
J. Write 1 as a sum of mutually orthogonal primitive idempotents

$1=\sum_{i=1}\sum_{\dot{g}=1}^{k}e_{j}$

where $Re_{ij}\cong Re_{rt}$ if and only if $i=r$ . Let $RU$ be a faithful module such
that

$RU=\bigoplus_{i=1}\bigoplus_{j=1}^{p_{i}}U_{j}$

where each $RUj$ is indecomposable and $RijRt$ if and only if $i=r$ .
Put

$\sigma=$ { $i|Re_{i1}/Je_{i1}\cong Top(U_{k1})$ for some $k$}
and

$e=\sum_{ie\sigma}e_{i1}$ .

Assume that $End_{R}(U)$ is an indecomposable ring. Then the following
conditions are equivalent:

(a) $End_{R}(U)$ is a quasi-Frobenius ring.
(b) $\oplus_{i=1}U_{i1}$ is a minimal faithful left R-module and

Top $(_{*Re}\bigoplus_{i=1}eU_{i1})\cong Soc(.R\cdot\bigoplus_{i=1}eU_{i1})$ .
(c) $c(*R*eU_{i1})=c(*R*eU_{\dot{s}\iota})$ for all $i$ and $j$ , and Top $(U_{i1})\cong Top(U_{j1})$ if

and only if $i=j$, where $c(M)$ denotes the composition length of $M$.



MODULES OVER A SERIAL BING 443

Although there is an additional assumption that $End_{R}(U)$ is an
indecomposable ring, it is not essential as we will point out in Remark
9 of section 3.

In the first section, we will define some terminology and recall the
known results. In the second section, we shall prove our fundamental
lemma. In sections 3 and 4, we establish the main theorem stated as
above.

The author wishes to express his thanks to Professor Kiiti Morita
for his helpful suggestions.

\S 1. Preliminaries.

Throughout this paper, $R$ denotes an Artinian ring with unit
element 1. Put $J=Rad(R)$ . Write 1 as a sum of mutually orthogonal
primitive idempotents

$1=\sum_{i=1}^{n}\sum_{j=1}^{k_{i}}e_{ij}$

where $Re_{lj}\cong Re_{\epsilon t}$ if and only if $i=s$ . For a left R-module $RM,$ $c(RM)$

denotes the composition length of $M$ and Top $(_{R}M)$ denotes the top of
$M,$ $i.e.$ , Top $(_{R}M)=M/JM$. If $RM$ is a uniserial module with the com-
position factor modules

$J^{k-1}M/J^{k}M\cong Re_{i_{k}1}/Je_{i_{k}1}$ for $1\leqq k\leqq m=c(M)$ ,

then we say that the composition type of $M$ is $(i_{I}, i_{2}, \cdots, i_{m})$ ; in parti-
cular, the composition type of $Re_{j1}/Je_{j1}$ is $(j)$ .

Homomorphisms between left R-modules will be written on the right,

so that $fg$ is first $f$, then $g$ ; similarly, the endomorphism ring of a
left R-module will be act on the right.

For each integer $j,$ $[j]$ denotes the least positive remainder of $j$

modulo $n$ . This notation is very convenient to consider a left Kupisch
series of a serial ring.

The terminology is the same as in K. R. Fuller [2]. The following
lemmas are useful.

LEMMA 1. Each indecomposable module over a serial ring is quasi-
injective, quasi-projective and uniserial.

PROOF. cf. T. Nakayama [9] and K. R. Fuller [3].

LEMMA 2. Let $L,$ $M$ and $N$ be indecomposable left R-modules over
a serial ring $R$ .
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(i) Let $f:L\rightarrow M$ and $g:L\rightarrow N$ be homomorphisms such tha
Ker $(f)\supseteqq Ker(g).$ . If $c(N)+c(Ker(g))\leqq c(M)+c(Ker(f))$ , then there exist
$h:N\rightarrow M$ such that $gh=f$:

(ii) Let $f:M\rightarrow L$ and $g:N\rightarrow L$ be homomorphisms such tha
${\rm Im}(g)\supseteqq{\rm Im}(f)$ . If $c(Ker(f))\leqq c(Ker(g))$ , then there exists $h$ : $M\rightarrow f$

such that $hg=f$:

PROOF. Obvious by Lemma 1.

COROLLARY 3. Let $M$ and $N$ be indecomposable modules over $($

serial ring such that $c(M)\leqq c(N)$ . Then
(i) If Top $(M)\cong Top(N)$ , then there exists an epimorphism $\pi:N\rightarrow M$

(ii) If Soc $(M)\cong Soc(N)$ , then there exists a monomorphism $\theta:M\rightarrow A$

PROOF. Obvious from Lemma 2.

\S 2. Fundamental lemma.

First in this section, we shall prove the following lemma.

LEMMA 4. Let $R$ be a serial ring and $RU$ be a faithful left $R$

module such that

$RU=_{R}U_{1}\oplus\cdots\oplus_{R}U$.
where each $RUi$ is indecomposable.
ring, then

If $End_{R}(U)$ is a quasi-Frobeniu
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(i) Top $(_{R}U_{i})\cong Top(_{R}U_{j})$ if and only if $RiR$ .
(ii) Soc $(_{R}U_{i})\cong Soc(_{R}U_{j})$ if and only if $RiR$ .
PROOF. Put $S=End_{R}(U),$ $N=Rad(S)$ and let $f_{i}:RU\rightarrow_{R}U_{i}$ be the

projection for all $i$ . First notice that

(1) $sSf\cong Sf_{j}$ if and only if $RiR$ .
Proof of (i). Since the ‘if’ part is trivial, we shall prove the

’only if’ part.
Assume Top $(U_{l})\cong Top(U_{j})$ . Without loss of generality, we can

assume $c(U_{i})\geqq c(U_{j})$ . Then, by Corollary 3, there exists $\pi\in S$ such that
$\pi=f_{i}\pi f_{j}$ and it induces an epimorphism $\pi|_{U_{i}}$ : $U_{l}\rightarrow U_{j}$ . Since $S$ is $QF$,
there exists $Sf_{k}$ such that Soc $(Sf_{k})\cong Sf_{j}/Nf_{j}$ . Then $f_{j}$ . Soc $(Sf_{k})\neq 0$ ,
hence there exists a nonzero element $\varphi\in f_{\dot{f}}$ . Soc $(Sf_{k})$ . Since Soc $(Sf_{k})$ is
a left S-module, $\pi\varphi\in$ Soc $(Sf_{k})$ . On the other hand, $\pi\varphi\neq 0$ because
$\varphi\neq 0$ and $\pi$ is an epimorphism. Hence $f_{i}\cdot Soc(Sf_{k})\neq 0,$ $i.e.,$ $Sf_{i}/Nf_{i}$ is
isomorphic to a direct summand of Soc $(Sf_{k})$ . Therefore $Sf_{i}/Nf_{l}\cong Sf_{\dot{f}}/Nf_{j}$ ,
thus $Sf_{i}\cong Sf_{j}$ . Hence $U_{l}\cong U_{j}$ .

Proof of (ii). Assume Soc $(Sf_{i})\cong Soc(Sf_{j})$ . Without loss of gener-
ality, we can assume $c(U_{l})\leqq c(U_{j})$ . Then, by Corollary 3, there exists
$\theta\in S$ such that $\theta=f_{l}\theta f_{j}$ and it induces a monomorphism $\theta|_{\sigma_{i}}$ : $U_{l}\rightarrow U_{j}$ .
Since $S$ is $QF$, there exists $Sf_{k}$ such that Soc $(Sf_{l})\cong Sf_{k}/Nf_{k}$ . Then $f_{k}$ .
Soc $(Sf_{l})\neq 0$ , hence there exists a nonzero element $\psi\in f_{k}\cdot Soc(Sf_{i})$ . Since
$N(\psi\theta)=(N\psi)\theta=0$ , we have $\psi\theta\in$ Soc $(Sf_{j})$ . On the other hand, $\psi\theta\neq 0$

because $\psi\neq 0$ and $\theta$ is a monomorphism. Hence $f_{k}\cdot Soc(Sf_{\dot{f}})\neq 0$ , $i.e.$ ,
$Sf_{k}/Nf_{k}$ is isomorphic to a direct summand of Soc $(Sf_{j})$ . Since $S$ is $QF$,
we have $Sf_{i}\cong Sf_{j}$ , thus $U_{i}\cong U_{j}$ by (1).

LEMMA 5. Let $R$ be a serial ring and $RU$ be a left R-module such
that

$RU=_{R}U_{1}\oplus\cdots\oplus_{R}U_{S}$

where each $RUi$ is indecomposable. Assume that Top $(U_{i})\not\cong Top(U_{j})$ and
Soc $(U_{i})\not\cong Soc(U_{j})$ if $i\neq j$ . If $End_{R}(U)$ is an indecomposable ring, then
each $U_{i}$ is not simple.

PROOF. If $U_{i}$ is simple, then

$Hom_{R}(U_{l}, U_{j})\neq 0-U_{i}\cong Soc(U_{j})-i=j$

$-Top(U_{j})\cong U_{i}-Hom_{R}(U_{j}, U)\neq 0$ .
Thus $Hom_{R}(U_{l}, U_{j})=0=Hom_{R}(U_{j}, U_{l})$ if $i\neq j$ . Therefore
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$End_{R}(U)=End_{R}(U_{i})\oplus End_{R}(\bigoplus_{k\neq l}U_{k})$

as rings. Thus $End_{R}(U)$ decomposes.
Now, let us proceed to our fundamental lemma of this paper. Le

$R$ be an indecomposable self-basic serial ring with the radical $J$ . Writ
1 as a sum of mutually orthogonal primitive idempotents $1=e_{1}+\cdots+e$

such that $Re_{1},$ $Re_{2},$
$\cdots,$

$Re_{n}$ is a left Kupisch series of $R$ .
Let $RU$ be a faithful left R-module such that

$RU=_{R}U_{1}\oplus\cdots\oplus_{R}U_{n}$

where each $RU_{\iota}$ is indecomposable. Assume further that

$RU_{i}\cong Re/J^{*}ie$ for all $i(m_{i}\neq 0)$ .
Put $S=End_{R}(U),$ $N=Rad(S)$ and let $f:U\rightarrow U$ be the projection. Thel
$RiRj$ if and only if $i=i$ , and $S$ is a self-basic ring. Our funda
mental lemma is stated as follows:

LEMMA 6. Under the above assumptions, if $S=End_{R}(U)$ is at
indecomposable ring, then the following conditions are equivalent:

(a) $S$ is a quasi-Frobenius ring.
(b) $R$ is a quasi-Frobenius ring.
(c) $RU$ is a minimal faithful left R-module.
(d) $RU$ is an injective left R-module.
(e) $c(U)=c(U)$ for all $i$ and $j$ .

Moreover, if the above conditions are satisfied, then

$RU\cong RR$ and $R\cong End_{R}(U)$ .
PROOF. We shall prove this lemma as in indicated by the following

diagram;

$(b)\Rightarrow(c)$ . Since $R$ is self-basic, $QF$ and serial, a minimal faithful
left R-module is isomorphic to $RR$ . On the other hand, $RU$ is a factor
module of $RR$ and faithful, and hence $RR$ . Thus $RU$ is a minimal
faithful left R-module.

$(c)\Rightarrow(d)$ . A minimal faithful module is injective.
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$(d)\Rightarrow(e)$ . If $m_{l}\neq m_{j}$ for some $i$ and $j$ , then there exists $k$ such
that $m_{k}\leqq m_{[k+1]}$ . By K. R. Fuller [2],

$RU_{k}\cong Re_{k}/J^{m_{k}}e_{k}\cong Je_{[k+1]}/J^{m_{k+1}}e_{[k+1]}$

$\subsetneqq Re_{[k+1]}/J^{m_{k+1}}e_{[k+1]}\cong U_{[k+1]}/J^{n_{k+1}}U_{[k+1]}$ .

Since $U_{[k+1]}$ is indecomposable, $U_{[k+1]}/J^{M}k^{+1}U_{[k+1]}$ is also indecomposable. On
the other hand, $U_{k}$ is injective. Thus, an indecomposable module $U_{[k+1]}/$

$J^{m_{k}+1}U_{[k+1]}$ has a proper injective submodule $U_{k}$ . This is a contradiction.
Hence we have proved that $m_{i}=m_{j}$ for all $i$ and $j$ .

$(e)\Rightarrow(b)$ . Let us put $c(Re_{i})=\max\{c(Re_{1}), \cdots, c(Re_{n})\}$ . Then $Re_{i}$ is a
direct summand of a minimal faithful left R-module (cf. I. Murase [7]),
and hence $Re_{i}$ is also isomorphic to a direct summand of $U$ since $U$ is
faithful. Since $U_{i}$ is the unique direct summand of $U$ whose top is
isomorphic to Top $(Re_{l})$ , we have $Re_{i}\cong U_{i}$ . Then

$c(Re_{j})\geqq c(U_{j})=c(U_{i})=c(Re_{i})$

$=\max\{c(Re_{1}), \cdots, c(Re_{n})\}$ for all $j$ .
Hence $c(Re_{i})=c(Re_{j})$ for all $j$ . Therefore $R$ is $QF$ (cf. I. Murase
[7]).

$(b)\Rightarrow(a)$ . K. Morita [4], Theorem 16.6.
$(a)\Rightarrow(e)$ . Assume $(a)$ . First, notice that $S$ is self-basic, and hence

$N=\{\varphi\in S|{\rm Im}(\varphi)\subseteqq JN\}$ .
Now we distinguish two cases;
(i) Soc $(U_{i})\cong Soc(U_{j})$ for some $i$ and $j(i\neq j)$ ,
(ii) Soc $(U_{i})\not\cong Soc(U_{j})$ for all $i$ and $j(i\neq j)$ .
Case (i). In this case, $S$ is not $QF$ from Lemma 4.
Case (ii). If $m_{i}\neq m_{j}$ for some $i\neq j$ , then there exists $k$ such that

$m_{k\neq}<m_{[k+1]}$ . By K. R. Fuller [2],

$U_{k}\cong Re_{k}/J^{m_{k}}e_{k}\cong Je_{[k+1]}J^{m_{k+1}}e_{[k+1]}$

$\cong JU_{[k+1]}/J^{m_{k+1}}U_{[k+1]}$ .
If $m_{k}+1=m_{[k+1]}$ , then Soc $(U_{k})\cong Soc(JU_{[k+1]})=Soc(U_{[k+1]})$ . This contradicts
the assumption (ii). Thus $m_{k}+1\neq<m_{[k+1]}$ .

We shall next prove

(2) ${\rm Im}(\varphi)\subsetneqq JU_{[k+1]}$ for all $\varphi\in Nf_{[k+1]}$ .
Since $N=\{\varphi\in S|{\rm Im}(\varphi)\subseteqq JU\}$ , we have ${\rm Im}(\varphi)\subseteqq JU_{[k+1]}$ for all $\varphi\in Nf_{[k+1]}$ .
If ${\rm Im}(\varphi)=JU_{[k+1]}$ for some $\varphi\in Nf_{[k+1]}$ , then ${\rm Im}(f_{k}\varphi)=JU_{[k+1]}$ . Therefore
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$m_{k}=c(U_{k})\geqq c({\rm Im}(f_{k}\varphi))=c(JU_{[k+1]})$

$=c(U_{[k+1]})-1=m_{[k+1]}-1$ .
This contradicts $m_{k}+1\leqq m_{[k+1]}$ . Hence (2) is proved.

Since Soc $(U_{q}),$ $\cdots$ , Soc $(U_{n})$ are mutually non-isomorphic, there exists
$i$ such that Soc $(U_{i})\cong Re_{k}/Je_{k}$ . By Lemma 5, $U$ is not simple, and hence
the $co$mposition type of $U_{i}$ is $(i, \cdots, \cdots, [k+1], k)$ . Then there exists
$\psi\in Hom_{R}(U_{[k+1]}, U_{i})$ such that ${\rm Im}(\psi)=J^{r\cdot-2}U_{i},$ $i.e.,$ $c({\rm Im}(\psi))=2$ . Then
for all $\varphi\in Nf_{[k+1]}$ , we have

$c({\rm Im}(\varphi\psi))=c({\rm Im}(\varphi))-c(Ker(\psi))$

$\leqq c(JU_{[k+1]})-(c(U_{[k+1]})-c({\rm Im}(\psi)))$

$=(m_{[k+1]}-1)-(m_{[k+1]}-2)=1$ .
Hence $N\psi=Nf_{[k+1]}\psi=0$ . This means $\psi(\neq 0)\in$ Soc $(Sf_{i})$ . Thus $f_{[k+1]}$ .
Soc $(Sf_{i})\neq 0$ . Therefore $Sf_{[k+1]}/Nf_{[k+1]}$ is isomorphic to a direct summand
of Soc $(Sf_{i})$ . By the same argument, $Sf_{k}/Nf_{k}$ is isomorphic to a direct
summand of Soc $(Sf_{i})$ . Hence Soc $(Sf_{i})$ is not simple, and this contradicts
that $S$ is $QF$. Thus we have proved that $m_{i}=m_{j}$ for all $i$ and $j$ .

\S 3. Main theorem.

Let $R$ be an indecomposable serial ring with the radical $J$, and
write 1 as a sum of mutually orthogonal primitive idempotents

$1=\sum_{i=1}^{\cdot}\sum_{j=1}^{k_{i}}e_{i\dot{g}}$

where $Re_{ij}\cong Re_{rt}$ if and only if $i=r$ . Assume that $Re_{11},$ $Re_{21},$
$\cdots,$ $Re_{n1}$ is

a left Kupisch series of $R$ .
Let $RU$ be a faithful left R-module such that

$RU=\bigoplus_{i=1}\bigoplus_{\dot{g}=1}^{p_{i}}U_{ij}$

where each $U_{j}$ is indecomposable and $U_{\dot{f}}\cong U_{rt}$ if and only if $ i=\gamma$ . Put

$\sigma=$ { $i|Re_{1}/Je_{i1}\cong Top(U_{k1})$ for some $k$} ,

and

$e=\sum_{ie\sigma}e_{i1}$ .

The following theorem is the main result of this paper.
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THEOREM 7. The notations are as above. Assume that $End_{R}(U)$ is
an indecomposable ring. Then the following conditions are equivalent:

(a) $End_{R}(U)$ is a quasi-Frobenius ring.
(b) $\oplus_{t=1}^{\epsilon}U_{l1}$ is a minimal faithful left R-module and

Top $(_{eRe}\bigoplus_{i=1}^{l}eU_{l1})\cong Soc(eRe\bigoplus_{i=1}^{l}eU_{l1})$ .

(c) $c(eReeU_{i1})=c(eReeU_{i1})$ for all $i$ and $j$ , and $U_{lj}\cong U_{rt}$ if and only

if Top $(U_{ij})\cong Top(U_{rt})$ .
Moreover, if the above conditions are satisfied, then the rings

$End_{R}(U)$ and eRe are Morita equivalent.

Theorem 7 is derived from the next theorem.

THEOREM 8. The notations are as above. Assume that $End_{R}(U)$ is
an indecomposable ring. Assume further that

(3) $U_{ij}\cong U_{rt}$ if and only if Top $(U_{ij})\cong Top(U_{t})$ .
Then the following conditions are equivalent:

(a) $End_{R}(U)$ is a quasi-Frobenius ring.
(b) $End_{eRe}(eU)$ is a quasi-Frobenius ring.
(c) eRe is a quasi-Frobenius ring.
(d) $\oplus_{i=1}^{\epsilon}eU_{i1}$ is a minimal faithful left $eRe$-module.
(e) $\oplus_{i=1}^{\epsilon}eU_{i1}$ is an injective left $eRe$-module.
(f) $c(eReeU_{i1})=c(eReeU_{j1})$ for all $i$ and $j$ .
(g) $\oplus_{t=1}^{\epsilon}U_{l1}$ is a minimal faithful left R-module and

Top $(_{eRe}\bigoplus_{i=1}^{\epsilon}eU_{i1})\cong Soc(eR*\bigoplus_{i=1}^{l}eU_{i1})$ .

Moreover, if the above conditions are satisfied, then the rings

$End_{R}(U),$ $End_{eR*}(eU)$ and eRe are Morita equivalent.

REMARK 9. Several assumptions in Theorem 7 such as
(i) $R$ is an indecomposable ring,
(ii) $RU$ is faithful,
(iii) $End_{R}(U)$ is an indecomposable ring,

are not essential. Ad (i): If $R$ decomposes into a direct sum of inde-
composable two-sided ideals, then we can apply Theorem 7 over each
indecomposable component. Ad (ii): If $RU$ is not faithful, then we have
only to consider $R/(O:U)$ instead of $R$ . Ad (iii): If $End_{R}(U)$ decomposes,

then we have only to consider the direct summand of $U$ which corres-
ponds to an indecomposable component of $End_{R}(U)$ .
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Here we shall prove Theorem 7 under the assumption that Theorem
8 is true.

PROOF OF THEOREM 7. To prove Theorem 7, it is sufficient to
prove $(a)\Rightarrow(3)$ and $(b)\Rightarrow(3)$ .

$(a)\Rightarrow(3)$ . This is nothing else than Lemma 4.
$(b)\Rightarrow(3)$ . Assume Top $(U_{i1})\cong Top(U_{j1})$ . Without loss of generality,

we can assume that $c(U_{i1})\geqq c(U_{j1})$ . Then there exists an epimorphism
$\pi:U_{i1}\rightarrow U_{j1}$ . Since $U_{j1}$ is a direct summand of a minimal faithful left
R-module, $U_{j1}$ is projective. If $\pi$ is not an isomorphism, then $U_{i1}$ is
not indecomposable since $U_{j1}$ is projective. This is a contradiction. Thus
we have $U_{i1}\cong U_{j1}$ .

\S 4. Proof of Theorem 8.

In this section, we shall prove Theorem 8. Throughout this section,
the notations and the assumptions are as in Theorem 8.

Since $QF$ ’ is Morita invariant, we have only to prove Theorem 8
for the case where $k_{i}=1$ for $1\leqq i\leqq n$ and $p_{j}=1$ for $1\leqq j\leqq s$ . In this
case, we write

$e_{i}=e_{1}(1\leqq i\leqq n),$ $U_{j}=U_{j1}(1\leqq j\leqq s)$ .
Without loss of generality, we can assume that

Top $(U_{i})\cong Re_{q(i)}/Je_{q(i)}$ for all $i$ and $q(1)\leqq q(2)\leqq\cdots\neq<q(s)$ .
Here, by the definition, we have

$e=\sum_{j=1}^{*}e_{q(j)}$ .
Moreover, put

$m_{i}=c(U)$ for $1\leqq j\leqq 8$ ,
$S=End_{R}(U),$ $N=Rad(S)$ ,
$S^{\prime}=End_{eR*}(eU),$ $N’=Rad(S^{\prime})$ .

Let $f_{j}:_{R}U\rightarrow_{R}U_{j}$ be the projection and $f_{j}^{\prime}=f_{\dot{f}}|_{\epsilon U}:$ $R*eU\rightarrow\cdot R\epsilon eU_{i}$ .
Then there exists a ring homomorphism

$\Phi:S=End_{R}(U)\ni\varphi->\varphi|_{\sigma}\in End_{R*}(eU)=S^{\prime}$ .
For any $\varphi\in S,$ ${\rm Im}(\varphi)\neq 0$ implies that $e({\rm Im}(\varphi))\neq 0$ by virtue of the
definition of $e$ . Hence we have
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$\varphi\in$ Ker $(\Phi)-\varphi|_{eU}=\Phi(\varphi)=0$

$-e({\rm Im}(\varphi))=0-{\rm Im}(\varphi)=0-\varphi=0$ ,

and hence we see that $\Phi$ is one-to-one. Put $\Phi_{ij}=\Phi|_{f_{i}Sf_{j}}$ ; then

$\Phi_{ij}(f_{i}sf_{\dot{f}})=f_{i}sf_{j}|_{eU_{i}}$ for all $f_{i}sf_{j}\in f_{i}Sf_{j}$

and $\Phi_{ij}$ is a module monomorphism.

LEMMA 10. The notations and the assumptions are as above. If
$m_{i}\geqq m_{j}-[q(j)-q(i)]$ , then $\Phi_{lj}$ is onto $(i\neq j)$ . (For the notation $[$ $]$ , cf.
its definition in the first section).

PROOF. In this proof, we will identify $U_{i}$ with $Re_{q(i)}/J^{m_{i}}e_{q(i)}$ . Let
$h_{i}:Re_{q(t)}\rightarrow U$ be a canonical epimorphism and $h_{i}^{\prime}=h_{i}|_{eRe_{q(i)}}$ for all $i$ .
Moreover, put

$\Psi:Hom_{R}(Re_{q(t)}, U_{j})\ni\psi\mapsto\psi|_{\epsilon Re_{q(i)}}\in$ Hom $eRe(eRe_{q(i)}, eU_{j})$ .
Then we get the following commutative diagram:

$0$ $0$

$0\rightarrow Hom_{R}\downarrow(U_{i}, U_{j})\rightarrow^{\Phi_{ij}}$

Hom
$\epsilon Re\downarrow$

$\downarrow Hom(h_{i}, 1)$ $\downarrow Hom(h_{i}^{\prime}, 1)$

$0\rightarrow Hom_{R}(Re_{q(i)}, U_{j})\rightarrow^{\Psi}Hom_{eRe}(eRe_{q(l)}, eU_{j})$

$ l\downarrow$ $)\downarrow$

$e_{q(t)}U_{j}$
$\rightarrow^{=}$

$e_{q(t)}U_{j}$ .
Then $\Psi$ is an isomorphism. Put $t=[q(j)-q(i)]$ . Then $J^{t}U_{j}$ is the largest
submodule of $U_{j}$ whose top is isomorphic to Top $(U)$ .

For all $\varphi\in Hom_{eR*}(eU_{i}, eU_{j})$ , let us put $\varphi^{\#}=[\Psi^{-1}\circ Hom(h_{i}^{\prime}, 1)](\varphi)$ . If
$\varphi\neq 0,$ ${\rm Im}(\varphi)$ is a submodule of $J^{t}U_{j}$ since Top $({\rm Im}(\varphi^{g}))\cong Top(Re_{q()})\cong$

Top $(U_{i})$ . Therefore
$c({\rm Im}(\varphi^{l}))\leqq c(J^{t}U_{j})=m_{j}-t$ .

Since $m_{i}\geqq m_{j}-t$ , we have $m_{i}\geqq c({\rm Im}(\varphi^{\prime}))$ for all $\varphi\in Hom_{eRe}(eU_{i}, eU_{j})$ . On
the other hand,

$\varphi\in{\rm Im}(\Phi_{ij})-\varphi^{l}\in{\rm Im}(Hom(h_{i}, 1))$

$-c(Ker(\varphi^{t}))\geqq c(Ker(h_{i}))=c(Re_{q(i)})-m_{i}$

$-m_{l}\geqq c(Re_{q(i)})-c(Ker(\varphi^{k}))=c({\rm Im}(\varphi^{l}))$ .
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Hence Lemma 10 holds.

For all integer $j,$ $[j]^{*}$ denotes the least positive remainder of $j$

modulo $s$ ; for example, we will use this notation in the case $U_{[.+1]}.=U_{1}$ .
Notice that $[$ $]^{*}$ is different from $[$ $]$ ; $[j]$ is the least positive remain-
der of $j$ modulo $n$ .

COROLLARY 11. The notations and assumptions are as above. Then
(i) $\Phi_{i}$ is a ring isomorphism for all $i$ .
(ii) If $c(*R\cdot eU)\geqq c(*R*eU_{j})$ , then $\Phi_{ij}$ is onto.
(iii) If there exist $i$ and $j$ such that $\Phi_{ij}$ is not onto, then there

exists $k$ such that

$m_{k\neq}<m_{[k+1]}.-[q([k+1]^{*})-q(k)]$ .
PROOF. (i) Lemma 10 is true in the case $i=j$ (use $0$ instead of

$[q(j)-q(i)])$ .
(ii) If $\Phi_{ij}$ i8 not onto, then $m_{i\neq}<m_{j}-[q(j)-q(i)]$ by Lemma 10.

Put $t=[q(J)-q(i)]$ . Since $c(U_{i})\neq<c(J^{t}U_{j})$ and Top $(U_{i})\cong Top(J^{t}U_{\dot{f}})$ , there
exists an epimorphism $\pi:J^{t}U_{j}\rightarrow U_{i}$ by Corollary 3. Then

$c(eR\cdot eU_{\dot{f}})=c(.R*eU_{j}/eJ^{t}U_{j})+c(*R\iota eJ^{t}U_{j})$

$\geqq c(eR\cdot eJ^{t}U_{i})\geqq c(*R*e{\rm Im}(\pi))=c(.ReeU_{i})$ .
(iii) If $m_{k}\geqq m_{[k+1]*}-[q([k+1]^{*})-q(k)]$ for all $k$ , then

$m_{i}\geqq m_{[i+1]}.-[q([i+1]^{*})-q(i)]$ ,
$0\geqq-m_{[i+1]}.+m_{\iota+21}.-[q([i+2]^{*})-q([i+1]^{*})]$ ,

$0\geqq-m_{[j-1]}.+m_{j}-[q(j)-q([j-1]^{*})]$ .
Adding these inequalities, we have

$m_{i}\geqq m_{j}-[q(j)-q(i)]$ .
Hence $\Phi_{ij}$ is onto for all $i$ and $j$ by Lemma 10.

LEMMA 12. The notations and the assumptions are as above. Then
(i) If $S^{\prime}=End_{R}.(eU)$ is $QF$, then $\Phi$ is onto.
(ii) If $S=End_{R}(U)$ is $QF$, then $\Phi$ is onto.

PROOF. If $S^{\prime}$ is $QF$, then $\Phi$ is onto by Lemma 6 and Corollary 11
(ii).

(ii) Assume that $S$ is $QF$ and that $\Phi$ is not onto. We will show
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that these assumptions lead to a contradiction.
Since $\Phi$ is not onto, there exists $k$ such that

(4) $m_{k\neq}<m_{[k+1]*}-[q([k+1]^{*})-q(k)]$ .
Put $t=[q([k+1]^{*})-q(k)]$ . We divide the proof into several steps.

Step 1. First we shall prove

(5) ${\rm Im}(\varphi)\subsetneqq J^{t}U_{[k+1]*}$ for all $\varphi\in Nf_{[k+1]*}$ .
Since Top $(J^{t}U_{[k+1]}.)\cong Top(U_{k})$ and $q(1)\neq<q(2)\leqq\cdots\neq<q(s)$ , we have
Top $(J^{j}U_{[k+1]*})\not\cong Top(U_{i})$ for all $i=1,$ $\cdots,$

$s$ and $j=1,$ $\cdots,$ $t-1$ . Therefore
${\rm Im}(\varphi)\underline{\subseteq}J^{t}U_{[k+1]*}$ for all $\varphi\in Nf_{[k+1]*}$ . If $\varphi\in Nf_{[k+1]*}$ satisfies the equality
${\rm Im}(\varphi)=J^{t}U_{[k+1]*}$ , then ${\rm Im}(f_{k}\varphi)=J^{t}U_{[k+1]}$ . since $U_{k}$ is the unique direct
summand of $U$ whose top is isomorphic to Top $(J^{t}U_{[k+1]*})$ . Thus we have

$c(U_{k})\geqq c({\rm Im}(f_{k}\varphi))=c(U_{[k+1]*})-t$ .
This contradicts (4). Hence (5) is proved.

Step 2. Since $S$ is $QF$, there exists $i$ such that Soc $(Sf_{i})\cong Sf_{k}/Nf_{k}$ .
Let $\alpha(\neq 0)\in f_{k}$ . Soc $(Sf_{i})$ , and fix $\alpha$ .

Step 3. We shall prove that
(6) ${\rm Im}(\alpha)\subsetneqq U_{i}$ .
If ${\rm Im}(\alpha)=U_{i}$ , then Top $(U_{k})\cong Top({\rm Im}(\alpha))=Top(U_{i})$ , and hence $i=k$ from
the assumption of Theorem 8. Hence $\alpha$ is an automorphism of $U_{i}$ , and
Soc $(Sf_{i})=S\alpha=Sf_{i}$ . This implies that $Sf_{i}$ is a simple, injective and pro-
jective left S-module. Then

$f_{i}Sf_{\dot{f}}=Hom_{s}(Sf_{i}, Sf_{\dot{f}})=0$ and
$f_{\dot{f}}Sf_{i}=Hom_{s}(Sf_{l}, Sf_{i})=0$

for $j\neq i$ . This means that $S$ decomposes as a ring, which contradicts
the assumption that $S$ is indecomposable as a ring. Thus we have
proved (6).

Step 4. From (6), the composition type of $U_{i}$ is $(q(i),$ $\cdots,$
$\cdots$ ,

$q([k+1]^{*}),$ $\cdots,$ $q(k),$ $\cdots$ ). Since $c({\rm Im}(\alpha))+t\leqq c(U_{k})+t\leqq c(U_{[k+1]}.)$ , there
exists $\psi\in Hom_{R}(U_{[k+1]*}, U_{i})$ such that $c({\rm Im}(\psi))=c({\rm Im}(\alpha))+t$ by Corollary
3; in this case, the composition types of ${\rm Im}(\alpha),$ ${\rm Im}(\psi)$ and $U_{i}$ are
respectively

${\rm Im}(\alpha)$ : $(q(k), \cdots)$ ,
${\rm Im}(\psi)$ : $(q([k+1]^{*}), \cdots, q(k), \cdots)$ ,
$U_{i}$ : $(q(i), \cdots, \cdots, q([k+1]^{*}), \cdots, q(k), \cdots)$ .
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Step 5. Applying the functor $Hom_{R}$ $(_{R}U_{S}$, - $)$ , we get the following
diagram;

$Sf_{k}$

(7)
$Hom(1, \psi)$

$\downarrow Hom(1, \alpha)$

$Sf_{[k+1]*-}\rightarrow Sf_{i}$ .
We shall prove

(8) ${\rm Im}(Hom(1, \psi))\supseteqq{\rm Im}(Hom(1, \alpha))$ .
First, notice that ${\rm Im}(Hom(1, \psi))=Sf_{[k+1]}\psi$ and ${\rm Im}(Hom(1, \alpha))=Sf_{k}\alpha$ .
Assume $ Sf_{[k+1]}\psi\not\geqq Sf_{k}\alpha$ . Then the right annihilator ideal of $Sf_{[k+1]}$. is
not contained in the right annihilator ideal of $Sf_{k}$ since $S$ is $QF$. Thus
there exists seS such that $Sf_{[k+1]}\psi s=0$ and $Sf_{k}\alpha s\neq 0$ . On the other
hand, $ USf_{[k+1]*}\psi={\rm Im}(\psi)\supseteqq{\rm Im}(\alpha)=USf_{k}\alpha$ . Hence we have

$0=(USf_{[k+1]}.\psi)s\underline{\supseteq}(USf_{k}\alpha)s\neq 0$ .
This is a contradiction. Thus we have proved (8).

Step 6. From (8) and the projectivity of $sSf_{k}$ , there exists a S-
homomorphism $\overline{\varphi}:sSf_{k}\rightarrow_{s}Sf_{[k+1]*}$ such that $\overline{\varphi}$ Hom $(1, \psi)=Hom(1, \alpha)$ . Put
$\varphi=(f_{k})\overline{\varphi}\in f_{k}Sf_{[k+1]*}$ . Then $\varphi\psi=\alpha$ . Therefore

$[q([k+1]^{*})-q(k)]=c({\rm Im}(\psi))-c({\rm Im}(\alpha))$

$=c(Coker(\varphi))=c(U_{[k+1]*})-c({\rm Im}(\varphi))$

$\geqq m_{[k+1]*}-m_{k}$ .
This contradicts (4).

Therefore $\Phi$ is onto if $S$ is $QF$. This completes the proof of Lemma 12.

Now, let us proceed to the proof of Theorem 8.
$(a)\Leftrightarrow(b)$ . By Lemma 12, $\Phi$ is a ring isomorphism in the case $S$ or

$S$ ’ is $QF$. Thus $(a)\Leftrightarrow(b)$ holds.
$(b)\Leftrightarrow(c)\Leftrightarrow(d)\Leftrightarrow(e)\Leftrightarrow(f)$ . Since $R\cdot eU$ is faithful and Top $(_{R}.eU)\cong$

$R*(eRe/eJe)$ , Lemma 6 is applicable to the left $eRe$-module $eU$, and we
have these equivalences.

$(b)\Rightarrow(g)$ . Assume $(b)$ . Then by the equivalence of $(b)$ and $(f)$ , we
have $cR*eRe\cong*R\cdot eU$ and Top $(_{eR*}eU)\cong Soc(_{R*}eU)$ .

We shall prove that $U$ is isomorphic to a chain end for all $i$ . Since
$E(Re_{q(i)})$ is isomorphic to a direct summand of a minimal faithful left
R-module and $RU$ is faithful, it is also isomorphic to a direct summand
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of $U$. Here, there exists $k$ such that $U_{k}\cong E(Re_{q(i)})$ . Since $U_{i}$ is a
factor module of $Re_{q(i)}$ and $Re_{q(i)}$ is a submodule of $U_{k}$ , we have

$c(eReeU_{k})=c(eReeU_{\iota})\leqq c(*ReeRe_{q(i)})\leqq c(eReeU_{k})$

by $(f)$ . Thus $c(eReeU_{k})=c(eReeRe_{q(i)})$ , and hence $U_{k}=Re_{q()}$ because, if
$U_{k}\supseteqq Re_{q(i)}$ then the composition lengths are different by at least

$c$ ( $eRe$ Top $(eU_{k})$). Then Top $(U_{i})\cong Top(Re_{q(t)})\cong Top(U_{k})$ , we have $U_{i}=U_{k}$

from the assumption (3) of Theorem 8. Hence $U_{l}$ is isomorphic to a
chain end of $R$ for all $i$ .

Then $U_{i}$ is isomorphic to a direct summand of a minimal faithful
left R-module. On the other hand, a minimal faithful left R-module is
isomorphic to a direct summand of $U$. Hence $U$ itself is a minimal
faithful left R-module (notice that $U_{i}\not\cong U_{j}$ if $i\neq j$).

$(g)\Rightarrow(c)$ . Assume $(g)$ . Then each $U_{i}$ is projective and $U_{l}\cong Re_{q(t)}$ .
Since $e=\sum_{i}e_{q(i)}$ , we have $eReeRe\cong eReeU$. Since eRe is a serial self-basic
ring, the condition Top $(_{eRe}eRe)\cong Soc(_{eRe}eRe)$ in $(g)$ implies that eRe is a
$QF$ ring. Hence $(c)$ holds.

Thus the proof of Theorem 8 is completed.

EXAMPLE 13. In the general case, the ring homomorphism $\Phi$ defined
in Theorem 8 is not onto.

Let $R$ be an indecomposable self-basic serial ring with the radical
$J$. We assume the admissible sequence of $R$ is 3, 4, 5, $i.e.,$ $1=e_{1}+e_{2}+e_{3}$

where $Re_{1},$ $Re_{2},$ $Re_{3}$ is a left Kupisch series of $R$ and $c(Re_{1})=3,$ $c(Re_{2})=$

$4,$ $c(Re_{3})=5$ . Put

$U_{1}=Re_{1}/J^{2}e_{1},$ $U_{2}=Re_{3}$ and $U=U_{1}\oplus U_{2}$ .
The $U$ is a faithful left R-module ( $U_{2}=Re_{3}$ is a minimal faithful left
R-module). Put $e=e_{1}+e_{3}$ . Then it is easy to show that $Hom_{R}(U_{\iota}, U_{2})=$

$0$ and $Hom_{*R*}(eU_{1}, eU_{2})\neq 0$ . Thus $\Phi$ is not onto. In this case, neither
$End_{R}(U)$ nor End.$Re(eU)$ is quasi-Frobenius.

REMARK 14. K. Morita had proved earlier the following theorem:
If $U$ is a finitely generated projective and injective left module over a
left Artinian ring $R$ such that simple components of Top $(_{R}U)$ and those
of Soc $(_{R}U)$ are coincident in disregard of multiplicity, then $End_{R}(U)$ is
a quasi-Frobenius ring.

He pointed out further that the use of the idempotent $e$ in this
paper improves his result as follows:
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Let $U$ be a finitely generated projective (resp. injective) left module
over an Artinian ring R. Let $e\in R$ (resp. $f\in R$) be an idempotent
defined by Top $(_{R}U)$ (resp. Soc $(_{R}U)$) as in Theorem 7. Then $End_{R}(U)$

is quasi-Frobenius if and only if,$R*eU$ is injective (resp. projective).
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