Construction of Aspherical Manifolds from Special G-Manifolds

Hiroshi NAKAMURA

Gakushuin University
(Communicated by T. Mitsui)

Introduction

Let G be a compact connected Lie group acting smoothly and effectively on a manifold X. We say that X is a (smooth) special G-manifold (see K. Jänich [6]) if for each $x \in X$ the slice representation $G_x \to GL(V_x)$ is the direct sum of a transitive and a trivial representation. In this case the orbit space M = X/G is a differentiable manifold with boundary. K. Jänich showed that a special G-manifold X is constructed by a Lie group G, an orbit space M and an admissible orbit fine structure over M (roughly speaking, isotropy groups of G at $x \in X$).

Note that the following fact is known: If G is abelian, then $S[U_A] \cong \prod [G] \cong [M; BG]$ (see [6, Corollary 1]). That is, the isomorphic class [X] depends only on the isomorphic class of the G-principal bundle P, and the class [X] corresponds to a homotopy class of maps of M into the classifying space BG. But actually the homotopy groups of X can not be computed directly even if the homotopy groups of M are computable. In general also we do not know whether this X is an aspherical (i.e., its universal covering is contractible) manifold or not.

In this paper we give a condition that the special G-manifold is aspherical. In this case it is known from the result of Conner and Raymond [1, Theorem 5.6] that G is a toral group and all isotropy groups are finite. And under this condition it follows from Lemma 1 that the orbit structure U_A over M is a family of U_α which is isomorphic to \mathbb{Z}_2 . And our main result is the following

THEOREM 1. Let T^k be a k-dimensional toral group (k>0), M^m an m-dimensional compact connected differentiable manifold with boundary $\partial M = \bigcup_{\alpha \in A} B_{\alpha}$, where B_{α} is a connected component (m>0). Let $(\mathbf{Z}_2)_A = \mathbf{Z}_2$

 $\{(Z_2)_{\alpha}\}_{\alpha\in A}$ be the orbit structure over M^m . Let X^{k+m} be the special T^k -manifold over M constructed by $J\ddot{\alpha}nich$'s method. Then X is aspherical if and only if $M\bigcup_{\bar{\sigma}} M$ is aspherical.

It follows that an aspherical special T-manifold X over M is an aspherical Seifert fibered manifold in the sense of Conner and Raymond [3]. We give some examples of aspherical special T-manifold of dimension 3 and 4 in Section 3.

§ 1. Prerequisites.

Let G be a compact connected Lie group acting differentiably and effectively on a differentiable manifold X and $\pi\colon X\to X/G=M$ be a natural projection. Let $G_x\to GL(V_x)$ be the induced representation of the isotropy group G_x in the normal space V_x of the orbit Gx at a point $x\in X$. The representation of the compact Lie group in an n-dimensional real vector space is called transitive if its orbits different from $\{0\}$ are homeomorphic to S^{n-1} . A G-manifold X is called special if for each $x\in X$ the representation $G_x\to GL(V_x)$ is the direct sum of a transitive and a trivial representation. If X is a special G-manifold, then the orbit space X/G=M has a "canonical" structure as a differentiable manifold with boundary. A pair $(X,\pi\colon X\to M)$ is called a G-manifold over M.

Now we consider the case that G is a toral group T. Let M be a connected compact differentiable manifold with boundary, and denote by B_{α} ($\alpha \in A$) its boundary component and $M_0 = M - \partial M$. An orbit structure $U_A = \{U_{\alpha}\}_{\alpha \in A}$ over M consists of closed subgroups U_{α} , $\alpha \in A$, of T such that for each $\alpha \in A$ there is a transitive representation of an isotropy group U_{α} at the zero point.

Given a special T-manifold X over M, let $Y_{\alpha} = \pi^{-1}(B_{\alpha})$ for each $\alpha \in A$, then Y_{α} is a compact differentiable T-invariant submanifold of X. Let E_{α} be the normal bundle of Y_{α} in X. Then E_{α} is a T-equivariant vector bundle under the induced operation of T on E_{α} , and there is an equivariant diffeomorphism from an open T-invariant neighborhood of a zero section of E_{α} onto an open T-invariant neighborhood of Y_{α} in X. Let the isotropy group at any point over M_0 be $\{e\}$, and $y_{\alpha} \in Y_{\alpha}$. Then the representation $G_{y_{\alpha}} \to GL(E_{\alpha,y_{\alpha}})$ is transitive and putting $U_{\alpha} = G_{y_{\alpha}}$ we have an orbit structure U_A over M.

Next we will sketch Jänich's method for the construction of a special T-manifold X from a T-principal bundle $(P, \tilde{\pi}: P \rightarrow M)$. Since there is a transitive representation of an isotropy group U_{α} , $\alpha \in A$, we may take an orthogonal representation $U_{\alpha} \rightarrow O(k_{\alpha})$ and then an isotropy group at

a point $e_{k_{\alpha}} = (0, \dots, 0, 1) \in S^{k_{\alpha}-1}$ is $\{e\}$ since T is abelian. It follows that the orbit $S^{k_{\alpha}-1}$ is homeomorphic to U_{α} for each $\alpha \in A$, so that U_{α} is isomorphic to S^1 or Z_2 ; hence $k_{\alpha} = 2$ or 1 respectively. Then taking the representation space $R^{k_{\alpha}}$ of U_{α} -principal fiber bundle $T \to T/U_{\alpha}$, we can construct the T-equivariant vector bundle $F_{\alpha} = T \times_{U_{\alpha}} R^{k_{\alpha}}$ over T/U_{α} with the T-invariant Riemannian metric and we have

$$E_{\alpha} = F_{\alpha} \times P_{\alpha}$$

and

$$Y_{\alpha} = T/U_{\alpha} \times P_{\alpha}$$

where $P_{\alpha}=P|B_{\alpha}$. With the canonical projection, $E_{\alpha} \to Y_{\alpha}$ is the *T*-equivariant vector bundle over Y_{α} with a *T*-invariant Riemannian metric. Let $E \to Y$ denote the disjoint union of $E_{\alpha} \to Y_{\alpha}$.

From now suppose U_{α} is isomorphic to Z_2 for all $\alpha \in A$. Then the total space of the sphere bundle $SF_{\alpha} = T \times_{(Z_2)_{\alpha}} S^0$ of F_{α} is isomorphic to T, and $SF_{\alpha T} \times P_{\alpha}$ is the sphere bundle SE_{α} of E_{α} . Also there is the canonical equivariant diffeomorphism $i_{\alpha} \colon SE_{\alpha} \to P_{\alpha}$. Therefore T-manifold to construct is essentially $\{v \in E \mid ||v|| \leq 1\} \bigcup_i P$. Choose a collar κ which is a diffeomorphism of $\partial M \times I$ onto a closed neighborhood of ∂M in M, where $\partial M \times \{0\} \to M$ is an inclusion. Let a map $\operatorname{pr}_1 \colon \partial M \times I \to \partial M$ be a projection onto the first factor. Then $(\operatorname{pr}_1)^*(P | \partial M) \cong \kappa^* P$, and we choose such an isomorphism which is the identity map over ∂M . Therefore we have the following commutative diagram.

where (1) is given by a projection onto ∂M and $\|\cdot\cdot\cdot\|$, and (2) is defined by $v\mapsto (v/\|v\|,\|v\|)$. Then $\pi\colon X\to M$ is constructed from the disjoint union $\{v\in E|\|v\|<1\}\to \partial M\times [0,1)$ and $P_0\to M_0$ by identifying each corresponding points under

$$\{v \in E \mid 0 < \parallel v \parallel < 1\} \longrightarrow P_{\scriptscriptstyle 0} \ \downarrow \ \partial M \times (0, 1) \longrightarrow M_{\scriptscriptstyle 0}.$$

Then this construction yields the following classifications theorem of K. Jänich.

THEOREM. For each orbit structure $(Z_2)_A$ over M the isomorphism class of special T-manifolds over M is classified by the T^k -principal bundle $P \rightarrow M$, that is

$$S[(Z_2)_A] \approx \prod [T^k] \approx [M:BT^k] \approx H^2(M;Z^k)$$
.

This theorem is proved in [6, pp. 309-312 and Corollary 1] (also cf. [4]). (Note that $S[(Z_2)_A]$ is the set of equivalence classes of special T-manifolds over M and $\prod [T^k]$ is the set of isomorphic classes of T-principal bundle over M.)

§ 2. Construction theorem.

It is known that if (G, X) is a compact connected Lie group acting effectively on a compact aspherical manifold then G is a toral group and all isotropy groups are finite (Conner and Raymond [1, Theorem 5.6]). As above we have seen that if X is a special T-manifold then $U_{\alpha} = S^1$ or \mathbb{Z}_2 . Therefore we have the following

LEMMA 1. Let (T, X) be a toral group T acting differentiably and effectively on an aspherical special T-manifold X, then its orbit structure over M is $U_A = (Z_2)_A$, where $(Z_2)_\alpha$ is isomorphic to Z_2 for each $\alpha \in A$.

From now let T be a toral group, M^m an m-dimensional compact connected differentiable manifold with boundary $\partial M = \bigcup_{\alpha \in A} B_{\alpha}$ (B_{α} is a boundary component), and (Z_2)_A an orbit structure over M. Then we shall investigate a special T-manifold over M constructed by Jänich's method.

Let $\tilde{\pi}: P \to M^m$, $\tilde{\pi}': P' \to M'^m$ be the same T-principal bundles $(P_{\alpha} = P | B_{\alpha})$, and \tilde{E}_{α} be defined by $(T \times R^1)_T \times P_{\alpha}$ which is diffeomorphic to $R^1 \times P_{\alpha}$; $[(g, t), x] \mapsto (t, gx)$. Then a map $p_{\alpha}: \tilde{E}_{\alpha} \to E_{\alpha}$ defined by

$$p_{\alpha}([(g, t), x]) = [[g, t], x]$$

is a double covering map and its covering transformation is $(t, x) \mapsto (-t, g_{\alpha}x)$ where g_{α} is the generator of $(\mathbb{Z}_2)_{\alpha}$. And

$$S\widetilde{E}_{\alpha} = (T \times S^{0})_{T} \times P_{\alpha}$$
.

Put

$$S_+\widetilde{E}_{\alpha} = (T \times \{1\})_T \times P_{\alpha} \cong P_{\alpha}$$

and

$$S_{-}\widetilde{E}_{\alpha} = (T \times \{-1\})_{T} \times P_{\alpha} \cong P'_{\alpha}$$
.

Choose a collar κ which is a diffeomorphism from $\partial M \times I$ onto a closed neighborhood in M, where $\partial M \times \{0\} \to M$ is an inclusion. Let a map $\operatorname{pr}_1: \partial M \times I \to \partial M$ be a projection onto the first factor. Then $(\operatorname{pr}_1)^*(p \mid \partial M) \cong \kappa^* P$, $(\operatorname{pr}_1)^*(P' \mid \partial M) \cong \kappa^* P'$, and we choose such an isomorphism which is the identity map on ∂M . Therefore we have the following commutative diagram:

$$\begin{cases} v \in \widetilde{E} \mid 0 < t < 1 \rbrace \xrightarrow{(2)} S_{+}\widetilde{E} \times (0, 1) \\ \\ v \in \widetilde{E} \mid 0 > t > -1 \rbrace \xrightarrow{(2)'} S_{-}\widetilde{E} \times (0, 1) \\ \\ \partial M \times [0, 1) \supset \partial M \times (0, 1) \longrightarrow \partial M \times (0, 1) \\ \\ \xrightarrow{i \times \mathrm{Id}} (P \mid \partial M) \times (0, 1) \longrightarrow P \mid \kappa(\partial M \times (0, 1)) \subset P_{0} \\ \\ \downarrow \qquad \qquad \downarrow \\ \\ \xrightarrow{i \times \mathrm{Id}} (P' \mid \partial M) \times (0, 1) \xrightarrow{\kappa} \kappa(\partial M \times (0, 1)) \subset M_{0}$$

where (1) is given by a projection onto ∂M and $\|\cdot\cdot\cdot\|$, and (2), (2)' are defined by $v\mapsto (v/\|v\|, t)$ (t>0), $v\mapsto (v/\|v\|, -t)$ (t<0), respectively.

We define a manifold $P \bigcup_{\hat{\sigma}} P$ by the disjoint union $\{v \in E \mid ||v|| < 1\} \rightarrow \partial M \times [0, 1)$, $P_0 \rightarrow M_0$ and $P'_0 \rightarrow M'_0$ from identifying each corresponding points under

and define a projection $p: P \bigcup_{\partial} P \rightarrow X^{m+k}$ by

$$p(x)\!=\!x \qquad ext{for} \quad x\in P_{\scriptscriptstyle 0}, \ ext{or} \ P_{\scriptscriptstyle 0}' \ p(v)\!=\!p_{\scriptscriptstyle lpha}\!(v) \quad ext{for} \quad v\in \{v\in \widetilde{E}_{\scriptscriptstyle lpha}\!\mid\! \|v\|\!<\!1\} \;.$$

(Note that $S_+\widetilde{E}_\alpha \cong P_\alpha$; $[(g, 1), x] \mapsto gx$ and $S_-\widetilde{E}_\alpha \cong P'_\alpha$; $[(g, -1), x] \mapsto gg_\alpha x$). Then we have

LEMMA 2. p is a double covering map.

Let M' be a copy of an m-dimensional compact connected differentiable manifold M, and $M \cup_{\mathfrak{d}} M$ a differentiable manifold naturally obtained by attaching their boundaries. Then we define a map

$$\widetilde{\pi} \bigcup_{\mathfrak{d}} \widetilde{\pi} \colon P \bigcup_{\mathfrak{d}} P \longrightarrow M \bigcup_{\mathfrak{d}} M$$

bу

$$(\widetilde{\pi} \bigcup_{\vartheta} \widetilde{\pi})(x) = \widetilde{\pi}(x) \in M$$
 for $x \in P_0$ $(\widetilde{\pi} \bigcup_{\vartheta} \widetilde{\pi})(x') = \widetilde{\pi}'(x') \in M'$ for $x' \in P_0'$,

and a composite $\widetilde{E}_{\alpha} \underset{p_{\alpha}}{\longrightarrow} E_{\alpha} {\longrightarrow} B_{\alpha} {\times} (-1, 1) {\longrightarrow} M \bigcup_{\widehat{\sigma}} M$ defined by

$$v = [(g, t), x] \longmapsto \begin{cases} \kappa(\widetilde{\pi}(x), t) & \text{for } t \geq 0 \\ \kappa(\widetilde{\pi}'(x'), -t) & \text{for } t < 0 \end{cases}$$

Then we have

LEMMA 3. $\tilde{\pi} \bigcup_{\tilde{\tau}} \tilde{\pi} : P \bigcup_{\tilde{\tau}} P \to M \bigcup_{\tilde{\tau}} M$ is a T^k -principal bundle over $M \bigcup_{\tilde{\tau}} M$.

Now we obtain

THEOREM 1. Let T^k be a k-dimensional toral group (k>0), M^m an m-dimensional compact connected differentiable manifold with boundary (m>0) and $(Z_2)_A$ the orbit structure over M^m . Let X^{k+m} be the special T^k -manifold over M constructed as above. Then X is aspherical if and only if $M\bigcup_{\delta} M$ is aspherical.

PROOF. By Lemma 2 the manifold X^{m+k} is aspherical if and only if $P \bigcup_{\partial} P$ is aspherical. By Lemma 3 there is an exact sequence of homotopy groups

$$\cdots \longrightarrow \pi_2(T^k, t_0) \longrightarrow \pi_2(P \bigcup_{\partial} P, x_0) \longrightarrow \pi_2(M \bigcup_{\partial} M, b_0) \longrightarrow \pi_1(T^k, t_0) \longrightarrow \cdots$$

 $(t_0 \in T^k, x_0 \in P \bigcup_{\mathfrak{d}} P, \text{ and } (\widetilde{\pi} \bigcup_{\mathfrak{d}} \widetilde{\pi})(x_0) = b_0 \in M \bigcup_{\mathfrak{d}} M).$ If $M \bigcup_{\mathfrak{d}} M$ is aspherical, then it follows easily that $P \bigcup_{\mathfrak{d}} P$ is aspherical. If $P \bigcup_{\mathfrak{d}} P$ is aspherical then $\pi_i(M \bigcup_{\mathfrak{d}} M, b_0) = 0$ $(i \geq 3)$ and $\pi_2(M \bigcup_{\mathfrak{d}} M, b_0) \to \pi_1(T^k, t_0) \cong Z^k$ is injective, and so $\pi_2(M \bigcup_{\mathfrak{d}} M, b_0) \cong Z^{k'}$ for some k' $(0 \leq k' \leq k)$. Suppose k' > 0 and consider the universal covering $M \bigcup_{\mathfrak{d}} M$ of $M \bigcup_{\mathfrak{d}} M$ $(M \bigcup_{\mathfrak{d}} M \ni \widetilde{b_0} \mapsto b_0 \in M \bigcup_{\mathfrak{d}} M)$, then $\pi_i(M \bigcup_{\mathfrak{d}} M, \widetilde{b_0}) = 0$ $(i \neq 2)$ and $\pi_2(M \bigcup_{\mathfrak{d}} M, \widetilde{b_0}) \cong Z^{k'}$, that is, $M \bigcup_{\mathfrak{d}} M$ is a $K(Z^{k'}, 2)$ -space which has the same homotopy type as the k'-fold product

of infinite dimensional complex projective spaces $\prod^{k'} CP^{\infty}$. In the cohomology level $H^{i}(M\bigcup_{\partial}M)=0$ (i>m), since $M\bigcup_{\partial}M$ is the finite dimensional manifold. But $\prod^{k'} CP^{\infty}$ is infinite dimensional, and also there is an integer i (>m) such that $H^{i}(\prod^{k'} CP^{\infty}) \neq 0$. This is a contradiction. Therefore $\pi_{2}(M\bigcup_{\partial}M, \ \widetilde{b_{0}}) = \pi_{2}(M\bigcup_{\partial}M, \ b_{0}) = 0$ and $M\bigcup_{\partial}M$ is aspherical. q.e.d.

Since any closed 2-manifold except the 2-sphere and the real projective plane is aspherical [2, p. 40], we have

COROLLARY. A special T^k -manifold X^{z+k} over M^z is aspherical if and only if M^z is not diffeomorphic to D^z .

§ 3. Examples.

In this section we shall investigate the aspherical special T-manifold over M in the case of dimensions 3 and 4. It follows from the classification theorem of Jänich (see Section 1) that any 3-dimensional aspherical special T^k -manifold (k=1,2) is perfectly determined by Example 2 and Cases 1 and 3 (see the table at the end of this paper) up to the equivariant diffeomorphism in the sense of Neumann [7]. And some examples of 4-dimensional aspherical special T^k -manifold (k=1,2,3) are given by Examples 1 (m=3), 4, 5 (m=2), 6 and Case 1, etc.

Now in general the aspherical special T^k -manifold X over M is constructed from the disjoint union

$$X = P_0 \cup \{v = ([[g, t], (g', b)]) \in E = (T^k \times_{(\mathbf{Z}_2)_A} R^1)_{T^k} \times P_A | ||t|| \leq 1\}$$

with the identifying relation as indicated in Section 1, where $P \to M$ is the T^k -principal bundle and $M \bigcup_{\vartheta} M$ is aspherical. Let $K' = X - \{v \in E \mid ||v|| < 1\}$, $K''_{\alpha} = \{v \in E_{\alpha} \mid ||v|| \leq 1\}$, $K_{\alpha}^{\vartheta} = K' \cap K''_{\alpha}$ (which is homeomorphic to $P_{\alpha} \times \{1\}$) and $i'_1: K_1^{\vartheta} \to K'$, $i'_2: K_2^{\vartheta} \to K' \cup K''_1$, \cdots , $i'_n: K_n^{\vartheta} \to K' \cup \bigcup_{\alpha=1}^{n-1} K''_{\alpha}$), $i''_{\alpha}: K_n^{\vartheta} \to K''_{\alpha}$ be inclusion maps for each $\alpha \in A = \{1, \dots, n\}$. Then by Van Kampen's theorem it follows that the fundamental group of an aspherical special T^k -manifold X^{k+m} over M^m , $\pi_1(X, x_n)$ is isomorphic to the group which is obtained from the free product of $\pi_1(P, x_1)$, $\pi_1(Y_1, x_1)$, \cdots and $\pi_1(Y_n, x_n)$ by adding the relations $i'_{\alpha*}(\omega_{\alpha}) = i''_{\alpha*}(\omega_{\alpha})$ for all $\omega_{\alpha} \in \pi_1(P_{\alpha}, x_{\alpha})$, $(x_{\alpha} \in P_{\alpha})$, $\alpha = 1, \dots, n$.

3.1. The case of T = SO(2). Since F_{α} is the Möbius band, we have

EXAMPLE 1.

$$X^{m+1} = P_0 \bigcup_{\substack{S_*^1 \times P_A \\ s_1^1}} (Mb_{S^1} \times P_A)$$

is an aspherical special SO(2)-manifold over M^m if $M \bigcup_{\partial} M$ is aspherical, where S^1_* is the center circle of the Möbius band Mb and $P \rightarrow M$ is the SO(2)-principal bundle.

Especially for m=2, we have

EXAMPLE 2.

$$X^3 = S^1 \times M_0^2 \bigcup_{S^1_* \times \partial M} Mb \times \partial M$$

is an aspherical special SO(2)-manifold over M, where M is any 2-dimensional compact connected differentiable manifold with boundary except D^2 and S_*^1 is the center circle of the Möbius band Mb.

3.2. The case of $T = SO(2) \times SO(2)$. In the case of the orbit structure $\{\{e\} \times \mathbb{Z}_2\}_A$, we have

EXAMPLE 3.

$$X = P_{\scriptscriptstyle 0} \cup \{ v \in (S^{\scriptscriptstyle 1} \times (S^{\scriptscriptstyle 1} \times_{(\mathbf{Z}_{\scriptscriptstyle 2})_A} R^{\scriptscriptstyle 1}))_{T^{\scriptscriptstyle 2}} \times P_{\scriptscriptstyle A} | \parallel t \parallel \leq 1 \}$$

is an aspherical special T^2 -manifold over M^m with the orbit structure $\{\{e\} \times \mathbb{Z}_2\}_A$ if $M \bigcup_{\mathfrak{d}} M$ is aspherical, where $P \to M$ is the T^2 -principal bundle. Especially for m=2, we have

EXAMPLE 4.

$$X^4 = S^1 \times X^3 \longrightarrow M^2$$

is an aspherical special T^2 -manifold over M with the orbit structure $\{\{e\} \times \mathbb{Z}_2\}_A$, where M is any 2-dimensional compact connected differentiable manifold with boundary except D^2 and X^3 is the manifold of Example 2.

Next we consider the case of the orbit structure $\{Z_2 \times \{e\}, \{e\} \times Z_2\}$. Let N be any m-dimensional compact connected differentiable manifold without boundary and $M^m = N^m - \text{Int}(D_1^m \cup D_2^m) \ (m \ge 2, \ D_1^m \cap D_2^m = \emptyset)$ such that $M^m \bigcup_{\mathfrak{d}} M^m$ is aspherical. Then $M^m = N^m \# (D_1^m \# D_2^m) = N^m \# (I \times S^{m-1})$.

We shall construct an aspherical special T^2 -manifold M^m . First it follows that the special T^2 -manifold constructed over $D_1^m \sharp D_2^m$ with an orbit structure $U_A = \{Z_2 \times \{e\}, \{e\} \times Z_2\}$ is

$$X^{m+2} = (Mb \times S^1 \bigcup_{S^1 \times S^1} S^1 \times Mb) \times S^{m-1} \longrightarrow I \times S^{m-1}$$

in the trivial (bundle) case, where $Mb \times S^1 \bigcup_{S^1 \times S^1} S^1 \times Mb$ is the manifold $Mb \times S^1 \cup S^1 \times Mb$ intersecting canonically in $S^1 \times S^1$. Then the restriction $(Mb \times S^1 \bigcup_{S^1 \times S^1} S^1 \times Mb) \times S^{m-1}|_{\text{Int}(I \times S^{m-1})} \to \text{Int}(I \times S^{m-1})$ is the T^2 -principal

bundle. $P \rightarrow N$ be any T²-principal bundle over N and form

$$P' = \left(P - \operatorname{Int}\left(T^2 \times \frac{1}{2}D^{m}\right)\right) \bigcup_{\theta \in T^2 \times D^{m/2}} \left(T^2 \times \left(D_1^{m} \# D_2^{m}\right) - \operatorname{Int}\left(T^2 \times \frac{1}{2}D^{m}\right)\right)$$

where $D^m/2 = \{(x_1, \dots, x_m) \in \mathbb{R}^m \mid x_1^2 + \dots + x_m^2 \le 1/2\}$ is a disk regarded as imbedded in $D_1^m \sharp D_2^m$. Then

$$P' \longrightarrow M^m = N^m \sharp (D_1^m \sharp D_2^m)$$

is a T^2 -principal bundle.

Note that the constructed T^2 -principal bundle is trivial over the boundary $\partial M^m = \partial D_1^m \cup \partial D_2^m$.

Hence more generally we obtain the following

EXAMPLE 5. Let N^m be any m-dimensional compact connected differentiable manifold without boundary, $M^m = N^m - \text{Int}\left(\bigcup_{\alpha=1}^{2n} D_{\alpha}^m\right)$ where $m \ge 2$ and $D_{\alpha}^m \cap D_{\alpha''}^m = \emptyset$ if $\alpha \ne \alpha'$ and $M \bigcup_{\partial} M$ be aspherical. Then the aspherical special T^2 -manifold over M^m with the orbit structure $\{(\mathbf{Z}_2 \times \{e\})_{2\alpha-1}, (\{e\} \times \mathbf{Z}_2)_{2\alpha}\}_{\alpha=1,\dots,n}$ is

$$\begin{split} X &= \left(P - \bigcup_{\alpha=1}^{n} \operatorname{Int}\left(T^{2} \times \frac{1}{2} D_{\alpha}^{m}\right)\right) \\ &= \bigcup_{\substack{\mathsf{U}_{\alpha=1}^{n} \ \partial (T^{2} \times D_{\alpha}^{m}/2)}} \left(\bigcup_{\alpha=1}^{n} \left(\left(Mb \times S^{1} \bigcup_{S^{1} \times S^{1}} S^{1} \times Mb\right) \times S^{m-1} - \operatorname{Int}\left(T^{2} \times \frac{1}{2} D_{\alpha}^{m}\right)\right)\right) \end{split}$$

where $P \rightarrow N^m$ is any T^2 -principal bundle.

As an example of another orbit structure, we have

EXAMPLE 6.

$$X^4 = ((T^2 imes M_0 igcup_{S^1 imes S^1_{f x} imes S^1_1} S^1 imes Mb imes S^1_1) igcup_{S^1_{f x} imes S^1 imes S^1_2} Mb imes S^1 imes S^1_2) \ igcup_{S^1 imes S^1 imes S^1_3} (T^2 imes_{({f z_2})_3} [-1, 1] imes S^1_3)$$

is an aspherical special T^2 -manifold over $M=F-\bigcup_{\alpha=1}^3 \operatorname{Int} D_{\alpha}^3$ $(\partial D_{\alpha}^2=S_{\alpha}^1, \alpha\in A)$ with the orbit structure $(Z_2)_A=\{\{e\}\times Z_2=\{(1,1),(1,-1)\}_1,\ Z_2\times \{e\}=\{(1,1),(-1,1)\}_2,\ \{(1,1),(-1,-1)\}_3\}$ over M, where F is a closed surface of genus g. For example it follows from $(Z_2)_3$ that (g_1,g_2,t) is equivalent to $(-g_1,-g_2,-t)$ for each $(g_1,g_2,t)\in T^2\times [-1,1]$. Then the form of Y_3 is as follows:

Then by Van Kampen's theorem it follows that the fundamental group of X^{i} is

$$\pi_{1}(X, x_{0}) = (((Z^{2} \oplus \pi_{1}(M, b_{0})) \underset{z^{3}}{*} Z^{3}) \underset{z^{3}}{*} Z^{3}) \underset{z^{3}}{*} Z^{3}$$

$$= (((\langle a \rangle \oplus \langle b \rangle \oplus \pi_{1}(M)) \underset{z^{3}}{*} (\langle a_{1} \rangle \oplus \langle b_{1} \rangle \oplus \langle c_{1} \rangle)) \underset{z^{3}}{*} (\langle a_{2} \rangle \oplus \langle b_{2} \rangle \oplus \langle c_{2} \rangle))$$

$$\underset{z^{3}}{*} (\langle a_{3}a_{3}' \rangle \oplus \langle a_{3}'b_{3} \rangle \oplus \langle c_{3} \rangle) \quad \text{(represented by its generators)}$$

with the relations

$$a=a_1=a_2^2=a_3a_3'$$
 $b=b_1^2=b_2=b_3a_3'b_3a_3^{-1}$ $c_1\cdot c_2\cdot c_3=x_1y_1x_1^{-1}y_1^{-1}\cdot \cdots x_gy_gx_g^{-1}y_g^{-1}$ if F is orientable $=x_1x_1\cdot \cdots x_gx_g$ if F is non-orientable .

Now we give some examples of aspherical special T^k -manifold for given orbit space M.

Results

Let Mb be the Möbius band and Kl the Klein bottle. Case 1. M=I,

$$T = S^0$$
 , $U_A = \{Z_2\}$, $X^1 = S^1$ $T = S^1$, $U_A = \{Z_2\}$, $X^2 = ext{the Klein bottle}$ $T = T^2$, $U_A = \{Z_2 \times \{e\}, \{e\} \times Z_2\}$, $X^3 = Mb \times S^1 \bigcup_{S^1 \times S^1} S^1 \times Mb$ $U_A = \{Z_2 \times \{e\}\}$ $X^3 = Kl \times S^1$ $T = T^k$, $U_A = \{Z_2 \times \{e\} \times \cdots \times \{e\}, \{e\} \times \cdots \times \{e\} \times Z_2\}$ $X = Mb \times T^{k-1} \bigcup_{T^k} T^{k-1} \times Mb$ $U_A = \{Z_2 \times \{e\} \times \cdots \times \{e\}\}$ $X = Kl \times T^{k-1}$.

Case 2. $M=I\times A$ (A: an aspherical manifold without boundary)

$$T=T^k$$
, $U_A=\{oldsymbol{Z}_2 imes\{e\} imes\cdots imes\{e\} imesoldsymbol{Z}_2\}$ $X=Mb imes T^{k-1} imes A oldsymbol{\bigcup}_{T^{k} imes A} T^{k-1} imes Mb imes A$ $U_A=\{oldsymbol{Z}_2 imes\{e\} imes\cdots imes\{e\}\}$ $X=Kl imes T^{k-1} imes A$.

Case 3. M = Mb

$$T = S^1$$
, $U = \mathbb{Z}_2$ $X^8 = S^1 \times Mb \bigcup_{S^1 \times S^1} Mb \times S^1$ $T = T^k$, $U = \mathbb{Z}_2 \times \{e\} \times \cdots \times \{e\}$ $X^{k+2} = (S^1 \times Mb \bigcup_{S^1 \times S^1} Mb \times S^1) \times T^{k-1}$.

Case 4. $M = Mb \times A$ (A is an aspherical manifold without boundary)

$$T = T^k$$
 , $U = Z_2 \times \{e\} \times \cdots \times \{e\}$ $X = (S^1 \times Mb \bigcup_{S^1 \times S^1} Mb \times S^1) \times T^{k-1} \times A$.

References

- [1] P.E. Conner and F. RAYMOND, Actions of compact Lie groups on aspherical manifold, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, III 1970, 227-264. MR 42 #6839.
- [2] P.E. Conner and F. RAYMOND, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc., 83 (1977), 36-85. MR 57 #7629.
- [3] P.E. CONNER and F. RAYMOND, Holomorphic Seifert fiber spaces, Proc. Second Conference on Compact Transformation Groups, Part II, Lecture Notes in Math., 299, Springer-Verlag, 1972, 124-204. MR 58 #28698.
- [4] M. DAVIS, Multiaxial Actions on Manifolds, Lecture Notes in Math., 643, Springer-Verlag, 1978.
- [5] F. HIRZEBRUCH and K. H. MAYER, O(n)-Mannigfaltigkeiten, exotische Sphären, und Singularitäten, Lecture Notes in Math., 57, Springer-Verlag, Berlin and New York, 1968. MR 37 # 4825.
- [6] K. JÄNICH, Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbare G-Mannigfaltigkeiten ohne Rand, Topology, 5, (1966), 301-320. MR 34 #2030.
- [7] W.D. NEUMANN, 3-dimensional G-manifolds with 2-dimensional orbits, Proc. Conf. on Transformation Group (New Orleans, 1967), 220-222, Springer, New York, 1968. MR 39 #6355.

Present Address:
DEPARTMENT OF MATHEMATICS
GAKUSHUIN UNIVERSITY
MEJIRO, TOSHIMA-KU, TOKYO 171