On a Formula of Morita's Partition function $q(n)$

To the memory of Dr. Takehiko Miyata
Hiroshi NARUSE
Okayama University
(Communicated by Y. Kawada)

Introduction

It is well known that the number of conjugacy classes of $\mathfrak{g l}(2, C)$ in the Lie algebra of type $A_{n-1}=\mathfrak{l l}(n, \boldsymbol{C})$ is $p(n)-1$, where $p(n)$ is the number of partitions of n. Recently J. Morita [1] found that the number of conjugacy classes of $\mathfrak{s l}(2, C)$ in the Kac-Moody Lie algebra of type $A_{n-1}^{(1)}$ is finite and that this number is given by $q(n)-1$ where $q(n)$ is the function defined by (1), which we call Morita's partition function. But it is not easy to calculate $q(n)$ directly following the definition. In this note, using the convolution product, we give a formula of $q(n)$ (Theorem) which seems to have some significance in itself. We also give a combinatorial proof of this formula.

We would like to express great thanks to Professor Jun Morita for communicating this problem.

§ 1. Notations.

Let $\boldsymbol{Z}_{+}=\{1,2,3, \cdots\}$ be the set of positive integers. For $n \in \boldsymbol{Z}_{+}$, a partition of n is a sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}\right)$, where $\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{r}$, $\lambda_{i} \in \boldsymbol{Z}_{+}$and $\sum_{i} \lambda_{i}=n$. We write $\lambda \vdash n$ if λ is a partition of n. For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}\right)$, we define a number $a(\lambda)$ by

$$
a(\lambda)=G \cdot C \cdot D \cdot\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}\right)
$$

the greatest common divisor.
We denote by 3 the set of functions from Z_{+}to the complex numbers
\boldsymbol{C}. Let us denote by $f * g$ the convolution product of $f, g \in \mathbb{B}$, i.e.

$$
f * g(n)=\sum_{d \backslash n} f(d) g\left(\frac{n}{d}\right)
$$

[^0]This product is commutative and associative. The unit element of this product is $e \in 3$ defined by

$$
e(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

(For the convolution product, see e.g. [2].)

§2. Formula.

Definition. Morita's partition function $q(n)$ is defined by

$$
\begin{equation*}
q(n)=\sum_{\lambda+n} a(\lambda) . \tag{1}
\end{equation*}
$$

Theorem. The following formula holds.

$$
\begin{equation*}
q(n)=\varphi * p(n) \tag{2}
\end{equation*}
$$

Corollary. If n is a prime number, then

$$
\begin{equation*}
q(n)=p(n)+n-1 \tag{3}
\end{equation*}
$$

Proof.
For $i \in \boldsymbol{Z}_{+}$, we define a function $f_{i} \in \mathbb{Z}$ by

$$
f_{i}(n)=\#\{\lambda \vdash n \mid a(\lambda)=i\} .
$$

It is clear by definition that $f_{i}(n)=0$ if $i \nmid n$. By an operation multiplying $1 / i$ to each component of λ, we get

$$
\begin{equation*}
f_{i}(n)=f_{1}\left(\frac{n}{i}\right) \tag{4}
\end{equation*}
$$

On the other hand, by definition,

$$
\begin{equation*}
q(n)=\sum_{i} f_{i}(n) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
p(n)=\sum_{j} f_{i}(n) \tag{6}
\end{equation*}
$$

Let us define two functions $1,1 \in 3$ by

$$
\begin{aligned}
& 1(n)=1 \\
& 1(n)=n \quad \text { for all } \quad n \in Z_{+} .
\end{aligned}
$$

Then (5) and (6) are reformulated as

$$
\begin{align*}
& q=1 * f_{1} \\
& p=1 * f_{1} .
\end{align*}
$$

Let μ, φ be the Möbius function and the Euler function respectively. Then we have $\mu * 1=e, \quad 1 * \mu=\rho$ (the inversion formula) [2]. Multiplying both side of (6^{\prime}) by μ, we get

$$
f_{1}=\mu * p .
$$

Therefore by (5^{\prime}), we get

$$
q=1 * \mu * p
$$

Q.E.D.

Now we will prove the formula (2) by a combinatorial argument. For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{r}\right)$ and $k \in \boldsymbol{Z}_{+}$, we set

$$
k \lambda=\left(k \lambda_{1}, k \lambda_{2}, \cdots, k \lambda_{r}\right) .
$$

It is clear that if $\lambda \vdash d$ then $k \lambda \vdash k d$ and $a(k \lambda)=k a(\lambda)$. Now we fix $n \in \boldsymbol{Z}_{+}$. Let $\mathfrak{p}(n)$ denote the set of all partitions whose sizes are divisors of n, that is

$$
\begin{equation*}
\mathfrak{p}(n)=\bigcup_{d \mid n}\left\{\lambda^{\prime} \mid \lambda^{\prime} \vdash d\right\} \quad \text { (disjoint union) } \tag{A}
\end{equation*}
$$

For a partition $\lambda^{\prime} \vdash d$, we get a partition $\lambda \vdash n$, by $\lambda=(n / d) \lambda^{\prime}$. Therefore $\mathfrak{p}(n)$ can also be expressed as

$$
\begin{equation*}
\mathfrak{p}(n)=\bigcup_{\lambda \vdash n}\left\{\lambda^{\prime} \mid k \lambda^{\prime}=\lambda, k \in Z_{+}\right\} \quad \text { (disjoint union). } \tag{B}
\end{equation*}
$$

For a partition $\lambda^{\prime} \in \mathfrak{p}(n)$, we define $\omega\left(\lambda^{\prime}\right)$ the weight of λ^{\prime} by

$$
\omega\left(\lambda^{\prime}\right)=\varphi\left(\frac{n}{d}\right) \quad \text { if } \lambda^{\prime} \vdash d
$$

Using the expression (A), we get

$$
\sum_{\lambda^{\prime} \in \mathfrak{p}(n)} \omega\left(\lambda^{\prime}\right)=\sum_{d \mid n} \varphi\left(\frac{n}{d}\right) p(d) .
$$

On the other hand, if $k \lambda^{\prime}=\lambda \vdash n$, then $\omega\left(\lambda^{\prime}\right)=\varphi(k)$, therefore

$$
\sum_{k \lambda^{\prime}=\lambda} \omega\left(\lambda^{\prime}\right)=\sum_{k \mid a(\lambda)} \varphi(k)=a(\lambda) .
$$

Using the expression (B), we get

$$
\sum_{\lambda^{\prime} \in \mathfrak{p}(n)} \omega\left(\lambda^{\prime}\right)=\sum_{\lambda \vdash n} a(\lambda) .
$$

From (A^{\prime}) and ($\left.\mathrm{B}^{\prime}\right), \sum_{\lambda+n} a(\lambda)=\sum_{d \mid n} \varphi \frac{n}{d} p(d)$ therefore $q(n)=\varphi * p(n)$.

References

[1] J. Morita, Conjugate Classes of Three Dimensional Simple Lie Subalgebras of the Affine Lie Algebra $A_{l}{ }^{(1)}$, Algebraic and Topological Theories, Kinokuniya. Tokyo, 1986.
[2] H. N. Shapiro, Introduction to the Theory of Numbers, John Wiley \& Sons, Inc., New York, 1983.

Present Address:
Department of Mathematics
Faculty of Education
Okayama University
Tsushima-naka, Okayama 700

[^0]: Received October 1, 1984

