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Introduction

It is well known that the number of conjugacy classes of @1$(2, C)$ in
the Lie algebra of type $A_{n-1}=\S I(n, C)$ is $p(n)-1$ , where $p(n)$ is the number
of partitions of $n$ . Recently J. Morita [1] found that the number of
conjugacy classes of @1$(2, C)$ in the Kac-Moody Lie algebra of type $A_{n-1}^{(1)}$

is finite and that this number is given by $q(n)-1$ where $q(n)$ is the
function defined by (1), which we call Morita’s partition function. But
it is not easy to calculate $q(n)$ directly following the definition. In this
note, using the convolution product, we give a formula of $q(n)$ (Theorem)
which seems to have some significance in itself. We also give a combi-
natorial proof of this formula.

We would like to express great thanks to Professor Jun Morita for
communicating this problem.

\S 1. Notations.

Let $Z_{+}=\{1,2,3, \cdots\}$ be the set of positive integers. For $n\in Z_{+}$ , a
partition of $n$ is a sequence $\lambda=(\lambda_{1}, \lambda_{2}, \cdots, x_{r})$ , where $x_{1}\geqq x_{2}\geqq\cdots\geqq\lambda_{r}$ ,
$\lambda_{i}\in Z_{+}$ and $\sum_{i}\lambda_{i}=n$ . We write $x\vdash n$ if $\lambda$ is a partition of $n$ . For a
partition $\lambda=(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r})$ , we define a number $a(\lambda)$ by

$a(x)=G.C.D.(x_{1}, x_{2}, \cdots, \lambda_{r})$

the greatest common divisor.
We denote by $\mathfrak{Z}$ the set of functions from $Z_{+}$ to the complex numbers

$C$. Let us denote by $f*g$ the convolution product of $f,$ $g\in \mathfrak{Z}$ , i.e.

$f*g(n)=\sum_{d|n}f(d)g(\frac{n}{d})$ .
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This product is commutative and associative. The unit element of this
product is $e\in \mathfrak{Z}$ defined by

$e(n)=\left\{\begin{array}{ll}1 & if n=1\\0 & otherwise.\end{array}\right.$

(For the convolution product, see e.g. [2].)

\S 2. Formula.

DEFINITION. Morita’s partition function $q(n)$ is defined by

(1) $q(n)=\sum_{\lambda\vdash n}a(\lambda)$ .
THEOREM. The following formula holds.

(2) $q(n)=\varphi*p(n)$ .
COROLLARY. If $n$ is a prime number, then

(3) $q(n)=p(n)+n-1$ .
PROOF.
For $i\in Z_{+}$ , we define a function $f_{i}\in \mathfrak{Z}$ by

$f_{i}(n)=\#\{x\vdash n|a(x)=i\}$ .
It is clear by definition that $f_{i}(n)=0$ if $ifn$ . By an operation multiplying
$1/i$ to each component of $\lambda$ , we get

(4) $f_{i}(n)=f_{1}(\frac{n}{i})$ .

On the other hand, by definition,

(5) $q(n)=\sum_{i}f_{i}(n)$ ,

and

(6) $p(n)=\sum_{\dot{f}}f_{i}(n)$ .
Let us define two functions 1, $1\in \mathfrak{Z}$ by

$1(n)=1$

$1(n)=n$ for all $neZ_{+}$ .
Then (5) and (6) are reformulated as
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(5’) $q=1*f_{1}$

(6’) $p=1*f_{1}$ .
Let $\mu,$ $\varphi$ be the M\"obIus function and the Euler function respectively.
Then we have $\mu*1=e,$ $ 1*\mu=\varphi$ (the inversion formula) [2]. Multiplying
both side of (6’) by $\mu$ , we get

$f_{1}=\mu*p$ .
Therefore by (5’), we get

$q=1*\mu*p$ . Q.E.D.

Now we will prove the formula (2) by a combinatorial argument.
For a partition $\lambda=(\lambda_{1}, \lambda_{2}, \cdots x_{r})$ and $k\in Z_{+}$ , we set

$kx=(kx_{1}, kx_{2}, \cdots, kx_{r})$ .
It is clear that if $\lambda\vdash d$ then $kx\vdash kd$ and $a(kx)=ka(x)$ . Now we fix $n\in Z_{+}$ .
Let $\mathfrak{p}(n)$ denote the set of all partitions whose sizes are divisors of $n$ ,
that is

(A)
$\mathfrak{p}(n)=\bigcup_{d|n}\{\lambda|x’\vdash d\}$ (disjoint union).

For a partition $\lambda\vdash d$ , we get a partition $\lambda\vdash n$ , by $x=(n/d)x’$ . Therefore
$\mathfrak{p}(n)$ can also be expressed as
(B) $\mathfrak{p}(n)=\bigcup_{\lambda\vdash n}\{x’|kx^{\prime}=x, k\in Z_{+}\}$ (disjoint union).

For a partition $\lambda\in \mathfrak{p}(n)$ , we define $\omega(x^{\prime})$ the weight of $\lambda$ by

$\omega(\lambda)=\varphi(\frac{n}{d})$ if $x’\vdash d$ .
Using the expression (A), we get

(A) $\sum_{\lambda^{\prime}e\mathfrak{p}tn)}\omega(x^{\prime})=\sum_{d|n}\varphi(\frac{n}{d})p(d)$ .

On the other hand, if $kx^{\prime}=\lambda\vdash n$ , then $\omega(x’)=\varphi(k)$ , therefore

$\sum_{k\lambda^{\prime}=\lambda}\omega(x^{\prime})=\sum_{k|a(\lambda)}\varphi(k)=a(x)$ .
Using the expression (B), we get

(B’)
$\sum_{\lambda^{\prime}e\mathfrak{p}(n)}\omega(x’)=\sum_{\lambda\vdash n}a(x)$ .
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From (A) and (B’), $\sum_{\lambda\vdash n}a(\lambda)=\sum_{d|n}\varphi\frac{n}{d}p(d)$ therefore $q(n)=\varphi*p(n)$ .
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