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Introduction

Let $\Omega$ be a convex domain not containing any affine line in a real
number space, and $G(\Omega)$ the group of all affine automorphisms of $\Omega$ . If
the group $G(\Omega)$ acts on $\Omega$ transitively, then $\Omega$ is said to be homogeneous.
For a convex domain $\Omega$ in the n-dimensional real number space, we denote
by $D(\Omega)$ the tube domain over $\Omega$ in the n-dimensional complex number
space. Then the tube domain $D(\Omega)$ is holomorphically equivalent to a
bounded domain. Therefore, $D(\Omega)$ admits the Bergman metric. By re-
stricting the Bergman metric of $D(\Omega)$ to $\Omega$ , we have a $G(\Omega)$-invariant
Riemannian metric $g_{\rho}$ on $\Omega$ , which is called the canonical metric of $\Omega$

([13], [8]). Concerning the Bergman metrics of homogeneous bounded
domains, D’Atri and Miatello ([2]) proved that a homogeneous bounded
domain is symmetric if and only if the sectional curvature is non-positive.
On the other hand, it is known that there exist non-symmetric homo-
geneous convex cones of non-positive sectional curvature in the canonical
metric ([7]). The purpose of the present note is to determine homogeneous
convex domains of non-positive sectional curvature among homogeneous
convex domains of certain types or of low rank (Theorems 2.3, 3.3, 3.4,
and 4.3).

The proofs for our results are carried out by calculations on T-algebras
due to Vinberg ([13], [14]). The same notations and definitions as those
in $[6]-[10]$ will be employed.

\S 1. Preliminaries.

In this section, we fix notation and recall fundamental results on
homogeneous convex domains and T-algebras mainly due to E. B. Vinberg
([13], [14]).
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1.1. Let $\mathfrak{U}=\sum_{1\leq i.j\leq r}\mathfrak{U}_{ij}$ be a T-algebra of rank $r(r>1)$ provided with
an involutive anti-automorphism $*$ General elements of the subspace $\mathfrak{U}_{j}$

are denoted as $a_{j},$ $b_{j},$ $\cdots$ , and also, general elements of $\mathfrak{U}$ are denoted
like as matrices $a=(a_{ij}),$ $b=(b_{\dot{f}}),$ $\cdots$ . We put

(1.1) $n_{ij}=\dim \mathfrak{U}_{ij}$ and $n=1+\frac{1}{2}\sum_{k\neq}n_{k}$ $(1\leqq i, j\leqq r)$ .
Let us define subsets $T,$ $\Omega(\mathfrak{U})$ , and $X$ of $\mathfrak{U}$ by

$T=\{t=(t_{i\dot{g}});t_{i}>0(1\leqq i\leqq r-1), t_{ff}=1, t_{j}=0(1\leqq j<i\leqq r)\}$ ,
(1.2)

$\Omega(\mathfrak{U})=\{tt^{*};teT$), and $X=\{x;x^{*}=x\}$ ,

respectively. Then it is known that $\Omega(\mathfrak{U})$ is a homogeneous convex domain
in the affine subspace $\{x=(x_{i\dot{g}})eX;x_{f},.=1\}$ of $X$, and the set $T$ becomes
a connected triangular Lie subgroup of $G(\Omega(\mathfrak{U}))$ with respect to the
multiplication in the T-algebra $\mathfrak{U}$ , acting on $\Omega(\mathfrak{U})$ simply transitively in
the following way:

$(t, ss^{*})\in T\times\Omega(\mathfrak{U})\rightarrow(ts)(ts)^{*}\in\Omega(\mathfrak{U})$ .
The Lie algebra $l$ of $T$ is given by

$l=\{t=(t_{i\dot{f}})\in \mathfrak{U};t,=0, t_{ij}=0(1\leqq j<i\leqq r)\}$

with the bracket relation $[a, b]=ab-ba$ . It is known that any homo-
geneous convex domain is affinely equivalent to one constructed in the
above manner. If a homogeneous convex domain $\Omega$ is affinely equivalent
to a domain $\Omega(\mathfrak{U})$ of the form (1.2), then the rank of the T-algebra $\mathfrak{U}$

is an affine invariant of $\Omega$ . Therefore, we define the rank of a domain
$\Omega$ by the rank of $\mathfrak{U}$ minus one. It is easy to see that the rank of $\Omega$

is equal to the codimension of the commutator subalgebra $[t, t]$ in $\iota$ .
Throughout this note, we consider homogeneous convex domains of the
form (1.2) given by T-algebras exclusively.

1.2. The unit element $e$ of the group $T$ is contained in the convex
domain $\Omega(\mathfrak{U})$ and the tangent space of $\Omega(\mathfrak{U})$ at the point $e$ can be naturally
identified with the Lie algebra $t$ . The canonical metric $\langle$ , $\rangle=g_{\rho(\cdot)}$ at the
point $e$ is given by the formula

$\langle a, b\rangle=Sp((a+a^{*})(b+b^{*}))$ $(a, b\in t)$ ,

where $Sp(a)=\sum_{1\leq\leq r}na_{ii}$ ; and $l$ is the orthogonal direct sum of the sub-
spaces $\mathfrak{U}_{i}(1\leqq i\leqq r-1)$ and $\mathfrak{U}_{ij}(1\leqq i<j\leqq r)$ . Therefore, the connection
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function $\alpha$ , and the curvature tensor $R$ for the canonical metric can be
represented in terms of the Lie algebra $l$ as follows

$\alpha:t\times t\rightarrow t$ ,
$ 2\langle\alpha(a, b), c\rangle=\langle[c, a], b\rangle+\langle[c, b], a\rangle+\langle[a, b], c\rangle$ ;

(1.3)
$R;l\times l\times t\rightarrow t$ ,

$R(a, b, c)=R(a, b)c=\alpha(a, \alpha(b, c))-\alpha(b, \alpha(a, c))-\alpha([a, b], c)$

for all $a,$ $b,$ $ c\in\iota$ ([4]). The sectional curvature $K$ is given by the following
formula:

$ K(a, b)=\langle R(a, b)b, a\rangle$

for every orthonormal elements $a,$ $bet$ .
A homogeneous convex domain $\Omega$ is said to be of metabelian type if

a transitive triangular Lie algebra $l$ of infinitesimal affine automor-
phisms of $\Omega$ is metabelian, that is, the commutator subalgebra $[l, l]$ is
abelian. It shoud be remarked that for a homogeneous convex domain
$\Omega$ , transitive connected triangular subgroups are conjugate in $G(\Omega)$

([12]).

1.3. Let $V$ be a homogeneous convex cone in $R^{n}$ and $F$ an $R^{n}$-valued
symmetric bilinear mapping defined on $R^{m}\times R^{m}$ satisfying the following
conditions: (1) $F(y, y)\in\overline{V}$ (the topological closure of $V$); (2) $F(y, y)=0$

implies $y=0;(3)$ the subgroup of $G(V)$ defined by {$A\in G(V)$ ; there exists
$B\in GL(R^{m})$ such that the equality $F(B(y), B(y))=A(F(y, y))$ holds for all
$y\in R^{m}\}$ acts on $V$ transitively. Then the domain

$\Omega(V, F)=\{(x, y)\in R^{n}\times R^{m};x-F(y, y)\in V\}$

is a homogeneous convex domain, which is called the real Siegel domain
over the cone $V$ and associated with the symmetric mapping F. It was
proved that every homogeneous convex domain is affinely equivalent to
a real Siegel domain ([12], [13]).

Let $\Omega$ be a real Siegel domain over a cone $V_{i}(i=1,2)$ . Then the
tube domain $D(\Omega_{i})$ is holomorphically equivalent to a Siegel domain over
the cone $V([10])$ . Therefore, if $\Omega_{1}$ is affinely equivalent to $\Omega_{2}$ , then $V_{1}$

is linearly equivalent to $V_{2}$ ([3]). We call $\Omega$ a domain over a cone of
square type (resp. dual square type) if $\Omega$ is affinely equivalent to a real
Siegel domain over a cone of square type (resp. dual square type) (For
the definition of cones of square type or of dual square type, see [15],
[16].).
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\S 2. Domains of metabelian type.

In this section, we calculate the sectional curvature of homogeneous
convex domains of metabelian type.

We first prove the following

LEMMA 2.1. A homogeneous convex domain $\Omega=\Omega(\mathfrak{U})$ is of metabelian
type if and only if the condition $n_{i\dot{g}}n_{\dot{g}k}=0$ holds for every triple $(i, j, k)$

of indices $1\leqq i<j<k\leqq r$ .
PROOF. The commutator subalgebra of $l$ is given by

$[1, 1]=\sum_{i<j}\mathfrak{U}_{i\dot{g}}$ ,

and the identities

(2.1) $[x_{ij}, x_{jk}]=x_{i\dot{g}}x_{\dot{g}k}$ and $||x_{i\dot{f}}x_{\dot{g}k}\Vert^{2}=(1/2n_{j})\Vert x_{ij}\Vert^{2}\Vert x_{jk}\Vert^{2}$

hold for all $x_{ij}\in \mathfrak{U}_{ij},$ $x_{jk}\in \mathfrak{U}_{jk}(i<j<k)$ (cf. [6], [8]). Therefore, the lemma
follows from these identities. Q.E.D.

We now define subspaces $\mathfrak{U}_{0}$ and $n$ of $\mathfrak{U}$ by

$\mathfrak{U}_{0}=\sum_{f1\leq\leq-1}\mathfrak{U}_{ii}$ and $n=\sum_{1\leq<j\leq r}\mathfrak{U}_{\dot{f}}$ ,

respectively. Then $n=[l, l]$ , and $\mathfrak{U}_{0}$ is the orthogonal complement of $n$

in $l$ with respect to the canonical metric. Let us put

$e_{i}=(1/2\sqrt{n_{i}})e_{ii}$ $(1\leqq i\leqq\gamma-1)$ ,

where $e_{ii}$ is the unit element of the subalgebra $\mathfrak{U}_{ii}$ . Then $\{e_{i}\}$ is an or-
thonormal basis of the subspace $\mathfrak{U}_{0}$ . We define linear endomorphisms $A_{i}$

of $n$ by $A_{i}(x)=[e_{i}, x]$ for every xen. Then we have

(2.2) $A_{i}(x)=(1/2\sqrt{n_{i}})(\sum_{i<\dot{g}}x_{i\dot{g}}-\sum_{j<i}x_{\dot{g}i})$

for every xen. (cf. [6], [8]). On the other hand, from (1.3) and (2.2) it
follows that the condition

$ 2\langle\alpha(x, e_{i}), y\rangle=\langle[y, x], e_{i}\rangle+\langle[y, e], x\rangle+\langle[x, e_{i}], y\rangle$

$=-2\langle A_{i}(x), y\rangle$

holds for all $x,$ $y\in n$ . Therefore we have the following

LEMMA 2.2. The linear endomorphis$ms$ $A_{i}$ are self-adjoint with
respect to the canonical metric and $sat\dot{\tau}sfy$ the conditions
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$A_{i}(x)=-\alpha(x, e_{i})$ $(1\leqq i\leqq r-1)$

for every $x\in n$ .
By using the above lemmas, we have the following

THEOREM 2.3. If a homogeneous convex domain $\Omega$ is of metabelian
type, then the sectional curvature of $\Omega$ is non-positive.

PROOF. We can assume that the dimension of $\Omega$ is larger than one
and $\Omega$ is of the form $\Omega(\mathfrak{U})$ by a T-algebra $\mathfrak{U}$ . Since the Lie algebra $l$

is metabelian, the identity

$\alpha(x, y)=\sum_{1\leqq i\leq\prime-1}\langle A_{i}(x), y\rangle e_{l}$

is satisfied for $x,$ $y\in n$ . Thus, by Lemma 2.2, we have

$R(x, y)z=\sum_{1\leq i\leq r-1}(\langle A_{i}(x), z\rangle A_{i}(y)-\langle A_{i}(y), z\rangle A_{i}(x))$

for all $x,$ $y,$ $z\in n$ . From this it follows that

$K(x, y)=\sum_{1\leq i\leq r-1}(\langle A_{i}(x), y\rangle^{2}-\langle A_{i}(x), x\rangle\langle A_{i}(y), y\rangle)$

for all $x,$ $y\in n$ . By calculations using Lemma 2.1 and the condition (2.2),
we have the following formula:

$\langle A_{i}(x), y\rangle^{2}-\langle A(x), x\rangle\langle A_{i}(y), y\rangle$

$=(1/4n_{l})\sum_{<\dot{g}}(\langle x_{lj}, y_{ij}\rangle^{2}-\Vert x_{ij}\Vert^{2}||y_{ij}\Vert^{2})+(1/4n_{i})\sum_{j<i}(\langle x_{Ji}, y_{ji}\rangle^{2}-||x_{\dot{g}i}||^{2}||y_{ji}\Vert^{2})$

$I_{(1/4n_{t})\Sigma(2\langle x_{\iota i},y_{li}\rangle\langle x_{t\Phi}y_{ti}\rangle-||x_{i}||^{2}||y_{ti}||^{2}-||x_{ti}\Vert^{2}}^{(1/4n_{i})\sum_{i<j<k}(2\langle x_{i\dot{f}},y_{ij}\rangle\langle x_{ik},y_{ik}\rangle-||x_{ig}\Vert^{2}\Vert y_{ik}\Vert^{2}-\Vert x_{ik}||_{1y_{l}||^{2})}^{2}}\Vert||y_{i\dot{f}}\Vert^{2})$

for all $x,$ $y\in n$ . Hence, $K(x, y)\leqq 0$ for all $x$ , yert. On the other hand, it
is easy to see that the sectional curvature $K$ is non-positive if and only
if $K(x, y)$ is non-positive for all $x,$ $y$ en (cf. [1, Proposition 4.3]). Q.E.D.

\S 3. Domains of low rank.

In this section, we determine all homogeneous convex domains of
non-positive curvature of rank two or of rank three.

3.1. We first generalize a result in [7] as follows:

LEMMA 3.1. If the sectional curvature of a homogeneous convex
domain $\Omega(\mathfrak{U})$ is non-positive, then the conditions
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$n_{i}\leqq n_{\dot{f}}$ and $n_{k}\leqq n_{j}$

hold for every triple $(i, j, k)$ of indices $1\leqq i<j<k\leqq r-1$ satisfying $n_{\dot{f}}n_{k},\neq 0$ .
The above lemma can be proved in the same way as in [7, Theorem

3.4]. So we may omit the proof.

LEMMA 3.2. If the sectional curvature of a homogeneous convex
domain $\Omega(\mathfrak{U})$ is non-positive, then the condition $n_{i\dot{g}}n_{jr}=0$ holds for every
pair $(i, j)$ of indices $1\leqq i<j\leqq r-1$ .

PROOF. By (1.3), we have

$R(x,, x_{jr})x_{\dot{f}t}=-\alpha(x_{jr}, \alpha(x,, x_{j_{f}}))=-\frac{1}{2}\alpha(x_{j_{f}}, x_{it}x_{\dot{f}\prime}^{*})$

$=\frac{1}{4}(x_{i\prime}x_{\dot{J}^{\prime}}^{*})x_{j_{f}}$

for all $x_{ir}\in \mathfrak{U}_{ir}$ and $x_{j_{f}}\in \mathfrak{U}_{jr}$ (cf. [7], [8]). Hence, we have

$K(x,, x_{j_{f}})=\frac{1}{4}\langle(x_{ir}x_{\dot{g}r}^{*})x_{jr}, x_{ir}\rangle=\frac{1}{4}\Vert x_{f}x_{\dot{3}^{f}}^{\wedge}\Vert^{2}$ .
From this, it follows that $x_{i}x_{\dot{f}}^{*},.=0f$ and $\langle x_{\dot{f}}x_{j_{f}}, x_{i}f\rangle=0$ for every $x_{j}\in \mathfrak{U}_{ij}$ .
Putting $x,=x_{ij}x_{jr}$ , we have $n_{\dot{f}}n_{\dot{g}r}=0$ by (2.1). Q.E.D.

By the above lemma, we have the following

THEOREM 3.3. Let $\Omega$ be a homogeneous convex domain over a cone
of metabelian type. Then the sectional curvature of $\Omega$ is non-positive
if and only if $\Omega$ is of metabelian type.

PROOF. There exists a T-algebra $\mathfrak{U}$ of rank $r$ satisfying the con-
ditions $\Omega=\Omega(\mathfrak{U})$ and $n_{\dot{f}}n_{\dot{g}k}=0(1\leqq i<j<k\leqq r-1)$ . By Lemma 3.2, we see
that the condition of Lemma 2.1 holds for $\mathfrak{U}$ . Q.E.D.

3.2. Let $\Omega=\Omega(\mathfrak{U})$ be an irreducible homogeneous convex domain. If
the rank of $\Omega$ is one, then $\Omega$ is affinely equivalent either to the half-line
or to an elementary domain. The sectional curvature of an elementary
domain is a negative constant ([8]). If the rank of $\Omega$ is two and the
sectional curvature is non-positive, then by Lemma 3.2, the condition
$n_{\mathfrak{B}}=0$ holds. Therefore, by Lemma 2.1, $\Omega$ is of metabelian type. In
the case where $n_{13}=0,$ $\Omega$ is the $n_{12}+2$ dimensional circular cone, which
is self-dual. If the rank of $\Omega$ is three and the sectional curvature is
non-positive, then by Lemma 3.2, either $\Omega$ is of metabelian type or $\Omega$

satisfies the conditions $n_{u}=n_{8I}=0$ and $n_{12}n_{2\theta}\neq 0$ . Therefore, in the last
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case, we have

$2n_{1}=2+n_{12}+n_{13}+n_{14}$ , $2n_{2}=2+n_{12}+n_{23}$ , $2n_{3}=2+n_{1S}+n_{28}$ .
By (2.1), we can see that $n_{12}\leqq n_{13}$ and $n_{23}\leqq n_{13}$ . Hence, by Lemma 3.1,
we have $n_{14}=0$ and $n_{12}=n_{23}=n_{13}$ . This condition implies that $\Omega$ is a
self-dual cone (cf. [14]). Furthermore, it was proved in [11] that every
reducible homogeneous convex domain is decomposed uniquely into the
direct product of irreducible homogeneous convex domains. Therefore,
summing up results stated above, we have a generalization of [7, Theorem
4.6] as follows:

THEOREM 3.4. Let $\Omega$ be a homogeneous convex domain whose rank
is less than four. Then the sectional curvature of $\Omega$ is non-positive if
and only if every irreducible component of $\Omega$ is affinely equivalent either
to a homogeneous self-dual cone or to a homogeneous convex domain of
metabelian type.

\S 4. Domains over cones of square type or of dual square type.

In this section, we determine all homogeneous convex domains of
non-positive sectional curvature among homogeneous convex domains over
cones of square type or of dual square type.

4.1. Let $\Omega$ be a homogeneous convex domain of rank $r-1(r\geqq 3)$

over a cone of square type. Then there exists a T-algebra $\mathfrak{U}$ of rank $r$

satisfying the conditions $\Omega=\Omega(\mathfrak{U})$ and

(4.1) $n_{1i}=n_{2i}=\cdots=n_{i-1.l}$ $(=m_{i}>0)$

for $2\leqq i\leqq r-1$ (cf. [10, pp. 213 and 214], [15]).

LEMMA 4.1. Let $\Omega$ be a homogeneous convex domain over a cone of
square type and of rank $r-1(r\geqq 4)$ . Then the sectional curvature of $\Omega$

is non-positive if and only if $\Omega$ is affinely equivalent to a homogeneous
self-dual cone.

PROOF. By (4.1) and (1.1), we have

$2n_{i}=2+(i-1)m_{i}+m_{l+1}+\cdots+m_{r-1}+n_{ir}$ $(1\leqq i\leqq\gamma-1)$ ,

and by (2.1),

$m_{2}\leqq m_{3}\leqq\cdots\leqq m_{-1}$ .
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Let us suppose that the sectional curvature of $\Omega$ is non-positive. Then
by Lemma 3.2, we have

$n_{2}=n_{3\prime}=\cdots=n_{t-1},=0ff$

Moreover, by Lemma 3.1, we have the equalities

$m_{2}=m_{3}=\cdots=m_{r-1}$ and $n_{1t}=0$ .
Hence, $\Omega$ is a self-dual cone. Since the sectional curvature of every
self-dual cone is non-positive ([5]), the converse assertion holds. Q.E.D.

4.2. Let $\Omega$ be a homogeneous convex domain over a cone of dual
square type. Then there exists a T-algebra $\mathfrak{U}$ such that the conditions
$\Omega=\Omega(\mathfrak{U})$ and

$n_{i,i+1}=n_{i,i+2}=\cdots=n_{l,-1}f$ $(>0)$

are satisfied for $1\leqq i\leqq r-2$ (cf. [10, pp. 213 and 214], [16]). The following
lemma can be proved similarly as Lemma 4.1. So, we may omit the
proof.

LEMMA 4.2. Let $\Omega$ be a homogeneous convex domain over a cone of
dual square type and of rank $r-1(r\geqq 4)$ . Then the sectional curvature
of $\Omega$ is $non- pos\dot{j}tive$ if and only if $\Omega$ is affinely equivalent to a homo-
geneous self-dual cone.

4.3. Combining Lemmas 4.1 and 4.2 with Theorem 3.4, we have the
main theorem of the present note as follows:

THIOREM 4.3. Let $\Omega$ be a homogeneous convex domain over a cone
of square type or of dual square type. Then the sectional curvature of
$\Omega$ is non-positive if and only if $\Omega$ is affinely equivalent to one of the
following: a homogeneous self-dual cone; an elementary domain (i.e., the
hyperbolic space form); a non-symmetric homogeneous convex domain of
metabelian type and of rank two.
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