Tokyo J. Math. Vol. 12, No. 1, 1989

On Certain Homogeneous Diophantine Equations of Degree n(n-1)

Kenzo KOMATSU

Keio University (Communicated by Y. Ito)

1. In [3] Hilbert treated the Diophantine equation $D=D(x_0, x_1, \cdots, x_n)=\pm 1$, where

 $D = x_0^{2n-2} \prod (t_i - t_k)^2 \qquad (i = 1, 2, \dots, n; k = i+1, i+2, \dots, n)$

is the discriminant of

 $x_0t^n + x_1t^{n-1} + \cdots + x_n = 0$,

with undetermined coefficients, and roots t_1, t_2, \dots, t_n . He showed that, if n>3, the equation $D=\pm 1$ has no integer solutions. The proof is based on the theorem that the discriminant of an algebraic number field of degree n>1 is distinct from ± 1 . Is his method applicable to other Diophantine equations?

In the present paper we discuss the homogeneous equation

$$(1.1) a^{s}(n-1)^{n-1}x^{n(n-1)} + n^{n}y^{n(n-1)} = Az^{n(n-1)}$$

where a, s, n, A are rational integers satisfying the following conditions:

(1) a is square-free, $|a| \neq 1$;

(2) $s \ge 1$, $n \ge 3$, s < 2(n-1), $A \ne 0$;

(3) (n, asA) = ((n-1)a, A) = 1.

The equation (1.1) may have non-trivial integer solutions; for example, if $A = a^*(n-1)^{n-1} + n^n$, then x = y = z = 1 is a solution of (1.1). However, if A satisfies a certain condition, (1.1) has no integer solutions except x = y = z = 0 (Theorem 1). The proof depends on a result of Komatsu [4] and Minkowski's inequality on the discriminant of an algebraic number field.

2. For simplicity, we shall use the following notation: For a prime Received September 19, 1988

KENZO KOMATSU

number p and a rational integer b, we denote by b_p the largest integer m such that b is divisible by p^m ; similarly, for a prime ideal P and an algebraic integer α , we denote by α_P the largest integer m such that α is divisible by P^m .

We require the following lemma:

LEMMA 1. Let a(0), a(1), \cdots , a(n-1) $(n \ge 1)$ be rational integers such that there exists a prime number p satisfying

$$0 < a(0)_p \le a(i)_p$$
 $(0 \le i \le n-1)$, $(a(0)_p, n) = 1$.

Then the polynomial

$$f(u) = u^{n} + a(n-1)u^{n-1} + \cdots + a(1)u + a(0)$$

is irreducible over Q.

PROOF. Let α be an arbitrary root of f(u)=0, and let P be a prime ideal in $Q(\alpha)$ which divides p. Since

$$-\alpha^n = \sum_{i=0}^{n-1} a(i)\alpha^i$$

we see that α is divisible by P and so $\alpha_P > 0$. Hence

$$n\alpha_P = a(0)_p p_P$$

Since $(a(0)_p, n)=1$, p_P is divisible by n. Hence we obtain

 $n \leq p_P \leq [Q(\alpha): Q] \leq n$,

which proves our lemma.

3. Now we state our theorem.

THEOREM 1. Let a, s, n, A be rational integers which satisfy the following conditions:

(1) a is square-free, $|a| \neq 1$;

(2) $s \ge 1$, $n \ge 3$, s < 2(n-1), $A \ne 0$;

(3) (n, asA) = ((n-1)a, A) = 1.

Let B^2 denote the largest square dividing A, and let A_0 denote the square-free integer defined by

 $A = A_0 B^2 .$

If there is no algebraic number field of degree n with discriminant $a^{n-1}A_0$ or $-a^{n-1}A_0$, then the only integer solution of the equation

232

HOMOGENEOUS DIOPHANTINE EQUATIONS

$$(3.1) a^{s}(n-1)^{n-1}x^{n(n-1)} + n^{n}y^{n(n-1)} = Az^{n(n-1)}$$

is given by x=y=z=0. In particular, if |a|=2, 3 or 5, and if A_0 satisfies the inequality

(3.2)
$$|A_0| < \frac{1}{|a|^{n-1}} \left(\frac{\pi}{4}\right)^n \left(\frac{n^n}{n!}\right)^2$$
,

then the equation (3.1) has no integer solutions except x=y=z=0.

PROOF. We may assume that A is n(n-1)-th power free. Let (x, y, z) be an integer solution of (3.1) with no common prime factors. Then (y, z)=1. In fact, if p is a common prime factor of y and z, then by (3.1)

$$\begin{array}{l} n(n-1) \leq (a^{s}(n-1)^{n-1})_{p} = sa_{p} + (n-1)(n-1)_{p} \leq s + (n-1)(n-1)_{p} \\ \leq s + (n-1)(n-2) \end{array},$$

since $m_p \leq (m-1)$ for every $m \geq 2$. This is a cotradiction, since s < 2(n-1). Similarly, (x, z) = (x, y) = 1. Hence

$$(3.3) (a, y) = ((n-1)ax, Az) = 1.$$

By Lemma 1, we see that

$$f(u) = u^n + a^s x^{n-1} u - a^s y^n$$

is irreducible over Q. Now let α be a root of f(u)=0; let $\delta = f'(\alpha)$, $D = \operatorname{norm} \delta$ (in $Q(\alpha)$). Then

$$D = (-1)^{n-1} (n-1)^{n-1} (a^s x^{n-1})^n + n^n (-a^s y^n)^{n-1}$$

= (-1)^{n-1} a^{s(n-1)} A z^{n(n-1)}.

Let d denote the discriminant of $Q(\alpha)$. Then, by (3.3) and Komatsu [4] (Theorem 2, Theorem 3), we see that

$$|d| = |a^{n-1}A_0|$$
,

which proves the first assertion. Now let n=r+2t, where r denotes the number of real conjugate fields of $Q(\alpha)$. From Minkowski's inequality on the discriminant of an algebraic number field (Hilbert [2], §18), we obtain

$$|d| \ge \left(\frac{\pi}{4}\right)^{2t} \left(\frac{n^n}{n!}\right)^2 \ge \left(\frac{\pi}{4}\right)^n \left(\frac{n^n}{n!}\right)^2$$
 ,

which completes the proof.

233

KENZO KOMATSU

REMARK. The right-hand side of (3.2) diverges to infinity (as $n \to \infty$) if |a|=2, 3 or 5. In fact, by Stirling's formula, we have

$$rac{n^n}{n!} > rac{e^n}{\sqrt{2\pi n}} e^{-1/12n} \ .$$

On the other hand,

$$\frac{\pi e^2}{4|a|} > 1$$

if |a|=2, 3 or 5.

References

- [1] L.E. DICKSON, History of the Theory of Numbers, Vol. II, Carnegie Institute, 1920.
- [2] D. HILBERT, Die Theorie der algebraischen Zahlkörper, Jahresber. Deutsch. Math.-Verein.
 4 (1897), 175-546.
- [3] D. HILBERT, Über diophantische Gleichungen, Göttinger Nachrichten (1897), 48-54.
- [4] K. KOMATSU, Integral bases in algebraic number fields, J. Reine Angew. Math., 278/279 (1975), 137-144.
- [5] L.J. MORDELL, Diophantine Equations, Academic Press, 1969.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, KEIO UNIVERSITY HIYOSHI, KOHOKU-KU, YOKOHAMA 223, JAPAN