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1. In [3] Hilbert treated the Diophantine equation $D=D(x_{0},$ $x_{1},$ $\cdots$ ,
$x_{n})=\pm 1$ , where

$D=x_{0}^{2n-2}\prod(t_{i}-t_{k})^{2}$ $(i=1,2, \cdots, n;k=i+1, i+2, \cdots, n)$

is the discriminant of

$x_{0}t^{n}+x_{1}t^{n-1}+\cdots+x_{n}=0$ ,

with undetermined coefficients, and roots $t_{1},$ $t_{2},$
$\cdots,$

$t_{n}$ . He showed that,
if $n>3$ , the equation $D=\pm 1$ has no integer solutions. The proof is based
on the theorem that the discriminant of an algebraic number field of
degree $n>1$ is distinct from $\pm 1$ . Is his method applicable to other
Diophantine equations?

In the present paper we discuss the homogeneous equation

(1.1) $a(n-1)^{n-1}x^{n(n-1)}+n^{n}y^{n(n-1)}=Az^{n(n-1)}$ ,

where $a,$ $s,$ $n,$ $A$ are rational integers satisfying the following conditions:
(1) $a$ is square-free, $|a|\neq 1$ ;
(2) $s\geqq 1,$ $n\geqq 3,$ $s<2(n-1),$ $A\neq 0$ ;
(3) $(n, asA)=((n-1)a, A)=1$ .

The equation (1.1) may have non-trivial integer solutions; for example,
if $A=a^{\iota}(n-1)^{n-1}+n^{n}$ , then $x=y=z=1$ is a solution of (1.1). However, if
$A$ satisfies a certain condition, (1.1) has no integer solutions except
$x=y=z=0$ (Theorem 1). The proof depends on a result of Komatsu [4]
and Minkowski’s inequality on the discriminant of an algebraic number
field.

2. For simplicity, we shall use the following notation: For a prime
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number $p$ and a rational integer $b$ , we denote by $b_{p}$ the largest integer
$m$ such that $b$ is divisible by $p^{n}$ ; similarly, for a prime ideal $P$ and an
algebraic integer $\alpha$ , we denote by $\alpha_{P}$ the largest integer $m$ such that $a$

is divisible by $P^{m}$ .
We require the following lemma:

LEMMA 1. Let a(0), $a(1),$ $\cdots,$ $a(n-1)(n\geqq 1)$ be rational integers such
that there exists a prime number $p$ satisfying

$0<a(0)_{p}\leqq a(i)_{p}$ $(0\leqq i\leqq n-1)$ , $(a(0)_{p}, n)=1$ .
Then the polynomial

$f(u)=u^{n}+a(n-1)u^{n-1}+\cdots+a(1)u+a(O)$

is irreducible over $Q$ .
PROOF. Let $\alpha$ be an arbitrary root of $f(u)=0$ , and let $P$ be a prime

ideal in $Q(\alpha)$ which divides $p$ . Since

$-\alpha^{n}=\sum_{i=0}^{n-1}a(i)\alpha^{i}$ ,

we see that $\alpha$ is divisible by $P$ and so $\alpha_{P}>0$ . Hence

$n\alpha_{P}=a(0)_{p}p_{P}$ .
Since $(a(0)_{p}, n)=1,$ $p_{P}$ is divisible by $n$ . Hence we obtain

$n\leqq p_{P}\leqq[Q(\alpha):Q]\leqq n$ ,

which proves our lemma.

3. Now we state our theorem.

THEOREM 1. Let $a,$ $s,$ $n,$ $A$ be rational integers which satisfy the
following conditions:

(1) $a$ is square-free, $|a|\neq 1$ ;
(2) $s\geqq 1,$ $n\geqq 3,$ $s<2(n-1),$ $A\neq 0$ ;
(3) $(n, asA)=((n-1)a, A)=1$ .

Let $B^{2}$ denote the largest square dividing $A$ , and let $A_{0}$ denote the
square-free integer defined by

$A=A_{0}B^{2}$ .
If there is no algebraic number field of degree $n$ with discriminant
$a^{n-1}A_{0}$ or $-a^{n-1}A_{0}$ , then the only integer solution of the equation
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(3.1) $a^{\iota}(n-1)^{n-1}x^{n(n-1)}+n^{n}y^{ntn-1)}=Az^{n(n-1)}$

is given by $x=y=z=0$ . In particular, if $|a|=2,3$ or 5, and if $A_{0}$

satisfies the inequality

(3.2) $|A_{0}|<\frac{1}{|a|^{n-1}}(\frac{\pi}{4})^{n}(\frac{n^{n}}{n!})^{2}$ ,

then the equation (3.1) has no integer solutions except $x=y=z=0$ .
PROOF. We may assume that $A$ is $n(n-1)$-th power free. Let

$(x, y, z)$ be an integer solution of (3.1) with no common prime factors.
Then $(y, z)=1$ . In fact, if $p$ is a common prime factor of $y$ and $z$ , then
by (3.1)

$n(n-1)\leqq(a(n-1)^{n-1})_{p}=sa_{p}+(n-1)(n-1)_{p}\leqq s+(n-1)(n-1)_{p}$

$\leqq s+(n-1)(n-2)$ ,

since $m_{p}\leqq(m-1)$ for every $m\geqq 2$ . This is a cotradiction, since $s<2(n-1)$ .
Similarly, $(x, z)=(x, y)=1$ . Hence

(3.3) $(a, y)=((n-1)ax, Az)=1$ .
By Lemma 1, we see that

$f(u)=u^{n}+a^{\epsilon}x^{n-1}u-ay^{n}$

is irreducible over $Q$ . Now let $\alpha$ be a root of $f(u)=0$ ; let $\delta=f’(\alpha)$ ,
$ D=norm\delta$ (in $Q(\alpha)$). Then

$D=(-1)^{n-1}(n-1)^{n-1}(a^{\epsilon}x^{n-1})^{n}+n^{n}(-ay^{n})^{n-1}$

$=(-1)^{n-1}a^{(n-1)}Az^{n(n-1)}$ .
Let $d$ denote the discriminant of $Q(\alpha)$ . Then, by (3.3) and Komatsu [4]
(Theorem 2, Theorem 8), we see that

$|d|=|a^{n-1}A_{0}|$ ,

which proves the first assertion. Now let $n=r+2t$ , where $\gamma$ denotes the
number of real conjugate fields of $Q(\alpha)$ . From Minkowski’s inequality
on the discriminant of an algebraic number field (Hilbert [2], \S 18), we
obtain

$|d|\geqq(\frac{\pi}{4})^{2t}(\frac{n^{n}}{n!})^{2}\geqq(\frac{\pi}{4})^{n}(\frac{n^{n}}{n!})^{2}$ ,

which completes the proof.
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REMARK. The right-hand side of (3.2) diverges to infinity (as $ n\rightarrow\infty$ )

if $|a|=2,3$ or 5. In fact, by Stirling’s formula, we have

$\frac{n^{n}}{n!}>\frac{e^{n}}{\sqrt 2\pi n}e^{-1/12n}$ .
On the other hand,

$\frac{\pi e^{2}}{4|a|}>1$

if $|a|=2,3$ or 5.
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