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\S 0. Introduction.

In this paper we consider a system consisting of a hard ball with
radius $r$ and of infinitely many point particles moving in $R^{d}$ according
to the following rules:

(i) Let $x(t)$ be the center, the position, of the hard ball at time $t$ .
Then, there are no particles in $B_{r}(x(0))$ at time $0$ , where $B_{r}(x)$ denotes
the r-neighborhood of $x$ .

(ii) The ball or a particle at $x$ waits an exponential holding time
with mean one which is independent of the motion of the other particles.
It iumps to the position $y$ where $y$ is distributed according to $p_{x}(dy)=$

$p(|x-y|)dy$ independently of the holding time and the motion of the other
particles, except that the jump is suppressed, if it causes a collision, that
is, if there comes to lie a particle within the region occupied by the
hard ball.

To give a precise description of the model we denote the position of
infinite particles at time $t$ by $\{y^{i}(t)\}_{i=}^{\infty}1^{\cdot}$ We construct a Markov process
describing an infinite particle system $\eta_{t}=\{z^{i}(t)\}_{t=1}^{\infty}$ , where $z^{i}(t)=y^{i}(t)-x(t)$ ,
which describes the entire configuration of particles seen from $x(t)$ . We
construct $x(t)$ as a functional of $\eta_{t}$ . Let $\nu_{0}$ be a Poisson distribution on
$R^{d}\backslash B_{r}(0)$ with intensity measure $dx$ . Then, $\nu_{0}$ is a stationary measure
for $\eta_{t}$ . The ergodicity of the stationary process is easily obtained. The
main result of this paper is Theorem 2.1 which states that $\epsilon x(t/\epsilon^{2})\rightarrow\sigma B(t)$

as $\epsilon\rightarrow 0$ , in the sense of distribution in $ D[0, \infty$ ), where $B(t)$ is a d-
dimensional Brownian motion and $\sigma$ is a positive constant. We employ
a method of Kipnis and Varadhan [2].

In \S 1 we construct a Markov process $\eta_{t}$ and then $x(t)$ as a process
driven by $\eta_{t}$ . In \S 2 and \S 3 we prove the central limit theorem.
Received February 26, 1988
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\S 1. Construction of the process $\eta_{t}$ .
Let (X, $\mathscr{B}(X),$ $\lambda$) be a a-finite measure space. Denote by $\mathscr{M}(X)$ the

family of all integer valued (including $+\infty$ ) measures on $X$ of the form
$\sum_{i=1}^{\infty}\delta_{x_{i}}$ , where $\delta_{x}$ denotes the $\delta$-measure at $x$ . $\mathscr{M}(X)$ is equipped with
$\mathscr{G}(\mathscr{M}(X))$ the $\sigma- field$ which is generated by $\{\xi\in \mathscr{M}(X);\xi(A)=n\},$ $n\geqq 0$ ,
$A\in \mathscr{G}(X)$ . For any $\xi e\mathscr{M}(X)$ and $x\in X$ we denote $\xi+\delta_{x}$ by $\xi\cdot x$ . $\xi-\delta_{z}$

is denoted by $\xi\backslash z$ in case $\xi(z)\geqq 1$ .
DEFINITION 1.1. A probability measure $\mu$ on $(\mathscr{M}(X), \mathscr{B}(\mathscr{M}(X)))$ is

called a Poisson distribution on $X$ with intensity measure $\lambda$ if for any
disjoint system $\{A_{1}, A_{2}, \cdots, A_{fn}\}\subset \mathscr{B}(X)$ such that $x(A_{i})<\infty,$ $i=1,2,$ $\cdots,$ $m$ ,
$\xi(A_{1}),$ $\cdots,$ $\xi(A_{m})$ are independent random variables on the probability space
$(\mathscr{M}(X), \mathscr{G}(\mathscr{M}(X)),$ $\mu$) and

$\mu(\xi(A_{i})=n)=\frac{x(A_{i})^{n}}{n!}xp(-\lambda(A_{i}))$ , $i=1,2,$ $\cdots,$ $m$ .

REMARK 1.1 ([1]). For any $\mathscr{G}(\mathscr{M}(X))\times \mathscr{G}(X)$-measurable bounded
function $F$ and for any $A$ $e\mathscr{B}(X)$ such that $x(A)<\infty$ , the following
equation holds:

$\int_{\vee(X)}\mu(d\xi)\int_{A}x(dx)F(\xi\cdot x, x)=\int,(X)\mu(d\xi)\int_{4}\xi(dx)F(\xi, x)$ .
We shall construct a stochastic process $x(t)$ describing the motion of

a ball colliding with infinitely many particles. First, following [6], we
construct a Markov process $\xi_{t}$ in equilibrium of non-interacting particles
in $X_{0}$ , where $X_{0}=R^{d}\backslash B_{r}(0)$ . Let ta be the topological Borel field of $X_{0}$ .
Denote by $W$ the space $D((-\infty, \infty)\rightarrow X_{0})$ of all $X_{0}$-valued right continuous
functions with left limits defined on $(-\infty, \infty)$ with Skorohod topology
and by $\mathscr{G}(W)$ the $\sigma-field$ generated by all measurable cylindrical subsets
of $W$.

Given a non-negative measurable function $p(\cdot)$ on $[0, \infty$ ) satisfying

(1.1) $\int_{R^{d}}dxp(|x|)=1$ ,

(1.2) $\int_{R^{d}}dxp(|x|)|x|^{2}<\infty$ ,

(1.3) $ess\inf_{[0,h]}p(z)=\kappa>0$ for some $h>0$ ,

we put
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$L_{\phi}(x)=\int_{x_{0}}dyp(|x-y|)\{\phi(y)-\phi(x)\}$ , $\phi\in C_{b}(X_{0})$ ,

where $C_{b}(X_{0})$ is the set of all bounded continuous functions on $X_{0}$ . Clearly
$L$ generates a unique Feller semigroup $U_{t}$ on $C_{b}(X_{0})$ . We denote the as-
sociated transition function by $u(t, x, A),$ $t\geqq 0,$ $x\in X_{0},$ A $e\mathscr{G}_{0}$ . Then,

$U_{t}\phi(x)=\int_{x_{0}}u(t, x, dy)\phi(y)$ , for $\phi\in C_{b}(X_{0})$ .
The Lebesgue measure $dx$ is a stationary measure for the Markov

process with semigroup $U_{t}$ . We define the $\sigma- finite$ measure $Q$ on
$(W, \mathscr{G}(W))$ by

$Q(w(t_{1})\in A_{1}, w(t_{2})eA_{2},$
$\cdots,$ $w(t_{m})\in A_{m})$

$=\int_{A_{1}}dx_{1}\int_{A_{2}}u(t_{2}-t_{1}, x_{1}, dx_{2})\cdots\int_{A_{m}}u(t_{m}-t_{m-1}, x_{m-1}, dx_{m})$ ,

for $-\infty<t_{1}<t_{2}<\cdots<t_{m}<\infty,$ $A_{1},$ $A_{2},$
$\cdots,$

$A_{m}\in \mathscr{G}_{0},$ $meN$. Since $dx$ is also
a reversible measure, for $A_{1},$ $ A_{2}\in$ va and for $t_{1},$ $t_{2}\in(-\infty, \infty)$

(1.4) $Q(w(t_{1})eA_{1}, w(t_{2})\in A_{2})=Q(w(t_{2})eA_{1}, w(t_{1})eA_{2})$ .
Denote by $\nu_{0}$ a Poisson distribution on $X_{0}$ with intensity measure $dx$

and by $P_{\nu_{0}}$ a Poisson distribution on $W$ with intensity measure $Q$ . Put
$\Omega=\vee\ovalbox{\tt\small REJECT}(W)$ and $\ovalbox{\tt\small REJECT}=\ovalbox{\tt\small REJECT}(X_{0})$ . We define an $\vee\ovalbox{\tt\small REJECT}_{0}$-valued process $\xi_{t}$ on
$(\Omega, \mathscr{B}(\Omega),$ $P_{\nu_{0}}$) by

$\xi_{t}(\omega)=\sum\delta_{w^{i}(t)}$ for $\omega=\sum\delta_{w^{i}(\cdot)}$ .
Let a genetic element $\xi$ of X be expressed as $\xi=\sum_{i=1}^{\infty}\delta_{x_{i}}$ . Let $Y_{i}$ ,

$i\geqq 1$ , be independent random variables with distributions $u(t, x_{i}, \cdot),$ $i\geqq 1$ ,
and put

$p(t, \xi, \Gamma)=P\{\sum_{i=1}^{\infty}\delta_{Y_{i}}\in\tau\}$ , $\Gamma\in \mathscr{G}(\mathscr{M}_{0})$ .
Then, from Proposition 1.5 and Proposition 2.1 in [5] we have the fol-
lowing

PROPOSITION 1.1. $\xi_{t}$ is an ergodic stationary Markov process with
transition function $p(t, \xi, \Gamma)$ such that $P_{\nu_{0}}(\xi_{t}\in\cdot)=\nu_{0}(\cdot)$ .

Since $\nu_{0}$ is an invariant measure for $p(t, \xi, \Gamma)$ , we can define a strongly
continuous contraction semigroup on $L^{2}(\vee\ovalbox{\tt\small REJECT}_{0}, \nu_{0})$ by
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$S_{t}f(\xi)=\int_{\rightarrow 0}p(t, \xi, d\eta)f(\eta)$ , $f\in L^{2}(\mathscr{M}_{0}, \nu_{0})$ , $t\geqq 0$ .
From Proposition 1.7 in [5] we have for $\phi\geqq 0$

(1.5) log $ S_{t}\exp(-\langle\phi, \rangle)(\xi)=\langle\log U_{t}e^{-\phi}, \xi\rangle$ ,

where $\langle\phi, \xi\rangle$ is the integral of the function $\phi$ with respect to the measure
$\xi$ (1.4) implies the following lemma.

LEMMA 1.1. $\xi_{t}$ is a reversible Markov process, i.e.

$(S_{t}f, g)_{\nu_{0}}=(f, S_{t}g)_{\nu_{0}}$ for any $f,$ $g\in L^{2}(\mathscr{M}_{0}, \nu_{0})$ ,

where $(\cdot, )_{\nu_{0}}$ is an $L^{2}$ inner product with respect to $\nu_{0}$ .
We denote the generator of $S_{t}$ by .24. We define a subspace $\mathfrak{U}$ of

$L^{2}(\mathscr{M}_{0}, \nu_{0})$ by

$\mathfrak{U}=\{\Psi(\langle\phi_{1}, \xi\rangle, \langle\phi_{2}, \xi\rangle, \cdots, \langle\phi_{n}, \xi\rangle);\Psi$ is a polynomial,
$\phi_{i}eC_{b}(X_{0})\cap L^{1}(X_{0}, dx),$ $1\leqq i\leqq m,$ $meN$}.

Then, $\mathfrak{U}$ is dense in $L^{2}(\mathscr{M}_{0}, \nu_{0})$ . From (1.5) we have

(1.6) $\mathscr{L}_{1}f(\xi)=\int_{x_{0}}\xi(dx)\int_{X_{0}}dyp(|x-y|)\{f(\xi^{\iota,y})-f(\xi)\}$ ,

for $f\in \mathfrak{U}$ , where

$\xi^{x,y}=\left\{\begin{array}{ll}(\xi\backslash x)\cdot y , & if yeX_{0}, \xi(x)>0,\\\xi, & otherwise.\end{array}\right.$

Note that, for any $\phi_{1},$ $\phi_{2}eC_{b}(X_{0})\cap L^{1}(X_{0}, dx)$ and $t\geqq 0,$ $\phi_{1}\psi_{2}eC_{b}(X_{0})\cap$

$L^{1}(X_{0}, dx)$ and $U_{t}\phi_{1}eC_{b}(X_{0})\cap L^{1}(X_{0}, dx)$ . By using (1.4) together with these
facts it is not hard to prove that $S_{t}\mathfrak{U}\subset \mathfrak{U}$ for any $t\geqq 0$ , from which it
follows that $\mathfrak{U}$ is a core for $\mathscr{L}_{1}$ .

Next modifying $\xi_{t}$ we construct a Markov process $\eta_{t}$ which describes
the time evolution of the entire configurations of the infinitely many
particles seen from the ball. We introduce some notation. For $\eta=$

$\sum\delta_{x}$, $e\mathscr{M}_{0}$ and $ueR^{d}$ we put

$\tau_{u}\eta=\left\{\begin{array}{ll}\sum\delta ae+u, & if \sum\delta_{x+u}\in \mathscr{M}_{0},\\\eta , & otherwise,\end{array}\right.$

$\chi(u|\eta)=\left\{\begin{array}{ll}1 , & if \eta(B_{f}(u))=0,\\0 & otherwise.\end{array}\right.$
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We define a probability space $(\hat{\Omega},\hat{\mathscr{G}}^{-}\hat{P})$ as follows. Put $\Omega^{+}=$

$\vee\ovalbox{\tt\small REJECT}(D([0, \infty)\rightarrow X_{0}))$ with $\omega^{+}$ indicating a genetic element of it, let $P_{\eta}$ be
the probability measure on $\Omega^{+}$ defined by

$P_{\eta}(\omega^{+}(t_{1})\in\Gamma_{1}, \omega^{+}(t_{2})e\Gamma_{2},$
$\cdots,$

$\omega^{+}(t_{m})e\Gamma_{m})$

$=\int_{\Gamma_{1}}p(t_{1}, \eta, d\xi_{1})\int_{r_{2}}p(t_{2}-t_{1}, \xi_{1}, d\xi_{2})\cdots\int_{\Gamma_{\hslash}},p(t_{m}-t_{m-1}, \xi_{m-1}, d\xi_{m})$

for $0\leqq t_{1}<t_{2}<\cdots<t_{m}<\infty,$ $\Gamma_{1},$ $\Gamma_{2},$
$\cdots,$

$\Gamma_{m}\in \mathscr{B}(\mathscr{M}_{0}),$ $meN$, and let $(\Omega_{i}$ ,
$\mathscr{G}(\Omega_{i}),$ $P_{\eta}^{i}$)

$,$
$i=1,2,$ $\cdots$ , be copies of $(\Omega^{+}, \mathscr{G}(\Omega^{+}),$ $P_{\eta}$). Let $v_{i},$ $i=1,2,$ $\cdots$ ,

be i.i. $d$ . $[0, \infty$ )-valued random variables on some probability space $(Z$,
$\mathscr{G}(Z),$ $P’$ ) with exponential distribution of mean 1. Put $t_{n}=\sum_{i=1}^{n}v_{i}$ for
$n=1,2,$ $\cdots,$ $t_{0}=0$ and

$\hat{\Omega}=Z\times\prod_{i=1}^{\infty}\Omega_{l}$ , $\mathscr{G}^{-}=\mathscr{B}(Z)\otimes\prod_{i=1}^{\infty}\otimes \mathscr{G}(\Omega)$ .
We define a probability measure $\hat{P}$ on $(\hat{\Omega}, \mathscr{G}^{-})$ as the proiective limit of
$P_{n},$ $n=1,2,$ $\cdots$ , where

$P_{1}(dzd\omega_{1})=P’(dz)\int_{\rightarrow 0}\nu_{0}(d\eta)P_{\eta}^{1}(d\omega)$ ,

$P_{n+1}(dzd\omega_{1}\cdots d\omega_{n+1})$

$=P_{n}(dzd\omega_{1}\cdots d\omega_{n})\int_{R^{d}}dup(|u|)P_{\tau-u^{\varpi_{n}(v_{n}(\cdot))}}^{n+1}(d\omega_{n+1})$ .
We denote by $\mathscr{G}^{\hat{-}}$ the $\hat{P}$-completion of $\backslash \mathscr{F}$ and define an $\mathscr{M}_{0}$-valued Markov
process $\eta_{t}$ on $(\hat{\Omega},\hat{\mathscr{G}}^{-},\hat{P})$ by

(1.7) $\eta_{t}(\hat{\omega})=\eta_{t}(z, \omega_{1}, \omega_{2}, \cdots)$

$=\omega_{n+1}(t-t_{n}(z))$ , for $t_{n}(z)\leqq t<t_{n+1}(z)$ .
The transition function $q(t, \xi, \Gamma),$ $t\geqq 0,$ $\xi e\mathscr{M}_{0},$ $\Gamma\in \mathscr{G}(\mathscr{M}_{0})$ , for the process
$\eta_{t}$ is given by

(1.8) $q(t, \xi, \Gamma)=e^{-t}p(t, \xi, \Gamma)$

$+e^{-t}\sum_{n=1}^{\infty}\int_{[0,t]}ds_{1}\cdots\int_{[0,t]}ds_{n}1(s_{1}+s_{2}+\cdots+s_{n}\leqq t)$

. $\int_{R^{d}}du_{1}\cdots\int_{R^{d}}du_{n}p(|u_{1}|)\cdots p(|u_{n}|)$

. $\int_{x_{0}}p(S_{1}, \xi, d\eta_{1})\int_{\rightarrow 0}p(s_{2}, \tau_{-u_{1}}\eta_{1}, d\eta_{2})\cdots\int_{r_{0}}p(t-s_{n}, \tau_{-u_{n}}\eta_{n}, \Gamma)$ .
We define a strongly continuous semigroup on $L^{2}(\mathscr{M}_{0}, \nu_{0})$ by
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$T_{t}f(\xi)=\int_{x_{0}}q(t, \xi, d\eta)f(\eta)$ , $feL^{2}(\mathscr{M}_{0}, \nu_{0})$ , $t\geqq 0$ ,

and denote the generator of $T_{t}$ by Y Then, by (1.8) we have

(1.9) $\mathscr{L}=\mathscr{G}_{1}+\mathscr{L}_{2}$ on $\mathcal{D}(\mathscr{L}_{1})$ ,

(1.10) $T_{t}f=S_{t}f+\int_{[0,t]}S_{-}.\mathscr{L}_{2}T_{l}fds$ ,

where $\mathscr{L}_{2}$ is a bounded linear operator on $L^{2}(\mathscr{M}_{0}, \nu_{0})$ defined by

(1.11) $\mathscr{L}_{2}f(\eta)=\int_{R^{d}}dup(|u|)\{f(\tau_{-u}\eta)-f(\eta)\}$ .

Let $\nu$ denote a Poisson distribution on $R^{d}$ with intensity measure $dx$ .
Then, for $f,$ $geL^{2}(-\ovalbox{\tt\small REJECT}_{0}, \nu_{0}),\tilde{f},$ $g\sim eL^{2}(\mathscr{M}(R^{d}), \nu)$ with $\tilde{f}=f,$ $ g=g\sim$ on $\mathscr{M}_{0}$

and for $ueR^{d}$ , we have

$\int_{r_{0}}\nu_{0}(d\eta)f(\tau_{-u}\eta)g(\eta)\chi(u|\eta)=\frac{1}{\nu(\mathscr{M}_{0})}\int_{\vee(R^{d})}\nu(d\eta)\tilde{f}(\tilde{\tau}_{-u}\eta)\tilde{g}(\eta)\chi(0|\eta)\chi(u|\eta)$ ,

where $\tilde{\tau}_{u}$ is defined by $\tau_{u}\sim(\sum\delta_{x_{i}})=\sum\delta_{x_{i}+u}$ . From the shift invariance of $\nu$

we have the following:

LEMMA 1.2. $(\mathscr{L}_{2}f, g)_{\nu_{0}}=(f, \mathscr{L}_{2}g)_{\nu_{0}}$ for any $f,$ $geL^{2}(\mathscr{M}_{0}, \nu_{0})$ .
From Lemma 1.1 and Lemma 1.2 we have the following lemma by

simple calculation.

LEMMA 1.3. For any $f\in \mathfrak{U}_{0}$ ,

(i) $(\mathscr{L}_{1}f, f)_{\nu_{0}}=-\frac{1}{2}\int,_{0}-\nu_{0}(d\eta)\int_{x_{0}}\eta(dx)\int_{x_{0}}dyp(|x-y|)\{f(\eta^{ae,u})-f(\eta)\}^{2}$ ,

(ii) $(\mathscr{L}_{2}f, f)_{\nu_{0}}=-\frac{1}{2}\int_{\rightarrow 0}\nu_{0}(d\eta)\int_{R^{d}}dup(|u|)\chi(u|\eta)\{f(\tau_{-u}\eta)-f(\eta)\}^{2}$ .
In particular, .$\mathscr{L}_{1},$ $Z_{2}$ and .S24 are non-positive self-adjoint operators.

PROPOSITION 1.2. $(\eta_{t},\hat{P})$ is an ergodic reversible Markov process.

PROOF. The reversibility of $(\eta_{t},\hat{P})$ follows immediately from the
self-adjointness of Y So, it is sufficient to prove that $T_{t}f=f(^{\forall}t\geqq 0)$

implies $f\equiv const$ . Suppose $T_{t}f=f$ for any $t\geqq 0$ . Then, $f\in \mathcal{D}(\mathscr{L})$ and
$\mathscr{L}f=0$ . So $(\mathscr{L}_{1}f, f)_{\nu_{0}}+(\Leftrightarrow \mathscr{G}_{2}f, f)_{\nu_{0}}=0$ . From non-positivity of $-\mathscr{G}_{1}$ and $\mathscr{L}_{2}$ ,
$(\mathscr{L}_{1}f, f)_{\nu_{0}}=(\mathscr{L}_{2}f, f)_{\nu_{0}}=0$ . Hence, $\mathscr{L}_{1}f=0$ and so $S_{t}f=f$ for any $t\geqq 0$ .
From Proposition 1.1, this completes the proof of Proposition 1.2. $\square $

Finally we construct the process $x(t)$ , describing the motion of the
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ball colliding with infinitely many particles, as a process driven by $\eta_{t}$ .
Let $A\in \mathscr{B}(R^{d})$ and put

$\Lambda=$ {$\eta e_{\vee}\ovalbox{\tt\small REJECT}_{0}$ : $\eta=\tau_{-u}\eta$ for some $ueR^{d}\backslash \{0\}$ with $\eta(B_{r}(u))=0$},
$\Delta=\{(\eta, \eta) : \eta\in \mathscr{M}_{0}\}\cup(\Lambda\times\Lambda)$ ,
$\Gamma_{A}=$ { $(\eta,$ $\zeta)\in(_{\vee}\ovalbox{\tt\small REJECT}\times\ovalbox{\tt\small REJECT}_{0})\backslash \Delta$ : $\zeta=\tau_{-u}\eta$ for some $ueA$}.

LEMMA 1.4. $\Lambda$ and $\Gamma_{4}$ are measurable subsets of $\mathscr{M}_{0}$ $and\leftrightarrow\ovalbox{\tt\small REJECT}_{0\vee}\times\ovalbox{\tt\small REJECT}_{0}$,
respectively.

PROOF. It is easy to see the measurability of $\Lambda^{c}$ and consequently
of $\Lambda$ . To prove the measurability of $\Gamma_{A}$ we consider

$\tilde{\Gamma}_{A}=$ { $(\eta,$ $\zeta)e\mathscr{M}(R^{d})\times \mathscr{M}(R^{d})$ : $\tilde{\tau}_{-u}\eta=\zeta$ for some $u\in A$}.

Note that $\mathscr{M}(R^{d})$ is endowed with the vague topology and the topological
Borel field coincides with $\mathscr{G}(\vee\ovalbox{\tt\small REJECT}(R^{d}))$ . If $A$ is compact, then $\tilde{\Gamma}_{4}$ is a
closed subset of $\vee\ovalbox{\tt\small REJECT}(R^{d})\times_{\vee}\ovalbox{\tt\small REJECT}(R^{d})$ and hence measurable. Therefore,
$\Gamma_{A}=\tilde{\Gamma}_{A}\cap\{(-\ovalbox{\tt\small REJECT}_{0}\times \mathscr{M}_{0})\backslash \Delta\}$ is also measurable if $A$ is compact. We put
$\ovalbox{\tt\small REJECT}=$ { $A\in \mathscr{G}(R^{d}):\Gamma_{A}$ is measurable}. Then, $\ovalbox{\tt\small REJECT}$ contains all compact sub-
sets $A$ of $R^{d}$ and, using the fact that $\Gamma_{A}\cap\Gamma_{B}=\emptyset$ if $ A\cap B=\emptyset$ , it is easy
to see that $\llcorner 5K$ is a a-field. Therefore $X$ coincides with $\mathscr{G}(R^{d})$ . $\square $

Put

$\hat{\ovalbox{\tt\small REJECT}}_{t}=\bigcap_{\epsilon>0}${ $the\hat{P}$-completion of $\sigma(\eta_{\epsilon}:s\in[0,$ $t+\epsilon])$},

$N((0, t]\times A)=\sum_{*et0.tl}1_{\Gamma_{A}}(\eta_{\epsilon-}, \eta_{s})$ .
Then, $N(dtdu)$ is an $\hat{\ovalbox{\tt\small REJECT}}_{t}$-adapted a-finite random measure. We define the
process $x(t)$ by

(1.12) $x(t)=x(0)+\int_{(0,tl}\int_{R^{d}}uN(dsdu)$ .
REMARK 1.2. Let $F$ be an $R^{d}$-valued bounded $\mathscr{G}(\vee\ovalbox{\tt\small REJECT}_{0})$-measurable

function. From the reversibility of $(\eta_{t},\hat{P})$ we have
$\hat{E}\{(x(t)-x(0))\cdot F(\eta_{t})\}=-\hat{E}\{(x(t)-x(0))\cdot F(\eta_{0})\}$ .

LEMMA 1.5. For $t>0$ and a bounded set $A\in \mathscr{G}(R^{d})$ we set

$M((0, t]\times A)=N((0, t]\times A)-\int_{(0,tl}ds\int_{A}dup(|u|)\chi(u|\eta.)$ .
Then
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(i) $M((O, t$] $\times A$) is a square integrable $\mathscr{G}_{t}^{\hat{-}}$-martinga$te$ .
(ii) $M((O, t$] $\times A)^{2}-\int_{(0,tl}ds\int_{A}dup(|u|)\chi(u|\eta.)$ is an $\hat{\mathscr{F}}_{t}$-martingale.

PROOF. We can prove this lemma following the proof of Lemma 2.4
in [6]. We only give the outline of the proof. For a Borel measurable
subset $B$ of $X_{0}\times X_{0}$ we put

$\Lambda_{B}=$ { $(\eta,$ $\zeta)e(\mathscr{M}_{0}\times \mathscr{M}_{0})\backslash \Delta$ : $\zeta=\eta^{x,y}$ for some $(x,$ $y)eB$}

(the measurability of $\Lambda_{B}$ can be proved as in Lemma 1.4) and define an
$\vee\hat{z}_{t}$-adapted $\sigma- finite$ random measure $N^{\prime}(dtdxdy)$ by

$N((0, t]\times B)=\sum_{\in(0,tl}1_{t_{B}}(\eta_{-}, \eta.)$ , $Be\mathscr{G}_{0}\otimes \mathscr{G}_{0}$ .
We also put

$M’((0, t]\times B)=N^{\prime}((0, t]\times B)-\int_{(0,tl}ds\int_{B}\int\eta(dx)dyp(|x-y|)$ .

Noting that for any $f\in \mathfrak{U}$

$f(\eta_{t})-f(\eta_{0})=\int_{(1)tJ}\int_{R^{d}}\{f(\tau_{-u}\eta_{\iota-})-f(\eta_{-})\}N(dsdu)$

$+\int_{(0.l}\int\int_{x_{0}\times x_{0}}\{f(\eta_{l-}^{x.y})-f(\eta_{-})\}N^{\prime}(dsdxdy)$ ,

and that $f(\eta_{t})-\int \mathscr{L}f(\eta.)ds$ is an $\mathscr{G}^{-\hat{t}}$-martingale, we see that

$\int_{(0,tl}\int_{R^{d}}\{f(\tau_{-u}\eta_{-})-f(\eta_{-})\}M(dsdu)$

$+\int_{(0,J}\int_{x_{0}xX_{0}}\{f(\eta_{l-}^{x.y})-f(\eta_{-})\}M’(dsdxdy)$

is an $\hat{\mathscr{F}}_{t}^{-}$-martingale. Also it is easily seen that for $ge\mathfrak{U}$

$\int_{(0,l}\int_{R^{d}}\{f(\tau_{-u}\eta_{-})-f(\eta_{-})\}g(\eta_{-})M(dsdu)$

$+\int_{(0,tl}\int\int_{x_{0}xx_{0}}\{f(\eta_{l-}^{x.y})-f(\eta_{-})\}g(\eta_{-})M^{\prime}(dsdxdy)$

is an $\hat{\mathscr{G}}_{t}^{-}$-martingale. In particular, if $f(\eta)g(\eta)=0$ for all $ne\mathscr{M}_{0}$, then

$\int_{(0,tl}\int_{R^{d}}f(\tau_{-u}\eta_{-})g(\eta_{-})M(dsdu)+\int_{(0,tl}\int\int_{x_{0}xx_{0}}f(\eta_{l-}^{x.y})g(\eta_{-})M’(dsdxdy)$

is an $\hat{\mathscr{G}}^{-}$-martingale. Then, it is easily seen that for any bounded
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measurable function $H$ on $\rightarrow \mathscr{G}_{0}\times$a with $H(\eta, \eta)=0$ and for any bounded
measurable subsets $B_{1}$ and $B_{2}$ of $X_{0}$

$\int_{(0,tJ}\int_{R^{d}}H(\tau_{-u}\eta_{-}, \eta_{\epsilon-})M(dsdu)+\int_{(0,tJ}\int\int_{B_{1}\times B_{2}}H(\eta_{l-}^{x.y}, \eta_{-})M’(dsdxdy)$

is an $\hat{\mathscr{G}}_{t}^{-}$-martingale, from which (i) follows. (ii) is immediate from (i)
and the following identity which can be obtained by integration by parts:

$M((0, t]\times A)^{2}=N((0, t]\times A)+2\int_{(0,tl}M((0, s)\times A)M(ds, A)$ . $\square $

From Lemma 1.5 we have

(1.13) $x(t)-x(O)=\int_{(0,tl}\int_{R^{d}}uM(dsdu)+\int_{(0,tl}dsG(\eta.)$ ,

where $G=(G_{1}, G_{2}, \cdots, G_{d})$ is an $R^{d}$-valued function on $\mathscr{M}_{0}$ defined by

(1.14) $G(\eta)=\int_{R^{d}}dup(|u|)\chi(u|\eta)u$ .
REMARK 1.3. Since the distribution $p.(dy)=p(|x-y|)dy$ is rotation

invariant, the processes $\eta_{t}$ and $x(t)-x(O)$ are also rotation invariant.

\S 2. Central limit theorem for $x(t)$ .
Let $x(t)$ be the tagged particle process colliding with infinitely many

particles, which is defined by (1.12) with $x(O)=0$ on the probability space
$(\hat{\Omega}, \mathscr{G}^{\hat{-}}\hat{P})$ . In this section we study the asymptotic behavior of $x(t)$ as
$ t\rightarrow\infty$ .

First we prepare some lemmas. Let $G$ be the function defined in
(1.14).

LEMMA 2.1. For any $f\in L^{2}(\vee\ovalbox{\tt\small REJECT}_{0}, \nu_{0})$ and $i=1,2,$ $\cdots,$
$d$ ,

(2.1) $|(G_{i}, f)_{\nu_{0}}|^{2}\leqq c_{1}(f, --\mathscr{G}_{2}f)_{\nu_{0}}$ ,

where

$c_{1}=\frac{1}{2}\int_{x_{0}}\nu_{0}(d\eta)\int_{R^{d}}dup(|u|)\chi(u|\eta)u_{1}^{2}$ .

PROOF. From the shift invariance of $\nu$ , we have

$\int_{r_{0}}\nu_{0}(d\eta)\chi(u|\eta)f(\eta)=\int_{\rightarrow 0}\nu_{0}(d\eta)\chi(-u|\eta)f(\tau_{u}\eta)$ .
Hence,
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$(G_{i}, f)_{\nu_{0}}=\int_{R^{d}}dup(|u|)u_{i}\int_{-\prime_{0}}\nu_{0}(d\eta)\chi(u|\eta)f(\eta)$

$=\int_{R^{d}}dup(|u|)u_{i}\int_{\rightarrow c_{0}}\nu_{0}(d\eta)\chi(-u|\eta)f(\tau_{u}\eta)$

$=-I_{R^{d}}^{dup(|u|)u_{i}\int_{\vee}\nu_{0}(d\eta)\chi(u|\eta)f(\tau_{-u}\eta)}\prime_{0}$ .

Therefore we have

$(G_{i}, f)_{\nu_{0}}=-\frac{1}{2}|_{\vee 0}\nu_{0}(d\eta)\int_{R^{d}}dup(|u|)\chi(u|\eta)u_{i}\{f(\tau_{-u}\eta)-f(\eta)\}$ .

Using Schwarz’s inequality, we have

(2.2) $|(G_{l}, f)_{\nu_{0}}|^{2}\leqq\frac{1}{4}\int_{0}^{1}-\nu_{0}(d\eta)\int_{R^{d}}dup(|u|)\chi(u|\eta)u_{i}^{2}$

. $\int_{-\prime_{0}}\nu_{0}(d\eta)\int_{R^{d}}dup(|u|)\chi(u|\eta)\{f(\tau_{-u}\eta)-f(\eta)\}^{2}$ .

From the rotation invariance of $\nu_{0}$ , the right-hand side of (2.2) is in-
dependent of $i$ . Thus, we have our assertion from Lemma 1.3. $\square $

LEMMA 2.2. There exists a positive constant $c_{2}$ such that for any
$f\in \mathcal{D}(\mathscr{L}_{1})$ and $i=1,2,$ $\cdots,$

$d$ ,

(2.3) $|(G_{i}, f)_{\nu_{0}}|^{2}\leqq c_{2}(f, -\mathscr{L}_{1}f)_{\nu_{0}}$ .
Proof of Lemma 2.2 is given in \S 3.

REMARK 2.1. Let $c$ be a positive constant. Then, the following

statements (i) and (ii) are equivalent.
(i) $|(G, f)_{\nu_{0}}|^{2}\leqq c(f, -.\mathscr{G}f)_{\nu_{0}}$ for any $f\in \mathcal{D}(\mathscr{L})$ .
(ii) $\int_{\mathfrak{c}0,\infty)}dt(T_{t}G_{i}, G_{i})_{\nu_{0}}\leqq c$ .

LEMMA 2.3.

$\lim_{t\rightarrow\infty}\frac{1}{t}\hat{E}\{x_{i}(t)x_{j}(t)\}=\left\{\begin{array}{ll}C & if i=j,\\0 & if i\neq j,\end{array}\right.$

where

$C=2c_{1}-2\int_{ro,\infty)}dt(T_{t}G_{1}, G_{1})_{\nu_{0}}$ .

PROOF. From the rotation invariance of $x(t)$ we have
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$\hat{E}[x_{i}(t)x_{j}(t)]=0$ if $i\neq j$ ,
$\hat{E}[x_{i}(t)^{2}]=\hat{E}[x_{1}(t)^{2}\iota$ if $i=1,2,$ $\cdots,$

$d$ .
Therefore, it is enough to consider the case where $i=j=1$ . Write
$M(t, A)$ for $M((O, t$] $\times A$). Then

(2.4) $x_{1}(t)=\int_{R^{d}}u_{1}M(t, du)+\int_{(0,tl}dsG_{1}(\eta_{\epsilon})$ .

Using Lemma 1.5 and Proposition 1.2 we have

(2.5) $\hat{E}[\{\int_{R^{d}}u_{1}M(t, du)\}^{2}]=t\}_{x_{0}}\nu_{0}(d\eta)\int_{R^{d}}dup(|u|)\chi(u|\eta)u_{1}^{2}$ ,

(2.6) $\hat{E}[\{\int_{(0,tJ}dsG_{1}(\eta_{\epsilon})\}^{2}]=2\int_{(0,tJ}ds\int_{\{0,\epsilon l}dv(T_{v}G_{1}, G_{1})_{\nu_{0}}$ .
From Remark 1.2 and Lemma 1.5 we have

$\hat{E}[x_{1}(s)G_{1}(\eta_{\epsilon})]=-\hat{E}[x_{1}(s)G_{1}(\eta_{0})]$

$=-\hat{E}[\int_{R^{d}}u_{1}M(s, du)G_{1}(\eta_{0})]-\int_{(0,\epsilon l}dv\hat{E}[G_{1}(\eta_{v})G_{1}(\eta_{0})]$

$=-\int_{(0,\epsilon l}dv(T_{v}G_{1}, G_{1})_{\nu_{0}}$ .
Hence, we have

(2.7) $\hat{E}[\int_{R^{d}}u_{1}M(t, du)\int_{(0,tl}dsG_{1}(\eta_{\epsilon})]$

$=\int_{(0,tl}ds\hat{E}[j_{R^{l}}u_{1}M(s, du)G_{1}(\eta_{\epsilon})]$

$=\int_{(0,tl}ds\hat{E}[x_{1}(s)G_{1}(\eta_{\epsilon})]-\int_{(0,tl}ds\int_{\{0,\epsilon J}dv\hat{E}[G_{1}(\eta_{v})G_{1}(\eta_{\epsilon})]$

$=-2\int_{(0,tl}ds\}_{(0,gl}dv(T_{v}G_{1}, G_{1})_{\nu_{0}}$ .
Therefore, we conclude that

$\lim_{t\rightarrow\infty}\frac{1}{t}\hat{E}\{x_{1}(t)^{2}\}=2c_{1}-2\int_{\mathfrak{c}0,\infty)}dt(T_{t}G_{1}, G_{1})_{\nu_{0}}$ . $\square $

THEOREM 2.1. The process $\epsilon x(t/\epsilon^{2})$ converges to $\sigma B(t)$ as $\epsilon\downarrow 0$ in the
sense of law, that is, in the sense of the weak convergence of probability
measures on the Skorohod space, where $B(t)$ is a d-dimensional Brownian
motion and $\sigma$ is a positive constant.
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PROOF. The first term in the right hand side of (1.13) is a martingale.
As for the second term we can apply Theorem 1.8 of [2], by virtue of
Lemma 2.1, and consequently we can treat the second term as well as
the first term within the framework of the central limit theorem of
martingales. Thus we can prove that $\epsilon x(t/\epsilon^{2})$ converges in law to $DB(t)$

as $\epsilon\downarrow 0$ , where $D$ is a symmetric $d\times d$ matrix defined by

$(D^{2})_{ij}=\lim_{t\rightarrow\infty}\frac{1}{t}\hat{E}\{x_{i}(t)x_{j}(t)\}$ .

Put $\sigma=\sqrt{C}$ . By virtue of Lemma 2.3, $DB(t)$ and $\sigma B(t)$ have the same
law. The details are much the same as the proof of Theorem 2.4 of [2].

The proof of the positivity of $\sigma$ is as follows. From Lemma 2.1 and
Lemma 2.2, for any $fe\mathcal{D}(\mathscr{L})$ we have

$|(G_{1}, f)_{\nu_{0}}|^{1}\leqq\frac{C{}_{1}C_{2}}{c_{1}+c_{2}}(f, -\mathscr{L}f)_{\nu_{0}}$ ,

and so by Remark 2.1,

$\int_{\mathfrak{c}0,\infty)}dt(T_{t}G_{1}, G_{1})_{\nu_{0}}\leqq\frac{c_{1}c_{2}}{c_{1}+c_{2}}$ .
Hence,

$\sigma^{2}=2c_{1}-2\int_{\mathfrak{c}\mathfrak{c}1\infty)}dt(T_{t}G_{1}, G_{1})_{\nu_{0}}\geqq\frac{2c_{1}^{2}}{c_{1}+c_{2}}$ . $\subset$

\S 3. Proof of Lemma 2.2.

Let $h$ be the positive constant in (1.3), $i$ a positive integer $\leqq d,$ $n$

the integer such that

$\frac{h+r}{m}\pi<h\leqq\frac{h+r}{m-1}\pi$ ,

and $\theta$ a rotation on $R^{d}$ such that $\theta(0)=0$ and for $a_{i}=(0, \cdots,1,\cdots, 0)eR(i-th)$

(3.1) $\theta^{m}(a_{i})=-a_{i}$ .
Then, for any $keN$ we have

(3.2) $|\theta^{k}(x)-\theta^{k-1}(x)|<h$ for $xeB_{h+r}(0)$ ,

(3.3) $\theta^{-k}dx=dx$ .
From (3.1) and (3.3), for $fe\mathfrak{U}$ we have
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(3.4) $(G, f)_{\nu_{0}}=\frac{1}{2}\int_{R^{d}}dup(|u|)u_{i}(\chi(u|\cdot)-\chi(\theta^{n}(u)|\cdot), f)_{\nu_{0}}$ .

We define a set $B[u],$ $ueR^{d}$ , by $B[u]=(B_{r}(u)\cup B_{f}(\theta^{\prime n}(u)))\cap X_{0}$ . Since
$\chi(u|\eta)=\chi(\theta^{m}(u)|\eta)=1$ for any $\eta e\mathscr{M}_{0}$ with $\eta(B[u])=0$ , from a property
of the Poisson distribution we have

(3.5) $(\chi(u|\cdot)-\chi(\theta^{m}(u)|\cdot), f)_{\nu_{0}}$

$=\int_{\eta(B[u])=0}\nu_{0}(d\eta)\sum_{n=0}^{\infty}\frac{1}{n!}\int_{B[u]^{n}}dx_{1}\cdots dx_{n}$

. $\{\chi(u|\eta\cdot x_{1}\cdots x_{n})-\chi(\theta^{m}(u)|\eta\cdot x_{1}\cdots x_{n})\}f(\eta\cdot x_{1}\cdots x_{n})$

$=\int_{\eta(B[u])=0}\nu_{0}(d\eta)\sum_{n=1}^{\infty}\frac{1}{n!}\int_{B[u]^{n}}dx_{1}\cdots dx_{n}$

$\{\chi(u|x_{1}\cdots x_{n})-\chi(\theta^{m}(u)|x_{1}\cdots x_{n})\}f(\eta\cdot x_{1}\cdots x_{n})$ .
Noting that, for any $neN$ and $\eta e_{-}\ovalbox{\tt\small REJECT}_{0}$,

$\int_{B[u]^{n}}dx_{1}\cdots dx_{n}\chi(u|x_{1}\cdots x_{n})f(\eta\cdot x_{1}\cdots x_{n})$

$=\int_{B[u]^{n}}dx_{1}\cdots dx_{n}\chi(\theta^{m}(u)|x_{1}\cdots x_{n})f(\eta\cdot\theta^{m}(x_{1})\cdots\theta^{n}(x_{n}))$ ,

from (3.5) we have

(3.6) $(\chi(u|\cdot)-\chi(\theta^{m}(u)|\cdot), f)_{\nu_{0}}$

$=\int_{\eta(B[u])=0}\nu_{0}(d\eta)\sum_{n=1}^{\infty}\frac{1}{n!}\int_{B[u]^{n}}X_{n}$

. $\{f(\eta\cdot\theta^{n*}(x_{1})\cdots\theta^{m}(x_{n}))-f(\eta\cdot x_{1}\cdots x_{n})\}$ .
From (3.6) and

$\int_{B[u]^{n}}dx_{1}\cdots dx_{n}|f(\eta\cdot\theta^{m}(x_{1})\cdots\theta^{m}(x_{n}))-f(\eta\cdot x_{1}\cdots x_{n})|$

$\leqq n\int_{B[u]^{n}}dx_{1}\cdots dx_{n}|f(\eta\cdot x_{1}\cdots x_{n-1}\cdot\theta^{m}(x_{n}))-f(\eta\cdot x_{1}\cdots x_{n})|$ ,

we have

(3.7) $|(\chi(u|\cdot)-\chi(\theta^{m}(u)|\cdot), f)_{\nu_{0}}|$

$\leqq\int_{\eta\{B[u])=0}\nu_{0}(d\eta)\sum_{n=1}^{\infty}\frac{1}{(n-1)!}\int_{B[u]^{n}}dx_{1}\cdots dx_{n}$

. $|f(\eta\cdot x_{1}\cdots x_{n-1}\cdot\theta^{m}(x_{n}))-f(\eta\cdot x_{1}\cdots x_{n})|$

$=\int_{x_{0}}\nu_{0}(d\eta)\int_{B[u]}dx|f(\eta\cdot\theta^{m}(x))-f(\eta\cdot x)|$ .
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Next we define a constant $M$ by

(3.8) $M=\inf\{|B_{h}(\theta(x))\cap B_{h}(x)\cap X_{0}| : x\in B_{f+h}(0)\cap X_{0}\}$ .
Since by (3.2) $M>0$ , for any $xeB_{r+k}(0)\cap X_{0}$ we have

(3.9) $|f(\eta\cdot\theta(x))-f(\eta\cdot x)|$

$\leqq\frac{1}{M}\{\int_{B_{h}(\theta(x))\cap X_{0}}dy|f(\eta\cdot y)-f(\eta\cdot\theta(x))|$

$+\int_{B_{h}(x)\cap X_{0}}dy|f(\eta\cdot y)-f(\eta\cdot x)|\}$ .
Thus, for $ueB_{h}(0)$ we have

(3.10) $\int_{B[u]}dx|f(\eta\cdot\theta^{m}(x))-f(\eta\cdot x)|$

$\leqq\sum_{k=0}^{2n-1}\int_{B_{r}(u)\cap X_{0}}dx|f(\eta\cdot\theta^{k+1}(x))-f(\eta\cdot\theta^{k}(x)|$

$\leqq\frac{2}{M}\sum_{k=0}^{2m-1}\int_{B_{r}(u)\cap X_{0}}dx\int_{B_{h}(\theta^{k}(x))\cap X_{0}}dy|f(\eta\cdot y)-f(\eta\cdot\theta^{k}(x))|$

$=\frac{2}{M}\sum_{k=0}^{2f*-1}\int_{B_{r}(\theta^{k}(u))\cap X_{0}}dx\int_{B_{h}(x)\cap X_{0}}dy|f(\eta\cdot y)-f(\eta\cdot x)|$ .
From (3.4), (3.7) and (3.10) we have

$|(G_{i}, f)_{\nu_{0}}|\leqq\frac{1}{M}\sum_{k=0}^{2n-1}\int_{R^{d}}dup(|u|)|u|$

. $\int_{\rightarrow 0}\nu_{\theta}(d\eta)]_{B_{r}\langle\theta^{k}(u))\cap x_{0}}dx\int_{B_{h}(x)\cap X_{0}}dy|f(\eta\cdot y)-f(\eta\cdot x)|$ .
Then, from (3.3) we have

$|(G_{i}, f)_{\nu_{0}}|\leqq\frac{2m}{M}\int_{R^{i}}dup(|u|)|u|$

. $\int_{\rightarrow r_{0}}\nu_{0}(d\eta)\int_{B_{r}(u)\cap X_{0}}dx\int_{B_{h}(x)\cap X_{0}}dy|f(\eta\cdot y)-f(\eta\cdot x)|$ ,

which, from Remark 1.1, is also dominated by

$|(G_{i}, f)_{\nu_{0}}|\leqq\frac{2m}{M}\int_{R^{d}}dup(|u|)|u|$

. $\int_{-\prime_{0}}\nu_{0}(d\eta)\int_{B_{r}(*)}\eta(dx)|_{B_{h}(x)\cap X_{0}}dy|f(\eta^{x,y})-f(\eta)|$ .
Therefore, using the Schwarz inequality, we have
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$|(G_{i}, f)_{\nu_{0}}|^{2}\leqq\frac{c_{2}}{2}\int_{\swarrow 0}\sim\nu_{0}(d\eta)\int_{x_{0}}\eta(dx)\int_{x_{0}}dyp(|x-y|)\{f(\eta^{x,y})-f(\eta)\}^{2}$ ,

where

$c_{2}=\frac{2}{\kappa}(\frac{2m}{M})^{2}|B_{r}(0)||B_{h}(0)|\{\int_{R^{d}}dup(|u|)|u|^{2}\}$ .

From Lemma 1.3, we obtain (2.3) for $f\in \mathfrak{U}$ . Since $\mathfrak{U}$ is a core for $\mathscr{L}_{1}$ ,
this completes the proof of Lemma 2.2.
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