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Abstract. In the previous paper [5] we introduced a new partial order of knots and
links, and studied about knots. In this paper we study the partial order of two-component
links.

\S 1. Introduction.

Throughout this paper we work in the piecewise linear category.
We use the same definitions, terminology and notation as in [5]. For
the definitions of the other standard terms in knot theory, we refer to
[4] and [1].

We say that a link $L_{1}$ majorizes a link $L_{2}$ , denoted by $L_{1}\geqq L_{2}$ , if
every proiection of $L_{1}$ is a projection of $L_{2}$ , where a projection has no
$over/under$ crossing information.

A mutual crossing point of a link projection is a crossing point of
different components. A self-crossing point of a link projection is a
crossing point which is not a mutual crossing point.

DEFINITION 1. For a two-component link $L$ , we define the mutual
crossing number of $L$ , denoted by $\mu(L)$ , to be the minimum number of
mutual crossing points among all projections of $L$ . We note that $\mu(L)$

is an even number and $\mu(L)\geqq 2|lk(L)|$ where $|lk(L)|$ denotes the $ab8olute$

value of the linking number of $L$ .
DEFINITION 2. A link $L$ is prime if every 2-sphere in $S^{\theta}$ which

intersects with $L$ transversally at two points bounds an unknotted ball
pair $(B^{3}, B^{1})$ .

In this paper we show the following results.

THEOREM 1. A two-eomponent link $L$ majorizes the Hopf link if
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OO
FIGURE 1-1

and only if $L$ is nonsplittable.

THEOREA 2. A two-component link $L$ majorizes the $(2, 4)$-torus link
if and only if $\mu(L)\geqq 4$ .

THEOREM 3. For a two-component link $L$ the following (1) and (2)

are equivalent:
(1) The link $L$ majorizes the Whitehead link.
(2) The link $L$ has a two-component prime factor which is not

equivalent to any of the (2, p)-torus links with $p\geqq 0$ .
THEOREM 4. For any even number $n$ , there exists an even number

$m$ such that if a two-component link $L$ satisfies the inequality $\mu(L)\geqq m$ ,
then $L$ majorizes the (2, n)-torus link.
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Summarizing the results in this paper and in the previous paper [5],
we have a part of the Hasse diagram of $(\mathfrak{L}^{2}/\sim, \leqq)$ within six-crossings
in Fig. 1-1. Here $\mathfrak{L}^{2}$ means the set of all two-component links, and
$‘‘\sim$ means the natural equivalence relation which turns the preordered
set $(\mathfrak{L}^{2}, \leqq)$ into the partially ordered set $(\mathfrak{L}^{2}/\sim, \leqq)$ . Namely, we define
the relation $L_{1}\sim L_{2}$ for $L_{1},$ $L_{2}e\mathfrak{L}^{2}$ if $L_{1}\leqq L_{2}$ and $L_{1}\geqq L_{2}$ (see Remark 1
in [5]).

\S 2. Proof of Theorem 1 and Theorem 2.

PROOF OF THEOREM 1. If $L$ majorizes the Hopf link, then $L$ is
nonsplittable 8ince a split link cannot majorize a nonsplittable link.
Suppose that $L$ is nonsplittable. Then any projection of $L$ has mutual
crossing points. Choose one of them and take a sufficiently small $\epsilon-$

neighbourhood of the point in $S^{2}$ . By applying Lemma 4 in [5] to the
complementary tangle projection of the e-neighbourhood, we obtain the
Hopf link as desired. See Fig. 2-1. $\square $

FIGURE 2-1

PROOF OF THEOREM 2. In general, if two-component link8 $L_{1}$ and
$L_{2}$ satisfy $L_{1}\leqq L_{2}$ , then $\mu(L_{1})\leqq\mu(L_{2})$ . Therefore if $L$ majorizes the

FIGURE 2-2
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$(2, 4)$-torus link, then $\mu(L)\geqq 4$ . Suppose that $\mu(L)\geqq 4$ . Then Lemma 6
in [5] assures that $L$ majorizes the $(2, 4)$-torus link. See Fig. 2-2. $\square $

COROLLARY 1. Let $L$ be a two-component nonsplittable link which
has a two-component prime factor that is not equivalent to the Hopf
link, then $L$ majorizes the $(2, 4)$-torus link.

PROOF. We show that $\mu(L)\geqq 4$ . Suppose that $L$ has a diagram $\tilde{L}$

with just two mutual crossing points. Then $L$ has the Hopf link as the
two-component prime factor. See Fig. 2-3. But the prime decomposition
of a link is unique (see [2]), this is a contradiction. $\square $

FIGURE 2-3

DEFINITION 3. For a two-component link $L$ , we say that $L$ is a
Hopf link sum of knots $K_{1}$ and $K_{2}$ , if $L$ is obtained by the connected
sum of the Hopf link, $K_{1}$ and $K_{2}$ where $K_{1}$ and $K_{2}$ are attached to the
different components of the Hopf link. We note that a Hopf link sum
of knots has at most four possibilities according to the attaching orien-
tations of knots and ambient spaces.

PROPOSITION 1. (1) Let $L=K_{1}UK_{2}$ be a two-component nonsplittable
link. If the knots $K_{1}$ and $K_{2}$ majorize the knots $K_{8}$ and $K_{4}$ respectively,
then $L$ majorizes any Hopf link sum of $K_{3}$ and $K_{4}$ .

(2) Let $L=K_{1}\cup K_{2}$ be a two-component link. If the knots $K_{1}$ and
$K_{2}$ majorize the knots $K_{3}$ and $K_{4}$ respectively, then $L$ majorizes any
split sum of $K_{3}$ and $K_{4}$ .

PROOF. (1) Let $\hat{L}=\hat{K}_{1}\cup\hat{K}_{a}$ be a projection of $L$ . We choose an
arbitrary mutual crossing point $P$ of $\hat{L}$ . We add $over/under$ information
at $P$ as $\hat{K}_{1}$ is over $\hat{K}_{2}$ . For the other mutual crossing points, we add
$over/under$ information as $\hat{K}_{1}$ is under $\hat{K}_{2}$ . For the self-cros8ing points
of $\hat{K}_{1}$ and $\hat{K}_{2}$ , we add $over/under$ information as the resultant knot
diagrams $K_{s}$ and $\tilde{K}_{4}$ represent the knots $K_{8}$ and $K_{4}$ respectively. Then
the resultant link diagram $\tilde{L}=\tilde{K}_{8}\cup\tilde{K}_{4}$ represents a Hopf link sum of $K_{8}$

and $K_{4}$ . To produce the other Hopf link sums from $\tilde{L}$ , we change
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$over/under$ information at all self-crossing points of $\tilde{K}_{3}$ , or at all mutual
crossing points of $\tilde{L}$ , or at all self-crossing points of $\tilde{K}_{3}$ and at all mutual
crossing points of $\tilde{L}$ .

(2) The proof is similar to that of (1). $\square $

\S 3. Proof of Theorem 3.

It is easily seen that for any even number $p$ , the two-component
link obtained by a connected sum of the (2, p)-torus link and several
knots cannot majorize the Whitehead link. Therefore the condition (2)
in Theorem 3 is necessary for the condition (1). We show the converse
in this section.

LEMMA 1. Let $\hat{L}=\hat{K}_{1}\cup\hat{K}_{2}$ be a two-component link projection on $S^{2}$ .
If there exists a tear drop disk $\delta$ with $\partial\delta\subset\hat{K}_{1}$ together with a successive
simple arc $A\subset\hat{K}_{1}$ as in Fig. 3-1 such that both $\partial\delta\cap\hat{K}_{2}$ and $A\cap\hat{K}_{2}$ are
nonempty, then LINK $(\hat{L})$ contains the Whitehead link. Here LINK $(\hat{L})$

is the set of all links which have $\hat{L}$ as their projection.

FIGURE 3-1

PROOF. By shortening $A$ if necessary, we may assume that $A$ has
just one mutual crossing point $P_{1}$ . We trace $\hat{K}_{2}$ from $P_{1}$ in two directions

CAS $E$ 1 $C$ AS $E$ 2 C A S $E$ 1

FIGURE 3-2 FIGURE 8-8
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and denote the first crossing points with $\partial\delta$ by $P_{2}$ and $P_{s}$ respectively.
Then there are two cases as illustrated in Fig. 3-2. In any case it is
easy to make the Whitehead link. See Fig. 3-3.

LEMMA 2. Let $\hat{L}$ be a two-eomponent link projection on $S^{2}$ which
has no self-crossing points. Let $\hat{L}_{n}$ be the link projection on $S^{2}$ as
illustrated in Fig. 3-4 for each non-negative even number $n$ . If $\hat{L}$ is
not ambient isotopic in $S^{2}$ to any of the link projections $\hat{L}_{n}$ , then
LINK $(\mathcal{L})$ contains the Whitehead link.

$\hat{L}_{n}$

FIGURE $3A$

PROOF. By a straightforward search, we can find a part of $\mathcal{L}$ which
is homeomorphic as a subspace of $S^{2}$ to the projection in Fig. 3-5 for
some non-negative integer $k$ . Then it is easy to make the Whitehead
link. See Fig. 3-6.

FIGURE 3-5 FIGURE 3-6

PROOF OF THEOREA 3. Let $L$ be a two-component link which satisfies
the condition (2), and let $\hat{L}=\hat{K}_{1}\cup\hat{K}_{2}$ be a projection of $L$ . We denote
by $n$ the number of the mutual crossing points of $\hat{L}$ . We note that
$n\geqq 4$ by the proof of Corollary 1. Let us divide $\hat{K}_{1}$ into $n$ parts
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$\hat{\alpha}_{1},\hat{\alpha}_{2},$ $\cdots,\hat{\alpha}_{n}$ , where each $\hat{\alpha}_{i}$ is the image of a sub-arc of the circle and
its end points are mutual crossing points. Similarly, we divide $\hat{K}_{2}$ into
$\hat{\beta}_{1},\hat{\beta}_{2},$ $\cdots,\hat{\beta}_{n}$ For each $ie\{1,2, \cdots, n\}$ , let $\hat{\alpha}’\subset\hat{\alpha}_{i}$ (resp. $\hat{\beta}_{l}^{\prime}\subset\hat{\beta}_{i}$) be a
simple arc obtained from $\hat{\alpha}_{i}$ (resp. $\hat{\beta}$,) by a series of eliminations of a
tear drop disk. See for example Fig. 3-7.

FIGURE 3-7

We set $K_{1}^{\prime}=\bigcup_{i=1}^{n}\hat{\alpha}’,\hat{K}_{2}^{\prime}=\bigcup_{i=1}^{n}\hat{\beta}_{i}$ and $\hat{L}^{\prime}=\hat{K}_{1}^{\prime}\cup\hat{K}_{2}^{\prime}$ . Then we have
LINK $(\hat{L})\supset LINK(\hat{L}’)$ by Lemma 3 in [5]. If $\hat{K}_{1}$ or $ff_{2}$ has self-crossing
points, then we can apply Lemma 1 to conclude that LINK $(\hat{L}’)$ contain8
the Whitehead link. Therefore the rest is the case that both $\hat{K}_{1}$ and
$\hat{K}_{2}^{\prime}$ are simple closed curves on $S^{2}$ . Then by Lemma 2, it is sufficient
to check the case that $\hat{L}$ ’ is ambient isotopic to $\hat{L}_{n}$ in Fig. 3-4. Then
from the condition (2), there exist numbers $i$ and $j$ with $i\neq j$ ,
$i,$ $je\{1,2, \cdots, n\}$ such that $\hat{\alpha}_{i}\cap\hat{\alpha}_{j}\neq\emptyset$ or $\hat{\beta}_{\dot{t}}\cap\hat{\beta}_{j}\neq\emptyset$ . Then we can apply
Lemma 5 in [5] to conclude that LINK $(\hat{L})$ contain8 the Whitehead link.
See Fig. 3-8.

$\Rightarrow$

FIGURE 3-8

\S 4. Proof of Theorem 4.

We first state a version of Ramsey’s theorem in [3].

THEOREM (Ramsey). For any natural number $n$ , there exists a
natural number $m$ such that if the natural number $m^{\prime}$ is greater than
or equal to $m$ , then the number $m$ satisfies the following condition $(*)$ :
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$(*)$ For any permutation $(\sigma(1), \sigma(2),$
$\cdots,$

$\sigma(m^{\prime}))$ of $(1, 2, \cdots, m^{\prime})$

either (a) or $(b)$ holds:
(a) There exist numbers $i_{1},$ $i_{2},$

$\cdots,$ $i_{n}e\{1,2, \cdots, m^{\prime}\}$ with $i_{1}<i_{2}<\cdots<i_{n}$

such that $\sigma(i_{1})<\sigma(i_{2})<\cdots<\sigma(i_{n})$ .
(b) There exist numbers $i_{1},$ $i_{2},$

$\cdots,$ $i_{n}e\{1,2, \cdots, m^{\prime}\}$ with $i_{1}<i_{f}<\cdots<i_{n}$

such that $\sigma(i_{1})>\sigma(i_{2})>\cdots>\sigma(i_{n})$ .
The proof of Theorem 4 may be summarized as follows. Let $\hat{L}$ be

a two-component link projection which has $m$
’ mutual crossing points

with $m^{\prime}\geqq m$ , where $m$ is the number in Ramsey’s theorem for the even
number $n$ . We will show an algorithm of adding $over/under$ information
to $\hat{L}$ so that the resultant link is a closed 2-braid. The algorithm has
some flexibility which has an effect on the linking number of the re-
sultant link. Then Ramsey’s theorem ensures us the existence of an
algorithm for obtaining a closed 2-braid with the linking number the half
of $n$ . Therefore the resultant link is the (2, n)-torus link as desired.

ALGORITHM. Let $\hat{L}=\hat{K}_{1}\cup\hat{K}_{2}$ be a two-component link projection which
has $m^{\prime}$ mutual crossing points with $m\geqq m$ . Let $P_{0}$ be a mutual cro8sing
point of $\hat{L}$ . Let $f:S_{\iota}^{\iota}\cup S_{2}^{1}\rightarrow S^{2}$ be a general position map of two disjoint
circles $S_{1}^{1}$ and $S_{2}^{1}$ with $f(S_{1}^{1})=\hat{K}_{1}$ and $f(S_{2}^{1})=\hat{K}_{2}$ . Let $P_{1}\subset S_{1}^{1}$ and $Q_{1}\subset S_{2}^{1}$

be the preimage of $P_{0}$ . We give an orientation to each circle. Along
the orientation, we denote the preimages on $S_{1}^{1}$ (resp. on $S_{2}^{1}$) of the
mutual crossing points of $\hat{L}$ by $P_{1},$ $P_{2},$

$\cdots,$
$P_{m^{\prime}}$ (resp. $Q_{1},$ $Q_{2},$

$\cdots,$
$Q_{m},$).

FIGURE 4-1
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Let the map $\tau:\{P_{1}, P_{2}, \cdots, P_{m^{\prime}}, Q_{1}, Q_{2}, \cdots, Q_{m^{\prime}}\}\rightarrow\{1,2, \cdots, 2m’\}$ be a
bijection which satisfies the condition that if $i<j$ for $i,$ $je\{1,2, \ldots, m’\}$ ,
then $\tau(P_{i})<\tau(P_{j})$ and $\tau(Q_{i})<\tau(Q_{j})$ . Let us call such a map a good
bijection. Then there exists a smooth function $h_{f}:S_{1}^{1}\cup S_{2}^{1}\rightarrow R^{1}$ which
satisfies the following conditions:

(1) $h_{\tau}$ has maximal points at $P_{1}$ and $Q_{1}$ , minimal points at $P_{1}$ and
$Q_{1}$ which are close behind $P_{1}$ and $Q_{1}$ respectively, and no other critical
points.

(2) If $\tau(E)<\tau(F)$ for $E,$ $Fe\{P_{I}, P_{2}, \cdots, P_{m^{\prime}}, Q_{1}, Q_{2}, \cdots, Q_{m^{\prime}}\}$ , then
$h_{\tau}(E)>h_{f}(F)$ .

Let $L_{f}$ be the link represented by the map $(f\times h_{f}):S_{1}^{1}\cup S_{2}^{1}\rightarrow S^{2}\times R^{1}\subset S^{3}$ ,
where we regard $S^{2}\times R^{1}$ as $S^{3}-$ {$the$ north pole, the south pole}. We note
that the link $L_{\tau}$ is uniquely determined by the bijection $\tau$ . Let $V$ be a
solid torus as illustrated in Fig. 4-1. Then the link $L_{\tau}$ is ”monotone” in
the solid torus $cl(S^{s}-V)$ , and hence $L_{\tau}$ is a closed 2-braid. Thus $L_{\tau}$ is
a (2, p)-torus link for some even number $p$ .

PROOF OF THEOREM 4. Let $(\sigma(1), \sigma(2),$
$\cdots,$

$\sigma(m’))$ be a permutation of
$(1, 2, \cdots, m’)$ defined by the equation $f(P_{i})=f(Q_{\sigma ti)})$ for all $ie\{1,2, \cdots, m’\}$ .
By Ramsey’s theorem and by reversing the orientation of $S_{2}^{1}$ if necessary,
we may suppose that there exist numbers $i_{1},$ $i_{2},$

$\cdots,$
$i_{n}e\{1,2, \cdots, m^{\prime}\}$ with

$i_{1}<i_{2}<\cdots<i_{n}$ such that $\sigma(i_{1})<\sigma(i_{2})<\cdots<\sigma(i_{n})$ . Let us denote the sign
$\epsilon=\pm 1$ of each mutual crossing point of $\hat{L}$ as in Fig. 4-2.

$\backslash /\cdot\backslash \backslash .’’\backslash \prime \mathbb{X}_{P}.’.$

’

$i\backslash ’.x_{P}^{\prime}...\prime^{\prime^{\prime}}$

.
$\hat{K}_{1}$ $\hat{K}_{2}$ $\hat{K}_{a}$ $\hat{K}_{1}$

$\epsilon(P)=+1$ $\epsilon(P)=-1$

FIGURE 4-2

Let $\tau_{1}$ be an arbitrary good bijection which satisfies that $\tau_{1}(P_{i_{\dot{f}}})+$

$\epsilon(f(P_{5_{\dot{f}}}))=\tau_{1}(Q_{\sigma\langle ij)})$ for $je\{1,2, \cdots, n\}$ . Let $\tau_{2}$ be a good bijection de-
fined by the following: $\tau_{2}(P_{i})\dot{s}=\tau_{1}(Q_{\sigma(i_{j})})$ and $\tau_{2}(Q_{\sigma tl_{j)}})=\tau_{1}(P_{ij})$ for each
$je\{1,2, \cdots, n\}$ , and $\tau_{2}(E)=\tau_{1}(E)$ for the other.

Then at least one of $|lk(L_{\tau_{1}})|$ and $|lk(L_{\tau_{2}})|$ is greater than or equal to
the half of $n$ , since $|lk(L_{\tau_{1}})-lk(L_{\tau_{2}})|=n$ . Let $\tau_{0}$ be the good bijection de-
fined by $\tau_{0}(P_{i})=i$ and $\tau_{0}(Q_{i})=m^{\prime}+i$ for $ie\{1,2, \cdots, m’\}$ . Then $|lk(L_{\tau_{0}})|=0$ .
Every good bijection is obtained from $\tau_{0}$ by a finite sequence of exchanging
the values of $P_{i}$ and $Q_{j}$ which differ by one, and an exchange changes
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the linking number of the associated link of the good bijection by one.
Therefore, by the existence of the intermediate value, there is a good
bijection $\tau_{s}$ such that $|lk(L_{\tau_{3}})|$ equals the half of $n$ . Then the link $L_{\tau}$,
is the (2, n)-torus link. This completes the proof of Theorem 4. $\square $

COROLLARY 2. There is an ascending chain in the partially ordered
set $(\mathfrak{L}^{2}/\sim, \leqq)$ .

In fact, there is a strictly increasing infinite sequenoe of even
numbers $n_{1}=0,$ $n_{2}=2,$ $n_{\epsilon}=4,$ $n_{4}=6,$ $n_{5},$ $n_{6},$ $\cdots$ such that the $(2, n_{i+1})-$

torus link majorizes the $(2, n_{i})$-torus link for all natural number $i$ .
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