Tokyo J. Math. Vol. 12, No. 2, 1989

On a Global Realization of a Discrete Series for SU(n, 1)as Applications of Szegö Operator and Limits of Discrete Series

Takeshi KAWAZOE

Keio University

§1. Introduction.

In [KW] Knapp and Wallach gave an explicit imbedding of the discrete series of a connected semisimple Lie group G with finite center as a subrepresentation in the nonunitary principal series. However. it was in an infinitesimally equivalent fashion. Recently, when real rank of G is 1, Blank [B] gave an explicit projection operator that transfers a reducible unitary principal series onto a limit of discrete series in a global level. In this paper, applying Zuckerman's technique (see [Z]), we shall shift Blank's result and construct a representation of G which is infinitesimally equivalent to a discrete series. Then the unitarity of the representation corresponds to the square-integrability on G of the image of the Szegö operator, which was conjectured in [KW]. When G = SU(n, 1), we shall obtain the square-integrability by applying the complex structure of the hermitian symmetric space G/K, and then we get a global construction of the discrete series.

This method is completely different from ordinary one, for it starts with a limit of discrete series. This implies that the representations constructed by our method must be attached to a limit of discrete series, and thus they are unfortunately a part of the discrete series of G (see §6). Square-integrability of the image of the Szegö operator is still an unsettled problem except for G=SU(n, 1), however, all others obtained in this paper are valid for all real rank 1 semisimple Lie groups.

Let G be a connected semisimple Lie group with finite center and fix a maximal compact subgroup K of G. We assume that rank $G = \operatorname{rank} K$, that is, G has a compact Cartan subgroup $T \subset K$. Then by Harish-Chandra [HC] this condition is equivalent with that G has a discrete series. Let t be the Lie algebra of T and W_K the Weyl group of K. Then the set

Received December 24, 1988

of discrete series is in bijective correspondence with the set of W_{κ} -orbits of non-singular integral forms on t. We denote by π_{Λ} the discrete series corresponding to a nonsingular integral form Λ on t.

Let G = ANK be an Iwasawa decomposition of G and M the centralizer of A in K; let t_c^* and a_c^* be the dual spaces of the complexifications of t and the Lie algebra a of A respectively. Let $(\tau_{\lambda}, V_{\lambda})$ $(\lambda \in t_c^*)$ be the lowest K-type of π_A and $(\sigma_{\lambda}, H_{\lambda})$ the representation of M given by restricting $\tau_{\lambda}(M)$ to the M-cyclic subspace H_{λ} generated by the highest weight vector of V_{λ} . Let

$$C^{\infty}(K, \sigma_{\lambda}) = \{ f \in C^{\infty}(K, H_{\lambda}) ; f(mk) = \sigma_{\lambda}(m)f(k), m \in M, k \in K \},$$

$$C^{\infty}(G, \tau_{\lambda}) = \{ f \in C^{\infty}(G, V_{\lambda}) ; f(kx) = \tau_{\lambda}(k)f(x), k \in K, x \in G \}.$$
(1.1)

Then the discrete series π_A is realized on the L^2 kernel of the Schmid operator D on $C^{\infty}(G, \tau_{\lambda})$ (see [Sc] and §2 in [KW]) and the (non) unitary principal series $\pi_{\sigma_{\lambda},\nu}$ ($\nu \in \mathfrak{a}_{c}^{*}$) is realized on the space $C^{\infty}(K, \sigma_{\lambda})$ as the compact picture (see §2.1). According to the induced picture of $\pi_{\sigma_{\lambda},\nu}$, each function $f \in C^{\infty}(K, \sigma_{\lambda})$ can be extended to the function f on G by defining

$$f(ank) = e^{\nu(\log(a))} f(k) \qquad (a \in A, n \in N \text{ and } k \in K)$$
(1.2)

and this extension belongs to $C^{\infty}(G, \sigma_{\lambda} \times e^{\nu})$. Then the Szegö map

$$S: C^{\infty}(K, \sigma_{\lambda}) \longrightarrow C^{\infty}(G, \tau_{\lambda})$$
(1.3)

is defined by

$$S(f)(x) = \int_{K} \tau_{\lambda}(k)^{-1} f(kx) dk . \qquad (1.4)$$

Knapp and Wallach in [KW] notice that the Szegö map S gives a relation between π_A and $\pi_{\sigma_A,\nu}$; actually, for $\nu = \nu_\lambda \in \mathfrak{a}_c^*$ defined by λ (see (2.15a) and (2.15b)) S carries $C^{\infty}(K, \sigma_{\lambda})$ into the kernel of the Schmid operator D on $C^{\infty}(G, \tau_{\lambda})$ and moreover, $\pi_{\sigma_{\lambda},\nu_{\lambda}}$ onto π_A in an infinitesimally equivariant fashion. Here "infinitesimally" means that the correspondence holds between K-finite vectors of the domain and the range of the mapping. Therefore, as conjectured in §11 in [KW], it is worth realizing the discrete series π_A on the image of S without the K-finiteness assumption.

Now we assume that G has a simply connected complexification G_{σ} and that G has real rank one. Then the above result can be extended to a singular integral form Λ such that $\langle \Lambda, \alpha_0 \rangle = 0$ for a noncompact

simple root α_0 and $\langle \Lambda, \beta \rangle \neq 0$ for all other positive roots β . In this case we have two choices of the system of positive roots, we say Δ^+ and $\Delta^{+\prime} = \Delta^+ - \{\alpha_0\} \cup \{-\alpha_0\}$. Then we can define Szegö maps S and S' corresponding to Δ^+ and $\Delta^{+\prime}$ respectively (see [KW], §12). Since ν_{λ} equals ρ , half the sum of the positive restricted roots with multiplicities, π_A corresponds to a limit of discrete series and $\pi_{\sigma_{\lambda},\rho}$ to a reducible unitary principal series. In particular, $\pi_{\sigma_{\lambda},\rho}$ is infinitesimally equivalent with the direct sum of the K-finite images of S and S', which give two irreducible constituents of the reducible principal series (see [KW], Theorem 12.6).

The boundary value map

L: the image of
$$S \longrightarrow C^{\infty}(K, \sigma_{\lambda})$$
 (1.5)

is defined as follows (see $\S 2.2$):

$$L(S(f))(k) = \lim_{a \to \infty} E(e^{\rho(\log(a))}(\pi_{\sigma_{\lambda},\rho}(w^{-1}k)f)(a)) \qquad (k \in K) , \qquad (1.6)$$

where E denotes the orthogonal projection from V_{λ} onto H_{λ} and w a representative of the nontrivial coset of the Weyl group W of A, which has order 2. Then in [B] Blank shows that in a G-equivariant fashion the composition map

$$L \circ S : C^{\infty}(K, \sigma_{\lambda}) \longrightarrow C^{\infty}(K, \sigma_{\lambda})$$
(1.7)

is a projection operator and, as shown in [KS], it consists of a linear combination of the identity operator and a principal value operator (see [B] and §2.3). In his method the K-finiteness assumption does not required. This means that, in a global fashion, the limit of discrete series $\pi_A (\nu_\lambda = \rho)$ is realized on the image of $L \circ S$ equipped with the L^2 -norm on K.

We retain all the assumptions on G. Our aim of this paper is to give a global, not infinitesimal, realization of a discrete series. As mentioned above, when π_A is a limit of discrete series ($\nu_\lambda = \rho$), the Szegö map $S: C^{\infty}(K, \sigma_{\lambda}) \rightarrow C^{\infty}(G, \tau_{\lambda})$ gives a global realization of π_A by taking the boundary value. Therefore, if we can shift the realization of the limit of discrete series π_A to a discrete series, we can construct the discrete series in a global fashion; therefore, the discrete series we shall treat below must be attached to a limit of discrete series. In order to shift the realization of π_A , we shall apply Zuckerman's technique introduced in [Z], roughly speaking, we shall form a suitable projection of tensor products of π_A and a finite dimensional representation of G.

Let μ be a dominant integral form on t and let (π, U) be a finite

dimensional representation of G with lowest weight $-\mu$. Suppose that π satisfies some conditions related with the order of weights (see §3 and Theorem 4.6). Then a discrete series $\pi_{A+\mu}$ is realized as a sub-representation in the nonunitary principal series:

$$\pi_{A+\mu} \subset (\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, C^{\infty}(K, \sigma_{\lambda-\mu})) .$$
(1.8)

Actually, first we take the tensor product of $\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}$ and π , and then define a map

$$C^{\infty}(K, \sigma_{\lambda-\mu}) \longrightarrow C^{\infty}(G, \sigma_{\lambda} \times e^{\rho} \times \beta) , \qquad (1.9)$$

where β is the restriction of π to MAN (see (3.1)); next we extract a component of $C^{\infty}(G, \sigma_{\lambda} \times e^{\rho} \times \beta)$, which is contained in $C^{\infty}(G, \sigma_{\lambda} \times e^{\rho}) \cong$ $C^{\infty}(K, \sigma_{\lambda})$, and we apply the Szegö maps S and S' on the component (see (3.3)). Combining these proceedings, we can define the G-equivariant operators

$$S_{\mu} \text{ and } S_{\mu}' : C^{\infty}(K, \sigma_{\lambda-\mu}) \longrightarrow C^{\infty}(G, V_{\lambda})$$
 (1.10)

(see Proposition 3.2). Let $\Omega_{\lambda,\mu}$ be the kernel of S_{μ}' on $C^{\infty}(K, \sigma_{\lambda-\mu})$. Then $\Omega_{\lambda,\mu}$ is nontrivial, *G*-invariant and moreover, S_{μ} is injective on $\Omega_{\lambda,\mu}$ (see Lemmas 4.5 and 5.4). In their proofs we use the fact that the limit of discrete series π_{Λ} is realized in a global fashion. When G/K is hermitian; G=SU(n, 1), we see that $S_{\mu}(\Omega_{\lambda,\mu})$ is contained in $L^2(G, V_{\lambda})$ (see Theorem 4.6). Therefore, inducing the L^2 norm of $\Omega_{\lambda,\mu}$ from the one of the image $S_{\mu}(\Omega_{\lambda,\mu})$, we can obtain a unitary representation $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$. Finally, in Theorem 5.6 we show that the representation is irreducible and matrix coefficients are square-integrable on G, so $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ is a discrete series of G=SU(n, 1). This completes a global realization of a discrete series started with a limit of discrete series.

§2. Notation and preliminaries.

Let G be a connected semisimple Lie group with finite center and K a maximal compact subgroup of G. Throughout this paper we assume that rank $G = \operatorname{rank} K$, that G has a simply connected complexification G_c , and that real rank G = 1.

Let g be the Lie algebra of G. For a subalgebra u of g we denote the complexification and its dual space by u_c and u_c^* respectively. Let θ denote the Cartan involution of g determined by K and g=t+p the corresponding Cartan decomposition of g. Let $t \subset t$ be a compact Cartan subalgebra of g, Δ the root system of (g_c, t_c) and Δ_n (resp. Δ_k) the set

of noncompact (resp. compact) roots of Δ . Root vectors $E_{\alpha} (\alpha \in \Delta)$ can be selected in such a way that $B(E_{\alpha}, E_{-\alpha}) = 2\langle \alpha, \alpha \rangle^{-1}$ and $\theta(E_{\alpha})^{-} = -E_{-\alpha}$, where bar denotes conjugation of g_c with respect to g and B is the Killing form on g_c . Then $\alpha(H_{\alpha}) = 2$ for $H_{\alpha} = [E_{\alpha}, E_{-\alpha}]$ (cf. [He], p. 155-156). We fix a noncompact simple root, say α_0 , and let Δ^+ be the set of positive roots of Δ so that α_0 is positive. Put $\Delta_n^+ = \Delta_n \cap \Delta^+$ and $\Delta_k^+ = \Delta_k \cap \Delta^+$. Then $\alpha = \mathbf{R}(E_{\alpha_0} + E_{-\alpha_0})$ is a maximal abelian subspace of \mathfrak{p} . Let \mathfrak{h}^- denote a Cartan subalgebra of the centralizer m of α in \mathfrak{k} . Then $\mathfrak{t} = \mathfrak{h}^- + i\mathbf{R}H_{\alpha_0}$ and $\mathfrak{h} = \mathfrak{h}^- + \alpha$ is a noncompact Cartan subalgebra of g. Let u = $\exp \frac{1}{4}\pi(E_{\alpha_0} - E_{-\alpha_0})$. Then the standard Cayley transform relative to α_0 is given by $\mathrm{Ad}(u)$. It carries \mathfrak{t}_c to \mathfrak{h}_c ; in fact, $\mathrm{Ad}(u)$ acts trivially on $\mathfrak{h}_c^$ and $\mathrm{Ad}(u)H_{\alpha_0} = -(E_{\alpha_0} + E_{-\alpha_0})$.

Let Ψ be the root system of $(\mathfrak{g}_c, \mathfrak{h}_c)$ and $\Psi_m \subset \Psi$ the root system of $(\mathfrak{m}_c, \mathfrak{h}_c^-)$. Let Ψ^+ be the set of positive roots of Ψ obtained by requiring that a comes before \mathfrak{h}^- , and let $\Psi_m^+ = \Psi_m \cap \Psi^+$. Then $\Psi^+ = \{\gamma \circ \operatorname{Ad}(u)^{-1}; \gamma \in S \subset \Delta\}$, where $S = \Psi_m^+ \cup \{\gamma \in \Delta; \langle \gamma, \alpha_0 \rangle < 0\}$ (cf. [KW], Lemma 8.5). Let Σ denote the set of restricted roots of $(\mathfrak{g}_c, \mathfrak{a}_c)$ and let Σ^+ be the set of positive restricted roots obtained by requiring that $E_{\alpha_0} + E_{-\alpha_0}$ is contained in the positive Weyl chamber \mathfrak{a}^+ of \mathfrak{a} . Then the orderings defined by Δ^+ , Ψ^+ and Σ^+ satisfy compatibility. Let δ , δ_n and δ_k be half the sum of the roots in Δ^+ , Δ_n^+ and Δ_k^+ respectively, and let ρ be half the sum of the roots in Σ^+ with multiplicities.

Let A and N be the analytic subgroups of G corresponding to a and n respectively, where n is the sum of positive restricted root spaces. Then an Iwasawa decomposition of G is given by G=ANK. Let M and M' be the centralizer and normalizer of A in K respectively and let W=M'/M. W has order 2; let w be a representative of the nontrivial coset. Then $G=MAN\cup MANwMAN$, and if we put $V=\theta(N)$, we see that $V=wNw^{-1}$ and $MAN\cap V=\{1\}$. Let "exp" denote the exponential mapping of a onto A and "log" the inverse mapping. Then each element g in G and in the open dense subset MANV of G respectively can be written as:

$$g = \exp H(g) \cdot n(g) \cdot k(g) \qquad (H(g) \in \mathfrak{a}, \ n(g) \in N, \ k(g) \in K), \\ = m(g) \cdot a(g) \cdot n \cdot v(g) \qquad (m(g) \in M, \ a(g) \in A, \ n \in N, \ v(g) \in V) .$$

$$(2.1)$$

We shall normalize Haar measures dk on K, dm on M and dv on Vso that dk and dm have total mass 1 and dv satisfies $\int_{V} e^{2\rho H(v)} dv = 1$. Let da denote the Haar measure on A that corresponds to a fixed Euclidean structure on g under the exponential mapping. Then Haar measures dn on

N and dg on G respectively can be normalized by the integral formulas:

$$\int_{V} f(n) dn = \int_{V} f(wvw^{-1}) dv$$

and

$$\int_{G} f(g) dg = \int_{A} \int_{N} \int_{K} f(ank) e^{2\rho(\log(a))} da dn dk$$

for integrable functions f on N and G respectively. Let $A^+ = \exp(\mathfrak{a}^+)$. Then $G = KCL(A^+)K$ and there exists a continuous function $D(a) \ge 0$ on A^+ such that

$$dg = D(a)dkdadk', \qquad (2.3a)$$

(2.2)

where $g = kak' \in KA^+K$, and

$$e^{2\rho(\log(a))}D(a) \leq C$$
 for $a \in A^+$ (2.3b)

(cf. [He], pp. 381-382). Let

$$\Delta^{+} = s_0(\Delta^+) = (\Delta^+ - \{\alpha_0\}) \cup \{-\alpha_0\}, \qquad (2.4)$$

where s_0 is the reflection with respect to α_0 . Then $\Delta^{+\prime}$ is a new positive root system of (g_c, t_c) ; since $E_{\alpha_0} + E_{-\alpha_0} = E_{-\alpha_0} + E_{\alpha_0}$, it follows that ${\Delta^{+\prime}}_k = {\Delta^+}_k$ and the corresponding Iwasawa decomposition is the same as before (cf. [KW], p. 198).

2.1. Non unitary principal series and intertwining operators. We shall recall three realizations: induced, compact and noncompact pictures of (non)unitary principal series representations $\pi_{\sigma,\nu}$ of G, where $\nu \in \mathfrak{a}_{\sigma}^*$ and (σ, H) is a finite dimensional irreducible unitary representation of M (cf. [KS]). Then the representation space of $\pi_{\sigma,\nu}$ in each picture is respectively given by

$$C^{\infty}(G, \sigma \times e^{\nu}) = \{ f \in C^{\infty}(G, H) ; f(mang) = \sigma(m)e^{\nu(\log(a))}f(g) ,$$

$$man \in MAN, g \in G \} , \quad (2.5)$$

$$C^{\infty}(K, \sigma) = \{ f \in C^{\infty}(K, H) ; f(mk) = \sigma(m)f(k), m \in M, k \in K \}$$

and $C^{\infty}(V, H)$; the action of $\pi_{\sigma,\nu}(g)$ $(g \in G)$ on each space is given by

$$\pi_{\sigma,\nu}(g)f(x) = f(xg) \quad (x \in G) ,$$

$$\pi_{\sigma,\nu}(g)f(k) = e^{\nu(H(kg))}f(k(kg)) \quad (k \in K) ,$$

$$\pi_{\sigma,\nu}(g)f(v) = \sigma(vg)e^{\nu(\log(vg))}f(v(vg)) \quad (v \in V) ,$$
(2.6)

where σ and log are respectively extended to the operator and the function defined almost everywhere on G by letting

$$\sigma(manv) = \sigma(m)$$
 and $\log(manv) = \log(a)$ $(manv \in MANV)$. (2.7)

The intertwining operator between the induced picture and the compact one (resp. the noncompact one) is given by restricting $f \in C^{\infty}(G, \sigma \times e^{\nu})$ to K (resp. to V) and conversely, the G-equivariant extension of $f \in C^{\infty}(K, \sigma)$ (resp. $f \in C^{\infty}(V, H)$) to an element in $C^{\infty}(G, \sigma \times e^{\nu})$ is given by letting

$$f(x) = e^{\nu(H(x))} f(k(x))$$

(resp. $f(x) = \sigma(x) e^{\nu(\log(x))} f(v(x))$). (2.8)

Therefore, giving attention to the restriction and extension, we use the notation " $\pi_{\sigma,\nu}(g)f$ " without distinguishing the three pictures.

Let $\nu = (1+z)\rho$ $(z \in C)$. If $z \in iR$, then the L^2 norm with respect to the Haar measure on K is preserved by the action given in (2.6), so it determines a unitary structure of the representation $\pi_{\sigma,\nu}$. We put $w\sigma(m) = \sigma(wmw^{-1}) \ (m \in M)$. Then it follows from [KS], Proposition 20 that $\pi_{\sigma,\nu}$ is reducible if and only if (1) σ is equivalent with $w\sigma$, (2) z=0and (3) the mean value of $\sigma(xw)^{-1} \ (x \in G)$ equilas 0. Under the assumption on G, $\pi_{\sigma,\rho}$ is a reducible unitary principal series of G (cf. [KS], §16). Let $w\nu(H) = \nu(wH) \ (H \in \alpha)$. If $\operatorname{Re}(z) > 0$, then an intertwining operator $A(w, \sigma, z)$ between $\pi_{\sigma,\nu}$ and $\pi_{w\sigma,w\nu}$ is given by

$$A(w, \sigma, z)f(k) = \int_{K} e^{(1-z)\rho \log(k'w)} \sigma^{-1}(k'w)f(k'k)dk' \qquad (k \in K)$$
(2.9)

(see [KS], §9) and moreover, if z=0, intertwining operators between $\pi_{\sigma,\rho}$ and $\pi_{\sigma,\rho}$ are all of the form: aA_0+bI $(a, b \in C)$, where I is the identity operator and A_0 is the principal value operator given by

$$A_{0}f(k) = \int_{K} e^{\rho \log(k'w)} \sigma^{-1}(k'w) f(k'k) dk' \qquad (k \in K)$$
(2.10)

(see Corollary in [KS], p. 517).

2.2. Szegö map and boundary value map. For an integral Δ_k^+ dominant form $\lambda \in \mathfrak{t}_{\mathfrak{o}}^*$ let $(\tau_{\lambda}, V_{\lambda})$ be an irreducible unitary representation of K with highest weight λ . Let ϕ_{λ} be a nonzero highest weight vector and H_{λ} the *M*-cyclic subspace of V_{λ} generated by ϕ_{λ} . Let $(\sigma_{\lambda}, H_{\lambda})$ denote the representation of M given by restricting τ_{λ} to H_{λ} , and E_{λ} the orthogonal projection from V_{λ} onto H_{λ} . Then for $\eta \in \mathfrak{a}_{\mathfrak{o}}^*$ the Szegö map

$$S_{\eta,\lambda}: C^{\infty}(K, \sigma_{\lambda}) \longrightarrow C^{\infty}(G, \tau_{\lambda})$$
(2.11)

is defined by

$$S_{\eta,\lambda}f(g) = \int_{K} e^{\eta H(kg-1)} \tau_{\lambda}^{-1}(k(kg^{-1}))f(k)dk \qquad (2.12)$$
$$= \int_{K} \tau_{\lambda}(k^{-1})f(kg)dk ,$$

where in the second integral we denote by the same letter "f" the G-equivariant extension of $f \in C^{\infty}(K, \sigma_{\lambda})$ to G according to the induced picture of $\pi_{\sigma_{\lambda},\nu}$ with $\nu = 2\rho - \eta$ (see (2.8) and [KW], Lemma 6.2). Then this map is G-equivariant. If we put emphasis on the dependence of $S_{\eta,\lambda}$ on the choice of the positive root system Δ^+ , we use the notation " $S_{\eta,\lambda}(\Delta^+)$ ".

On the image of $S_{\eta,\lambda}$ a boundary value map

$$L_{\eta}$$
: image of $S_{\eta,\lambda} \longrightarrow C^{\infty}(K, \sigma_{\lambda})$ (2.13)

is defined by

$$L_{\eta}(S_{\eta,\lambda}(f))(k) = \lim_{a \to \infty} E_{\lambda}(e^{\eta (\log(a))} S_{\eta,\lambda}(\pi_{\sigma_{\lambda},\nu}(w^{-1}k)f)(a)) .$$

$$(2.14)$$

Then following [B] and [GTKS], we see that

THEOREM 2.1. Let $\nu = 2\rho - \eta = (1+z)\rho$. If $\operatorname{Re}(z) > 0$, then $L_n \circ S_{n,\lambda} = A(w, \sigma_\lambda, z)$

(see (2.9)) and L_n is G-equivariant.

If z=0, $L_{\rho} \circ S_{\rho,\lambda}$ also can be defined by (2.14). On the other hand, $A(w, \sigma_{\lambda}, z)$ is not defined for z=0, because the integral (2.9) in the definition does not converge. However, as mentioned in 2.1, we know that the limiting case z=0 must be of the form aA_0+bI , so $L_{\rho} \circ S_{\rho,\lambda}$ is of the same form. This fact is directly investigated in [B].

THEOREM 2.2. L_{ρ} transfers $S_{\rho,\lambda}(L^{2}(K, \sigma_{\lambda}))$ into $L^{2}(K, \sigma_{\lambda})$ in a G-equivariant manner and $L_{\rho} \circ S_{\rho,\lambda}$ is the projection operator of the form $a_{\lambda}I + A_{0}$, where A_{0} is given by (2.10) and a_{λ} is the constant given by $E_{\lambda} \int_{w} e^{\rho H(v)} \tau_{\lambda}(k(v)w)^{-1} dv = a_{\lambda}I.$

2.3. Discrete series and limits of discrete series. Let us suppose that $\Lambda = \lambda - \delta_n + \delta_k$ is Δ^+ -dominant, and that Λ is nonsingular or singular

with respect to just one pair of roots $\pm \alpha_0$. Then, as shown by [HC] and [KO], if Λ is nonsingular, it corresponds to a discrete series, otherwise, to a limit of discrete series of G. Both of them we denote by π_A . Then by [Sc] we know that the lowest K-type of π_A is given by τ_A .

We define η_{λ} and $\nu_{\lambda} \in \mathfrak{a}_{c}^{*}$ as follows:

$$\eta_{\lambda}(E_{\alpha_0}+E_{-\alpha_0})=rac{2\langle\lambda+n_0lpha_0,\ lpha_0
angle}{\langlelpha_0,\ lpha_0
angle}$$
, (2.15a)

and

$$\nu_{\lambda} = 2\rho - \eta_{\lambda} , \qquad (2.15b)$$

where n_0 is the number of positive noncompact roots γ satisfying that γ is not strongly orthogonal to α_0 and $\gamma + \alpha_0 \in \Delta$ (see [KW], (6.5a), (6.5b)). Let

$$S_{\lambda} = S_{\lambda}(\Delta^{+}) = S_{\eta_{\lambda},\lambda}(\Delta^{+}) \quad \text{and} \quad S_{\lambda}' = S_{s_{0}\lambda}(\Delta^{+}) \quad .$$
(2.16)

Then by Theorems 1.1 and 12.6 in [KW] the Szegö maps S_{λ} and S_{λ}' give a relation between π_{λ} and $\pi_{\sigma_{\lambda},\nu_{\lambda}}$ as follows.

THEOREM 2.3. (1) S_{λ} carries $C^{\infty}(K, \sigma_{\lambda})$ into the kernel of the Schmid operator D (see [Sc] and [KW], §2) on $C^{\infty}(G, \tau_{\lambda})$. Moreover, in a gequivariant fashion it carries the K-finite vectors of $\pi_{\sigma_{\lambda},\nu_{\lambda}}$ onto the K-finite vectors of π_{A} . (2) If $\eta_{\lambda} = \nu_{\lambda} = \rho$, then the reducible unitary principal series $\pi_{\sigma_{\lambda},\rho}$ is infinitesimally equivalent with the direct sum of the K-finite images of S_{λ} and S_{λ}' .

We note that Theorem 2.2 implies that, if $\eta_{\lambda} = \nu_{\lambda} = \rho$, the K-finite assumption in Theorem 2.3 is not necessary. Therefore, if we put

$$A_{\lambda} = L_{\rho} \circ S_{\lambda} \quad \text{and} \quad A_{\lambda}' = L_{\rho} \circ S_{\lambda}' , \qquad (2.17)$$

it follows from Theorems 2.2 and 2.3 that

$$A_{\lambda} + A_{\lambda}' = I , \qquad (2.18)$$

where I is the identity operator on $C^{\infty}(K, \sigma_{\lambda})$.

2.4. G = SU(n, 1). We shall consider the case that G/K is hermitian, so G = SU(n, 1) under the assumption that real rank of G is 1. Let

$$\mathfrak{p}^+ = \sum_{\alpha \in \mathcal{I}_n^+} \mathfrak{g}_{\alpha} \quad \text{and} \quad \mathfrak{p}^- = \sum_{\alpha \in \mathcal{I}_n^- - \mathcal{I}_n^+} \mathfrak{g}_{\alpha} , \qquad (2.19)$$

where g_{α} is the root space for α , and let P^+ , P^- be the subgroups of G_{α}

corresponding to \mathfrak{p}^+ , \mathfrak{p}^- respectively. Then multiplication $P^- \times K_e \times P^+ \to G_e$ is one to one, holomorphic, regular and there exists a bounded open subset $\Omega \subset P^+$ such that

$$P^-K_cP^+ = P^-K_c\Omega \quad (2.20)$$

Then G acts on Ω by holomorphic automorphism under the definition $z \cdot g = p^+(zg)$ $(z \in \Omega, g \in G)$, where $p^+(\cdot)$ refers to the P^+ component of an element of $P^-M_cP^+$. Especially, $1 \cdot g = 1$ for $g \in P^-K_c$ and $G \cap P^-K_c = K$, so $\Omega = G/K$ (cf. [Kn], pp. 225-226). Let $a_t = \exp(t(E_{\alpha_0} + E_{-\alpha_0})/2)$ $(t \in \mathbf{R})$. Then we recall that

$$1 \cdot a_t = \exp(\operatorname{th} t/2 E_{\alpha_0}) \quad \text{and} \quad \lim_{t \to \infty} 1 \cdot a_t = \exp(E_{\alpha_0}) \quad (\operatorname{say} \ \infty) \tag{2.21}$$

(see [Kn], Corollary in p. 229), $\infty \in \partial \Omega$, the boundary of Ω , and the action of G on Ω is holomorphically extended to $\partial \Omega$. Then since $\operatorname{Ad}(u)a_{-\log(th t/2)} \in K_c$, we see that

$$1 \cdot a_t = \infty \cdot \operatorname{Ad}(u) a_{-\log(\operatorname{th} t/2)} \,. \tag{2.22}$$

In what follows we shall abbreviate the symbols $1 \cdot \text{and} \infty \cdot \text{when we}$ denote functions on Ω and $\partial \Omega$ respectively.

Now let us suppose that $\eta_{\lambda} = \nu_{\lambda} = \rho$ and $A_{\lambda}'(f) \equiv 0$ for $f \in C^{\infty}(K, \sigma_{\lambda})$. Then by (2.14) and (2.18) it follows that

$$f(k) = A_{\lambda}(f)(k) = L_{\rho} \circ S_{\lambda}(f)(k)$$

=
$$\lim_{a \to \infty} e^{\rho(\log(a))} E_{\lambda} S_{\lambda}(f)(a_{i}wk) . \qquad (2.23)$$

As shown in [B], a limit of (holomorphic) discrete series is realized on the image of $L_{\rho} \circ S_{\lambda}$ equipped with L^2 norm; so $A_{\lambda}'(f) \equiv 0$ implies that fhas a "holomorphic" extension to Ω , which we denote by the same letter (cf. Theorem 12.6 in [KW], [JW] and [KO], §5). On the other hand, $S_{\lambda}(f)$ is in the kernel of the Schmid operator and thus, of the Dirac operator (cf. [KW], Proposition 3.1, Theorem 6.1 and [NO]). Therefore, (2.22) and (2.23) mean that

$$E_{i}S_{i}(f)(a_{t}) \sim e^{-\rho(\log(a))}f(\mathrm{Ad}(u)a_{-\log(th t/2)}w^{-1})$$
(2.24)

as t tends to ∞ . Especially, noting the fact that A_{λ} is a projection operator, we can deduce from Lemma 3.15 in [B] and its proof that the right hand side of (3.40) in [B] also satisfies (2.24) and thus

$$||S_{\lambda}(f)(a_{t})|| \sim e^{-\rho(\log(a))} ||f(\operatorname{Ad}(u)a_{-\log(\operatorname{th} t/2)}w^{-1})|| \qquad (2.25)$$

as t tends to ∞ , where $\|\cdot\|$ denotes the norm of V_{λ} .

2.5. Orthonormal system of $L^2(K, \sigma)$. Let K^{\uparrow} (resp. M^{\uparrow}) denote the set of the equivalence classes of irreducible unitary representations of K (resp. M). For $\tau \in K^{\uparrow}$ and $\sigma \in M^{\uparrow}$ let $[\tau; \sigma]$ denote the multiplicity of σ in the restriction $\tau | M$ of τ to M, and let $K_{\sigma}^{\uparrow} = \{\tau \in K^{\uparrow}; [\tau; \sigma] \neq 0\}$. In what follows, for simplicity, we suppose that $[\tau; \sigma] = 1$ if it is not 0, because this restriction is easily removable. Then for $(\tau, V_{\tau}) \in K_{\sigma}^{\uparrow}$ let $d_{\tau} = \dim \tau$ and let $e_i, e_2, \dots, e_{d_{\tau}}$ denote an orthonormal basis of V_{τ} such that $\{e_i; 1 \leq i \leq d_{\sigma}\}$ ($d_{\sigma} = \dim \sigma$) is carried by $\tau | M$ according to σ . We put $I_{\tau} = \{1, 2, \dots, d_{\tau}\}$ and $I_{\sigma} = \{1, 2, \dots, d_{\sigma}\}$, and denote the matrix coefficients of τ by $\tau_{ij}(k) = (\tau(k)e_j, e_i)$ ($i, j \in I_{\tau}, k \in K$). Then we define functions on K by

$$\phi_{\tau,j}(k) = \sum_{i \in I_g} \tau_{ij}(k) e_i \qquad (j \in I_\tau)$$
(2.26)

and let $\psi_{\tau,j} = (d_{\tau}/d_{\sigma})^{1/2} \phi_{\tau,j}$.

LEMMA 2.4. $\{\psi_{\tau,j}; j \in I_{\tau}, \tau \in K_{\sigma}^{\wedge}\}$ is a complete orthonormal basis of $L^{2}(K, \sigma)$.

PROOF. Since

$$\begin{split} \phi_{\tau,j}(mk) &= \sum_{i \in I_{\sigma}} \tau_{ij}(mk) e_i \\ &= \sum_{i,p \in I_{\sigma}} \tau_{ip}(m) \tau_{pj}(k) e_i \\ &= \sigma(m) \phi_{\tau,j}(k) \qquad (m \in M, \ k \in K) , \end{split}$$

and

$$\begin{aligned} (\phi_{\tau,j}, \phi_{\tau',j'}) = & \int_{K} (\sum_{i \in I_{\sigma}} \tau_{ij}(k) e_{i}, \sum_{i' \in I_{\sigma}} \tau'_{i'j'}(k) e_{i'}) dk \\ = & \sum_{i \in I_{\sigma}} \int_{K} \tau_{ij}(k) \tau'_{ij'}(k)^{-} dk \\ = & \delta_{\tau\tau'} \delta_{jj'} d_{\sigma} d_{\tau}^{-1} , \end{aligned}$$

it follows that all $\psi_{\tau,j}$ belong to $L^2(K, \sigma)$ and they are orthonormal each other. Let f be an arbitrary function in $L^2(K, \sigma)$. Then by the Peter-Weyl theorem for $L^2(K)$ (cf. [Su], p. 19) f has a decomposition such as

$$f(k) = \sum_{\tau \in K_{\sigma}} \sum_{i,j \in I_{\tau}} \sum_{p \in I_{\sigma}} a_{ijp} \tau_{ij}(k) e_p \qquad (k \in K) .$$

Then for $m \in M$

$$f(mk) = \sum_{\tau \in K_{\delta}} \sum_{i,j,q \in I_{\tau}} \sum_{p \in I_{\sigma}} a_{ijp} \tau_{iq}(m) \tau_{qj}(k) e_{p} .$$

On the other hand, since f belongs to $L^2(K, \sigma)$, f(mk) must equal

$$\sigma(m)f(k) = \sum_{\tau \in K_{\sigma}} \sum_{i',j' \in I_{\tau}} \sum_{\tau,s \in I_{\sigma}} a_{i'j'} \tau_{i'j'}(k) \tau_{\tau s}(m) e_{\tau}.$$

So, it follows that $q=s=i' \in I_{\sigma}$, $i=p \in I_{\sigma}$ and $a_{pip}=a_{qiq}$ for all $p, q \in I_{\sigma}$. Therefore, if we let $a_j=a_{pip}$,

$$f(k) = \sum_{\tau \in K_{\sigma}} \sum_{j \in I_{\tau}} a_{j} \sum_{p \in I_{\sigma}} \tau_{pj}(k) e_{p}$$
$$= \sum_{\tau \in K_{\sigma}} \sum_{j \in I_{\tau}} a_{j} \phi_{\tau,j}(k) .$$

This completes the proof of the lemma.

§3. G-equivariant maps.

We fix a Δ_k^+ -dominant integral form λ on t_c such that $\Lambda = \lambda - \delta_n + \delta_k$ is Δ^+ -dominant and $\eta_{\lambda} = \nu_{\lambda} = \rho$ (see (2.15 a, b)). Then $\langle \Lambda, \alpha_0 \rangle = 0$ and $\langle \Lambda, \beta \rangle \neq 0$ for all other positive roots β . Especially, π_{Λ} is a limit of discrete series of G and $L_{\rho} \circ S_{\rho,\lambda}$: $L^2(K, \sigma_{\lambda}) \to L^2(K, \sigma_{\lambda})$ is a projection operator (see Theorem 2.2).

Let μ be a \varDelta^+ -dominant integral form on t_c and (π, U) a finite dimensional representation of G with lowest weight $-\mu$. Let $d_{\pi} = \dim U$, $I_{\pi} = \{1, 2, \dots, d_{\pi}\}$ and μ_i^{\sim} $(i \in I_{\pi})$ the weights of π relative to (t_c, Δ^+) , that is repeated according to their multiplicities and arranged in increasing order relative to Δ^+ ; so, $\mu_i^{\sim} = -\mu$. Let v_i^{\sim} denote a normalized weight vector corresponding to μ_i^{\sim} . In the same way let μ_i $(i \in I_{\pi})$ denote the weights of π relative to (\mathfrak{h}_c, Ψ^+) that are arranged as above, and $v_i \ (i \in I_\pi)$ corresponding normalized weight vectors. Then, since $\mu_i^{\sim} \circ \operatorname{Ad}(u)^{-1}$ and $\pi(u)v_i^{\sim}$ are respectively a weight and its weight vector with respect to $(\mathfrak{h}_{c}, \Psi^{+})$, we may assume that they coincide with one of, respectively, μ_{j} and v_j $(j \in I_{\pi})$; so we can select $i_0 \in I_{\pi}$ such that $\mu_{i_0} = \mu_1^{\sim} \circ \operatorname{Ad}(u)^{-1}$ and $v_{i_0} = \pi(u)v_1$. Since $w \in W$ acts as +1 on t and -1 on p (see [Kn2], Lemma 4), each $w\mu_i(H) = \mu_i(wHw^{-1})$ $(H \in \mathfrak{h}_c)$ is also one of the weights of π , and thus w acts as a permutation of I_{π} such as $w\mu_i = \mu_{w(i)}$. Especially, if we denote the matrix coefficients of π by $\pi_{ij}(g) = (\pi(g)v_j, v_i)$ $(i, j \in I_{\pi}, g \in G)$, we see that $\pi_{ij}(wg) = \pi_{w(i)j}(g)$.

Now let us suppose that

(A0) $\lambda - \mu$ is Δ_k^+ -dominant,

and we shall construct a nontrivial G-equivariant map of $C^{\infty}(G, \sigma_{\lambda-\mu} \times e^{\nu(\lambda-\mu)})$

440

Q.E.D.

into $C^{\infty}(G, V_{\lambda})$. Let ξ and β denote the representations $\sigma_{\lambda} \times e^{\rho}$ and $\pi | MAN$ respectively, of MAN. For $f \in C^{\infty}(G, \sigma_{\lambda-\mu} \times e^{\nu(\lambda-\mu)})$ we define

$$f^{\sim}(k) = \int_{M} \xi(m) \times \pi(m) \langle f(m^{-1}k), \phi_{\lambda-\mu} \rangle \phi_{\lambda} \times v_{i_0} dm . \qquad (3.1)$$

Then $f^{\sim} \in C^{\infty}(K, \sigma_{\lambda} \times \pi | M)$ and we can extend it to the function on G so that $f^{\sim} \in C^{\infty}(G, \xi \times \pi)$ (see [KW], p. 193).

LEMMA 3.1. The mapping that transfers f in $C^{\infty}(G, \sigma_{\lambda-\mu} \times e^{\nu(\lambda-\mu)})$ to f^{\sim} in $C^{\infty}(K, \sigma_{\lambda} \times \pi | M)$ is injective.

PROOF. Let $P_{\lambda-\mu}: V_{\lambda} \times U \to H_{\lambda-\mu}$ be a nonzero K-intertwining operator. Then by (10.14) in [KW] $P_{\lambda-\mu}(f^{\sim}(k)) = cf(k)$ $(k \in K)$ with $c \neq 0$, and thus the desired fact is clear. Q.E.D.

For $h \in C^{\infty}(K, \sigma_{\lambda} \times \pi | M)$ we define functions h_i by the expansion

$$h(g) = \sum_{i} h_{i}(g) \times \pi(g) v_{i}$$

=
$$\sum_{i} \left[\sum_{i} h_{i}(g) \pi_{ji}(g) \right] v_{j} . \qquad (3.2)$$

Then each h_i belongs to $C^{\infty}(G, \sigma_{\lambda} \times e^{\rho})$ and it is uniquely determined by the restriction $(h(k), \pi(k)v_i)$ on K. Here for $f \in C^{\infty}(G, \sigma_{\lambda-\mu} \times e^{\nu(\lambda-\mu)})$ and $j \in I_{\pi}$ we define

$$S_{\mu}^{j}f(g) = \sum_{i} S_{\lambda}(f^{\sim}_{i})(g)\pi_{ji}(g) \qquad (g \in G) ,$$

$$A_{\mu}^{j}f(k) = \sum_{i} A_{\lambda}(f^{\sim}_{i})(k)\pi_{ji}(k) \qquad (k \in K)$$
(3.3)

and also define S'^{j}_{μ} and A'^{j}_{μ} by replacing S_{λ} and A_{λ} with S_{λ}' and A_{λ}' respectively (see (2.16) and (2.17)). Then we see that

$$S^{j}_{\mu}, S^{\prime j}_{\mu}: C^{\infty}(K, \sigma_{\lambda-\mu}) \longrightarrow C^{\infty}(G, V_{\lambda}) ,$$

$$A^{j}_{\mu}, A^{\prime j}_{\mu}: C^{\infty}(K, \sigma_{\lambda-\mu}) \longrightarrow C^{\infty}(K, H_{\lambda}) .$$

$$(3.4)$$

PROPOSITION 3.2. If $i_0 = d_{\pi}$, then all S^{j}_{μ} and S'^{j}_{μ} are G-equivariant.

PROOF. For simplicity, we denote $\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}(x)f$ by f_x , and let W_j $(j \in I_{\pi})$ be the *MAN* cyclic subspace for $w_j = \phi_{\lambda} \times v_j$ in $H_{\lambda} \times U$ and put $U_{i_0+1} = \sum_{j>i_0} W_j$. Then by [KW], pp. 193-194, we see that

$$(f^{\sim})(kx) \equiv (f_x)^{\sim}(k) \mod U_{i_0+1} \qquad (k \in K, x \in G)$$
.

Therefore, since $i_0 = d_\pi$ by the hypothesis, it follows that

$$(f^{\sim})(kx) = (f_x)^{\sim}(k)$$
 (3.5)

On the other hand,

$$(f^{\sim})_{x}(g) = f^{\sim}(gx)$$

$$= \sum_{i} f^{\sim}_{i}(gx)\pi(gx)v_{i}$$

$$= \sum_{i} \sum_{j} f^{\sim}_{i}(gx)\pi_{ji}(gx)v_{j}$$

$$= \sum_{i,j,p} f^{\sim}_{i}(gx)\pi_{jp}(g)\pi_{pi}(x)v_{j}$$

$$= \sum_{j} [\sum_{i} [\sum_{p} f^{\sim}_{p}(gx)\pi_{ip}(x)]\pi_{ji}(g)]v_{j}$$

and thus,

$$(f_{x}^{*})_{i}(g) = \sum_{p} f_{p}^{*}(gx)\pi_{ip}(x) .$$
(3.6)

Then by (3.3), (3.5) and (3.6) we see that

$$\begin{split} S^{j}_{\mu}(f_{x})(g) &= \sum_{i} S_{\lambda}((f_{x})^{\sim}_{i})(g)\pi_{ji}(g) \\ &= \sum_{i} S_{\lambda}((f^{\sim}_{x})_{i})(g)\pi_{ji}(g) \\ &= \sum_{i,p} S_{\lambda}((f^{\sim}_{p})_{x})(g)\pi_{ip}(x)\pi_{ji}(g) \\ &= \sum_{n} S_{\lambda}(f^{\sim}_{p})(gx)\pi_{ip}(gx) \end{split}$$

by the G-equivariance of S_{λ} and then

$$= S^{j}_{\mu}(f)(gx) \; .$$

So, we show that S^{j}_{μ} is *G*-equivariant. By the same way we can obtain that S'^{j}_{μ} $(j \in I_{\pi})$ are also *G*-equivariant. Q.E.D.

§4. Some properties of S^j_{μ} and A^j_{μ} .

We keep the notation in §2 and §3, and let f be in $C^{\infty}(K, \sigma_{\lambda-\mu})$.

LEMMA 4.1. If $S^{1}_{\mu}(f) \equiv 0$ (resp. $S'^{1}_{\mu}(f) \equiv 0$), then $S^{j}_{\mu}(f) \equiv 0$ (resp. $S'^{j}_{\mu}(f) \equiv 0$) for all $j \in I_{\pi}$.

PROOF. First we note that for $k \in K$ and $g \in G$

$$0 = S^{1}_{\mu}(f)(kg) = \sum_{i \in I_{\pi}} S_{\lambda}(f^{\sim}_{i})(kg)\pi_{1i}(kg)$$
$$= \sum_{i,j \in I_{\pi}} \tau_{\lambda}(k)S_{\lambda}(f^{\sim}_{i})(g)\pi_{1j}(k)\pi_{ji}(g)$$

and thus,

$$\sum_{m\in I_{\pi}} \pi_{1j}(k) S^{j}_{\mu}(f)(g) = 0$$
 .

Here we recall that v_1 is a lowest weight vector of π and $\pi^*(x) = \pi(\theta(x))^{-1}$ $(x \in G)$. Therefore, it follows that

$$\pi_{1j}(x) = e^{\mu_1(\log H(x))} \pi_{1j}(k(x)) \qquad (x \in G) .$$

Then we can obtain that

$$\sum_{j \in I_{\pi}} \pi_{1j}(x) S^{j}_{\mu}(f)(g) = 0$$

for all $x, g \in G$. Since π is irreducible, the matrix coefficients $\pi_{1j}(x)$ $(x \in G)$ are linearly independent on G, and thus it easily follows that $S^j_{\mu} \equiv 0$ for all $j \in I_{\pi}$. Q.E.D.

LEMMA 4.2. If $S^{j}_{\mu}(f) \equiv 0$ (resp. $S'^{j}_{\mu}(f) \equiv 0$), then $A^{w(j)}_{\mu}(f) \equiv 0$ (resp. $A'^{w(j)}_{\mu}(f) \equiv 0$).

PROOF. We note that for $a \in A$ and $k \in K$

$$0 = S_{\mu}^{j}(f)(aw^{-1}k) = \sum_{i \in I_{\pi}} S_{\lambda}(f^{\sim}_{i})(aw^{-1}k)\pi_{ji}(aw^{-1}k)$$
$$= e^{\mu_{j}(\log(a))} \sum_{i \in I_{\pi}} S_{\lambda}(f^{\sim}_{i})(aw^{-1}k)\pi_{w(j)i}(k)$$

Therefore, we see that

$$A_{\mu}^{w(j)}(f)(k) = \lim_{a\to\infty} e^{(\rho-\mu_j)(\log(a))} E_{\lambda}(S_{\mu}^{j}(f)(aw^{-1}k)) = 0.$$

Q.E.D.

LEMMA 4.3. If $A^{j}_{\mu}(f) \equiv 0$ (resp. $A'^{j}_{\mu}(f) \equiv 0$) for all $j \in I_{\pi}$, then $A_{\lambda}f^{\sim}_{j} \equiv 0$ (resp. $A'_{\lambda}f^{\sim}_{j} \equiv 0$) for all $j \in I_{\pi}$.

PROOF. The assumption means that

$$\pi(k)(A_{\lambda}f_{1}^{*}(k), A_{\lambda}f_{2}^{*}(k), \cdots, A_{\lambda}f_{d_{\pi}}^{*}(k))^{t} \equiv 0 \qquad (k \in K) .$$

Then, applying $\pi(k)^{-1}$ to the both sides, we can obtain the desired result. Q.E.D.

LEMMA 4.4. If
$$A^{j}_{\mu}(f) \equiv 0$$
 and $A'^{j}_{\mu}(f) \equiv 0$ for all $j \in I_{\pi}$, then $f \equiv 0$.

PROOF. By Lemma 3.1 it is enough to show that $f^{\sim} \equiv 0$. It follows from (2.18), (3.2) and (3.3) that

$$f^{\sim}(k) = \sum_{i,j \in I_{\pi}} f^{\sim}_{i}(k) \pi_{ji}(k) v_{j}$$

= $\sum_{j \in I_{\pi}} (A^{j}_{\mu}(f)(k) + A'^{j}_{\mu}(f)(k)) v_{j} = 0$.
Q.E.D.

Now let

$$\mathcal{Q}'_{\lambda,\mu} = \{ f \in C^{\infty}(K, \sigma_{\lambda-\mu}) ; S'^{j}_{\mu}(f) \equiv 0 \text{ for all } j \in I_{\pi} \} .$$

$$(4.1)$$

Then we have the following

LEMMA 4.5. $\Omega'_{\lambda,\mu}$ is G-invariant and S^{1}_{μ} is injective on $\Omega'_{\lambda,\mu}$.

PROOF. This is clear from Proposition 3.2, Lemmas 4.1, 4.2 and 4.4.

THEOREM 4.6. Let G = SU(n, 1) and suppose that μ satisfies (A0) $\lambda - \mu$ is Δ_k^+ -dominant, (A1) $\langle \mu, \alpha_0 \rangle > 0$, (A2) $i_0 = d_{\pi}$. Then $S_{\mu}^i(f) \in L^2(G, V_{\lambda})$ for all $f \in \Omega'_{\lambda,\mu}$ and $j \in I_{\pi}$.

PROOF. Since

$$S^{j}_{\mu}(f)(kg) = \tau_{\lambda}(k) \sum_{p \in I_{\pi}} \pi_{jp}(k) S^{p}_{\mu}(f)(g) \qquad (k \in K, g \in G)$$

(cf. the proof of Lemma 4.1), it follows from (2.3a) that

$$||S_{\mu}^{j}(f)||_{L^{2}(G,V_{\lambda})}^{2} = \sum_{p \in I_{\pi}} \int_{K} \int_{\mathrm{CL}(A^{+})} ||S_{\mu}^{p}(f)(ak)||^{2} D(a) dadk .$$

Therefore, by noting (2.3 b), to obtain the square-integrability it is enough to show that

$$||S^{p}_{\mu}(f)(a_{t}k)|| \sim e^{-(\rho+\mu_{d_{\pi}})(\log(a_{t}))} \qquad (t \to \infty),$$

because $\langle \mu_{d_{\pi}}, \alpha \rangle = \langle \mu, \alpha_0 \rangle > 0$ by (A1) and (A2) (see §3). Here, for simplicity, we put $d = d_{\pi}$ and

$$\frac{\langle \mu_i, \alpha \rangle}{\langle \alpha, \alpha \rangle} = n_i$$

so $\mu_i(\log(a_i)) = n_i t$ and $n_{w(i)} = -n_i$. Then by Proposition 3.2 and (3.3) we see that

$$S^{p}_{\mu}(f)(a_{t}k) = S^{p}_{\mu}(f_{k})(a_{t}) = S_{\lambda}((f_{k})_{p})(a_{t})e^{n_{p}t}.$$

Since f belongs to $\Omega'_{\lambda,\mu}$, it follows from Lemmas 4.2 and 4.3 that $A_{\lambda}'((f_{k}^{\sim})_{j}) \equiv 0$ for all $j \in I_{\pi}$. Therefore, we can apply the asymptotic behavior (2.25) to $S_{\lambda}((f_{k}^{\sim})_{p})(a_{t})$ and thus, as t tends to ∞ , we see that for r = th t/2

$$\begin{aligned} \|S_{\lambda}((f_{k}^{\sim})_{p})(a_{t})\| \sim e^{-\rho(\log(a_{t}))} \|(f_{k}^{\sim})_{p}(\mathrm{Ad}(u)a_{-\log(r)}w^{-1})\| \\ &= e^{-\rho(\log(a_{t}))} \|((f_{k}^{\sim})(\mathrm{Ad}(u)a_{-\log(r)}w^{-1}), \pi(\mathrm{Ad}(u)a_{-\log(r)}w^{-1})v_{p})\| \end{aligned}$$

(see (3.2)), where we used the fact that f_k^{\sim} also has a holomorphic extension to Ω which follows from the K-type decomposition of f in $\Omega'_{\lambda,\mu}$ (cf. Lemma 5.3 below). We note that $(f_k^{\sim})(\operatorname{Ad}(u)a_{-\log(r)}w^{-1}) \rightarrow f_k^{\sim}(w^{-1})$ $(t \rightarrow \infty)$ and $\langle \beta, \alpha_0 \rangle = \beta(H_{\alpha_0}) = 0$ for all $\beta \in \Psi_m$ (cf. [He], pp. 221-224). Therefore, it follows from the definition (3.1) of f_k^{\sim} and (A2) that

$$||S_{l}((f_{k})_{p})(a_{t})|| \sim e^{-\rho(\log(a_{t}))}(v_{d}, \pi(\mathrm{Ad}(u)a_{-\log(t)})v_{w(p)})$$
.

Now let (π_n, V_n) $(n \in N)$ denote the irreducible representation of $SL(2, \mathbb{C})$ with degree n+1, that is realized on the homogeneous polynomials of degree n in variables z_1 and z_2 (cf. §6 and [Su], p. 326). Here noting that H_{α_0} and $E_{\pm\alpha_0}$ generates a Lie algebra isomorphic to $\mathfrak{SI}(2, \mathbb{C})$, we may deduce that

$$(\pi_n(a_{-\log(r)})z_1^{j}z_2^{n-j}, z_2^{n}) = c(\operatorname{sh}(-\log(r)))^{j}(\operatorname{ch}(-\log(r)))^{n-j}$$

$$\sim c(r^{-1}-r)^{j}$$

$$\sim ce^{-jt},$$

as t tends to ∞ . Therefore, regarding π as a (reducible) representation of $\mathfrak{Sl}(2, \mathbb{C})$, we can show that $(\pi(\operatorname{Ad}(u)a_{-\log(r)})v_i, v_d)$ $(r=\operatorname{th} t/2)$ equals 0 or behaves asymptotically like $e^{-(n_d-n_i)t}$ $(t \to \infty)$. Then

 $||S_{\lambda}(f_{k}^{\sim})_{p}(a_{t})|| \sim e^{-\rho(\log(a_{t}))}e^{-(n_{d}+n_{p})t}$

and thus,

$$||S_{\mu}^{p}(f)(a_{t}k)|| \sim e^{-(\rho+\mu_{d})(\log(a_{t}))}$$
 $(t \to \infty)$.

This completes the proof of the theorem.

Q.E.D.

§5. Main theorem.

We continue the notation in the previous section. Let G=SU(n, 1)and suppose that μ satisfies (A0), (A1) and (A2) in Theorem 4.6. For $f \in \Omega'_{\lambda,\mu}$ let

$$||f||_{\lambda,\mu} = ||S^{1}_{\mu}(f)||_{L^{2}(G,V_{\lambda})}$$
(5.1)

(see Lemma 4.5 and Theorem 4.6), and let $\Omega_{\lambda,\mu}$ denote the completion of $\Omega'_{\lambda,\mu}$ with respect to this norm. Then by Proposition 3.2 and Lemma 4.5 we easily see that

LEMMA 5.1. $\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}(g) (g \in G)$ preserves $\|\cdot\|_{\lambda,\mu}$ and $\Omega_{\lambda,\mu}$ is G-invariant; so $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ is a unitary representation of G.

LEMMA 5.2. Let H be a G-invariant closed subspace of $\Omega_{\lambda,\mu}$. If ψ_{τ,j_0} belongs to H for some $j_0 \in I_{\tau}$ and $\tau \in K^{\uparrow}_{\sigma_{\lambda-\mu}}$, then all $\psi_{\tau,j}$ $(j \in I_{\tau})$ belong to H.

PROOF. By the definition of $\psi_{\tau,j}$ we see that

$$\psi_{\tau,j_0}(k'k) = \sum_{j \in I_{\tau}} \tau_{jj_0}(k) \psi_{\tau,j}(k') \qquad (k, k' \in K)$$
(5.2)

and in particular,

$$\psi_{\tau,j}(k) = \int_{K} \psi_{\tau,j_0}(kk') \tau_{jj_0}(k')^{-} dk' . \qquad (5.3)$$

Since H is G-invariant, $\psi_{\tau,j_0}(kk')$ also belongs to H as a function of k. Therefore, by the definition of the Riemann integral and the fact that H is closed, (5.3) means that $\psi_{\tau,j} \in H$ for all $j \in I_{\tau}$. Q.E.D.

We put

$$K_{\lambda,\mu}^{\widehat{}} = \{ \tau_{\xi} \in K_{\sigma_{\lambda-\mu}}^{\widehat{}}; \xi > s_0(\lambda) + \mu = \lambda - \alpha_0 + \mu \} .$$
(5.4)

Then we see the following

LEMMA 5.3. Let f be in $\Omega_{\lambda,\mu}$. Then f has a decomposition such as

 $f = \sum a_{\tau,j} \psi_{\tau,j}$,

where $j \in I_{\tau}$ and $\tau \in K_{\lambda,\mu}^{\uparrow}$.

PROOF. We shall give attention to the right K-type decomposition of f (see Lemma 2.4); it follows from (3.1) that f and f^{\sim} have the same K-types which appear in their decompositions, and from (3.2) that f^{\sim} and f^{\sim}_i have the difference of the K-types of π . So f^{\sim}_i and f have the difference of the K-types of π . Then the assumption implies that $S'^{i}_{\mu}(f) \equiv 0$ for all $j \in I_{\pi}$, and thus it follows from Lemmas 4.2 and 4.3 that $A_{\lambda}'(f^{\sim}_{i}) \equiv 0$ for all $i \in I_{\pi}$. Therefore, the desired result follows from Theorem 12.6 in [KW].

LEMMA 5.4. Let $\tau = \tau_{\lambda+\mu}$. Then $\psi_{\tau,j} \in \Omega_{\lambda,\mu}$ for all $j \in I_{\pi}$, and in particular, $\Omega_{\lambda,\mu} \neq \{0\}$.

PROOF. By the same argument in the proof of Lemma 5.3 we see that highest weights of the K-types which appear in the decomposition of $(\psi_{\tau,j})^{\sim}_{i}$ $(i \in I_{\pi})$ are greater than or equal to λ . Therefore, S_{λ}' vanishes all $(\psi_{\tau,j})^{\sim}_{i}$ (see [KW], Theorem 12.6). This means that $S'^{i}_{\mu}(\psi_{\tau,j}) \equiv 0$ for all $i, j \in I_{\pi}$ and thus $\psi_{\tau,j} \in \Omega'_{\lambda,\mu}$ for all $j \in I_{\pi}$. Q.E.D.

LEMMA 5.5. S^{1}_{μ} is injective on $\Omega_{\lambda,\mu}$.

PROOF. This is clear from Lemma 4.5.

Q.E.D.

THEOREM 5.6. Let G = SU(n, 1) and suppose that a Δ_k^+ -dominant integral form λ satisfies $\eta_{\lambda} = \nu_{\lambda} = \rho$ and a Δ^+ -dominant integral form μ does (A0), (A1) and (A2) respectively. Then $(\pi_{\sigma_{\lambda}-\mu}, \nu_{\lambda-\mu}, \Omega_{\lambda,\mu})$ is an irreducible unitary representation of G, whose matrix coefficients are square-integrable on G.

PROOF. We obtained in Lemma 5.1 that $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ is a unitary representation of G, so we shall prove the irreducibility. Let H be a nonzero G-invariant, closed subspace of $\Omega_{\lambda,\mu}$ and let f be a nonzero element in H. Then by Lemma 5.5 there exists a point $g_0 \in G$ for which $S^1_{\mu}(f)(g_0) \neq 0$. Since S^1_{μ} is G-equivariant (see Proposition 3.2) and His G-invariant, by replacing f with f_{σ_0} , we may assume that $S^1_{\mu}(f)(e) \neq 0$, that is,

$$S_{\mu}^{1}(f)(e) = \sum_{i \in I_{\pi}} S_{\lambda}(f_{i}^{\sim})(e) \pi_{1i}(e)$$

= $S_{\lambda}(f_{i}^{\sim})(e)$
= $\int_{K} \tau_{\lambda}(k)^{-1} f_{i}^{\sim}(k) dk \neq 0$. (5.5)

Here we recall that f can be written as $f = \sum a_{\tau,j} \psi_{\tau,j}$, where $\tau \in K_{\lambda,\mu}$ (see Lemma 5.3); so the highest weight of τ is greater than or equal to $\lambda + \mu$ and thus, by the same argument in the proof of Lemma 5.3 highest weights of K-types which appear in the decomposition of f_{1}^{\sim} are greater than or equal to λ . Therefore, if we put $\tau_0 = \tau_{\lambda+\mu}$, we see that

$$\int_{K} \tau_{\lambda}(k)^{-1}(\psi_{\tau,j})^{\sim}_{1}(k)dk = 0 \qquad (\tau \neq \tau_{0}) .$$

Then (5.5) implies that $a_{\tau_0,j_0} \neq 0$ for some $j_0 \in I_{\pi}$.

On the other hand, it follows that

$$\int_{K} \tau_{0_{j_0 j_0}}(k')^{-} f(kk') dk' = \sum_{\tau, j} a_{\tau, j} \int_{K} \tau_{0_{j_0 j_0}}(k')^{-} \sum_{m} \tau_{mj}(k') dk' \psi_{\tau, m}(k)$$
$$= a_{\tau_0, j_0} \psi_{\tau_0, j_0}(k) .$$

Here we recall that $a_{\tau_0,j_0} \neq 0$ and f is in a closed, G-invariant subspace H. Therefore, applying the proof of Lemma 5.2, we can deduce that $\psi_{\tau_0,j_0} \in H$ and thus, $\psi_{\tau_0,j} \in H$ for all $j \in I_{\pi}$ by Lemma 5.2. If $H \neq \Omega_{\lambda,\mu}$, by replacing H with the orthogonal complement H' of H in the above argument, we can also deduce that $\psi_{\tau_0,j} \in H'$ for all $j \in I_{\pi}$. This contradicts the fact that $H \cap H' = \{0\}$; so we see that $H = \Omega_{\lambda,\mu}$ and thus the representation is irreducible.

Now we shall consider the linear functional L on $\Omega_{\lambda,\mu}$ defined by

$$L(f) = \langle S^{\scriptscriptstyle 1}_{\mu}(f)(e), e_{\scriptscriptstyle 1} \rangle$$

for $f \in \Omega_{\lambda,\mu}$. Then there exists a ϕ in $\Omega_{\lambda,\mu}$ for which

$$\langle S^{\scriptscriptstyle 1}_{\mu}\!(f)\!(e),\,e_{\scriptscriptstyle 1}
angle\!=\!(f,\,\phi)$$
 ,

and thus, by Proposition 3.2, it follows that

$$(\phi_x, \phi) = L(\phi_x) = \langle S^1_{\mu}(\phi_x)(e), e_1 \rangle = \langle S^1_{\mu}(\phi)(x), e_1 \rangle \qquad (x \in G) .$$

Therefore, the matrix coefficient (ϕ_x, ϕ) belongs to $L^2(G)$ (see Theorem 4.6). Since the representation is irreducible and unitary, it follows from Theorem 1 in [V], p. 435 that all matrix coefficients are square-integrable on G.

This completes the proof of the theorem. Q.E.D.

REMARK 5.7. If we start the argument with $\Delta^{+\prime}$ instead of Δ^{+} , we can obtain another class of the discrete series of G.

§6. Examples.

We shall apply Theorem 5.6 to the cases of SU(1, 1) and SU(2, 1), and check up on the representations $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$.

6.1. Let SU(1, 1) be the subgroup of SL(2, C) which leaves invariant the hermitian form $-|z_1|^2+|z_2|^2$. Then the discrete series of G is originally realized on the L^2 weighted Bergman space on the unit disc $D = \{z \in C; |z| < 1\}$ (cf. [Su], p. 237); actually, let $m \in \frac{1}{2}Z$ and $|m| \ge 1$, then for $m \ge 1$ the Bergman space $A_{2,m-1}(D)$ is defined by

$$A_{2,m-1}(D) = \left\{ F: D \to C; \ F \text{ is holomorphic on } D \text{ and} \\ \|F\|_{2,m-1} = \left[\int_{D} |F(z)|^{2} (1-|z|^{2})^{2m-2} dz \right]^{1/2} < \infty \right\}$$
(6.1)

and for $m \leq -1$, $A_{2,m-1}(D)$ is made up of conjugate holomorphic functions on D with finite norm, where we replace m by |m|. Let $T_m(g)$ $(g \in G)$ denote the operator on $A_{2,m-1}(D)$ defined by

$$T_{m}(g)F(z) = J(g^{-1}, z)^{-2m}F(g^{-1} \cdot z) \qquad (m \ge 1) ,$$

$$T_{m}(g)F(z) = [\operatorname{conj} J(g^{-1}, z)]^{-2|m|}F(g^{-1} \cdot z) \qquad (m \le -1) ,$$
(6.2)

where $J(g, z) = \beta^{-}z + \alpha^{-}$ and

$$g \cdot z = \frac{\alpha z + \beta}{\beta^{-} z + \alpha^{-}}$$
 for $g = \begin{bmatrix} \alpha & \beta \\ \beta^{-} & \alpha^{-} \end{bmatrix}$ and $z \in D$. (6.3)

Then the representations $(T_m, A_{2,m-1}(D))$ $(m \in \frac{1}{2}\mathbb{Z} \text{ and } |m| \ge 1)$ of G are irreducible and unitary. They are called the holomorphic and antiholomorphic discrete series, respectively for $m \ge 1$ and for $m \le -1$; they exhaust the whole discrete series of G (cf. [Su], p. 290).

Let $\mu = \frac{1}{2}n\alpha_0$ $(n \in N)$ and V_n the vector space of all homogeneous polynomials of degree n in variables z_1 and z_2 , and let $\pi_n(g)$ $(g \in G)$ denote the operator on V_n defined by

$$\pi_n(g)\phi(z) = \phi(z \cdot g) , \qquad (6.4)$$

where $z \cdot g = (az_1 + cz_2, bz_1 + dz_2)$ for $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $z = (z_1, z_2)$. Then (π_n, V_n) $(n \in N)$ is a finite dimensional representation of G with lowest weight $-\mu$; $d_{\pi_n} = \dim V_n = n+1$ and $\{v_j^{\sim} = [(j-1)!(n+1-j)!]^{-1/2}z_1^{j-1}z_2^{n+1-j}; 1 \leq j \leq n+1\}$ is the set of normalized weight vectors with respect to the compact Cartan subgroup K = SO(2) of G (see §3 and [Su], p. 326). Then we see that μ satisfies the conditions (A0), (A1) and (A2) in Theorem 5.6.

By comparing the infinitesimal characters and the lowest K-types, we see that the representation $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ $(\lambda = \rho, \mu = \frac{1}{2}n\alpha_0)$ constructed in Theorem 5.6 is equivalent to the antiholomorphic discrete series $(T_m, A_{2,m-1}(D))$ for $m = -\frac{1}{2}(n+1)$. Therefore, there exists an intertwining operator between $\Omega_{\lambda,\mu}$ and $A_{2,m-1}(D)$. In fact, we can obtain the intertwining operator by applying the Fourier transform associated with a discrete series, which was investigated in [K] and [K2]; for $f \in L^2(G)$ the Fourier transform $F_m(f)$ associated with T_m is defined by

$$F_{m}(f)(z) = \int_{g} f(g) T_{m}(g^{-1}) \mathbf{1}(z) dg \qquad (z \in D) , \qquad (6.5)$$

where 1 is the constant function on D taking the value 1. Some basic properties of F_m are summarized as follows. Let ψ be the normalized matrix coefficient of T_m corresponding to the lowest K-type of T_m . Then $F_m(f) = F_m(\psi * f) \in A_{2,m-1}(D)$ and $F_m: \psi * L^2(G) \to A_{2,m-1}(D)$ is bijective and norm preserving (see [K], Theorem 5.2). On the other hand, since dim $\tau_{\lambda} = 1$, it follows from Theorem 4.6 that $S^1_{\mu}(f) \in L^2(G)$ for $f \in \Omega_{\lambda,\mu}$. Therefore, we can obtain a composition map

$$F \circ S^1_{\mu} : \Omega_{\lambda,\mu} \longrightarrow A_{2,m-1}(D) ,$$
 (6.6)

and it is G-equivariant (see Proposition 3.2 and (6.5)).

THEOREM 6.1. Let $\lambda = \rho$, $\mu = \frac{1}{2}n\alpha_0$ and m = -(n+1)/2 $(n \ge 1)$. Then the G-equivariant map $F_m \circ S^1_{\mu}$ is an intertwining operator between $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ and $(T_m, A_{2,m-1}(D))$; that is, it is bijective and

$$c2^{-n}\|f\|_{\lambda,\mu} = n\|F_m \circ S^1_\mu(f)\|_{2,m-1}$$
 for $f \in \Omega_{\lambda,\mu}$,

where c is a constant which does not depend on f and n.

Before giving the proof we note the following

LEMMA 6.2. Let
$$\pi = \pi_n$$
 and $C_j^n = \int_K \pi_{1j}(k_\theta) e^{-in\theta/2} d\theta$ $(1 \le j \le n+1)$. Then
 $\sum_{i=1}^{n+1} |C_j^n|^2 = 2^{-n}$.

PROOF. We note that u and Ad(u) (see §2) are respectively given by

$$u = 2^{-1/2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

and

$$\mathrm{Ad}(u)k_{ heta} \!=\! egin{bmatrix} \cosrac{1}{2} heta & i\sinrac{1}{2} heta\ i\sinrac{1}{2} heta & \cosrac{1}{2} heta\end{bmatrix}$$

for $k_{\theta} = \text{diag}(e^{i\theta/2}, e^{-i\theta/2})$. Therefore, by substituting

$$\pi_{ij}(k_{\theta}) = (\pi(k_{\theta})v_j, v_i) = (\pi(\mathrm{Ad}(u)k_{\theta})v_j^{\sim}, v_i^{\sim}),$$

where $v_j = [(j-1)!(n+1-j)!]^{-1/2} z_1^{j-1} z_2^{n+1-j}$ $(1 \le j \le n+1)$, we can obtain the desired result from combinatorial calculation. Q.E.D.

PROOF OF THEOREM 6.1. First we shall prove the equation of the norm. Since dim $\tau_{\lambda}=1$, it follows from the proof of Theorem 5.6 that for $f \in \Omega_{\lambda,\mu}$ $S^{1}_{\mu}(f)(x) = \langle S^{1}_{\mu}(f)(x), e_{1} \rangle$ $(x \in G)$ is a matrix coefficient of the discrete series T_{m} $(m = -\frac{1}{2}(n+1))$; so it is a linear combination of the normalized matrix coefficients of T_{m} (see (3.2) in [Ka]). In particular, it follows from Lemma 3.1 and Theorem 5.2 in [Ka] that

 $egin{aligned} &n \|F_m \circ S^{\scriptscriptstyle 1}_\mu(f)\|_{\scriptscriptstyle 2,m-1} \! = \! c \|\psi \! * \! S^{\scriptscriptstyle 1}_\mu(f)\|_{\scriptscriptstyle L^2(G)} \ &= \! c \|E_m(S^{\scriptscriptstyle 1}_\mu(f))\|_{\scriptscriptstyle L^2(G)} \ , \end{aligned}$

where $E_m(f)(x) = \int_K e^{im\theta/2} f(k_\theta x) d\theta$ ($x \in G$). Here we note that

$$\begin{split} E_m(S^1_\mu(f))(x) &= \int_K e^{im\theta/2} \sum_{i \in I_\pi} S_\lambda(f^{\sim}_i)(k_\theta x) \pi_{1i}(k_\theta x) d\theta \\ &= \int_K e^{-in\theta/2} \sum_{i \in I_\pi} S_\lambda(f^{\sim}_i)(x) \sum_{j \in I_\pi} \pi_{1j}(k_\theta) \pi_{ji}(x) d\theta \\ &= \sum_{j \in I_\pi} C^n_j S_\mu^{-j}(f)(x) \;. \end{split}$$

Therefore, as in the proof of Theorem 4.6 we can deduce that

$$\begin{aligned} \|E_m(S^1_{\mu}(f))\|_{L^2(G)} &= c_\pi \sum |C^n_j|^2 \sum \|S^j_{\mu}(f)\|_{L^2(G)} \\ &= c_\pi 2^{-n} \|f\|_{\lambda,\mu} \qquad \text{(by Lemma 6.2)}. \end{aligned}$$

This is nothing but the desired equation. Especially, $F_m \circ S^1_{\mu}$ is injective and the image is closed in $A_{2,m-1}(D)$. Since the map $F_m \circ S^1_{\mu}$ is *G*-equivariant, the image must be *G*-invariant. Therefore, noting the irreducibility of T_m we see that the image coincides with $A_{2,m-1}(D)$, so the surjectivity of $F_m \circ S^1_{\mu}$ is obtained.

This completes the proof of the theorem. Q.E.D.

REMARK 6.3. (1) The representation stated in Remark 5.7 corresponds to the holomorphic discrete series and Theorem 6.1 holds with $m = \frac{1}{2}(n+1) \ge 1$.

(2) When $\mu=0$ $(n=0, m=\pm\frac{1}{2})$, Theorem 6.1 also holds if we replace $A_{2,m-1}(D)$ by the Hardy space $H^2(D)$ for $m=\frac{1}{2}$ and the conjugation for $m=-\frac{1}{2}$. In this case, $F_{\pm 1/2}$ are defined by using the limits of discrete series $T_{\pm 1/2}$ (cf. [Su], Chap. V, §2). Especially, S_{μ}^1 , and S'_{μ}^1 coincide with S_{ρ} and S_{ρ}' respectively; so this case is nothing but the classical theory of the Szegö operator (cf. [Ru] and [Ra], p. 178).

(3) Let G=SU(n, 1) and suppose that the lowest K-type of the discrete series $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ is of one dimensional. Then it is possible

to generalize Theorem 6.1 as a relation between $\Omega_{\lambda,\mu}$ and the L^2 weighted Bergman space on G/K. Actually, by using the Fourier transform associated with a discrete series (see [K2]), we can obtain the generalization by the same argument as above.

6.2. Let G = SU(2, 1) be the subgroup of SL(3, C) leaving the hermitian form $|z_1|^2 + |z_2|^2 - |z_3|^2$ invariant; $K = S(U(2) \times U(1))$ and

$$A = \left\{ a_t = \begin{bmatrix} \operatorname{ch} t & \operatorname{sh} t \\ 1 & \\ \operatorname{sh} t & \operatorname{ch} t \end{bmatrix}; t \in \mathbf{R} \right\}.$$
(6.7)

Then $g_c = \mathfrak{Sl}(3, C) = \{X \in M_{\mathfrak{ss}}(C); \operatorname{tr}(X) = 0\}$ and

$$t_{c} = \{T_{a,b} = \text{diag}(a, b, c); a+b+c=0, a, b, c \in C\}.$$
(6.8)

Let Δ_0^+ be the positive root system of $(\mathfrak{g}_{c}, \mathfrak{t}_{c})$ requiring that

$$\alpha(T_{1,0}) > 0 \qquad \text{for} \quad \alpha \in \Delta_0^+ \tag{6.9}$$

and let α_1 , α_2 be the simple roots in Δ_0^+ . Let Λ_1 and Λ_2 be the basic highest weights defined by

$$\Lambda_1 = \frac{2\alpha_1 + \alpha_2}{3}, \quad \Lambda_2 = \frac{\alpha_1 + 2\alpha_2}{3}.$$
 (6.10)

Then $2\langle \Lambda_i, \alpha_j \rangle / \langle \alpha_j, \alpha_j \rangle = \delta_{ij}$ (1 $\leq i, j \leq 2$); Λ_1 and Λ_2 span t_c^* .

As obtained in §7 in [W] each element in G^{\uparrow} , the set of all equivalence classes of irreducible unitary representations of G, is parametrized as π_A , where $\Lambda = k_1 \Lambda_1 + k_2 \Lambda_2$ $(k_1, k_2 \in C)$. Actually, the discrete series and the limit of discrete series are parametrized by a pair of integers k_1 and k_2 satisfying the following conditions (see [W], pp. 183-184);

the holomorphic discrete series (HD):	$k_1 \! + \! k_2 \! < \! -2$, $k_1 \! < \! 0$, $k_2 \! \ge \! 0$
the antiholomorphic discrete series (AHD):	$k_1\!+\!k_2\!<\!-2$, $k_2\!<\!0$, $k_1\!\ge\!0$
the nonholomorphic discrete series (NHD):	$k_1 \! + \! k_2 \! < \! -2$, $k_1 \! < \! -1$, $k_2 \! < \! -1$
the limits of discrete series (LD1):	$k_1\!+\!k_2\!=\!-2$, $k_1\!>\!-1$
the limits of discrete series (LD2):	$k_1 \! + \! k_2 \! = \! -2$, $k_2 \! > \! -1$.

Then G^{\uparrow} consists of the representations listed above combined with the irreducible unitary principal series, the extra representations and the trivial representation.

Now we shall check up on the representations $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ obtained in Theorem 5.6. First we replace the positive root system Δ_0^+ with

$$\Delta^{+} = \{-\alpha_{1}, \alpha_{2}, -\alpha_{3}\} = s_{1}s_{2}\Delta_{0}^{+}, \qquad (6.11)$$

where s_i is the reflection in t_s^* with respect to α_i $(1 \le i \le 2)$. Then $\alpha_0 = -\alpha_3$ is the positive noncompact simple root and

$$u_{\alpha} = \exp(\frac{1}{4}\pi(E_{\alpha} - E_{-\alpha})) = \sqrt{2^{-1}} \begin{bmatrix} 1 & -1 \\ \sqrt{2} & \\ 1 & 1 \end{bmatrix}$$
(6.12)

(see §2). Therefore, the Cayley transform $Ad(u_{\alpha_0})$ carries t_c to

$$\mathfrak{h}_{c} = \left\{ H_{u,v} = \begin{bmatrix} -u/2 & v/2 \\ u \\ v/2 & -u/2 \end{bmatrix}; u, v \in C) \right\}.$$
(6.13)

Actually,

$$Ad(u_{a_0})(T_{a,b}) = H_{u,v}; \quad u = b, \ v = 2a + b,$$
 (6.14)

and if we put $\beta_i = \operatorname{Ad}(u_{\alpha_0})\alpha_i$ $(1 \leq i \leq 3)$, we see that

$$\beta_{1}(H_{u,v}) = -3u + v ,$$

$$\beta_{2}(H_{u,v}) = 3u + v ,$$

$$\beta_{3}(H_{u,v}) = 2v .$$
(6.15)

Therefore, the positive roots system Ψ^+ of $(\mathfrak{g}_c, \mathfrak{h}_c)$ defined in §2 is given by

$$\Psi^+ = \{\beta_1, \beta_2, \beta_3\} . \tag{6.16}$$

We note that the representation π_{Λ} in [W] corresponds to $\pi_{-\Lambda-\delta_k+\delta_n}$ in our notation, and then, $\lambda = -\Lambda$ (see §2.3). Therefore, the limit of discrete series $\pi_{\Lambda} (\nu_{\lambda} = \rho)$ in §2.3 corresponds to (LD1) in [W] because $\lambda = -(k_1\Lambda_1 + k_2\Lambda_2)$ is dominant with respect to $\Delta_k^+ = \{-\alpha_1\}$, so $k_1 \ge 0$, and $\nu_{\lambda} = \rho$ implies that $k_1 + k_2 = -2$.

Let $\pi = \pi_{\mu}$ be a finite dimensional representation of G with lowest weight $-\mu \in t_c^*$ with respect to Δ^+ . In order to apply Theorem 5.6 to SU(2, 1) we have to determine the set of μ satisfying the conditions:

(A0)
$$\lambda - \mu$$
 is Δ_k^+ -dominant,
(A1) $\langle \mu, \alpha_0 \rangle > 0$, (6.17)
(A2) $i_0 = d_{\pi_{\mu}}$.

We recall that (A2) implies that $\mu_{i_0} = -\mu \circ \operatorname{Ad}(u_{\sigma_0})^{-1} \in \mathfrak{h}_c^*$ is the highest

weight of π_{μ} with respect to Ψ^+ (see §3). Then, by the classification of finite dimensional representations of $\mathfrak{SI}(3, \mathbb{C})$ (cf. [AS], p. 1231), we see that μ satisfies (A2) if and only if

$$\mu = -m\Lambda_1 \qquad (m = 0, 1, 2, \cdots) . \tag{6.18}$$

Suppose that μ is of this form. Then μ satisfies (A1) for m > 0 and (A0) for $m \leq k_1$ when $\lambda = -k_1 \Lambda_1 - k_2 \Lambda_2$, $k_1 + k_2 = -2$ and $k_1 \geq 0$; so the set of μ satisfying (6.17) is given by

$$\{\mu = -m\Lambda_1; \ 1 \leq m \leq k_1\} \tag{6.19}$$

for the above λ . Therefore, we conclude that the representations $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ correspond to the antiholomorphic discrete series with lowest K-type $\lambda + \mu$ ($\pi_{A+\mu}$ in [W]), and they exhaust the whole (AHD) in the list.

Similarly, if we start the argument with $\Delta^+ = s_2 s_1 \Delta_0^+$ instead of $s_1 s_2 \Delta_0^+$, we can obtain the holomorphic discrete series (HD) in the list (see Remark 5.7). However, we cannot obtain the nonholomorphic discrete series (NHD) in our method, because μ has to satisfy the condition (6.19).

References

- [AS] J. P. ANTOINE and D. SPEISER, Characters of irreducible representations of simple groups, I, J. Math. Physics, 5 (1964), 1226-1234.
- [B] B. BLANK, Boundary behavior of limits of discrete series representations of real rank one semisimple groups, Pacific J. Math., 122 (1986), 299-318.
- [GTKS] J. E. GILBERT, P. A. TOMAS, R. A. KUNZE and R. J. STANTON, Higher gradients and representations of Lie groups, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. 2, Wadsworth Math. Series, (1983), 416-436.
- [HC] HARISH-CHANDRA, Discrete series for semisimple Lie groups II, Acta Math., 116 (1966), 1-111.
- [He] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press (1962).
- [JW] K. JOHNSON and N. R. WALLACH, Composition series and intertwining operators for the spherical principal series, I, Trans. Amer. Math. Soc., 229 (1977), 137-173.
- [K] T. KAWAZOE, Discrete part of L^p functions on SU(1, 1), Keio Res. Rep., 10 (1986).
- [K2] T. KAWAZOE, A transform on classical bounded symmetric domains associated with a holomorphic discrete series, Tokyo J. Math., **12** (1989), 269-297.
- [Kn] A. W. KNAPP, Bounded symmetric domains and holomorphic discrete series, Pure Appl. Math., 8 (1972), 211-246, Marcel Dekker.
- [Kn2] A. W. KNAPP, Weyl group of a cuspidal parabolic, Ann. Sci. École Norm. Sup. (4), 8 (1975), 275-294.
- [KO] A. W. KNAPP and K. OKAMOTO, Limits of holomorphic discrete series, J. Func. Anal., 9 (1972), 375-409.
- [KS] A. W. KNAPP and E. M. STEIN, Intertwining operators for semisimple groups, Ann. of Math., 93 (1971), 489-578.

- [KW] A. W. KNAPP and N. R. WALLACH, Szegö kernels associated with discrete series, Invent. Math., **34** (1976), 163-200.
- [NO] M. S. NARASIMHAN and K. OKAMOTO, An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type, Ann. of Math., 91 (1970), 486-511.
- [Ra] R. M. RANGE, Holomorphic Functions and Integral Representations in Several Complex Variables, GTM, 108 (1986), Springer-Verlag.
- [Ru] W. RUDIN, Function Theory in the Unit Ball of Cⁿ, GmW, **241** (1980), Springer-Verlag.
- [Sc] W. SCHMID, On the realization of the discrete series of a semisimple Lie group, Rice Univ. Studies, 56, No. 2 (1970), 99-108.
- [Su] M. SUGIURA, Unitary Representations and Harmonic Analysis, Wiley (1975).
- [V] V.S. VARADARAJAN, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Math., 576 (1977), Springer-Verlag.
- [W] N. R. WALLACH, On the Selberg trace formula in the case of compact quotient, Bull. Amer. Math. Soc., 87 (1976), 171-195.
- [Z] G. ZUCKERMAN, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math., 106 (1977), 265-308.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, KEIO UNIVERSITY HIYOSHI, KOHOKU-KU, YOKOHAMA 223, JAPAN