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\S 1. Introduction.

In [KW] Knapp and Wallach gave an explicit imbedding of the
discrete series of a connected semisimple Lie group $G$ with finite center
as a subrepresentation in the nonunitary principal series. However, it
was in an infinitesimally equivalent fashion. Recently, when real rank
of $G$ is 1, Blank [B] gave an explicit proiection operator that transfers
a reducible unitary principal series onto a limit of discrete series in a
global level. In this paper, applying Zuckerman’s technique (see [Z]),
we shall shift Blank’s result and construct a representation of $G$ which
is infinitesimally equivalent to a discrete series. Then the unitarity of
the representation corresponds to the square-integrability on $G$ of the
image of the Szeg\"o operator, which was conjectured in [KW]. When
$G=SU(n, 1)$ , we shall obtain the square-integrability by applying the
complex structure of the hermitian symmetric space $G/K$, and then we
get a global construction of the discrete series.

This method is completely different from ordinary one, for it starts
with a limit of discrete series. This implies that the representations
constructed by our method must be attached to a limit of discrete series,
and thus they are unfortunately a part of the discrete series of $G$ (see
\S 6). Square-integrability of the image of the Szego operator is still an
unsettled problem except for $G=SU(n, 1)$ , however, all others obtained
in this paper are valid for all real rank 1 semisimple Lie groups.

Let $G$ be a connected semisimple Lie group with finite center and fix
a maximal compact subgroup $K$ of $G$ . We assume that rank $G=rankK$,
that is, $G$ has a compact Cartan subgroup $T\subset K$. Then by Harish-Chandra
[HC] this condition is equivalent with that $G$ has a discrete series. Let
$l$ be the Lie algebra of $T$ and $W_{K}$ the Weyl group of $K$. Then the set
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of discrete series is in bijective correspondence with the set of $W_{K}$-orbits
of non-singular integral forms on $\iota$ . We denote by $\pi_{A}$ the discrete series
corresponding to a nonsingular integral form $\Lambda$ on $t$ .

Let $G=ANK$ be an Iwasawa decomposition of $G$ and $M$ the centralizer
of $A$ in $K$; let $\iota_{\epsilon}*and\mathfrak{a}_{c}^{*}$ be the dual spaces of the complexifications of
$\iota$ and the Lie algebra $\mathfrak{a}$ of $A$ respectively. Let $(\tau_{\lambda}, V_{\lambda})$ Ov $\in t_{c}^{*}$ ) be the

lowest K-type of $\pi_{A}$ and $(\sigma_{\lambda}, H_{\lambda})$ the representation of $M$ given by

restricting $\tau_{\lambda}(M)$ to the M-cyclic subspace $H_{\lambda}$ generated by the highest

weight vector of $V_{\lambda}$ . Let

$C^{\infty}(K, \sigma_{\lambda})=\{f\in C^{\infty}(K, H_{\lambda}) ; f(mk)=\sigma_{\lambda}(m)f(k), m\in M, keK\}$ ,
(1.1)

$C^{\infty}(G, \tau_{\lambda})=\{f\in C^{\infty}(G, V_{\lambda}) ; f(kx)=\tau_{\lambda}(k)f(x), k\in K, xeG\}$ .
Then the discrete series $\pi_{A}$ is realized on the $L^{2}$ kernel of the Schmid
operator $D$ on $C^{\infty}(G, \tau_{\lambda})$ (see [Sc] and \S 2 in [KW1) and the (non) unitary

principal series $\pi_{\sigma_{\lambda},\nu}(\nu\in \mathfrak{a}_{\iota}^{*})$ is realized on the space $C^{\infty}(K, \sigma_{\lambda})$ as the
compact picture (see \S 2.1). According to the induced picture of $\pi_{\sigma_{\lambda},\nu}$ ,

each function $f\in C^{\infty}(K, \sigma_{\lambda})$ can be extended to the function $f$ on $G$ by

defining

$f(ank)=e^{\nu(\log(a))}f(k)$ ($a\in A,$ $n\in N$ and $k\in K$) (1.2)

and this extension belongs to $C^{\infty}(G, \sigma_{\lambda}\times e^{\nu})$ . Then the Szeg\"o map

$S:C^{\infty}(K, \sigma_{\lambda})\rightarrow C^{\infty}(G, \tau_{2})$ (1.3)

is defined by

$S(f)(x)=\int_{K}\tau_{\lambda}(k)^{-1}f(kx)dk$ . (1.4)

Knapp and Wallach in [KW] notice that the Szeg\"o map $S$ give8 a
relation between $\pi_{A}$ and $\pi_{\sigma_{\lambda},\nu}$ ; actually, for $\nu=\nu_{\lambda}\in \mathfrak{a}_{\iota}^{*}$ defined by $\lambda$ (see

\langle 2.15 a) and $($2.15 $b)$) $S$ carries $C^{\infty}(K, \sigma_{\lambda})$ into the kernel of the Schmid
operator $D$ on $C^{\infty}(G, \tau_{\lambda})$ and moreover, $\pi_{\sigma_{\lambda},\nu_{\lambda}}$ onto $\pi_{A}$ in an infinitesimally

equivariant fashion. Here “infinitesimally” means that the correspondence

holds between K-finite vectors of the domain and the range of the
mapping. Therefore, as conjectured in \S 11 in [KW], it is worth re-
alizing the discrete 8eries $\pi_{A}$ on the image of $S$ without the K-finiteness
assumption.

Now we assume that $G$ has a simply connected complexification $G_{\iota}$

and that $G$ ha8 real rank one. Then the above result can be extended
to a singular integral form $\Lambda$ such that $\langle\Lambda, \alpha_{0}\rangle=0$ for a noncompact
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simple root $\alpha_{0}$ and $\langle\Lambda, \beta\rangle\neq 0$ for all other positive roots $\beta$ . In this case
we have two choices of the system of positive roots, we say $\Delta^{+}$ and
$\Delta^{+}‘=\Delta^{+}-\{\alpha_{0}\}\cup\{-\alpha_{0}\}$ . Then we can define Szeg\"o maps $S$ and $S$ ’ corre-
sponding to $\Delta^{+}$ and $\Delta^{+}‘$ respectively (see [KW], \S 12). Since $\nu_{\lambda}$ equals
$\rho$ , half the sum of the positive restricted roots with multiplicities, $\pi_{A}$

corresponds to a limit of discrete series and $\pi_{\sigma_{\lambda},\rho}$ to a reducible unitary
principal series. In particular, $\pi_{\sigma_{\lambda},\rho}$ is infinitesimally equivalent with the
direct sum of the K-finite images of $S$ and $S’$ , which give two irreducible
constituents of the reducible principal series (see [KW], Theorem 12.6).

The boundary value map

$L$ : the image of $S\rightarrow C^{\infty}(K, \sigma_{\lambda})$ (1.5)

is defined as follows (see \S 2.2):

$L(S(f))(k)=\lim_{a\rightarrow\infty}E(e^{\rho^{(l}og(a))}(\pi_{\sigma_{\lambda}\rho}(w^{-1}k)f)(a))$ $(k\in K)$ , (1.6)

where $E$ denotes the orthogonal projection from $V_{\lambda}$ onto $H_{\lambda}$ and $w$ a
representative of the nontrivial coset of the Weyl group $W$ of $A$ , which
has order 2. Then in [B] Blank shows that in a G-equivariant fashion
the composition map

$L\circ S$ : $C^{\infty}(K, \sigma_{\lambda})\rightarrow C^{\infty}(K, \sigma_{\lambda})$ (1.7)

is a projection operator and, as shown in [KS], it consists of a linear
combination of the identity operator and a principal value operator (see
[B] and \S 2.3). In his method the K-finiteness assumption does not re-
quired. This means that, in a global fashion, the limit of discrete series
$\pi_{A}(\nu_{\lambda}=\rho)$ is realized on the image of $L\circ S$ equipped with the $L^{2}$-norm
on $K$.

We retain all the assumptions on $G$ . Our aim of this paper is to
give a global, not infinitesimal, realization of a discrete series. As
mentioned above, when $\pi_{\Lambda}$ is a limit of discrete series $(\nu_{\lambda}=\rho)$ , the Szego
map $S:C^{\infty}(K, \sigma_{\lambda})\rightarrow C^{\infty}(G, \tau_{\lambda})$ gives a global realization of $\pi_{A}$ by taking
the boundary value. Therefore, if we can shift the realization of the
limit of discrete series $\pi_{\Lambda}$ to a discrete serie8, we can construct the
discrete series in a global fashion; therefore, the discrete series we shall
treat below must be attached to a limit of discrete series. In order to
shift the realization of $\pi_{A}$ , we shall apply Zuckerman’s technique intro-
duced in [Z], roughly speaking, we shall form a suitable projection of
tensor products of $\pi_{A}$ and a finite dimensional representation of $G$ .

Let $\mu$ be a dominant integral form on $t$ and let $(\pi, U)$ be a finite
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dimensional representation of $G$ with lowest weight $-\mu$ . Suppose that
$\pi$ satisfies some conditions related with the order of weights (see \S 3
and Theorem 4.6). Then a discrete series $\pi_{A+\mu}$ is realized as a sub-
representation in the nonunitary principal series:

$\pi_{A+\mu}\subset(\pi_{\sigma_{\lambda-u^{y}\lambda-\mu}},, C^{\infty}(K, \sigma_{\lambda-\mu}))$ . (1.8)

Actually, first we take the tensor product of $\pi_{\sigma_{\lambda}-\mu^{\nu}\lambda-\mu}$ and $\pi$ , and then
define a map

$C^{\infty}(K, \sigma_{\lambda-\mu})\rightarrow C^{\infty}(G, \sigma_{\lambda}\times e^{\rho}\times\beta),$ . (1.9)

where $\beta$ is the restriction of $\pi$ to MAN (see (3.1)); next we extract
a component of $C^{\infty}(G, \sigma_{\lambda}\times e^{\rho}\times\beta)$ , which is contained in $ C^{\infty}(G, \sigma_{\lambda}\times e^{\rho})\cong$

$C^{\infty}(K, \sigma_{\lambda})$ , and we apply the Szeg\"o maps $S$ and $S$ ’ on the component
(see (3.3)). Combining these proceedings, we can define the G-equivariant
operators

$S_{\mu}$ and $S_{\mu}^{\prime}$ : $C^{\infty}(K, \sigma_{\lambda-\mu})\rightarrow C^{\infty}(G, V_{\lambda})$ (1.10)

(see Proposition 3.2). Let $\Omega_{\lambda,\mu}$ be the kernel of $S_{\mu}^{\prime}$ on $C^{\infty}(K, \sigma_{\lambda-\mu})$ . Then
$\Omega_{\lambda,\mu}$ is nontrivial, G-invariant and moreover, $S_{\mu}$ is injective on $\Omega_{\lambda,\mu}$ (see
Lemmas 4.5 and 5.4). In their proofs we use the fact that the limit of
discrete series $\pi_{A}$ is realized in a global fashion. When $G/K$ is hermitian;
$G=SU(n, 1)$ , we see that $S_{\mu}(\Omega_{\lambda.\mu})$ is contained in $L^{2}(G, V_{\lambda})$ (see Theorem
4.6). Therefore, inducing the $L^{2}$ norm of $\Omega_{\lambda,\mu}$ from the one of the image
$S_{\mu}(\Omega_{\lambda,\mu})$ , we can obtain a unitary representation $(\pi_{\sigma_{\lambda-u},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ . Finally,
in Theorem 5.6 we show that the representation is irreducible and matrix
coefficients are square-integrable on $G$ , so $(\pi_{\sigma_{\lambda}-\mu^{\nu}\lambda-\mu}, \Omega_{\lambda\mu,:})$ is a discrete
series of $G=SU(n, 1)$ . This completes a global realizatlon of a discrete
series started with a limit of discrete series.

\S 2. Notation and preliminaries.

Let $G$ be a connected semisimple Lie group with finite center and
$K$ a maximal compact subgroup of $G$ . Throughout this paper we assume
that rank $G=rankK$, that $G$ has a simply connected complexification $G_{c}$ ,
and that real rank $G=1$ .

Let $\mathfrak{g}$ be the Lie algebra of $G$ . For a subalgebra $u$ of $\mathfrak{g}$ we denote
the complexification and its dual space by $u_{c}$ and $u_{c}^{*}$ respectively. Let
$\theta$ denote the Cartan involution of $\mathfrak{g}$ determined by $K$ and $\mathfrak{g}=t+\mathfrak{p}$ the
corresponding Cartan decomposition of $\mathfrak{g}$ . Let $t\subset f$ be a compact Cartan
subalgebra of $\mathfrak{g},$

$\Delta$ the root system of $(\mathfrak{g}_{\epsilon}, t_{c})$ and $\Delta_{n}$ (resp. $\Delta_{k}$) the set
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of noncompact (resp. compact) roots of $\Delta$ . Root vectors $E_{\alpha}(\alpha\in\Delta)$ can
be selected in such a way that $B(E_{\alpha}, E_{-\alpha})=2\langle\alpha, \alpha\rangle^{-1}$ and $\theta(E_{\alpha})^{-}=-E_{-\alpha}$ ,
where bar denotes conjugation of $\mathfrak{g}_{c}$ with respect to $\mathfrak{g}$ and $B$ is the
Killing form on $\mathfrak{g}_{c}$ . Then $\alpha(H_{\alpha})=2$ for $H_{\alpha}=[E_{\alpha}, E_{-\alpha}]$ (cf. [He], p. 155-156).

We fix a noncompact simple root, say $\alpha_{0}$ , and let $\Delta^{+}$ be the set of positive
roots of $\Delta$ so that $\alpha_{0}$ is positive. Put $\Delta_{n}^{+}=\Delta_{n}\cap\Delta^{+}$ and $\Delta_{k}^{+}=\Delta_{k}\cap\Delta^{+}$ .
Then $\mathfrak{a}=R(E_{\alpha_{0}}+E_{-\alpha_{0}})$ is a maximal abelian subspace of $\mathfrak{p}$ . Let $\mathfrak{h}^{-}$ denote
a Cartan subalgebra of the centralizer $\mathfrak{m}$ of $\mathfrak{a}$ in $t$ . Then $t=\mathfrak{h}^{-}+iRH_{\alpha_{0}}$

and $\mathfrak{h}=\mathfrak{h}^{-}+\mathfrak{a}$ is a noncompact Cartan subalgebra of $\mathfrak{g}$ . Let $u=$

exp $\neq\pi(E_{\alpha_{0}}-E_{-\alpha_{0}})$ . Then the standard Cayley transform relative to $\alpha_{0}$ is
given by $Ad(u)$ . It carries $l_{c}$ to $\mathfrak{h}_{c}$ ; in fact, Ad(u) acts trivially on $\mathfrak{y}_{c}-$

and $Ad(u)H_{\alpha_{0}}=-(E_{\alpha_{0}}+E_{-\alpha_{0}})$ .
Let $\Psi$ be the root system of $(\mathfrak{g}_{c}, \mathfrak{h}_{c})$ and $\Psi_{m}\subset\Psi$ the root system of

$(\mathfrak{m}_{c}, \mathfrak{h}_{c}^{-})$ . Let $\Psi^{+}$ be the set of positive roots of $\Psi$ obtained by requiring
that $\mathfrak{a}$ comes before $\mathfrak{h}^{-}$ , and let $\Psi_{m}^{+}=\Psi_{m}\cap\Psi^{+}$ . Then $\Psi^{+}=\{\gamma\circ Ad(u)^{-1}$ ;
$\gamma\in S\subset\Delta\}$ , where $S=\Psi_{m}^{+}\cup\{\gamma\in\Delta;\langle\gamma, \alpha_{0}\rangle<0\}$ (cf. [KW], Lemma 8.5). Let
$\Sigma$ denote the set of restricted roots of $(\mathfrak{g}_{c}, \mathfrak{a}_{c})$ and let $\Sigma^{+}$ be the set of
positive restricted roots obtained by requiring that $E_{\alpha_{0}}+E_{-\alpha_{0}}$ is contained
in the positive Weyl chamber $\mathfrak{a}^{+}$ of $\mathfrak{a}$ . Then the orderings defined by
$\Delta^{+},$ $\Psi^{+}$ and $\Sigma^{+}$ satisfy compatibility. Let $\delta,$ $\delta_{n}$ and $\delta_{k}$ be half the sum
of the roots in $\Delta^{+},$ $\Delta_{n}^{+}$ and $\Delta_{k}^{+}$ respectively, and let $\rho$ be half the sum
of the roots in $\Sigma^{+}$ with multiplicities.

Let $A$ and $N$ be the analytic subgroups of $G$ corresponding to a and
$\mathfrak{n}$ respectively, where tt is the sum of positive restricted root spaces.
Then an Iwasawa decomposition of $G$ is given by $G=ANK$. Let $M$ and
$M^{\prime}$ be the centralizer and normalizer of $A$ in $K$ respectively and let
$W=M^{\prime}/M$. $W$ has order 2; let $w$ be a representative of the nontrivial
coset. Then $G=MAN\cup MANwMAN$, and if we put $V=\theta(N)$ , we see
that $V=wNw^{-1}$ and $MAN\cap V=\{1\}$ . Let $exp$

’ denote the exponential
mapping of $\mathfrak{a}$ onto $A$ and $log$ ’ the inverse mapping. Then each element
$g$ in $G$ and in the open dense subset MANV of $G$ respectively can be
written as:

$g=\exp H(g)\cdot n(g)\cdot k(g)$ $(H(g)\in \mathfrak{a}, n(g)\in N,$ $k(g)\in K)$ ,
(2.1)

$=m(g)\cdot a(g)\cdot n\cdot v(g)$ $(m(g)\in M, a(g)\in A,$ $n\in N,$ $v(g)\in V)$ .
We shall normalize Haar measures $dk$ on $K,$ $dm$ on $M$ and $dv$ on $V$

so that $dk$ and $dm$ have total mass 1 and $dv$ satisfies $\int_{V}e^{2\rho H(v)}dv=1$ . Let
$da$ denote the Haar measure on $A$ that corresponds to a fixed Euclidean
structure on $\mathfrak{g}$ under the exponential mapping. Then Haar measures $dn$ on
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$N$ and $dg$ on $G$ respectively can be normalized by the integral formulas:

$\int_{N}f(n)dn=\int_{V}f(wvw^{-1})dv$

and (2.2)

$\int_{a}f(g)dg=\int_{A}\int_{N}\int_{K}f(ank)e^{2\rho\{\log(a))}dadndk$

for integrable functions $f$ on $N$ and $G$ respectively. Let $A^{+}=\exp(\mathfrak{a}^{+})$ .
Then $G=KCL(A^{+})K$ and there exists a continuous function $D(a)\geqq 0$ on
$A^{+}$ such that

$dg=D(a)dkdadk$ , (2.3a)

where $g=kak^{\prime}\in KA^{+}K$, and

$e^{2\rho(\log(a))}D(a)\leqq C$ for $a\in A^{+}$ (2.3b)

(cf. [He], pp. 381-382).
Let

$\Delta^{+}=s_{0}(\Delta^{+})=(\Delta^{+}-\{\alpha_{0}\})\cup\{-\alpha_{0}\}$ , (2.4)

where $s_{0}$ is the reflection with respect to $\alpha_{0}$ . Then $\Delta^{+}$ is a new positive
root system of $(\mathfrak{g}_{c}, l_{c})$ ; since $E_{\alpha_{0}}+E_{-\alpha_{0}}=E_{-\alpha_{0}}+E_{\alpha_{0}}$ , it follows that $\Delta_{k}^{+}=\Delta_{k}^{+}$

and the corresponding Iwasawa decomposition is the same as before (cf.
[KW], p. 198).

2.1. Non unitary principal series and intertwining operators. We
shall recall three realizations: induced, compact and noncompact pictures
of (non)unitary principal series representations $\pi_{\sigma.\nu}$ of $G$ , where $\nu\in \mathfrak{a}_{c}^{*}$

and $(\sigma, H)$ is a finite dimensional irreducible unitary representation of
$M$ (cf. [KS]). Then the representation space of $\pi_{\sigma,\nu}$ in each picture is
respectively given by

$C^{\infty}(G, \sigma\times e^{\nu})=\{feC^{\infty}(G, H)$ ; $f(mang)=\sigma(m)e^{\nu(\log(a))}f(g)$ ,
$man\in MAN,$ $g\in G$} , (2.5)

$C^{\infty}(K, \sigma)=\{f\in C^{\infty}(K, H) ; f(mk)=\sigma(m)f(k), m\in M, k\in K\}$

and $C^{\infty}(V, H)$ ; the action of $\pi_{\sigma,\nu}(g)(g\in G)$ on each space is given by

$\pi_{\sigma,\nu}(g)f(x)=f(xg)$ $(x\in G)$ ,
$\pi_{\sigma,\nu}(g)f(k)=e^{\nu(H(kg))}f(k(kg))$ $(k\in K)$ , (2.6)

$\pi_{\sigma,\nu}(g)f(v)=\sigma(vg)e^{\nu(\log(vg))}f(v(vg))$ $(v\in V)$ ,
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where $\sigma$ and log are respectively extended to the operator and the
function defined almost everywhere on $G$ by letting

$\sigma(manv)=\sigma(m)$ and log(manv) $=\log(a)$ (manv $\in$ MANV). (2.7)

The intertwining operator between the induced picture and the compact
one (resp. the noncompact one) is given by restricting $f\in C^{\infty}(G, \sigma\times e^{\nu})$ to
$K$ (resp. to $V$) and conversely, the G-equivariant extension of $f\in C^{\infty}(K, \sigma)$

(resp. $f\in C^{\infty}(V,$ $H)$) to an element in $C^{\infty}(G, \sigma\times e^{\nu})$ is given by letting

$f(x)=e^{\nu(H(x))}f(k(x))$
(2.8)

(resp. $f(x)=\sigma(x)e^{\nu(\log(x))}f(v(x))$).

Therefore, giving attention to the restriction and extension, we use the
notation $\pi_{\sigma,\nu}(g)f$

’ without distinguishing the three pictures.
Let $\nu=(1+z)\rho(z\in C)$ . If $z\in iR$ , then the $L^{2}$ norm with respect to

the Haar measure on $K$ is preserved by the action given in (2.6), so
it determines a unitary structure of the representation $\pi_{\sigma,\nu}$ . We put
$w\sigma(m)=\sigma(wmw^{-1})(m\in M)$ . Then it follows from [KS], Proposition 20
that $\pi_{\sigma,\nu}$ is reducible if and only if (1) $\sigma$ is equivalent with $w\sigma,$ (2) $z=0$

and (3) the mean value of $\sigma(xw)^{-1}(x\in G)$ equlas $0$ . Under the assumption
on $G,$

$\pi_{\sigma.\rho}$ is a reducible unitary principal series of $G$ (cf. [KS], \S 16).
Let $w\nu(H)=\nu(wH)(H\in \mathfrak{a})$ . If ${\rm Re}(z)>0$ , then an intertwining operator
$A(w, \sigma, z)$ between $\pi_{\sigma,\nu}$ and $\pi_{w\sigma,w\nu}$ is given by

$A(w, \sigma, z)f(k)=\int_{K}e^{(1-z)\rho\log(k^{\prime}w)}\sigma^{-1}(k^{\prime}w)f(k’ k)dk^{\prime}$ $(k\in K)$ (2.9)

(see [KS], \S 9) and moreover, if $z=0$ , intertwining operators between $\pi_{\sigma,\rho}$

and $\pi_{\sigma,\rho}$ are all of the form: $aA_{0}+bI(a, b\in C)$ , where $I$ is the identity
operator and $A_{0}$ is the principal value operator given by

$A_{0}f(k)=\int_{K}e^{\rho\log(k^{\prime}w)}\sigma^{-1}(k^{\prime}w)f(kk)dk$
’

$(k\in K)$ (2.10)

(see Corollary in [KS], p. 517).

2.2. Szeg\"o map and boundary value map. For an integral $\Delta_{k}^{+}-$

dominant form $\lambda\in\iota_{c}*1et(\tau_{\lambda}, V_{\lambda})$ be an irreducible unitary representation
of $K$ with highest weight N. Let $\phi_{\lambda}$ be a nonzero highest weight
vector and $H_{\lambda}$ the M-cyclic subspace of $V_{\lambda}$ generated by $\phi_{\lambda}$ Let $(\sigma_{\lambda}, H_{\lambda})$

denote the representation of $M$ given by restricting $\tau_{\lambda}$ to $H_{\lambda}$ , and $E_{\lambda}$

the orthogonal projection from $V_{\lambda}$ onto $H_{\lambda}$ . Then for $\eta\in \mathfrak{a}_{c}^{*}$ the Szego
map
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$S_{\eta,\lambda}$ : $C^{\infty}(K, \sigma_{\lambda})\rightarrow C^{\infty}(G, \tau_{\lambda})$ (2.11)

is defined by

$S_{\eta,\lambda}f(g)=\int_{K}e^{\eta H(kg-1)}\tau_{\lambda}^{-1}(k(kg^{-1}))f(k)dk$ (2.12)

$=\int_{K}\tau_{\lambda}(k^{-1})f(kg)dk$ ,

where in the second integral we denote by the same letter “
$f$

’ the
G-equivariant extension of $f\in C^{\infty}(K, \sigma_{\lambda})$ to $G$ according to the induced
picture of $\pi_{\sigma_{\lambda},\nu}$ with $\nu=2\rho-\eta$ (see (2.8) and [KW], Lemma 6.2). Then
this map is G-equivariant. If we put emphasis on the dependence of
$S_{\eta,\lambda}$ on the choice of the positive root system $\Delta^{+}$ , we use the notation

$S_{\eta.\lambda}(\Delta^{+})$ .
On the image of $S_{\eta.\lambda}$ a boundary value map

$L_{\eta}$ : image of $S_{\eta,\lambda}\rightarrow C^{\infty}(K, \sigma_{\lambda})$ (2.13)

is defined by

$L_{\eta}(S_{\eta,\lambda}(f))(k)=\lim_{a\rightarrow\infty}E_{\lambda}(e^{\eta t\log(a))}S_{\eta,\lambda}(\pi_{\sigma_{\lambda},\nu}(w^{-1}k)f)(a))$ . (2.14)

Then following [B] and [GTKS], we see that

THEOREM 2.1. Let $\nu=2\rho-\eta=(1+z)\rho$ . If ${\rm Re}(z)>0$ , then

$L_{\eta}\circ S_{\eta,\lambda}=A(w, \sigma_{\lambda}, z)$

(see (2.9)) and $L_{\eta}$ is G-equivariant.

If $z=0,$ $L_{\rho}\circ S_{\rho,\lambda}$ also can be defined by (2.14). On the other hand,
$A(w, \sigma_{\lambda}, z)$ is not defined for $z=0$ , because the integral (2.9) in the def-
inition does not converge. However, as mentioned in 2.1, we know that
the limiting case $z=0$ must be of the form $aA_{0}+bI$, so $L_{\rho}\circ S_{\rho,\lambda}$ is of the
same form. This fact is directly investigated in [B].

THEOREM 2.2. $L_{\rho}$ transfers $S_{\rho,\lambda}(L^{2}(K, \sigma_{\lambda}))$ into $L^{2}(K, \sigma_{\lambda})$ in a G-
equivariant manner and $L_{\rho}\circ S_{\rho.\lambda}$ is the projection operator of the form
$a_{\lambda}I+A_{0}$ , where $A_{0}$ is given by (2.10) and $a_{\lambda}$ is the constant given by
$E_{\lambda}\int_{V}e^{\rho H(v)}\tau_{\lambda}(k(v)w)^{-1}dv=a_{\lambda}I$.

2.3. Discrete series and limits of discrete series. Let u8 SuppoSe

that $\Lambda=\lambda-\delta_{n}+\delta_{k}$ is $\Delta^{+}- dominant$ , and that $\Lambda$ is nonsingular or singular
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with respect to just one pair of roots $\pm\alpha_{0}$ . Then, as shown by [HC]
and [KO], if $\Lambda$ is nonsingular, it corresponds to a discrete series, otherwise,
to a limit of discrete series of $G$ . Both of them we denote by $\pi_{A}$ . Then
by [Sc] we know that the lowest K-type of $\pi_{A}$ is given by $\tau_{\lambda}$ .

We define $\eta_{\lambda}$ and $\nu_{\lambda}e\mathfrak{a}_{c}^{*}$ as follows:

$\eta_{\lambda}(E_{\alpha_{0}}+E_{-\alpha_{0}})=\frac{2\langle x+n_{0}\alpha_{0},\alpha_{0}\rangle}{\langle\alpha_{0},\alpha_{0}\rangle}$ , (2.15a)

and

$\nu_{\lambda}=2\rho-\eta_{\lambda}$ , (2.15b)

where $n_{0}$ is the number of positive noncompact roots $\gamma$ satisfying that
$\gamma$ is not strongly orthogonal to $\alpha_{0}$ and $\gamma+\alpha_{0}\in\Delta$ (see [KW], (6.5a), $(6.5b)$).
Let

$S_{\lambda}=S_{\lambda}(\Delta^{+})=S_{\eta_{\lambda},\lambda}(\Delta^{+})$ and $S_{\lambda}‘=S_{\iota_{0}\lambda}(\Delta^{+\prime})$ . (2.16)

Then by Theorems 1.1 and 12.6 in [KW] the Szego maps $S_{\lambda}$ and $S_{\lambda}$
’ give

a relation between $\pi_{A}$ and $\pi_{\sigma_{\lambda^{\nu}\lambda}}$, as follows.

THEOREM 2.3. (1) $S_{\lambda}$ carries $C^{\infty}(K, \sigma_{\lambda})$ into the kernel of the Schmid
operator $D$ (see [Sc] and [KW], \S 2) on $C^{\infty}(G, \tau_{\lambda})$ . Moreover, in a $\mathfrak{g}-$

equivariant fashion it carries the K-finite vectors of $\pi_{\sigma_{\lambda^{\nu}\lambda}}$, onto the K-finite
vectors of $\pi_{A}$ . (2) If $\eta_{\lambda}=\nu_{\lambda}=\rho$ , then the reducible unitary principal
series $\pi_{\sigma_{\lambda},\rho}$ is infinitesimally equivalent with the direct sum of the K-finite
images of $S_{\lambda}$ and $S_{\lambda}^{\prime}$ .

We note that Theorem 2.2 implies that, if $\eta_{\lambda}=\nu_{\lambda}=\rho$ , the K-finite
assumption in Theorem 2.3 is not necessary. Therefore, if we put

$A_{\lambda}=L_{\rho}\circ S_{\lambda}$ and $A_{\lambda}^{\prime}=L_{\rho}\circ S_{\lambda}^{\prime}$ , (2.17)

it follows from Theorems 2.2 and 2.3 that

$A_{\lambda}+A_{\lambda}^{\prime}=I$ , (2.18)

where $I$ is the identity operator on $C^{\infty}(K, \sigma_{\lambda})$ .
2.4. $G=SU(n, 1)$ . We shall consider the case that $G/K$ is hermitian,

so $G=SU(n, 1)$ under the assumption that real rank of $G$ is 1. Let

$\mathfrak{p}^{+}=\sum_{\alpha e\Delta}\mathfrak{g}_{\alpha}+$ and $\mathfrak{p}^{-}=\sum_{\alpha eA_{n}-A_{n^{+}}}\mathfrak{g}_{\alpha}$
, (2.19)

where $\mathfrak{g}_{a}$ is the root space for $\alpha$ , and let $P^{+},$ $P^{-}$ be the subgroups of $G_{t}$
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corresponding to $\mathfrak{p}^{+},$ $\mathfrak{p}^{-}re8pectively$ . Then multiplication $P^{-}\times K_{\iota}\times P^{+}\rightarrow G_{\epsilon}$

is one to one, holomorphic, regular and there exists a bounded open subset
$\Omega\subset P^{+}$ such that

$ P^{-}K_{c}P^{+}=P^{-}K_{c}\Omega$ . (2.20)

Then $G$ acts on $\Omega$ by holomorphic automorphism under the definition
$z\cdot g=p^{+}(zg)(ze\Omega, g\in G)$ , where $p^{+}(\cdot)$ refers to the $P^{+}$ component of an
element of $P^{-}M_{\epsilon}P^{+}$ . Especially, 1 $\cdot$ $g=1$ for $geP^{-}K_{c}$ and $G\cap P^{-}K_{e}=K$, so
$\Omega=G/K$ (cf. [Kn], pp. 225-226). Let $a_{t}=\exp(t(E_{\alpha_{0}}+E_{-\alpha_{0}})/2)(t\in R)$ . Then
we recall that

$1\cdot a_{t}=\exp(tht/2E_{\alpha_{0}})$ and $\lim_{t\rightarrow\infty}1\cdot a_{t}=\exp(E_{\alpha_{0}})$ (say $\infty$ ) (2.21)

(see [Kn], Corollary in p. 229), $\infty\in\partial\Omega$ , the boundary of $\Omega$ , and the
action of $G$ on $\Omega$ is holomorphically extended to $\partial\Omega$ . Then since
$Ad(u)a_{-\log(tht/2)}\in K_{c}$ , we see that

$1\cdot a=\infty\cdot Ad(u)a_{-\log(tht/2)}$ . (2.22)

In what follows we shall abbreviate the symbols 1 $\cdot$ and $\infty$ . when we
denote functions on $\Omega$ and $\partial\Omega$ respectively.

Now let us suppose that $\eta_{\lambda}=\nu_{\lambda}=\rho$ and $A_{\lambda}’(f)\equiv 0$ for $f\in C^{\infty}(K, \sigma_{\lambda})$ .
Then by (2.14) and (2.18) it follows that

$f(k)=A_{\lambda}(f)(k)=L_{\rho}\circ S_{\lambda}(f)(k)$

$=\lim_{a\rightarrow\infty}e^{\rho(\log(a))}E_{\lambda}S_{\lambda}(f)(a_{t}wk)$ . (2.23)

As shown in [B], a limit of (holomorphic) discrete series is realized on
the image of $L_{\rho}\circ S_{\lambda}$ equipped with $L^{2}$ norm; so $A_{\lambda}^{\prime}(f)\equiv 0$ implies that $f$

has a ”holomorphic” extension to $\Omega$ , which we denote by the same letter
(cf. Theorem 12.6 in [KW], [JW] and [KO], \S 5). On the other hand,
$S_{\lambda}(f)$ is in the kernel of the Schmid operator and thus, of the Dirac
operator (cf. [KW], Proposition 3.1, Theorem 6.1 and [NO]). Therefore,

(2.22) and (2.23) mean that

$E_{\lambda}S_{\lambda}(f)(a_{t})\sim e^{-\rho(\log(a))}f(Ad(u)a_{-\log(tht/2)}w^{-1})$ (2.24)

as $t$ tends to $\infty$ . Especially, noting the fact that $A_{\lambda}$ is a projection
operator, we can deduce from Lemma 3.15 in [B] and its proof that the
right hand side of (3.40) in [B] also satisfies (2.24) and thus

$\Vert S_{\lambda}(f)(a_{t})||\sim e^{-\rho(\log(a))}\Vert f(Ad(u)a_{-\log(tht/2)}w^{-1})||$ (2.25)
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as $t$ tends to $\infty$ , where $\Vert\cdot\Vert$ denotes the norm of $V_{\lambda}$ .

2.5. Orthonormal system of $L^{2}(K, \sigma)$ . Let $K^{\wedge}$ (resp. $M^{\wedge}$) denote
the set of the equivalence classes of irreducible unitary representations
of $K$ (resp. $M$). For $\tau\in K^{\wedge}$ and $\sigma\in M^{\wedge}$ let $[\tau;\sigma]$ denote the multiplicity
of $\sigma$ in the restriction $\tau|M$ of $\tau$ to $M$, and let $K_{\sigma}^{\wedge}=\{\tau\in K^{\wedge};[\tau;\sigma]\neq 0\}$ .
In what follows, for simplicity, we suppose that $[\tau;\sigma]=1$ if it is not $0$ ,
because this restriction is easily removable. Then for $(\tau, V_{\tau})\in K_{\sigma}^{\wedge}$ let
$ d.=\dim\tau$ and let $e_{1},$ $e_{2},$ $\cdots,$ $e_{d_{\tau}}$ denote an orthonormal basis of V. such
that $\{e_{i};1\leqq i\leqq d_{\sigma}\}(d_{\sigma}=\dim\sigma)$ is carried by $\tau|M$ according to $\sigma$ . We put
$I_{f}=\{1,2, \cdots, d_{\tau}\}$ and $I_{\sigma}=\{1,2, \cdots, d_{\sigma}\}$ , and denote the matrix coefficients
of $\tau$ by $\tau_{ij}(k)=(\tau(k)e_{j}, e_{i})(i, j\in L, k\in K)$ . Then we define functions on
$K$ by

$\phi_{\tau,j}(k)=\sum_{eI_{\sigma}}\tau_{ij}(k)e_{i}$
$(j\in L)$ (2.26)

and let $\psi_{\tau,j}=(d_{\tau}/d_{\sigma})^{1/2}\phi_{\tau,j}$ .
LEMMA 2.4. $\{\psi_{\tau,j};j\in I., \tau\in K_{\sigma}^{\wedge}\}$ is a complete orthonormal basis of

$L^{2}(K, \sigma)$ .
PROOF. Since

$\phi_{\tau,j}(mk)=\sum_{ieI_{\sigma}}\tau_{ij}(mk)e_{i}$

$=,\sum_{pet_{\sigma}}\tau_{ip}(m)\tau_{pj}(k)e_{l}$

$=\sigma(m)\phi_{r,j}(k)$ $(m\in M, k\in K)$ ,

and

$(\phi_{\tau,j}, \phi_{\tau^{\prime},j^{\prime}})=\int_{K}(\sum_{ieI_{\sigma}}\tau_{ij}(k)e_{i},\sum_{ieI_{\sigma}}\tau_{j^{\prime}}^{\prime}’(k)e_{i^{\prime}})dk$

$=\sum_{eI_{\sigma}}\int_{K}\tau_{ij}(k)\tau_{ij^{\prime}}^{\prime}(k)^{-}dk$

$=\delta_{\tau r^{\prime}}\delta_{j\dot{g}^{\prime}}d_{\sigma}d_{\tau}^{-1}$ ,

it follows that all $\psi_{\tau,j}$ belong to $L^{2}(K, \sigma)$ and they are orthonormal
each other. Let $f$ be an arbitrary function in $L^{2}(K, \sigma)$ . Then by the
Peter-Weyl theorem for $L^{2}(K)$ (cf. [Su], p. 19) $f$ has a decomposition
such as

$f(k)=\sum_{eeK_{\hat{\sigma}}}\sum_{i,jeI_{t}}\sum_{peI_{\sigma}}a_{f\dot{g}p}\tau_{tj}(k)e_{p}$ $(k\in K)$ .
Then for $m\in M$
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$f(mk)=\sum_{\tau eK\delta}\sum_{i,j,qeI_{\tau}}\sum_{peI_{\sigma}}a_{i\dot{J}p}\tau_{iq}(m)\tau_{q\dot{g}}(k)e_{p}$ .

On the other hand, since $f$ belongs to $L^{2}(K, \sigma),$ $f(mk)$ mu.st equal

$\sigma(m)f(k)=\sum_{\tau\epsilon K_{\sigma^{\wedge}}i^{\prime}}.\sum_{jeI_{t}r},\sum_{leI_{\sigma}}a_{i^{\prime}j^{\prime}}.\tau_{i^{\prime}j^{\prime}}(k)\tau_{r}.(m)e_{r}$
.

So, it follows that $q=s=i’\in I_{\sigma},$ $i=p\in I_{\sigma}$ and $a_{pjp}=a_{qjq}$ for all $p,$ $q\in I_{\sigma}$ .
Therefore, if we let $a_{j}=a_{pjp}$ ,

$f(k)=\sum_{\tau eK_{\hat{\sigma}}}\sum_{jeI_{\tau}}a_{\dot{f}}\sum_{peI_{\sigma}}\tau_{p\dot{g}}(k)e_{p}$

$=\sum_{\tau eK\prime}\sum_{jeI_{r}}a_{\dot{f}}\phi_{r,j}(k)$ .
This completes the proof of the lemma. Q.E.D.

\S 3. G-equivariant maps.

We fix a $\Delta_{k}^{+}$-dominant integral form $\lambda$ on $t_{c}$ such that $\Lambda=\lambda-\delta_{n}+\delta_{k}$ is
$\Delta^{+}$-dominant and $\eta_{\lambda}=\nu_{\lambda}=\rho$ (see (2.15 a $,$

$b)$). Then $\langle\Lambda, \alpha_{0}\rangle=0$ and $\langle\Lambda, \beta\rangle\neq 0$

for all other positive roots $\beta$ Especially, $\pi_{A}$ is a limit of discrete series
of $G$ and $L_{\rho}\circ S_{\rho,\lambda}:L^{2}(K, \sigma_{\lambda})\rightarrow L^{2}(K, \sigma_{\lambda})$ is a projection operator (see Theorem
2.2).

Let $\mu$ be a $\Delta^{+}$-dominant integral form on $\iota_{\iota}$ and $(\pi, U)$ a finite di-
mensional representation of $G$ with lowest weight $-\mu$ . Let $d_{\pi}=\dim U$,
$I.=\{1,2, \cdots, d.\}$ and $\mu_{i}^{\sim}(i\in I_{\pi})$ the weights of $\pi$ relative to $(l_{\iota}, \Delta^{+})$ , that
is repeated according to their multiplicities and arranged in increasing

order relative to $\Delta^{+}$ ; so, $\mu_{1}^{\sim}=-\mu$ . Let $v_{i}^{\sim}$ denote a normalized weight

vector corresponding to $\mu_{i}^{\sim}$ . In the same way let $\mu_{i}(i\in I_{\pi})$ denote the
weights of $\pi$ relative to $(\mathfrak{h}_{\iota}, \Psi^{+})$ that are arranged as above, and $v_{i}(i\in I_{\pi})$

corresponding normalized weight vectors. Then, since $\mu_{i}^{\sim}\circ Ad(u)^{-1}$ and
$\pi(u)v_{i}^{\sim}$ are respectively a weight and its weight vector with respect to
$(\mathfrak{h}_{c}, \Psi^{+})$ , we may assume that they coincide with one of, revpectively, $\mu_{j}$

and $v_{j}(j\in I_{\pi})$ ; so we can select $i_{0}eI_{\pi}$ such that $\mu_{i_{0}}=\mu_{1}^{\sim_{o}}Ad(u)^{-1}$ and
$v_{i}=\pi(u)v_{1}^{\sim}$ . Since $w\in W$ acts as +1 on $t$ and $-1$ on $\mathfrak{p}$ (see [Kn2],
$Lemma04)$ , each $w\mu_{i}(H)=\mu_{i}(wHw^{-1})(H\in \mathfrak{h}_{c})$ is also one of the weights

of $\pi$ , and thus $w$ acts as a permutation of $I_{jf}$ such as $w\mu_{i}=\mu.(i)$ . Es-
pecially, if we denote the matrix coefficients of $\pi$ by $\pi_{ij}(g)=(\pi(g)v_{j}, v_{i})$

\langle $i,$ $j\in L,$ $g\in G$), we see that $\pi_{ij}(wg)=\pi_{w(t)j}(g)$ .
Now let us suppose that

(AO) $x-\mu$ is $\Delta_{k}^{+}$-dominant,

and we shall construct a nontrivial G-equivariant map of $C^{\infty}(G, \sigma_{\lambda-\mu}\times e^{\nu(\lambda-\mu)})$
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into $C^{\infty}(G, V_{\lambda})$ . Let $\xi$ and $\beta$ denote the representations $\sigma_{\lambda}\times e^{\rho}$ and zlMAN
respectively, of MAN. For $f\in C^{\infty}(G, \sigma_{\lambda-\mu}\times e^{\nu(\lambda-\mu)})$ we define

$f^{\sim}(k)=\int_{H}\xi(m)\times\pi(m)\langle f(m^{-1}k), \phi_{\lambda-\mu}\rangle\phi_{\lambda}\times v_{i_{0}}dm$ . (3.1)

Then $f^{\sim}\in C^{\infty}(K, \sigma_{\lambda}\times\pi|M)$ and we can extend it to the function on $G$ so
that $f^{\sim}\in C^{\infty}(G, \xi\times\pi)$ (see [KW], p. 193).

LEMMA 3.1. The mapping that transfers $f$ in $C^{\infty}(G, \sigma_{\lambda-\mu}\times e^{\nu(\lambda-\mu)})$ to
$f^{\sim}in$ $C^{\infty}(K, \sigma_{\lambda}\times\pi|M)$ is injective.

PROOF. Let $P_{\lambda-\mu}:V_{\lambda}\times U\rightarrow H_{\lambda-\mu}$ be a nonzero K-intertwining operator.
Then by (10.14) in [KW] $P_{\lambda-\mu}(f^{\sim}(k))=cf(k)(k\in K)$ with $c\neq 0$ , and thus the
desired fact is clear. Q.E.D.

For $h\in C^{\infty}(K, \sigma_{\lambda}\times\pi|M)$ we define functions $h_{i}$ by the expansion

$h(g)=\sum_{i}h_{i}(g)\times\pi(g)v_{i}$

$=\sum_{i}[\sum_{i}h_{i}(g)z_{i\ell}(g)]v_{j}$ . (3.2)

Then each $h_{t}$ belongs to $C^{\infty}(G, \sigma_{\lambda}\times e^{\rho})$ and it is uniquely determined by
the restriction $(h(k), \pi(k)v_{i})$ on $K$. Here for $f\in C^{\infty}(G, \sigma_{\lambda-\mu}\times e^{\nu(\lambda-\mu)})$ and
$j\in I_{\pi}$ we define

$S_{\mu}^{j}f(g)=\sum_{i}S_{\lambda}(f_{i}^{\sim})(g)\pi_{j_{i}}(g)$ $(g\in G)$ ,

$A_{\mu}^{\dot{f}}f(k)=\sum_{i}A_{\lambda}(f_{i}^{\sim})(k)z_{j_{i}}(k)$ $(k\in K)$
(3.3)

and also define $S_{\mu}^{j}$ and $A_{\mu}^{\prime_{\dot{g}}}$ by replacing $S_{\lambda}$ and $A_{\lambda}$ with $S_{\lambda}^{\prime}$ and $A_{\lambda}$
’

respectively (see (2.16) and (2.17)). Then we see that
$S_{\mu}^{j},$ $S_{\mu}^{\prime_{f}}$ : $C^{\infty}(K, \sigma_{\lambda-\mu})\rightarrow C^{\infty}(G, V_{\lambda})$ ,
$A_{\mu}^{j},$ $A_{\mu}^{\dot{f}}$ : $C^{\infty}(K, \sigma_{\lambda-\mu})\rightarrow C^{\infty}(K, H_{\lambda})$ . (3.4)

PROPOSITION 3.2. If $i_{0}=d_{\pi}$ , then all $S_{\mu}^{j}$ and $S_{\mu}^{\dot{f}}$ are G-equivariant.

PROOF. For simplicity, we denote $z_{\sigma_{\lambda-}}\nu\lambda-(x)f$ by $f_{x}$ , and let $W_{j}$

$(j\in L)$ be the MAN cyclic subspace for $w_{j}=\phi_{\lambda}\mu\mu\times v_{\dot{f}}$ in $H_{\lambda}\times U$ and put
$U_{i_{0}+1}=\sum_{i>i_{0}}W_{\dot{f}}$ . Then by [KW], pp. 193-194, we see that

$(f^{\sim})(kx)\equiv(f_{x})^{\sim}(k)$ mod $U_{i_{0}+1}$ $(k\in K, x\in G)$ .
Therefore, since $i_{0}=d_{\pi}$ by the $hypothe8is$ , it follows that
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$(f^{\sim})(kx)=(f_{x})^{\sim}(k)$ . (3.5)

On the other hand,

$(f^{\sim})_{\$}(g)=f^{\sim}(gx)$

$=\sum_{i}f_{i}^{\sim}(gx)\pi(gx)v_{i}$

$=\sum_{i}\sum_{j}f_{i}^{\sim}(gx)\pi_{jt}(gx)v_{j}$

$=\sum_{\dot{g},p}f_{i}^{\sim}(gx)\pi_{\dot{g}p}(g)z_{p\ell}(x)v_{j}$

$=\sum_{j}[\sum[\sum_{p}f_{p}^{\sim}(gx)\pi_{ip}(x)]\pi_{j_{i}}(g)]v_{j}$ ,

and thus,

$(f_{x}^{\sim})_{i}(g)=\sum_{p}f_{p}^{\sim}(gx)\pi_{ip}(x)$ . (3.6)

Then by (3.3), (3.5) and (3.6) we see that

$S_{\mu}^{\dot{f}}(f_{x})(g)=\sum_{i}S_{\lambda}((f_{x})_{i}^{\sim})(g)\pi_{\dot{J}l}(g)$

$=\sum_{i}S_{\lambda}((f_{x}^{\sim})_{i})(g)\pi_{j_{i}}(g)$

$=\sum_{i,p}S_{\lambda}((f_{p}^{\sim})_{r})(g)\pi_{ip}(x)\pi_{ji}(g)$

$=\sum_{p}S_{\lambda}(f_{p}^{\sim})(gx)\pi_{ip}(gx)$

by the G-equivariance of $S_{\lambda}$ and then

$=S_{\mu}^{j}(f)(gx)$ .
So, we show that $S_{\mu}^{j}$ is G-equivariant. By the same way we can obtain
that $S_{\mu}^{\prime_{\dot{f}}}(j\in L)$ are also G-equivariant. Q.E.D.

\S 4. Some properties of $S_{\mu}^{j}$ and $A_{\mu}^{\dot{f}}$ .
We keep the notation in \S 2 and \S 3, and let $f$ be in $C^{\infty}(K, \sigma_{\lambda-\mu})$ .
LEMMA 4.1. If $S_{\mu}^{1}(f)\equiv 0$ (resp. $S_{\mu}^{1}(f)\equiv 0$), then $S_{\mu}^{j}(f)\equiv 0$ (resp. $ S_{\mu}^{\prime\dot{g}}(f)\equiv$

$0)$ for all $j\in L$

PROOF. First we note that for keK and geG

$0=S_{\mu}^{1}(f)(kg)=\sum_{ieI_{\pi}}S_{\lambda}(f_{5}^{\sim})(kg)\pi_{1i}(kg)$

$=\sum_{i,jeI_{\pi}}\tau_{\lambda}(k)S_{\lambda}(f_{i}^{\sim})(g)\pi_{1j}(k)\pi_{j_{i}}(g)$
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and thus,

$\sum_{jeI_{\pi}}z_{1j}(k)S_{\mu}^{\dot{f}}(f)(g)=0$ .
Here we recall that $v_{1}$ is a lowest weight vector of $z$ and $z^{*}(x)=z(\theta(x))^{-1}$

$(x\in G)$ . Therefore, it follows that

$\pi_{1j}(x)=e^{\mu_{1}(\log H(x))}\pi_{1j}(k(x))$ $(xeG)$ .
Then we can obtain that

$\sum_{jeI_{\pi}}z_{1j}(x)S_{\mu}^{j}(f)(g)=0$

for all $x,$ $geG$ . Since $z$ is irreducible, the matrix coefficients $\pi_{1j}(x)(x\in G)$

are linearly independent on $G$ , and thus it easily follows that $S_{\mu}^{j}\equiv 0$ for
all $j\in L$ . Q.E.D.

LEMMA 4.2. If $S_{\mu}^{j}(f)\equiv 0$ (resp. $S_{\mu}^{\prime j}(f)\equiv 0$), then $A_{\mu^{-}}^{w(j)}(f)\equiv 0$ (resp.
$A_{\mu}^{\prime_{w(j)}}(f)\equiv 0)$ .

PBOOF. We note that for aeA and keK

$0=S_{\mu}^{j}(f)(aw^{-1}k)=\sum_{ieI_{\pi}}S_{\lambda}(f_{l}^{\sim})(aw^{-1}k)z_{j_{i}}(aw^{-1}k)$

$=e^{\mu_{j}(1og(a))}\sum_{ieI_{\pi}}S_{\lambda}(f_{i}^{\sim})(aw^{-1}k)z_{w(j)t}(k)$ .
Therefore, we see that

$A_{\mu}^{w(j)}(f)(k)e^{(\rho-\mu_{j}}E_{\lambda}(S_{\mu}^{j}(f)(aw^{-1}k))=0$ .
Q.E.D.

LEMMA 4.3. If $A_{\mu}^{j}(f)\equiv 0$ (resp. $A_{\mu}^{j}(f)\equiv 0$) for all $jeL$ , then $A_{\lambda}f_{j}^{\sim}\equiv 0$

(resp. $A_{\lambda}’ f_{j}^{\sim}\equiv 0$) for all $j\in L$ .
PROOF. The assumption means that

$\pi(k)(A_{\lambda}f_{1}^{\sim}(k), A_{\lambda}f_{2}^{\sim}(k),$
$\cdots,$ $A_{\lambda}f_{d_{\pi}}^{\sim}(k))‘\equiv 0$ $(k\in K)$ .

Then, applying $z(k)^{-1}$ to the both sides, we can obtain the desired re-
sult. Q.E.D.

LEMMA 4.4. If $A_{\mu}^{\dot{f}}(f)\equiv 0$ and $A_{\mu}^{\prime_{\dot{f}}}(f)\equiv 0$ for all $j\in L$ , then $f\equiv 0$ .
PROOF. By Lemma 3.1 it is enou$gh$ to show that $f^{\sim}\equiv 0$ . It follows

from (2.18), (3.2) and (3.3) that
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$f^{\sim}(k)=\sum_{i,jeI_{\pi}}f_{i}^{\sim}(k)\pi_{\dot{J}i}(k)v_{j}$

$=\sum_{jeI_{\pi}}(A_{\mu}^{j}(f)(k)+A_{\mu}^{\prime j}(f)(k))v_{j}=0$ .
Q.E.D.

Now let

$\Omega_{\lambda,\mu}^{\prime}=$ {$feC^{\infty}(K,$ $\sigma_{\lambda-\mu})$ ; $S_{\mu}^{j}(f)\equiv 0$ for all $j\in L$}. (4.1)

Then we have the following

LEMMA 4.5. $\Omega_{\lambda,\mu}^{\prime}$ is G-invariant and $S_{\mu}^{1}$ is injective on $\Omega_{\lambda,\mu}$ .
PROOF. This is clear from Proposition 3.2, Lemmas 4.1, 4.2 and

4.4. Q.E.D.

THEOREM 4.6. Let $G=SU(n, 1)$ and suppose that $\mu$ satisfies
(AO) $x-\mu$ is $\Delta_{k}^{+}$-dominant,
(A1) $\langle\mu, \alpha_{0}\rangle>0$ ,
(A2) $i_{0}=d_{\pi}$ .

Then $S_{\mu}^{\dot{f}}(f)\in L^{2}(G, V_{\lambda})$ for all $fe\Omega_{\lambda,\mu}^{\prime}$ and $j\in L$ .
PROOF. Since

$S_{\mu}^{\dot{f}}(f)(kg)=\tau_{\lambda}(k)\sum_{peI_{P}}\pi_{lp}(k)S_{\mu}^{p}(f)(g)$
$(k\in K, geG)$

(cf. the proof of Lemma 4.1), it follows from (2.3a) that

$\Vert S_{\mu}^{j}(f)\Vert_{L^{2}(G.V_{\lambda})}^{2}=\sum_{peI_{\pi}}\int_{K}\int_{CL(A^{+}})\Vert S_{\mu}^{p}(f)(ak)\Vert^{2}D(a)dadk$ .
Therefore, by noting (2.3 b), to obtain the square-integrability it is enough
to show that

$\Vert S_{\mu}^{p}(f)(a_{t}k)||\sim e^{-(\rho+\mu_{d_{\pi}})(\log(a_{t}))}$ $(t\rightarrow\infty)$ ,

because $\langle\mu_{d_{\pi}}, \alpha\rangle=\langle\mu, \alpha_{0}\rangle>0$ by (A1) and (A2) (see \S 3). Here, for sim-
plicity, we put $d=d_{\pi}$ and

$\frac{\langle\mu_{i},\alpha\rangle}{\langle\alpha,\alpha\rangle}=n_{i}$ ;

so $\mu_{i}(\log(a_{t}))=n_{i}t$ and $n_{w(i)}=-n_{i}$ . Then by Proposition 3.2 and (3.3) we
see that

$S_{\mu}^{p}(f)(a_{t}k)=S_{\mu}^{p}(f_{k})(a_{t})=S_{\lambda}((f_{k}^{\sim})_{p})(a_{t})e^{n_{p}t}$ .
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Since $f$ belongs to $\Omega_{\lambda,\mu}^{\prime}$ , it follows from Lemmas 4.2 and 4.3 that
$A_{\lambda}^{\prime}((f_{k}^{\sim})_{j})\equiv 0$ for all $j\in L$ . Therefore, we can apply the asymptotic
behavior (2.25) to $S_{\lambda}((f_{k}^{\sim})_{p})(a)$ and thus, as $t$ tends to $\infty$ , we see that
for $r=tht/2$

$\Vert S_{\lambda}((f_{k}^{\sim})_{p})(a_{t})\Vert\sim e^{-\rho(\log(a_{t}))}||(f_{k}^{\sim})_{p}(Ad(u)a_{-1og(r)}w^{-1})\Vert$

$=e^{-\rho^{(l}og(a_{t}))}\Vert((f_{k}^{\sim})(Ad(u)a_{-\log\{r)}w^{-1}), \pi(Ad(u)a_{-\log(r)}w^{-1})v_{p})\Vert$

(see (3.2)), where we used the fact that $f_{k}^{\sim}$ also has a holomorphic ex-
tension to $\Omega$ which follows from the K-type decomposition of $f$ in $\Omega_{\lambda,\mu}^{\prime}$

(cf. Lemma 5.3 below). We note that $(f_{k}^{\sim})(Ad(u)a_{-\log(r)}w^{-1})\rightarrow f_{k}^{\sim}(w^{-1})$

$(t\rightarrow\infty)$ and $\langle\beta, \alpha_{0}\rangle=\beta(H_{\alpha_{0}})=0$ for all $\beta e\Psi_{m}$ (cf. [He], pp. 221-224).
Therefore, it follows from the definition (3.1) of $f_{k}^{\sim}$ and (A2) that

$||S_{\lambda}((f_{k}^{\sim})_{p})(a_{t})\Vert\sim e^{-\rho(\log(a_{t}))}(v_{\text{\’{e}}}, \pi(Ad(u)a_{-1og(\gamma)})v_{\psi(p)})$ .
Now let $(\pi_{n}, V_{n})(n\in N)$ denote the irreducible representation of

$SL(2, C)$ with degree $n+1$ , that is realized on the homogeneous poly-
nomials of degree $n$ in variables $z_{1}$ and $z_{2}$ (cf. \S 6 and [Su], p. 326).

Here noting that $H_{\alpha_{0}}$ and $E_{\pm\alpha_{0}}$ generates a Lie algebra isomorphic to
@l$(2, C)$ , we may deduce that

$(\pi_{n}(a_{-\log(r)})z_{1}^{\dot{f}}z_{2}^{n-j}, z_{2}^{n})=c(sh(-\log(r)))^{j}(ch(-\log(r)))^{n-j}$

$\sim c(r^{-1}-\gamma)^{j}$

$\sim ce^{-jt}$ ,

as $t$ tends to $\infty$ . Therefore, regarding $\pi$ as a (reducible) representation
of \S I$(2, C)$ , we can show that $(\pi(Ad(u)a_{-\log(r)})v_{i}, v_{d})(r=tht/2)$ equals $0$ or
behaves asymptotically like $e^{-(n_{d}-n_{i})t}(t\rightarrow\infty)$ . Then

$\Vert S_{\lambda}(f_{k}^{\sim})_{p}(a_{t})||\sim e^{-\rho(\log(a_{t}))}e^{-(n_{d}+n_{p})t}$

and thus,

$\Vert S_{\mu}^{p}(f)(a_{t}k)\Vert\sim e^{-(\rho+\mu_{d})(\log(a_{t}))}$ $(t\rightarrow\infty)$ .
This completes the proof of the theorem. Q.E.D.

\S 5. Main theorem.

We continue the notation in the previous section. Let $G=SU(n, 1)$

and suppose that $\mu$ satisfies (AO), (A1) and (A2) in Theorem 4.6.
For $f\in\Omega_{\lambda,\mu}$ let
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$||f||_{\lambda,\mu}=\Vert S_{\mu}^{1}(f)||_{L^{2}t\theta.V_{\lambda})}$ (5.1)

(see Lemma 4.5 and Theorem 4.6), and let $\Omega_{\lambda,\mu}$ denote the completion of
$\Omega_{\lambda,\mu}^{\prime}$ with respect to this norm. Then by Proposition 3.2 and Lemma
4.5 we easily see that

LEMMA 5.1. $\pi_{\sigma_{\lambda}-\mu^{\nu}\lambda-\mu}(g)(geG)$ preserves $\Vert\cdot\Vert_{\lambda,\mu}$ and $\Omega_{\lambda,\mu}$ is G-invariant;
so $(\pi_{\sigma_{\lambda}-\mu^{\nu}\lambda-\mu}, \Omega_{\lambda,\mu})$ is a unitary representation of $G$ .

LEMMA 5.2. Let $H$ be a G-invariant closed subspace of $\Omega_{\lambda,\mu}$ . If
$\psi_{\tau,j_{0}}$ belongs to $H$ for some $j_{0}\in I_{\tau}$ and $\tau\in K_{\sigma_{\lambda-\mu}}^{\wedge}$ , then all $\psi_{\tau,j}(j\in L)$

belong to $H$.
PROOF. By the definition of $\psi_{\tau,j}$ we see that

$\psi_{\tau,\dot{g}_{0}}(k^{\prime}k)=\sum_{j\in I_{\tau}}\tau_{\dot{g}\dot{g}_{0}}(k)\psi_{P\dot{f}}(k^{\prime})$
$(k, k^{\prime}eK)$ (5.2)

and in particular,

$\psi_{\tau,j}(k)=\int_{K}\psi_{\tau,j_{0}}(kk’)\tau_{\dot{g}\dot{g}_{0}}(k’)^{-}dk^{\prime}$ . (5.3)

Since $H$ is G-invariant, $\psi_{\tau,j_{0}}(kk’)$ also belongs to $H$ as a function of $k$ .
Therefore, by the definition of the Riemann integral and the fact that
$H$ is closed, (5.3) means that $\psi_{\tau,j}\in H$ for all $j\in L$ . Q.E.D.

We put

$K_{\lambda,\mu}^{\wedge}=\{\tau_{\xi}\in K_{\sigma_{\lambda-\mu}}^{\wedge} ; \xi>s_{0}(\lambda)+\mu=x-\alpha_{0}+\mu\}$ . (5.4)

Then we see the followin$g$

LEMMA 5.3. Let $f$ be in $\Omega_{\lambda,\mu}$ . Then $f$ has a decomposition such as
$f=\sum a_{\tau,\dot{g}}\psi_{\tau,j}$ ,

where $jeI_{\tau}$ and $\tau\in K_{\lambda,\mu}^{\wedge}$ .
PROOF. We shall give attention to the right K-type decomposition

of $f$ (see Lemma 2.4); it follows from (3.1) that $f$ and $f^{\sim}$ have the
same K-types which appear in their decompositions, and from (3.2) that
$f^{\sim}$ and $f_{i}^{\sim}$ have the difference of the K-types of $z$ . So $f_{i}^{\sim}$ and $f$ have
the difference of the K-types of $\pi$ . Then the assumption implies that
$S_{\mu}^{r_{\dot{f}}}(f)\equiv 0$ for all $j\in L$ , and thus it follows from Lemmas 4.2 and 4.3
that $A_{\lambda}’(f_{i}^{\sim})\equiv 0$ for all $i\in L$ Therefore, the desired result follows from
Theorem 12.6 in [KW]. Q.E.D.
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LEMMA 5.4. Let $\tau=\tau_{\lambda+\mu}$ . Then $\psi_{\tau,j}e\Omega_{\lambda,\mu}$ for all $j\in I_{\pi}$ , and in par-
ticular, $\Omega_{\lambda,\mu}\neq\{0\}$ .

PROOF. By the same argument in the proof of Lemma 5.3 we see
that highest weights of the K-types which appear in the decomposition
of $(\psi_{\tau,j})_{l}^{\sim}(i\in I_{\pi})$ are greater than or equal to $\lambda$ . Therefore, $S_{\lambda}^{\prime}$ vanishes
all $(\psi_{\tau_{1}j})_{i}^{\sim}$ (see [KW], Theorem 12.6). This means that $S_{\mu}^{\prime}(\psi_{\tau,j})\equiv 0$ for
all $i,$ $geI_{n}$ and thus $\psi_{\tau,j}\in\Omega_{\lambda,\mu}^{\prime}$ for all $jeL$ Q.E.D.

LEMMA 5.5. $S_{\mu}^{1}$ is injective on $\Omega_{\lambda,\mu}$ .
PROOF. This is clear from Lemma 4.5. Q.E.D.

THEOREM 5.6. Let $G=SU(n, 1)$ and suppose that a $\Delta_{k}^{+}$-dominant
integral form $\lambda$ satisfies $\eta_{\lambda}=\nu_{\lambda}=\rho$ and a $\Delta^{+}$-dominant integral form
$\mu$ does (AO), (A1) and (A2) respectively. Then $(z_{\sigma_{\lambda-\mu^{\nu}\lambda-\mu}}., \Omega_{\lambda.\mu})$ is an
irreducible unitary representation of $G$ , whose matrix coeffcients are
square-integrable on $G$ .

PROOF. We obtained in Lemma 5.1 that $(z_{\sigma_{\lambda-u},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ is a unitary
representation of $G$ , so we shall prove the irreducibility. Let $H$ be a
nonzero G-invariant, closed subspace of $\Omega_{\lambda,\mu}$ and let $f$ be a nonzero
element in $H$. Then by Lemma 5.5 there exists a point $g_{0}\in G$ for
which $S_{\mu}^{1}(f)(g_{0})\neq 0$ . Since $S_{\mu}^{1}$ is G-equivariant (see Proposition 3.2) and $H$

is G-invariant, by replacing $f$ with $f_{\sigma_{0}}$ , we may assume that $S_{\mu}^{1}(f)(e)\neq 0$ ,
that is,

$S_{\mu}^{1}(f)(e)=\sum_{i\in I_{\pi}}S_{\lambda}(f_{l}^{\sim})(e)\pi_{1l}(e)$

$=S_{\lambda}(f_{1}^{\sim})(e)$

$=\int_{K}\tau_{\lambda}(k)^{-1}f_{1}^{\sim}(k)dk\neq 0$ . (5.5)

Here we recall that $f$ can be written as $f=\sum a_{\tau,\dot{g}}\psi_{\tau,j}$ , where $\tau\in K_{\lambda,\mu}^{\wedge}$

(see Lemma 5.3); so the highest weight of $\tau$ is greater than or equal
to $x+\mu$ and thus, by the same argument in the proof of Lemma 5.3
highest weights of K-types which appear in the decomposition of $f_{1}^{\sim}$

are greater than or equal to $\lambda$ . Therefore, if we put $\tau_{0}=\tau_{\lambda+\mu}$ , we see
that

$\int_{K}\tau_{\lambda}(k)^{-1}(\psi_{\tau,j})_{1}^{\sim}(k)dk=0$ $(\tau\neq\tau_{0})$ .
Then (5.5) implies that $a_{\tau_{0},j_{0}}\neq 0$ for some $j_{0}eL$ .



448 TAKESHI KAWAZOE

On the other hand, it follows that

$\int_{K}\tau_{0_{\dot{g}_{0}j_{0}}}(k^{\prime})^{-}f(kk^{\prime})dk^{\prime}=\sum_{r,j}a_{r.j}\int_{K}\tau_{0_{\dot{g}_{0^{\dot{f}}0}}}(k^{\prime})^{-}\sum_{n}\tau_{nj}(k’)dk^{\prime}\psi_{r,n}(k)$

$=a_{\tau_{0},j_{0}}\psi_{\tau_{0}.j_{0}}(k)$ .
Here we recall that $a_{\tau_{0},\dot{g}_{0}}\neq 0$ and $f$ is in a closed, G-invariant subspace
$H$. Therefore, applying the proof of Lemma 5.2, we can deduce that
$\psi_{\tau_{0},\dot{g}_{0}}\in H$ and thus, $\psi_{\tau_{0},j}\in H$ for all $jeL$ by Lemma 5.2. If $H\neq\Omega_{\lambda,\mu}$ , by
replacing $H$ with the orthogonal complement $H^{\prime}$ of $H$ in the above
argument, we can also deduce that $\psi_{\tau_{0}.j}\in H$

’ for all $j\in L$ . This con-
tradicts the fact that $H\cap H^{\prime}=\{0\}$ ; so we see that $H=\Omega_{\lambda.\mu}$ and thus the
representation i8 irreducible.

Now we shall consider the linear functional $L$ on $\Omega_{\lambda,\mu}$ defined by

$ L(f)=\langle S_{\mu}^{1}(f)(e), e_{1}\rangle$

for $fe\Omega_{\lambda,\mu}$ . Then there exi8ts a $\phi$ in $\Omega_{\lambda,\mu}$ for which

$\langle S_{\mu}^{1}(f)(e), e_{1}\rangle=(f, \phi)$ ,

and thus, by Proposition 3.2, it follows that

$(\phi_{x}, \phi)=L(\phi_{x})=\langle S_{\mu}^{1}(\phi_{x})(e), e_{1}\rangle=\langle S_{\mu}^{1}(\phi)(x), e_{1}\rangle$ $(xeG)$ .
Therefore, the matrix coefficient $(\phi_{x}, \phi)$ belongs to $L^{2}(G)$ (see Theorem
4.6). Since the representation is irreducible and unitary, it follows from
Theorem 1 in [V], p. 435 that all matrix coefficients are square-integrable
on $G$ .

This completes the proof of the theorem. Q.E.D.

REMARK 5.7. If we start the argument with $\Delta^{+}‘$ instead of $\Delta^{+}$ , we
can obtain another class of the discrete series of $G$ .

\S 6. Examples.

We shall apply Theorem 5.6 to the cases of $SU(1,1)$ and $SU(2,1)$ ,
and check up on the representations $(\pi_{\sigma_{\lambda}-\mu^{\nu}\lambda-\mu}, \Omega_{\lambda,\mu})$ .

6.1. Let $SU(1,1)$ be the subgroup of $SL(2, C)$ which leaves in-
variant the hermitian form $-|z_{1}|^{2}+|z_{2}|^{2}$ . Then the discrete 8eries of $G$

is originally realized on the $L^{2}$ weighted Bergman space on the unit disc
$D=\{zeC;|z|<1\}$ (cf. [Su], p. 237); actually, let $m\in*Z$ and $|m|\geqq 1$ , then
for $m\geqq 1$ the Bergman space $A_{2,m-1}(D)$ is defined by
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$A_{2,m-1}(D)=\{F:D\rightarrow C;F$ is holomorphic on $D$ and

$||F||_{2,m-1}=[\int_{D}|F(z)|^{2}(1-|z|^{2})^{2m-2}dz]^{1/2}<\infty\}$ (6.1)

and for $m\leqq-1,$ $A_{2,m-q}(D)$ is made up of conjugate holomorphic functions
on $D$ with finite norm, where we replace $m$ by $|m|$ . Let $T.(g)(geG)$

denote the operator on $A_{2,m-1}(D)$ defined by

$T_{m}(g)F(z)=J(g^{-1}, z)^{-2m}F(g^{-1}\cdot z)$ $(m\geqq 1)$ ,
(6.2)

$T_{m}(g)F(z)=[conjJ(g^{-1}, z)]^{-2|m|}F(g^{-1}\cdot z)$ $(m\leqq-1)$ ,

where $J(g, z)=\beta^{-}z+\alpha^{-}$ and

$g\cdot z=\frac{\alpha z+\beta}{\beta^{-}z+\alpha^{-}}$ for $g=\left\{\begin{array}{ll}\alpha & \beta\\\beta^{-} & \alpha^{-}\end{array}\right\}$ and $z\in D.$ (6.3)

Then the representations $(T_{m}, A_{2,m-1}(D))$ ($m\in*Z$ and $|m|\geqq 1$ ) of $G$ are
irreducible and unitary. They are called the holomorphic and antiholo-
morphic discrete series, respectively for $m\geqq 1$ and for $m\leqq-1$ ; they
exhaust the whole discrete series of $G$ (cf. [Su], p. 290).

Let $\mu=*n\alpha_{0}(n\in N)$ and $V_{n}$ the vector space of all homogeneous poly-
nomials of degree $n$ in variables $z_{1}$ and $z_{2}$ , and let $\pi_{n}(g)(g\in G)$ denote
the operator on $V_{n}$ defined by

$z_{n}(g)\phi(z)=\phi(z\cdot g)$ , (6.4)

where $z\cdot g=(az_{1}+cz_{2}, bz_{1}+dz_{2})$ for $g=\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}$ and $z=(z_{1}, z_{2})$ . Then $(\pi_{n}, V_{n})$

$(n\in N)$ is a finite dimensional representation of $G$ with lowest weight
$-\mu;d_{\pi_{n}}=\dim V_{n}=n+1$ and $\{v_{j}^{\sim}=[(j-1) ! (n+1-j)]]^{-1/2}z_{1}^{j-1}z_{2}^{n+1-j};1\leqq j\leqq$

$n+1\}$ is the set of normalized weight vectors with respect to the compact
Cartan subgroup $K=SO(2)$ of $G$ (see \S 3 and [Su], p. 326). Then we see
that $\mu$ satisfies the conditions (AO), (A1) and (A2) in Theorem 5.6.

By comparing the infinitesimal characters and the lowest K-types,
we see that the representation $(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})(\lambda=\rho, \mu=\neq n\alpha_{0})$ constructed
in Theorem 5.6 is equivalent to the antiholomorphic discrete series
$(T_{m}, A_{2,m-1}(D))$ for $m=-\#(n+1)$ . Therefore, there exists an intertwin-
ing operator between $\Omega_{\lambda.\mu}$ and $A_{2,m-1}(D)$ . In fact, we can obtain the
intertwining operator by applying the Fourier transform associated with
a discrete series, which was investigated in [K] and [K2]; for $f\in L^{2}(G)$

the Fourier transform $F_{m}(f)$ associated with $T_{m}$ is defined by
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$F_{n}(f)(z)=\int_{0}f(g)T_{m}(g^{-1})1(z)dg$ $(z\in D)$ , (6.5)

where 1 is the constant function on $D$ taking the value 1. Some basic
properties of $F_{m}$ are summarized as follows. Let $\psi$ be the normalized
matrix coefficient of $T_{n}$ corresponding to the lowest K-type of $T_{m}$ . Then
$F_{m}(f)=F_{m}(\psi*f)\in A_{2,m-1}(D)$ and $F_{m}:\psi*L^{2}(G)\rightarrow A_{2,m-1}(D)$ is bijective and
norm preserving (see [K], Theorem 5.2). On the other hand, since
dim $\tau_{\lambda}=1$ , it follows from Theorem 4.6 that $S_{\mu}^{1}(f)\in L^{2}(G)$ for $f\in\Omega_{\lambda,\mu}$ .
Therefore, we can obtain a composition map

$F\circ S_{\mu}^{1}$ : $\Omega_{\lambda,\mu}\rightarrow A_{2,,n-1}(D)$ , (6.6)

and it is G-equivariant (see Proposition 3.2 and (6.5)).

THEOREM 6.1. Let $x=\rho,$ $\mu=\# n\alpha_{0}$ and $m=-(n+1)/2(n\geqq 1)$ . Then
the G-equivariant map $F_{m}\circ S_{\mu}^{1}$ is an intertwining operator between
$(z_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ and $(T_{m}, A_{2,m-1}(D))$ ; that is, it is bijective and

$c2^{-n}||f\Vert_{\lambda,\mu}=n||F_{m}\circ S_{\mu}^{1}(f)\Vert_{2,n-1}$ for $f\in\Omega_{\lambda,\mu}$ ,

where $c$ is a constant which does not depend on $f$ and $n$ .
Before giving the proof we note the following

LEMMA 6.2. Let $z=z_{n}$ and $C_{j}^{n}=\int_{K}z_{1j}(k_{\theta})e^{-in\theta/2}d\theta(1\leqq j\leqq n+1)$ . Then

$\sum_{i=1}^{n+1}|C_{\dot{f}}^{n}|^{2}=2^{-n}$ .
PROOF. We note that $u$ and $Ad(u)$ (see \S 2) are respectively given

by

$u=2^{-1/2}\left\{\begin{array}{ll}1 & 1\\-1 & 1\end{array}\right\}$

and

$Ad(u)k_{\theta}=\left\{\begin{array}{ll}cosg\theta & isin\neq\theta\\ ising\theta & cos*\theta\end{array}\right\}$

for $k_{\theta}=diag(e^{i\theta/2}, e^{-i\theta/2})$ . Therefore, by substituting

$\pi_{ij}(k_{\theta})=(\pi(k_{\theta})v_{j}, v_{i})=(\pi(Ad(u)k_{\theta})v_{j}^{\sim}, v_{i}^{\sim})$ ,

where $v_{\dot{f}}^{\sim}=[(j-1)!(n+1-j)[]^{-1/2}z_{1}^{j-1}z_{2}^{n+1-j}(1\leqq j\leqq n+1)$ , we can obtain the
desired result from combinatorial calculation. Q.E.D.
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PROOF OF THEOREM 6.1. First we shall prove the equation of the
norm. Since dim $\tau_{\lambda}=1$ , it follows from the proof of Theorem 5.6 that
for $f\in\Omega_{\lambda,\mu}S_{\mu}^{1}(f)(x)=\langle S_{\mu}^{1}(f)(x), e_{1}\rangle(x\in G)$ is a matrix coefficient of the
discrete series $T_{m}(m=-\#(n+1))$ ; so it is a linear combination of the
normalized matrix coefficients of $T_{m}$ (see (3.2) in [Ka]). In particular,
it follows from Lemma 3.1 and Theorem 5.2 in [Ka] that

$n\Vert F_{m}\circ S_{\mu}^{1}(f)\Vert_{2,m-1}=c\Vert\psi*S_{\mu}^{1}(f)\Vert_{L^{2}(G)}$

$=c\Vert E_{m}(S_{\mu}^{1}(f))\Vert_{L^{2}(G)}$ ,

where $E_{m}(f)(x)=\int_{K}e^{tm\theta/2}f(k_{\theta}x)d\theta(x\in G)$ . Here we note that

$ E_{m}(S_{\mu}^{1}(f))(x)=\int_{K}e^{im\theta/2}\sum_{ieJ_{\pi}}S_{\lambda}(f_{i}^{\sim})(k_{\theta}x)\pi_{1i}(k_{\theta}x)d\theta$

$=\int_{K}e^{-in\theta/2}\sum_{ieI_{\pi}}S_{\lambda}(f_{i}^{\sim})(x)\sum_{\dot{g}eI_{\pi}}\pi_{1g}\cdot(k_{\theta})z_{ji}(x)d\theta$

$=\sum_{jeI_{\pi}}C_{j}^{n}S_{\mu}^{j}(f)(x)$ .
Therefore, as in the proof of Theorem 4.6 we can deduce that

$\Vert E_{m}(S_{\mu}^{1}(f))\Vert_{L^{2}(o)}=c_{\pi}\sum|C_{j}^{n}|^{2}\sum\Vert S_{\mu}^{j}(f)||_{L^{2}(G)}$

$=c_{\pi}2^{-n}\Vert f||_{\lambda,\mu}$ (by Lemma 6.2).

This is nothing but the desired equation. Especially, $F_{m}\circ S_{\mu}^{1}$ is injective and
the image is closed in $A_{2,m-1}(D)$ . Since the map $F_{m^{O}}S_{\mu}^{1}$ is G-equivariant,
the image must be G-invariant. Therefore, noting the irreducibility of
$T_{r}$ we see that the ima$ge$ coincides with $A_{2,m-1}(D)$ , so the surjectivity
of $F_{m}\circ S_{\mu}^{1}$ is obtained.

This completes the proof of the theorem. Q.E.D.

REMARK 6.3. (1) The representation stated in Remark 5.7 corre-
sponds to the holomorphic discrete series and Theorem 6.1 holds with
$m=\not\in(n+1)\geqq 1$ .

(2) When $\mu=0(n=0, m=\pm\neq)$ , Theorem 6.1 also holds if we replace
$A_{2,m-1}(D)$ by the Hardy space $H^{2}(D)$ for $m=*$ and the conjugation for
$ m=-\xi$ . In this case, $F_{\pm 1/2}$ are defined by using the limits of discrete
series $T_{\pm 1/2}$ (cf. [Su], Chap. V, \S 2). Especially, $S_{\mu}^{1}$ , and $S_{\mu}^{1}$ coincide with
$S_{\rho}$ and $S_{\rho}$

’ respectively; so this case is nothing but the classical theory
of the Szego operator (cf. [Ru] and [Ra], p. 178).

(3) Let $G=SU(n, 1)$ and suppose that the lowest K-type of the
discrete series $(\pi_{\sigma_{\lambda}-\mu^{\nu}\lambda-\mu}, \Omega_{\lambda,\mu})$ is of one dimensional. Then it is possible
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(6.7)

to generalize Theorem 6.1 as a relation between $\Omega_{\lambda,\mu}$ and the $L^{2}$ weighted
Bergman space on $G/K$. Actually, by using the Fourier transform as-
sociated with a discrete series (see [K2]), we can obtain the generalization
by the same argument as above.

6.2. Let $G=SU(2,1)$ be the subgroup of $SL(3, C)$ leaving the her-
mitian form $|z_{\iota}|^{2}+|z_{2}|^{2}-|z_{3}|^{2}$ invariant; $K=S(U(2)\times U(1))$ and

$A=\{a_{t}=\left\{\begin{array}{lll}cht & & sht\\sht & 1 & cht\end{array}\right\}$ ; $t\in R\}$ .

Then $\mathfrak{g}_{c}=\S I(3, C)=\{X\in M_{33}(C);tr(X)=0\}$ and

$l_{c}=\{T_{a,b}=diag(a, b, c) ; a+b+c=0, a, b, c\in C\}$ . (6.8)

Let $\Delta_{0}^{+}$ be the positive root system of $(\mathfrak{g}_{c}, t_{c})$ requiring that

$\alpha(T_{1,0})>0$ for $\alpha e\Delta_{0}^{+}$ (6.9)

and let $\alpha_{1},$ $\alpha_{2}$ be the simple roots in $\Delta_{0}^{+}$ . Let $\Lambda_{1}$ and $\Lambda_{2}$ be the basic
highest weights defined by

$\Lambda_{1}=\frac{2\alpha_{1}+\alpha_{2}}{3}$ , $\Lambda_{2}=\frac{\alpha_{1}+2\alpha_{2}}{3}$ . (6.10)

Then $2\langle\Lambda_{i}, \alpha_{j}\rangle/\langle\alpha_{j}, \alpha_{j}\rangle=\delta_{ij}(1\leqq i, j\leqq 2);\Lambda_{1}$ and $\Lambda_{2}$ span $\iota_{\theta}*$ .
As obtained in \S 7 in [W] each element in $G^{\wedge}$ , the set of all equiva-

lence classes of irreducible unitary representations of $G$ , is parametrized
as $\pi_{A}$ , where $\Lambda=k_{1}\Lambda_{1}+k_{2}\Lambda_{2}(k_{1}, k_{2}eC)$ . Actually, the discrete series and
the limit of discrete series are parametrized by a pair of integer8 $k_{1}$

and $k_{2}$ satisfying the following conditions (see [W], pp. 183-184);

the holomorphic discrete series (HD): $k_{1}+k_{2}<-2,$ $k_{1}<0,$ $k_{2}\geqq 0$

the antiholomorphic discrete series (AHD): $k_{1}+k_{2}<-2,$ $k_{2}<0,$ $k_{1}\geqq 0$

the nonholomorphic discrete series (NHD): $k_{1}+k_{2}<-2,$ $k_{1}<-1,$ $k_{2}<-1$

the limits of discrete series (LD1): $k_{1}+k_{2}=-2,$ $k_{1}>-1$

the limits of discrete series (LD2): $k_{1}+k_{2}=-2,$ $k_{2}>-1$ .
Then $G^{\wedge}$ consists of the representations listed above combined with the
irreducible unitary principal series, the extra representations and the
trivial representation.

Now we shall check up on the representations $(\pi_{\sigma_{\lambda-\mu}.\nu_{\lambda-\mu}}, \Omega_{\lambda,\mu})$ obtained
in Theorem 5.6. First we replace the positive root system $\Delta_{0}^{+}$ with
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$\Delta^{+}=\{-\alpha_{1}, \alpha_{2}, -\alpha_{3}\}=s_{1}s_{2}\Delta_{0}^{+}$ , (6.11)

where $s_{i}$ is the reflection in $\iota_{c}*$ with respect to $a_{t}(1\leqq i\leqq 2)$ . Then
$a_{0}=-\alpha_{3}$ is the positive noncompact simple root and

$u_{\alpha}=\exp(\neq\pi(E_{\alpha}-E_{-\alpha}))=\sqrt{}\overline{2}^{-1}\left\{\begin{array}{lll}1 & & -1\\1 & \sqrt{2} & 1\end{array}\right\}$ (6.12)

(see \S 2). Therefore, the Cayley transform $Ad(u_{\alpha_{0}})$ carries $l_{c}$ to

$\mathfrak{h}_{c}=\{H_{u,v}=[^{-u/2}v/2u$

Actually,

$-u/2v/2];u,$ $veC$) $\}$ . (6.13)

$Ad(u_{a_{0}})(T_{a,b})=H_{u,v}$ ; $u=b,$ $v=2a+b$ , (6.14)

and if we put $\beta_{i}=Ad(u_{\alpha_{0}})a_{i}(1\leqq i\leqq 3)$ , we see that

$\beta_{1}(H_{u,v})=-3u+v$ ,
$\beta_{2}(H_{u.v})=3u+v$ , (6.15)

$\beta_{3}(H_{u,v})=2v$ .
Therefore, the positive roots system $\Psi^{+}$ of $(\mathfrak{g}_{c}, \mathfrak{h}_{c})$ defined in \S 2 is given
by

$\Psi^{+}=\{\beta_{1}, \beta_{2}, \beta_{3}\}$ . (6.16)

We note that the representation $z_{A}$ in [W] corresponds to $\pi_{-A-\delta_{k}+\delta_{n}}$ in
our notation, and then, $x=-\Lambda$ (see \S 2.3). Therefore, the limit of dis-
crete series $z_{A}(\nu_{\lambda}=\rho)$ in \S 2.3 corresponds to (LD1) in [W] because $x=$

$-(k_{1}\Lambda_{1}+k_{2}\Lambda_{2})$ is dominant with respect to $\Delta_{k}^{+}=\{-\alpha_{1}\}$ , so $k_{1}\geqq 0$ , and $\nu_{\lambda}=\rho$

implies that $k_{1}+k_{2}=-2$ .
Let $z=z_{\mu}$ be a finite dimensional representation of $G$ with lowest

weight $-\mu\in\iota_{\epsilon}*$ with respect to $\Delta^{+}$ . In order to apply Theorem 5.6 to
$SU(2,1)$ we have to determine the set of $\mu$ satisfying the conditions:

(AO) $x-\mu$ is $\Delta_{k}^{+}$-dominant,
(A1) $\langle\mu, a_{0}\rangle>0$ , (6.17)
(A2) $i_{0}=d_{n_{\mu}}$ .

We recall that (A2) implies that $\mu_{\iota_{0}}=-\mu\circ Ad(u_{\sigma_{0}})^{-1}\in \mathfrak{h}_{\iota}^{*}$ is the highest
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weight of $\pi_{\mu}$ with respect to $\Psi^{+}$ (see \S 3). Then, by the classification
of finite dimensional representations of @I$(3, C)$ (cf. [AS], p. 1231), we see
that $\mu$ satisfies (A2) if and only if

$\mu=-m\Lambda_{1}$ $(m=0,1,2, \cdots)$ . (6.18)

Suppose that $\mu$ is of this form. Then $\mu$ satisfies (A1) for $m>0$ and
(AO) for $m\leqq k_{1}$ when $x=-k_{1}\Lambda_{1}-k_{2}\Lambda_{2},$ $k_{1}+k_{2}=-2$ and $k_{1}\geqq 0$ ; so the set
of $\mu$ satisfying (6.17) is given by

$\{\mu=-m\Lambda_{1};1\leqq m\leqq k_{1}\}$ (6.19)

for the above $\lambda$ . Therefore, we conclude that the representations
$(\pi_{\sigma_{\lambda-\mu},\nu_{\lambda-\mu}}, \Omega_{\lambda.\mu})$ correspond to the antiholomorphic discrete series with
lowest K-type $x+\mu$ ( $\pi_{1+\mu}$ in [W]), and they exhaust the whole (AHD) in
the list.

Similarly, if we start the argument with $\Delta^{+}=s_{2}s_{1}\Delta_{0}^{+}$ instead of
$s_{1}s_{2}\Delta_{0}^{+}$ , we can obtain the holomorphic discrete series (HD) in the list
(see Remark 5.7). However, we cannot obtain the nonholomorphic dis-
crete series (NHD) in our method, because $\mu$ has to satisfy the condition
(6.19).
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