# On a Global Realization of a Discrete Series for $\operatorname{SU}(\boldsymbol{n}, 1)$ as Applications of Szegö Operator and Limits of Discrete Series 

Takeshi KAWAZOE

Keio University

## § 1. Introduction.

In [KW] Knapp and Wallach gave an explicit imbedding of the discrete series of a connected semisimple Lie group $G$ with finite center as a subrepresentation in the nonunitary principal series. However, it was in an infinitesimally equivalent fashion. Recently, when real rank of $G$ is 1, Blank [B] gave an explicit projection operator that transfers a reducible unitary principal series onto a limit of discrete series in a global level. In this paper, applying Zuckerman's technique (see [Z]), we shall shift Blank's result and construct a representation of $G$ which is infinitesimally equivalent to a discrete series. Then the unitarity of the representation corresponds to the square-integrability on $G$ of the image of the Szegö operator, which was conjectured in [KW]. When $G=S U(n, 1)$, we shall obtain the square-integrability by applying the complex structure of the hermitian symmetric space $G / K$, and then we get a global construction of the discrete series.

This method is completely different from ordinary one, for it starts with a limit of discrete series. This implies that the representations constructed by our method must be attached to a limit of discrete series, and thus they are unfortunately a part of the discrete series of $G$ (see §6). Square-integrability of the image of the Szegö operator is still an unsettled problem except for $G=S U(n, 1)$, however, all others obtained in this paper are valid for all real rank 1 semisimple Lie groups.

Let $G$ be a connected semisimple Lie group with finite center and fix a maximal compact subgroup $K$ of $G$. We assume that rank $G=\operatorname{rank} K$, that is, $G$ has a compact Cartan subgroup $T \subset K$. Then by Harish-Chandra [HC] this condition is equivalent with that $G$ has a discrete series. Let t be the Lie algebra of $T$ and $W_{K}$ the Weyl group of $K$. Then the set

[^0]of discrete series is in bijective correspondence with the set of $W_{K}$-orbits of non-singular integral forms on $t$. We denote by $\pi_{1}$ the discrete series corresponding to a nonsingular integral form $\Lambda$ on t .

Let $G=A N K$ be an Iwasawa decomposition of $G$ and $M$ the centralizer of $A$ in $K$; let $\mathrm{t}_{\mathrm{c}}{ }^{*}$ and $\mathfrak{a}_{\mathrm{o}}{ }^{*}$ be the dual spaces of the complexifications of t and the Lie algebra $\mathfrak{a}$ of $A$ respectively. Let $\left(\tau_{\lambda}, V_{\lambda}\right)\left(\lambda \in \mathfrak{t}_{c}{ }^{*}\right)$ be the lowest $K$-type of $\pi_{\Lambda}$ and ( $\sigma_{\lambda}, H_{\lambda}$ ) the representation of $M$ given by restricting $\tau_{\lambda}(M)$ to the $M$-cyclic subspace $H_{\lambda}$ generated by the highest weight vector of $V_{2}$. Let

$$
\begin{align*}
& C^{\infty}\left(K, \sigma_{\lambda}\right)=\left\{f \in C^{\infty}\left(K, H_{\lambda}\right) ; f(m k)=\sigma_{\lambda}(m) f(k), m \in M, k \in K\right\},  \tag{1.1}\\
& C^{\infty}\left(G, \tau_{\lambda}\right)=\left\{f \in C^{\infty}\left(G, V_{\lambda}\right) ; f(k x)=\tau_{\lambda}(k) f(x), k \in K, x \in G\right\} .
\end{align*}
$$

Then the discrete series $\pi_{A}$ is realized on the $L^{2}$ kernel of the Schmid operator $D$ on $C^{\infty}\left(G, \tau_{2}\right)$ (see [Sc] and $\S 2$ in [KW]) and the (non) unitary principal series $\pi_{\sigma_{2}, \nu}\left(\nu \in \mathfrak{a}_{\mathrm{c}}{ }^{*}\right)$ is realized on the space $C^{\infty}\left(K, \sigma_{2}\right)$ as the compact picture (see $\S 2.1$ ). According to the induced picture of $\pi_{\sigma_{2}, \text {, }}$, each function $f \in C^{\infty}\left(K, \sigma_{\lambda}\right)$ can be extended to the function $f$ on $G$ by defining

$$
\begin{equation*}
f(a n k)=e^{\nu(10 g(a))} f(k) \quad(a \in A, n \in N \text { and } k \in K) \tag{1.2}
\end{equation*}
$$

and this extension belongs to $C^{\infty}\left(G, \sigma_{\lambda} \times e^{\nu}\right)$. Then the Szegö map

$$
\begin{equation*}
S: C^{\infty}\left(K, \sigma_{\lambda}\right) \longrightarrow C^{\infty}\left(G, \tau_{\lambda}\right) \tag{1.3}
\end{equation*}
$$

is defined by

$$
\begin{equation*}
S(f)(x)=\int_{K} \tau_{\lambda}(k)^{-1} f(k x) d k . \tag{1.4}
\end{equation*}
$$

Knapp and Wallach in [KW] notice that the Szegö map $S$ gives a relation between $\pi_{A}$ and $\pi_{\lambda_{\lambda},}$; actually, for $\nu=\nu_{\lambda} \in \mathfrak{a}_{c}{ }^{*}$ defined by $\lambda$ (see (2.15 a) and ( 2.15 b )) $S$ carries $C^{\circ}\left(K, \sigma_{k}\right)$ into the kernel of the Schmid operator $D$ on $C^{\infty}\left(G, \tau_{\lambda}\right)$ and moreover, $\pi_{\rho_{1,2}}$ onto $\pi_{1}$ in an infinitesimally equivariant fashion. Here "infinitesimally" means that the correspondence holds between $K$-finite vectors of the domain and the range of the mapping. Therefore, as conjectured in $\S 11$ in [KW], it is worth realizing the discrete series $\pi_{A}$ on the image of $S$ without the $K$-finiteness assumption.

Now we assume that $G$ has a simply connected complexification $G_{0}$ and that $G$ has real rank one. Then the above result can be extended to a singular integral form $\Lambda$ such that $\left\langle\Lambda, \alpha_{0}\right\rangle=0$ for a noncompact
simple root $\alpha_{0}$ and $\langle\Lambda, \beta\rangle \neq 0$ for all other positive roots $\beta$. In this case we have two choices of the system of positive roots, we say $\Delta^{+}$and $\Delta^{+\prime}=\Delta^{+}-\left\{\alpha_{0}\right\} \cup\left\{-\alpha_{0}\right\}$. Then we can define Szegö maps $S$ and $S^{\prime}$ corresponding to $\Delta^{+}$and $\Delta^{+\prime}$ respectively (see [KW], §12). Since $\nu_{\lambda}$ equals $\rho$, half the sum of the positive restricted roots with multiplicities, $\pi_{A}$ corresponds to a limit of discrete series and $\pi_{\sigma_{\lambda}, \rho}$ to a reducible unitary principal series. In particular, $\pi_{\sigma_{\lambda}, \rho}$ is infinitesimally equivalent with the direct sum of the $K$-finite images of $S$ and $S^{\prime}$, which give two irreducible constituents of the reducible principal series (see [KW], Theorem 12.6).

The boundary value map

$$
\begin{equation*}
L: \text { the image of } S \longrightarrow C^{\infty}\left(K, \sigma_{\lambda}\right) \tag{1.5}
\end{equation*}
$$

is defined as follows (see §2.2):

$$
\begin{equation*}
L(S(f))(k)=\lim _{a \rightarrow \infty} E\left(e^{\rho(\log (a))}\left(\pi_{\sigma_{\lambda}, \rho}\left(w^{-1} k\right) f\right)(a)\right) \quad(k \in K), \tag{1.6}
\end{equation*}
$$

where $E$ denotes the orthogonal projection from $V_{\lambda}$ onto $H_{\lambda}$ and $w$ a representative of the nontrivial coset of the Weyl group $W$ of $A$, which has order 2. Then in [B] Blank shows that in a $G$-equivariant fashion the composition map

$$
\begin{equation*}
L \circ S: C^{\infty}\left(K, \sigma_{\lambda}\right) \longrightarrow C^{\infty}\left(K, \sigma_{\lambda}\right) \tag{1.7}
\end{equation*}
$$

is a projection operator and, as shown in [KS], it consists of a linear combination of the identity operator and a principal value operator (see [B] and §2.3). In his method the $K$-finiteness assumption does not required. This means that, in a global fashion, the limit of discrete series $\pi_{A}\left(\nu_{\lambda}=\rho\right)$ is realized on the image of $L \circ S$ equipped with the $L^{2}$-norm on $K$.

We retain all the assumptions on $G$. Our aim of this paper is to give a global, not infinitesimal, realization of a discrete series. As mentioned above, when $\pi_{A}$ is a limit of discrete series ( $\nu_{\lambda}=\rho$ ), the Szegö $\operatorname{map} S: C^{\infty}\left(K, \sigma_{\lambda}\right) \rightarrow C^{\infty}\left(G, \tau_{\lambda}\right)$ gives a global realization of $\pi_{\lambda}$ by taking the boundary value. Therefore, if we can shift the realization of the limit of discrete series $\pi_{A}$ to a discrete series, we can construct the discrete series in a global fashion; therefore, the discrete series we shall treat below must be attached to a limit of discrete series. In order to shift the realization of $\pi_{A}$, we shall apply Zuckerman's technique introduced in [Z], roughly speaking, we shall form a suitable projection of tensor products of $\pi_{A}$ and a finite dimensional representation of $G$.

Let $\mu$ be a dominant integral form on $t$ and let $(\pi, U)$ be a finite
dimensional representation of $G$ with lowest weight $-\mu$. Suppose that $\pi$ satisfies some conditions related with the order of weights (see §3 and Theorem 4.6). Then a discrete series $\pi_{\Lambda+\mu}$ is realized as a subrepresentation in the nonunitary principal series:

$$
\begin{equation*}
\pi_{\Lambda+\mu} \subset\left(\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, C^{\infty}\left(K, \sigma_{\lambda-\mu}\right)\right) \tag{1.8}
\end{equation*}
$$

Actually, first we take the tensor product of $\pi_{\sigma_{\lambda-\mu}, \nu_{2-\mu}}$ and $\pi$, and then define a map

$$
\begin{equation*}
C^{\infty}\left(K, \sigma_{\lambda-\mu}\right) \longrightarrow C^{\infty}\left(G, \sigma_{\lambda} \times e^{\rho} \times \beta\right), \tag{1.9}
\end{equation*}
$$

where $\beta$ is the restriction of $\pi$ to MAN (see (3.1)); next we extract a component of $C^{\infty}\left(G, \sigma_{\lambda} \times e^{\rho} \times \beta\right)$, which is contained in $C^{\infty}\left(G, \sigma_{2} \times e^{\rho}\right) \cong$ $C^{\infty}\left(K, \sigma_{\lambda}\right)$, and we apply the Szegö maps $S$ and $S^{\prime}$ on the component (see (3.3)). Combining these proceedings, we can define the $G$-equivariant operators

$$
\begin{equation*}
S_{\mu} \text { and } S_{\mu}^{\prime}: C^{\infty}\left(K, \sigma_{\lambda-\mu}\right) \longrightarrow C^{\infty}\left(G, V_{\lambda}\right) \tag{1.10}
\end{equation*}
$$

(see Proposition 3.2). Let $\Omega_{\lambda, \mu}$ be the kernel of $S_{\mu}^{\prime}$ on $C^{\infty}\left(K, \sigma_{\lambda-\mu}\right)$. Then $\Omega_{\lambda, \mu}$ is nontrivial, $G$-invariant and moreover, $S_{\mu}$ is injective on $\Omega_{\lambda, \mu}$ (see Lemmas 4.5 and 5.4). In their proofs we use the fact that the limit of discrete series $\pi_{A}$ is realized in a global fashion. When $G / K$ is hermitian; $G=S U(n, 1)$, we see that $S_{\mu}\left(\Omega_{\lambda, \mu}\right)$ is contained in $L^{2}\left(G, V_{\lambda}\right)$ (see Theorem 4.6). Therefore, inducing the $L^{2}$ norm of $\Omega_{\lambda, \mu}$ from the one of the image $S_{\mu}\left(\Omega_{\lambda, \mu}\right)$, we can obtain a unitary representation ( $\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, \Omega_{\lambda, \mu}$ ). Finally, in Theorem 5.6 we show that the representation is irreducible and matrix coefficients are square-integrable on $G$, so ( $\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, \Omega_{\lambda, \mu}$ ) is a discrete series of $G=S U(n, 1)$. This completes a global realization of a discrete series started with a limit of discrete series.

## §2. Notation and preliminaries.

Let $G$ be a connected semisimple Lie group with finite center and $K$ a maximal compact subgroup of $G$. Throughout this paper we assume that $\operatorname{rank} G=\operatorname{rank} K$, that $G$ has a simply connected complexification $G_{c}$, and that real rank $G=1$.

Let $g$ be the Lie algebra of $G$. For a subalgebra $\mathfrak{u}$ of $g$ we denote the complexification and its dual space by $\mathfrak{u}_{c}$ and $\mathfrak{u}_{c}{ }^{*}$ respectively. Let $\theta$ denote the Cartan involution of $g$ determined by $K$ and $g=\mathfrak{p}+\mathfrak{p}$ the corresponding Cartan decomposition of $g$. Let $t \subset f$ be a compact Cartan subalgebra of $\mathfrak{g}, \Delta$ the root system of $\left(g_{c}, t_{c}\right)$ and $\Delta_{n}$ (resp. $\Delta_{k}$ ) the set
of noncompact (resp. compact) roots of $\Delta$. Root vectors $E_{\alpha}(\alpha \in \Delta)$ can be selected in such a way that $B\left(E_{\alpha}, E_{-\alpha}\right)=2\langle\alpha, \alpha\rangle^{-1}$ and $\theta\left(E_{\alpha}\right)^{-}=-E_{-\alpha}$, where bar denotes conjugation of $g_{c}$ with respect to $g$ and $B$ is the Killing form on $g_{c}$. Then $\alpha\left(H_{\alpha}\right)=2$ for $H_{\alpha}=\left[E_{\alpha}, E_{-\alpha}\right]$ (cf. [He], p. 155-156). We fix a noncompact simple root, say $\alpha_{0}$, and let $\Delta^{+}$be the set of positive roots of $\Delta$ so that $\alpha_{0}$ is positive. Put $\Delta_{n}^{+}=\Delta_{n} \cap \Delta^{+}$and $\Delta_{k}^{+}=\Delta_{k} \cap \Delta^{+}$. Then $\mathfrak{a}=\boldsymbol{R}\left(E_{\alpha_{0}}+E_{-\alpha_{0}}\right)$ is a maximal abelian subspace of $\mathfrak{p}$. Let $\mathfrak{G}^{-}$denote a Cartan subalgebra of the centralizer $\mathfrak{m}$ of $\mathfrak{a}$ in $\mathfrak{f}$. Then $\mathfrak{t}=\mathfrak{G}^{-}+i \boldsymbol{R} H_{\alpha_{0}}$ and $\mathfrak{G}=\mathfrak{G}^{-}+\mathfrak{a}$ is a noncompact Cartan subalgebra of $\mathfrak{g}$. Let $u=$ $\exp \frac{1}{4} \pi\left(E_{\alpha_{0}}-E_{-\alpha_{0}}\right)$. Then the standard Cayley transform relative to $\alpha_{0}$ is given by $\operatorname{Ad}(u)$. It carries $\mathfrak{t}_{c}$ to $\mathfrak{G}_{c}$; in fact, $\operatorname{Ad}(u)$ acts trivially on $\mathfrak{b}_{c}{ }^{-}$ and $\operatorname{Ad}(u) H_{\alpha_{0}}=-\left(E_{\alpha_{0}}+E_{-\alpha_{0}}\right)$.

Let $\Psi$ be the root system of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$ and $\Psi_{m} \subset \Psi$ the root system of $\left(\mathfrak{m}_{c}, \mathfrak{h}_{c}^{-}\right)$. Let $\Psi^{+}$be the set of positive roots of $\Psi$ obtained by requiring that $\mathfrak{a}$ comes before $\mathfrak{G}^{-}$, and let $\Psi_{m}^{+}=\Psi_{m} \cap \Psi^{+}$. Then $\Psi^{+}=\left\{\gamma \circ \operatorname{Ad}(u)^{-1}\right.$; $\gamma \in S \subset \Delta\}$, where $S=\Psi_{m}{ }^{+} \cup\left\{\gamma \in \Delta ;\left\langle\gamma, \alpha_{0}\right\rangle<0\right\}$ (cf. [KW], Lemma 8.5). Let $\Sigma$ denote the set of restricted roots of ( $g_{c}, \mathfrak{a}_{c}$ ) and let $\Sigma^{+}$be the set of positive restricted roots obtained by requiring that $E_{\alpha_{0}}+E_{\alpha_{0}}$ is contained in the positive Weyl chamber $\mathfrak{a}^{+}$of $a$. Then the orderings defined by $\Delta^{+}, \Psi^{+}$and $\Sigma^{+}$satisfy compatibility. Let $\delta, \delta_{n}$ and $\delta_{k}$ be half the sum of the roots in $\Delta^{+}, \Delta_{n}{ }^{+}$and ${\Delta_{k}}^{+}$respectively, and let $\rho$ be half the sum of the roots in $\Sigma^{+}$with multiplicities.

Let $A$ and $N$ be the analytic subgroups of $G$ corresponding to $a$ and $\mathfrak{n}$ respectively, where $\mathfrak{n}$ is the sum of positive restricted root spaces. Then an Iwasawa decomposition of $G$ is given by $G=A N K$. Let $M$ and $M^{\prime}$ be the centralizer and normalizer of $A$ in $K$ respectively and let $W=M^{\prime} / M$. $W$ has order 2 ; let $w$ be a representative of the nontrivial coset. Then $G=M A N \cup M A N W M A N$, and if we put $V=\theta(N)$, we see that $V=w N w^{-1}$ and $M A N \cap V=\{1\}$. Let "exp" denote the exponential mapping of $a$ onto $A$ and "log" the inverse mapping. Then each element $g$ in $G$ and in the open dense subset $M A N V$ of $G$ respectively can be written as:

$$
\begin{align*}
g & =\exp H(g) \cdot n(g) \cdot k(g) \quad(H(g) \in \mathfrak{a}, n(g) \in N, k(g) \in K),  \tag{2.1}\\
& =m(g) \cdot a(g) \cdot n \cdot v(g) \quad(m(g) \in M, a(g) \in A, n \in N, v(g) \in V) .
\end{align*}
$$

We shall normalize Haar measures $d k$ on $K, d m$ on $M$ and $d v$ on $V$ so that $d k$ and $d m$ have total mass 1 and $d v$ satisfies $\int_{V} e^{2 \rho H(v)} d v=1$. Let $d a$ denote the Haar measure on $A$ that corresponds to a fixed Euclidean structure on $g$ under the exponential mapping. Then Haar measures $d n$ on
$N$ and $d g$ on $G$ respectively can be normalized by the integral formulas:

$$
\int_{N} f(n) d n=\int_{V} f\left(w v w^{-1}\right) d v
$$

and

$$
\begin{equation*}
\int_{G} f(g) d g=\int_{A} \int_{N} \int_{K} f(a n k) e^{2 \rho(\log (a))} d a d n d k \tag{2.2}
\end{equation*}
$$

for integrable functions $f$ on $N$ and $G$ respectively. Let $A^{+}=\exp \left(\mathfrak{a}^{+}\right)$. Then $G=K C L\left(A^{+}\right) K$ and there exists a continuous function $D(a) \geqq 0$ on $A^{+}$such that

$$
\begin{equation*}
d g=D(a) d k d a d k^{\prime} \tag{2.3a}
\end{equation*}
$$

where $g=k a k^{\prime} \in K A^{+} K$, and

$$
\begin{equation*}
e^{2 \rho(\log (a))} D(a) \leqq C \quad \text { for } \quad a \in A^{+} \tag{2.3b}
\end{equation*}
$$

(cf. [He], pp. 381-382).
Let

$$
\begin{equation*}
\Delta^{+\prime}=s_{0}\left(\Delta^{+}\right)=\left(\Delta^{+}-\left\{\alpha_{0}\right\}\right) \cup\left\{-\alpha_{0}\right\} \tag{2.4}
\end{equation*}
$$

where $s_{0}$ is the reflection with respect to $\alpha_{0}$. Then $\Delta^{+\prime}$ is a new positive root system of ( $\mathrm{g}_{c}, \mathrm{t}_{c}$ ); since $E_{\alpha_{0}}+E_{-\alpha_{0}}=E_{-\alpha_{0}}+E_{\alpha_{0}}$, it follows that $\Delta^{+{ }^{\prime}}{ }_{k}=\Delta^{+}{ }_{k}$ and the corresponding Iwasawa decomposition is the same as before (cf. [KW], p. 198).
2.1. Non unitary principal series and intertwining operators. We shall recall three realizations: induced, compact and noncompact pictures of (non)unitary principal series representations $\pi_{\sigma, \nu}$ of $G$, where $\nu \in a_{c}{ }^{*}$ and $(\sigma, H)$ is a finite dimensional irreducible unitary representation of $M$ (cf. [KS]). Then the representation space of $\pi_{o, \nu}$ in each picture is respectively given by

$$
\begin{align*}
& C^{\infty}\left(G, \sigma \times e^{\nu}\right)=\left\{f \in C^{\infty}(G, H) ; f(\operatorname{mang})=\sigma(m) e^{\nu(\log (a))} f(g),\right. \\
& \operatorname{man} \in M A N, g \in G\}  \tag{2.5}\\
& C^{\infty}(K, \sigma)=\left\{f \in C^{\infty}(K, H) ; f(m k)=\sigma(m) f(k), m \in M, k \in K\right\}
\end{align*}
$$

and $C^{\infty}(V, H)$; the action of $\pi_{a, \nu}(g)(g \in G)$ on each space is given by

$$
\begin{align*}
& \pi_{\sigma, \nu}(g) f(x)=f(x g) \quad(x \in G), \\
& \pi_{\sigma, \nu}(g) f(k)=e^{\nu(H(k g))} f(k(k g)) \quad(k \in K),  \tag{2.6}\\
& \pi_{\sigma, \nu}(g) f(v)=\sigma(v g) e^{\nu(\log (v g))} f(v(v g)) \quad(v \in V),
\end{align*}
$$

where $\sigma$ and $\log$ are respectively extended to the operator and the function defined almost everywhere on $G$ by letting

$$
\begin{equation*}
\sigma(m a n v)=\sigma(m) \quad \text { and } \quad \log (m a n v)=\log (a) \quad(m a n v \in M A N V) . \tag{2.7}
\end{equation*}
$$

The intertwining operator between the induced picture and the compact one (resp. the noncompact one) is given by restricting $f \in C^{\infty}\left(G, \sigma \times e^{\nu}\right)$ to $K$ (resp. to $V$ ) and conversely, the $G$-equivariant extension of $f \in C^{\infty}(K, \sigma)$ (resp. $f \in C^{\infty}(V, H)$ ) to an element in $C^{\infty}\left(G, \sigma \times e^{\nu}\right)$ is given by letting

$$
\begin{align*}
& f(x)=e^{\nu(H(x))} f(k(x)) \\
& \text { (resp. } \left.f(x)=\sigma(x) e^{\nu(\log (x))} f(v(x))\right) . \tag{2.8}
\end{align*}
$$

Therefore, giving attention to the restriction and extension, we use the notation " $\pi_{o, 2}(g) f$ " without distinguishing the three pictures.

Let $\nu=(1+z) \rho(z \in \boldsymbol{C})$. If $z \in i \boldsymbol{R}$, then the $L^{2}$ norm with respect to the Haar measure on $K$ is preserved by the action given in (2.6), so it determines a unitary structure of the representation $\pi_{o, \nu}$. We put $w \sigma(m)=\sigma\left(w m w^{-1}\right)(m \in M)$. Then it follows from [KS], Proposition 20 that $\pi_{\sigma, \nu}$ is reducible if and only if (1) $\sigma$ is equivalent with $w \sigma$, (2) $z=0$ and (3) the mean value of $\sigma(x w)^{-1}(x \in G)$ equlas 0 . Under the assumption on $G, \pi_{o, \rho}$ is a reducible unitary principal series of $G$ (cf. [KS], §16). Let $w \nu(H)=\nu(w H)(H \in \mathfrak{a})$. If $\operatorname{Re}(z)>0$, then an intertwining operator $A(w, \sigma, z)$ between $\pi_{\sigma, \nu}$ and $\pi_{w \sigma, w \nu}$ is given by

$$
\begin{equation*}
A(w, \sigma, z) f(k)=\int_{K} e^{(1-z) \rho \log \left(k^{\prime} w\right)} \sigma^{-1}\left(k^{\prime} w\right) f\left(k^{\prime} k\right) d k^{\prime} \quad(k \in K) \tag{2.9}
\end{equation*}
$$

(see [KS], §9) and moreover, if $z=0$, intertwining operators between $\pi_{\sigma, \rho}$ and $\pi_{o, \rho}$ are all of the form: $a A_{0}+b I(a, b \in C)$, where $I$ is the identity operator and $A_{0}$ is the principal value operator given by

$$
\begin{equation*}
A_{0} f(k)=\int_{K} e^{\rho \log \left(k^{\prime} w\right)} \sigma^{-1}\left(k^{\prime} w\right) f\left(k^{\prime} k\right) d k^{\prime} \quad(k \in K) \tag{2.10}
\end{equation*}
$$

(see Corollary in [KS], p. 517).
2.2. Szegö map and boundary value map. For an integral $\Delta_{k}{ }^{+}$dominant form $\lambda \in \mathrm{t}_{0}{ }^{*}$ let $\left(\tau_{\lambda}, V_{\lambda}\right)$ be an irreducible unitary representation of $K$ with highest weight $\lambda$. Let $\phi_{\lambda}$ be a nonzero highest weight vector and $H_{\lambda}$ the $M$-cyclic subspace of $V_{\lambda}$ generated by $\phi_{\lambda}$. Let ( $\sigma_{\lambda}, H_{2}$ ) denote the representation of $M$ given by restricting $\tau_{\lambda}$ to $H_{\lambda}$, and $E_{\lambda}$ the orthogonal projection from $V_{2}$ onto $H_{\lambda}$. Then for $\eta \in \mathfrak{a}_{c}{ }^{*}$ the Szegö map

$$
\begin{equation*}
S_{\eta, 2}: C^{\infty}\left(K, \sigma_{\lambda}\right) \longrightarrow C^{\infty}\left(G, \tau_{\lambda}\right) \tag{2.11}
\end{equation*}
$$

is defined by

$$
\begin{align*}
S_{\eta, \lambda} f(g) & =\int_{K} e^{\eta H(k g-1)} \tau_{\lambda}^{-1}\left(k\left(k g^{-1}\right)\right) f(k) d k  \tag{2.12}\\
& =\int_{K} \tau_{\lambda}\left(k^{-1}\right) f(k g) d k
\end{align*}
$$

where in the second integral we denote by the same letter " $f$ " the $G$-equivariant extension of $f \in C^{\infty}\left(K, \sigma_{\lambda}\right)$ to $G$ according to the induced picture of $\pi_{\sigma_{\lambda, \nu}}$ with $\nu=2 \rho-\eta$ (see (2.8) and [KW], Lemma 6.2). Then this map is $G$-equivariant. If we put emphasis on the dependence of $S_{\eta, 2}$ on the choice of the positive root system $\Delta^{+}$, we use the notation " $S_{\eta, \lambda}\left(\Delta^{+}\right)$".

On the image of $S_{\eta, 2}$ a boundary value map

$$
\begin{equation*}
L_{\eta}: \text { image of } S_{\eta, \lambda} \longrightarrow C^{\infty}\left(K, \sigma_{\lambda}\right) \tag{2.13}
\end{equation*}
$$

is defined by

$$
\begin{equation*}
L_{\eta}\left(S_{\eta, \lambda}(f)\right)(k)=\lim _{a \rightarrow \infty} E_{\lambda}\left(e^{\eta(\log (a))} S_{\eta, \lambda}\left(\pi_{\sigma_{\lambda}, 2}\left(w^{-1} k\right) f\right)(a)\right) . \tag{2.14}
\end{equation*}
$$

Then following [B] and [GTKS], we see that
Theorem 2.1. Let $\nu=2 \rho-\eta=(1+z) \rho$. If $\operatorname{Re}(z)>0$, then

$$
L_{\eta} \circ S_{\eta, \lambda}=A\left(w, \sigma_{\lambda}, z\right)
$$

(see (2.9)) and $L_{\eta}$ is G-equivariant.
If $z=0, L_{\rho} \circ S_{\rho, \lambda}$ also can be defined by (2.14). On the other hand, $A\left(w, \sigma_{\lambda}, z\right)$ is not defined for $z=0$, because the integral (2.9) in the definition does not converge. However, as mentioned in 2.1, we know that the limiting case $z=0$ must be of the form $a A_{0}+b I$, so $L_{\rho} \circ S_{\rho, 2}$ is of the same form. This fact is directly investigated in [B].

ThEOREM 2.2. $L_{\rho}$ transfers $S_{\rho, \lambda}\left(L^{2}\left(K, \sigma_{\lambda}\right)\right)$ into $L^{2}\left(K, \sigma_{\lambda}\right)$ in a $G$ equivariant manner and $L_{\rho} \circ S_{\rho, \lambda}$ is the projection operator of the form $a_{\lambda} I+A_{0}$, where $A_{0}$ is given by (2.10) and $a_{2}$ is the constant given by $E_{\lambda} \int_{V} e^{\rho H(v)} \tau_{\lambda}(k(v) w)^{-1} d v=a_{\lambda} I$.
2.3. Discrete series and limits of discrete series. Let us suppose that $\Lambda=\lambda-\delta_{n}+\delta_{k}$ is $\Delta^{+}$-dominant, and that $\Lambda$ is nonsingular or singular
with respect to just one pair of roots $\pm \alpha_{0}$. Then, as shown by [HC] and [KO], if $\Lambda$ is nonsingular, it corresponds to a discrete series, otherwise, to a limit of discrete series of $G$. Both of them we denote by $\pi_{1}$. Then by [Sc] we know that the lowest $K$-type of $\pi_{1}$ is given by $\tau_{2}$.

We define $\eta_{\lambda}$ and $\nu_{\lambda} \in a_{c}{ }^{*}$ as follows:

$$
\begin{equation*}
\eta_{\lambda}\left(E_{\alpha_{0}}+E_{-\alpha_{0}}\right)=\frac{2\left\langle\lambda+n_{0} \alpha_{0}, \alpha_{0}\right\rangle}{\left\langle\alpha_{0}, \alpha_{0}\right\rangle}, \tag{2.15a}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{\lambda}=2 \rho-\eta_{\lambda}, \tag{2.15b}
\end{equation*}
$$

where $n_{0}$ is the number of positive noncompact roots $\gamma$ satisfying that $\gamma$ is not strongly orthogonal to $\alpha_{0}$ and $\gamma+\alpha_{0} \in \Delta$ (see [KW], (6.5a), (6.5b)). Let

$$
\begin{equation*}
S_{\lambda}=S_{\lambda}\left(\Delta^{+}\right)=S_{\eta_{\lambda}, \lambda}\left(\Delta^{+}\right) \quad \text { and } \quad S_{\lambda}^{\prime}=S_{8_{0} \lambda}\left(\Delta^{+\prime}\right) \tag{2.16}
\end{equation*}
$$

Then by Theorems 1.1 and 12.6 in [KW] the Szegö maps $S_{\lambda}$ and $S_{\lambda}{ }^{\prime}$ give a relation between $\pi_{1}$ and $\pi_{\sigma_{\lambda}, \nu \lambda}$ as follows.

Theorem 2.3. (1) $S_{\lambda}$ carries $C^{\infty}\left(K, \sigma_{\lambda}\right)$ into the kernel of the Schmid operator $D$ (see [Sc] and [KW], § 2) on $C^{\infty}\left(G, \tau_{\lambda}\right)$. Moreover, in a gequivariant fashion it carries the $K$-finite vectors of $\pi_{\sigma_{2, \nu}}$ onto the K-finite vectors of $\pi_{1}$. (2) If $\eta_{\lambda}=\nu_{\lambda}=\rho$, then the reducible unitary principal series $\pi_{\sigma_{\lambda}, \rho}$ is infinitesimally equivalent with the direct sum of the $K$-finite images of $S_{\lambda}$ and $S_{\lambda}^{\prime}$.

We note that Theorem 2.2 implies that, if $\eta_{\lambda}=\nu_{\lambda}=\rho$, the $K$-finite assumption in Theorem 2.3 is not necessary. Therefore, if we put

$$
\begin{equation*}
A_{\lambda}=L_{\rho} \circ S_{\lambda} \quad \text { and } \quad A_{\lambda}^{\prime}=L_{\rho} \circ S_{\lambda}^{\prime} \tag{2.17}
\end{equation*}
$$

it follows from Theorems 2.2 and 2.3 that

$$
\begin{equation*}
A_{\lambda}+A_{\lambda}^{\prime}=I \tag{2.18}
\end{equation*}
$$

where $I$ is the identity operator on $C^{\infty}\left(K, \sigma_{\lambda}\right)$.
2.4. $G=S U(n, 1)$. We shall consider the case that $G / K$ is hermitian, so $G=S U(n, 1)$ under the assumption that real rank of $G$ is 1 . Let

$$
\begin{equation*}
\mathfrak{p}^{+}=\sum_{\alpha \in \Delta_{n}+} \mathfrak{g}_{\alpha} \quad \text { and } \quad \mathfrak{p}^{-}=\sum_{\alpha \in \Delta_{n}-\Delta_{n}+} \mathfrak{g}_{\alpha} \tag{2.19}
\end{equation*}
$$

where $g_{\alpha}$ is the root space for $\alpha$, and let $P^{+}, P^{-}$be the subgroups of $G_{0}$
corresponding to $\mathfrak{p}^{+}, \mathfrak{p}^{-}$respectively. Then multiplication $P^{-} \times K_{c} \times P^{+} \rightarrow G_{c}$ is one to one, holomorphic, regular and there exists a bounded open subset $\Omega \subset P^{+}$such that

$$
\begin{equation*}
P^{-} K_{c} P^{+}=P^{-} K_{c} \Omega \tag{2.20}
\end{equation*}
$$

Then $G$ acts on $\Omega$ by holomorphic automorphism under the definition $z \cdot g=p^{+}(z g)(z \in \Omega, g \in G)$, where $p^{+}(\cdot)$ refers to the $P^{+}$component of an element of $P^{-} M_{c} P^{+}$. Especially, $1 \cdot g=1$ for $g \in P^{-} K_{c}$ and $G \cap P^{-} K_{c}=K$, so $\Omega=G / K$ (cf. [Kn], pp. 225-226). Let $a_{t}=\exp \left(t\left(E_{\alpha_{0}}+E_{-\alpha_{0}}\right) / 2\right)(t \in R)$. Then we recall that

$$
\begin{equation*}
1 \cdot a_{t}=\exp \left(\operatorname{th} t / 2 E_{\alpha_{0}}\right) \quad \text { and } \quad \lim _{t \rightarrow \infty} 1 \cdot a_{t}=\exp \left(E_{\alpha_{0}}\right) \quad(\text { say } \infty) \tag{2.21}
\end{equation*}
$$

(see [Kn], Corollary in p. 229), $\infty \in \partial \Omega$, the boundary of $\Omega$, and the action of $G$ on $\Omega$ is holomorphically extended to $\partial \Omega$. Then since $\operatorname{Ad}(u) a_{-\log (\operatorname{th} t / 2)} \in K_{c}$, we see that

$$
\begin{equation*}
1 \cdot a_{t}=\infty \cdot \operatorname{Ad}(u) a_{-\log (\operatorname{th} t / 2)} \tag{2.22}
\end{equation*}
$$

In what follows we shall abbreviate the symbols 1 . and $\infty$ • when we denote functions on $\Omega$ and $\partial \Omega$ respectively.

Now let us suppose that $\eta_{2}=\nu_{\lambda}=\rho$ and $A_{\lambda}{ }^{\prime}(f) \equiv 0$ for $f \in C^{\infty}\left(K, \sigma_{\lambda}\right)$. Then by (2.14) and (2.18) it follows that

$$
\begin{align*}
f(k) & =A_{\lambda}(f)(k)=L_{\rho} \circ S_{\lambda}(f)(k) \\
& =\lim _{a \rightarrow \infty} e^{\rho(\log (a))} E_{\lambda} S_{\lambda}(f)\left(a_{t} w k\right) \tag{2.23}
\end{align*}
$$

As shown in [B], a limit of (holomorphic) discrete series is realized on the image of $L_{\rho} \circ S_{\lambda}$ equipped with $L^{2}$ norm; so $A_{2}{ }^{\prime}(f) \equiv 0$ implies that $f$ has a "holomorphic" extension to $\Omega$, which we denote by the same letter (cf. Theorem 12.6 in [KW], [JW] and [KO], §5). On the other hand, $S_{2}(f)$ is in the kernel of the Schmid operator and thus, of the Dirac operator (cf. [KW], Proposition 3.1, Theorem 6.1 and [NO]). Therefore, (2.22) and (2.23) mean that

$$
\begin{equation*}
E_{\lambda} S_{\lambda}(f)\left(a_{t}\right) \sim e^{-\rho(\log (a))} f\left(\operatorname{Ad}(u) a_{-\log (\operatorname{th} t / 2)} w^{-1}\right) \tag{2.24}
\end{equation*}
$$

as $t$ tends to $\infty$. Especially, noting the fact that $A_{\lambda}$ is a projection operator, we can deduce from Lemma 3.15 in [B] and its proof that the right hand side of (3.40) in [B] also satisfies (2.24) and thus

$$
\begin{equation*}
\left\|S_{\lambda}(f)\left(a_{t}\right)\right\| \sim e^{-\rho(\log (a))}\left\|f\left(\operatorname{Ad}(u) a_{-\log (\operatorname{th} t / 2)} w^{-1}\right)\right\| \tag{2.25}
\end{equation*}
$$

as $t$ tends to $\infty$, where $\|\cdot\|$ denotes the norm of $V_{\lambda}$.
2.5. Orthonormal system of $L^{2}(K, \sigma)$. Let $K^{\wedge}$ (resp. $M^{\wedge}$ ) denote the set of the equivalence classes of irreducible unitary representations of $K$ (resp. $M$ ). For $\tau \in K^{\wedge}$ and $\sigma \in M^{\wedge}$ let $[\tau ; \sigma]$ denote the multiplicity of $\sigma$ in the restriction $\tau \mid M$ of $\tau$ to $M$, and let $K_{\sigma}^{\wedge}=\left\{\tau \in K^{\wedge} ;[\tau ; \sigma] \neq 0\right\}$. In what follows, for simplicity, we suppose that $[\tau ; \sigma]=1$ if it is not 0 , because this restriction is easily removable. Then for $\left(\tau, V_{\tau}\right) \in K_{\sigma}^{\hat{\alpha}}$ let $d_{\tau}=\operatorname{dim} \tau$ and let $e_{1}, e_{2}, \cdots, e_{d_{\tau}}$ denote an orthonormal basis of $V_{\tau}$ such that $\left\{e_{i} ; 1 \leqq i \leqq d_{o}\right\}\left(d_{\sigma}=\operatorname{dim} \sigma\right)$ is carried by $\tau \mid M$ according to $\sigma$. We put $I_{\tau}=\left\{1,2, \cdots, d_{\tau}\right\}$ and $I_{\sigma}=\left\{1,2, \cdots, d_{\sigma}\right\}$, and denote the matrix coefficients of $\tau$ by $\tau_{i j}(k)=\left(\tau(k) e_{j}, e_{i}\right)\left(i, j \in I_{\tau}, k \in K\right)$. Then we define functions on $K$ by

$$
\begin{equation*}
\phi_{\tau, j}(k)=\sum_{i \in I_{\sigma}} \tau_{i j}(k) e_{i} \quad\left(j \in I_{\tau}\right) \tag{2.26}
\end{equation*}
$$

and let $\psi_{\tau, j}=\left(d_{\tau} / d_{\sigma}\right)^{1 / 2} \phi_{\tau, j}$.
Lemma 2.4. $\left\{\psi_{\tau, j} ; j \in I_{\tau}, \tau \in K_{\sigma}^{\hat{a}\}}\right.$ is a complete orthonormal basis of $L^{2}(K, \sigma)$.

Proof. Since

$$
\begin{aligned}
\phi_{\tau, j}(m k) & =\sum_{i \in I_{\sigma}} \tau_{i j}(m k) e_{i} \\
& =\sum_{i, p \in I_{o}} \tau_{i p}(m) \tau_{p j}(k) e_{i} \\
& =\sigma(m) \phi_{\tau, j}(k) \quad(m \in M, k \in K),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\phi_{\tau, j}, \phi_{\tau^{\prime}, j^{\prime}}\right) & =\int_{K}\left(\sum_{i \in I_{\sigma}} \tau_{i j}(k) e_{i}, \sum_{i^{\prime} \in I_{\sigma}} \tau_{i^{\prime} j^{\prime}}^{\prime}(k) e_{i^{\prime}}\right) d k \\
& =\sum_{i \in I_{\sigma}} \int_{K} \tau_{i j}(k) \tau_{i j^{\prime}}^{\prime}(k)^{-} d k \\
& =\delta_{\tau \tau^{\prime}} \delta_{j j^{\prime}} d_{\sigma} d_{\tau}^{-1}
\end{aligned}
$$

it follows that all $\psi_{\tau, j}$ belong to $L^{2}(K, \sigma)$ and they are orthonormal each other. Let $f$ be an arbitrary function in $L^{2}(K, \sigma)$. Then by the Peter-Weyl theorem for $L^{2}(K)$ (cf. [Su], p. 19) $f$ has a decomposition such as

$$
f(k)=\sum_{\tau \in K_{\hat{o}}} \sum_{i, j \in I_{\tau}} \sum_{p \in I_{\sigma}} a_{i j p} \tau_{i j}(k) e_{p} \quad(k \in K)
$$

Then for $m \in M$

$$
f(m k)=\sum_{\tau \in K \hat{\sigma}} \sum_{i, j, q \in I_{\tau}} \sum_{p \in I_{\sigma}} a_{i j p} \tau_{i q}(m) \tau_{q j}(k) e_{p}
$$

On the other hand, since $f$ belongs to $L^{2}(K, \sigma), f(m k)$ must equal

$$
\sigma(m) f(k)=\sum_{\tau \in \hat{K}_{\hat{o}}} \sum_{i^{\prime}, j^{\prime} \in I_{\tau}} \sum_{\tau, s \in I_{\sigma}} a_{i^{\prime} j^{\prime} s} \tau_{i^{\prime} j^{\prime}}(k) \tau_{r s}(m) e_{r}
$$

So, it follows that $q=s=i^{\prime} \in I_{\sigma}, i=p \in I_{\sigma}$ and $a_{p j p}=a_{q j q}$ for all $p, q \in I_{\sigma}$. Therefore, if we let $a_{j}=a_{p j p}$,

$$
\begin{aligned}
f(k) & =\sum_{\tau \in K_{\hat{O}}} \sum_{j \in I_{\tau}} a_{j} \sum_{p \in I_{o}} \tau_{p j}(k) e_{p} \\
& =\sum_{\tau \in K_{\hat{O}}} \sum_{j \in I_{\tau}} a_{j} \phi_{\tau, j}(k) .
\end{aligned}
$$

This completes the proof of the lemma.
Q.E.D.

## §3. G-equivariant maps.

We fix a $\Delta_{k}^{+}$-dominant integral form $\lambda$ on $\mathrm{t}_{c}$ such that $\Lambda=\lambda-\delta_{n}+\delta_{k}$ is $\Delta^{+}$-dominant and $\eta_{\lambda}=\nu_{\lambda}=\rho$ (see (2.15 a,b)). Then $\left\langle\Lambda, \alpha_{0}\right\rangle=0$ and $\langle\Lambda, \beta\rangle \neq 0$ for all other positive roots $\beta$. Especially, $\pi_{A}$ is a limit of discrete series of $G$ and $L_{\rho} \circ S_{\rho, \lambda}: L^{2}\left(K, \sigma_{\lambda}\right) \rightarrow L^{2}\left(K, \sigma_{\lambda}\right)$ is a projection operator (see Theorem 2.2).

Let $\mu$ be a $\Delta^{+}$-dominant integral form on $\mathrm{t}_{\mathrm{c}}$ and $(\pi, U)$ a finite dimensional representation of $G$ with lowest weight $-\mu$. Let $d_{\pi}=\operatorname{dim} U$, $I_{\pi}=\left\{1,2, \cdots, d_{\pi}\right\}$ and $\mu_{i} \sim\left(i \in I_{\pi}\right)$ the weights of $\pi$ relative to ( $t_{c}, \Delta^{+}$), that is repeated according to their multiplicities and arranged in increasing order relative to $\Delta^{+}$; so, $\mu_{1}^{\sim}=-\mu$. Let $v_{i} \sim$ denote a normalized weight vector corresponding to $\mu_{i} \sim$. In the same way let $\mu_{i}\left(i \in I_{\pi}\right)$ denote the weights of $\pi$ relative to $\left(\mathfrak{H}_{c}, \Psi^{+}\right)$that are arranged as above, and $v_{i}\left(i \in I_{\pi}\right)$ corresponding normalized weight vectors. Then, since $\mu_{i} \sim \mathrm{Ad}(u)^{-1}$ and $\pi(u) v_{i} \sim$ are respectively a weight and its weight vector with respect to $\left(\mathscr{G}_{c}, \Psi^{+}\right)$, we may assume that they coincide with one of, respectively, $\mu_{j}$ and $v_{j}\left(j \in I_{\pi}\right)$; so we can select $i_{0} \in I_{\pi}$ such that $\mu_{i_{0}}=\mu_{1} \sim \circ \operatorname{Ad}(u)^{-1}$ and $v_{i_{0}}=\pi(u) v_{1} \sim$. Since $w \in W$ acts as +1 on $\mathfrak{l}$ and -1 on $\mathfrak{p}$ (see [Kn2], Lemma 4), each $w \mu_{i}(H)=\mu_{i}\left(w H w^{-1}\right)\left(H \in \mathfrak{G}_{c}\right)$ is also one of the weights of $\pi$, and thus $w$ acts as a permutation of $I_{\pi}$ such as $w \mu_{i}=\mu_{w(i)}$. Especially, if we denote the matrix coefficients of $\pi$ by $\pi_{i j}(g)=\left(\pi(g) v_{j}, v_{i}\right)$ ( $i, j \in I_{\pi}, g \in G$ ), we see that $\pi_{i j}(w g)=\pi_{w(i) j}(g)$.

Now let us suppose that

$$
\begin{equation*}
\lambda-\mu \text { is }{\Delta_{k}}^{+} \text {-dominant }, \tag{A0}
\end{equation*}
$$

and we shall construct a nontrivial $G$-equivariant map of $C^{\infty}\left(G, \sigma_{\lambda-\mu} \times e^{\nu(\lambda-\mu)}\right)$
into $C^{\infty}\left(G, V_{\lambda}\right)$. Let $\xi$ and $\beta$ denote the representations $\sigma_{\lambda} \times e^{\rho}$ and $\pi \mid M A N$ respectively, of MAN. For $f \in C^{\infty}\left(G, \sigma_{\lambda-\mu} \times e^{\nu(\lambda-\mu)}\right)$ we define

$$
\begin{equation*}
f^{\sim}(k)=\int_{M} \xi(m) \times \pi(m)\left\langle f\left(m^{-1} k\right), \phi_{\lambda-\mu}\right\rangle \phi_{\lambda} \times v_{i_{0}} d m . \tag{3.1}
\end{equation*}
$$

Then $f^{\sim} \in C^{\infty}\left(K, \sigma_{\lambda} \times \pi \mid M\right)$ and we can extend it to the function on $G$ so that $f^{\sim} \in C^{\infty}(G, \xi \times \pi)$ (see [KW], p. 193).

Lemma 3.1. The mapping that transfers $f$ in $C^{\infty}\left(G, \sigma_{\lambda-\mu} \times e^{\nu(\lambda-\mu)}\right)$ to $f^{\sim}$ in $C^{\infty}\left(K, \sigma_{\lambda} \times \pi \mid M\right)$ is injective.

Proof. Let $P_{\lambda-\mu}: V_{\lambda} \times U \rightarrow H_{\lambda-\mu}$ be a nonzero $K$-intertwining operator. Then by (10.14) in [KW] $P_{\lambda-\mu}\left(f^{\sim}(k)\right)=c f(k)(k \in K)$ with $c \neq 0$, and thus the desired fact is clear.
Q.E.D.

For $h \in C^{\infty}\left(K, \sigma_{\lambda} \times \pi \mid M\right)$ we define functions $h_{i}$ by the expansion

$$
\begin{align*}
h(g) & =\sum_{i} h_{i}(g) \times \pi(g) v_{i} \\
& =\sum_{i}\left[\sum_{i} h_{i}(g) \pi_{j_{i}}(g)\right] v_{j} \tag{3.2}
\end{align*}
$$

Then each $h_{i}$ belongs to $C^{\infty}\left(G, \sigma_{\lambda} \times e^{\rho}\right)$ and it is uniquely determined by the restriction $\left(h(k), \pi(k) v_{i}\right)$ on $K$. Here for $f \in C^{\infty}\left(G, \sigma_{\lambda-\mu} \times e^{\nu(\lambda-\mu)}\right)$ and $j \in I_{\pi}$ we define

$$
\begin{array}{ll}
S_{\mu}^{j} f(g)=\sum_{i} S_{\lambda}\left(f^{\sim}{ }_{i}\right)(g) \pi_{j_{i}}(g) & (g \in G), \\
A_{\mu}^{j} f(k)=\sum_{i} A_{\lambda}\left(f_{i}^{\sim}\right)(k) \pi_{j_{i}}(k) & (k \in K) \tag{3.3}
\end{array}
$$

and also define $S_{\mu}^{\prime j}$ and $A_{\mu}^{\prime j}$ by replacing $S_{\lambda}$ and $A_{\lambda}$ with $S_{\lambda}^{\prime}$ and $A_{\lambda}{ }^{\prime}$ respectively (see (2.16) and (2.17)). Then we see that

$$
\begin{align*}
& S_{\mu}^{j}, S_{\mu}^{\prime j}: C^{\infty}\left(K, \sigma_{\lambda-\mu}\right) \longrightarrow C^{\infty}\left(G, V_{\lambda}\right), \\
& A_{\mu}^{j}, A_{\mu}^{\prime j}: C^{\infty}\left(K, \sigma_{\lambda-\mu}\right) \longrightarrow C^{\infty}\left(K, H_{\lambda}\right) . \tag{3.4}
\end{align*}
$$

Proposition 3.2. If $i_{0}=d_{\pi}$, then all $S_{\mu}^{j}$ and $S^{\prime j}$ are $G$-equivariant.
Proof. For simplicity, we denote $\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}(x) f$ by $f_{x}$, and let $W_{3}$ ( $j \in I_{\pi}$ ) be the MAN cyclic subspace for $w_{j}=\phi_{\lambda} \times v_{j}$ in $H_{\lambda} \times U$ and put $U_{i_{0}+1}=\sum_{j>i_{0}} W_{j}$. Then by [KW], pp. 193-194, we see that

$$
\left(f^{\sim}\right)(k x) \equiv\left(f_{x}\right) \sim(k) \quad \bmod U_{i_{0}+1} \quad(k \in K, x \in G)
$$

Therefore, since $i_{0}=d_{\pi}$ by the hypothesis, it follows that

$$
\begin{equation*}
\left(f^{\sim}\right)(k x)=\left(f_{x}\right) \sim(k) . \tag{3.5}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\left(f^{\sim}\right)_{x}(g) & =f^{\sim}(g x) \\
& =\sum_{i} f_{i}^{\sim}(g x) \pi(g x) v_{i} \\
& =\sum_{i} \sum_{j} f^{\sim} \sim_{i}(g x) \pi_{j i}(g x) v_{j} \\
& =\sum_{i, j, p} f^{\sim} \sim_{i}(g x) \pi_{j p}(g) \pi_{p i}(x) v_{j} \\
& =\sum_{j}\left[\sum_{i}\left[\sum_{p} f_{p}^{\sim}(g x) \pi_{i p}(x)\right] \pi_{j i}(g)\right] v_{j},
\end{aligned}
$$

and thus,

$$
\begin{equation*}
\left(f_{x}^{\sim}\right)_{i}(g)=\sum_{p} f_{p}^{\sim}(g x) \pi_{i p}(x) \tag{3.6}
\end{equation*}
$$

Then by (3.3), (3.5) and (3.6) we see that

$$
\begin{aligned}
S_{\mu}^{j}\left(f_{x}\right)(g) & =\sum_{i} S_{\lambda}\left(\left(f_{x}\right)_{i}\right)(g) \pi_{j_{i}}(g) \\
& =\sum_{i} S_{\lambda}\left(\left(f^{\sim}\right)_{i}\right)(g) \pi_{j i}(g) \\
& =\sum_{i, p} S_{\lambda}\left(\left(f_{p}^{\sim}\right)_{x}\right)(g) \pi_{i p}(x) \pi_{j i}(g) \\
& =\sum_{p} S_{\lambda}\left(f_{p}^{\sim}\right)(g x) \pi_{i p}(g x)
\end{aligned}
$$

by the $G$-equivariance of $S_{2}$ and then

$$
=S_{\mu}^{j}(f)(g x)
$$

So, we show that $S_{\mu}^{j}$ is $G$-equivariant. By the same way we can obtain that $S_{\mu}^{\prime j}\left(j \in I_{\pi}\right)$ are also $G$-equivariant.
Q.E.D.
§4. Some properties of $S_{\mu}^{j}$ and $A_{\mu}^{j}$.
We keep the notation in $\S 2$ and $\S 3$, and let $f$ be in $C^{\infty}\left(K, \sigma_{\lambda-\mu}\right)$.
Lemma 4.1. If $S_{\mu}^{1}(f) \equiv 0\left(r e s p . S_{\mu}^{\prime}(f) \equiv 0\right)$, then $S_{\mu}^{j}(f) \equiv 0$ (resp. $S_{\mu}^{\prime \prime}(f) \equiv$ 0) for all $j \in I_{\pi}$.

Proof. First we note that for $k \in K$ and $g \in G$

$$
\begin{aligned}
0=S_{\mu}^{1}(f)(k g) & =\sum_{i \in I_{\pi}} S_{\lambda}\left(f_{i}^{\sim}\right)(k g) \pi_{1 i}(k g) \\
& =\sum_{i, j \in I_{\pi}} \tau_{\lambda}(k) S_{\lambda}\left(f_{i}^{\sim}\right)(g) \pi_{1 j}(k) \pi_{j_{i}}(g)
\end{aligned}
$$

and thus,

$$
\sum_{j \in I_{\pi}} \pi_{1 j}(k) S_{\mu}^{j}(f)(g)=0
$$

Here we recall that $v_{1}$ is a lowest weight vector of $\pi$ and $\pi^{*}(x)=\pi(\theta(x))^{-1}$ $(x \in G)$. Therefore, it follows that

$$
\pi_{1 j}(x)=e^{\mu_{1}(\log H(x))} \pi_{1 j}(k(x)) \quad(x \in G) .
$$

Then we can obtain that

$$
\sum_{j \in I_{\pi}} \pi_{1 j}(x) S_{\mu}^{j}(f)(g)=0
$$

for all $x, g \in G$. Since $\pi$ is irreducible, the matrix coefficients $\pi_{1 j}(x)(x \in G)$ are linearly independent on $G$, and thus it easily follows that $S_{\mu}^{j} \equiv 0$ for all $j \in I_{\pi}$.
Q.E.D.

LEMMA 4.2. If $S_{\mu}^{j}(f) \equiv 0 \quad\left(r e s p . \quad S_{\mu}^{\prime j}(f) \equiv 0\right)$, then $\quad A_{\mu}^{w(j)}(f) \equiv 0 \quad$ (resp. $\left.A_{\mu}^{\prime \mu^{(j)}}(f) \equiv 0\right)$.

Proof. We note that for $a \in A$ and $k \in K$

$$
\begin{aligned}
0=S_{\mu}^{j}(f)\left(a w^{-1} k\right) & =\sum_{i \in I_{\pi}} S_{\lambda}\left(f_{i}^{\sim}\right)\left(a w^{-1} k\right) \pi_{j_{i}}\left(a w^{-1} k\right) \\
& =e^{\mu_{j}(\log (a))} \sum_{i \in I_{\pi}} S_{\lambda}\left(f_{i}^{\sim}\right)\left(a w^{-1} k\right) \pi_{w(j) i}(k) .
\end{aligned}
$$

Therefore, we see that

$$
A_{\mu}^{w(j)}(f)(k)=\lim _{a \rightarrow \infty} e^{\left(\rho-\mu_{j}\right)(\log (a))} E_{\lambda}\left(S_{\mu}^{j}(f)\left(a w^{-1} k\right)\right)=0 .
$$

Q.E.D.

Lemma 4.3. If $A_{\mu}^{j}(f) \equiv 0\left(\operatorname{resp} . A_{\mu}^{\prime j}(f) \equiv 0\right)$ for all $j \in I_{\pi}$, then $A_{\lambda} f_{j}^{\sim} \equiv 0$ (resp. $A_{\lambda}^{\prime} f^{\sim}{ }_{j} \equiv 0$ ) for all $j \in I_{\pi}$.

Proof. The assumption means that

$$
\pi(k)\left(A_{2} f^{\sim} \sim_{1}(k), A_{\lambda} f_{2}^{\sim}(k), \cdots, A_{2} f_{d_{\pi}}^{\sim}(k)\right)^{t} \equiv 0 \quad(k \in K)
$$

Then, applying $\pi(k)^{-1}$ to the both sides, we can obtain the desired result.
Q.E.D.

Lemma 4.4. If $A_{\mu}^{j}(f) \equiv 0$ and $A_{\mu}^{\prime j}(f) \equiv 0$ for all $j \in I_{\pi}$, then $f \equiv 0$.
Proof. By Lemma 3.1 it is enough to show that $f^{\sim} \equiv 0$. It follows from (2.18), (3.2) and (3.3) that

$$
\begin{aligned}
f^{\sim}(k) & =\sum_{i, j \in I_{\pi}} f^{\sim}{ }_{i}(k) \pi_{j i}(k) v_{j} \\
& =\sum_{j \in I_{\pi}}\left(A_{\mu}^{j}(f)(k)+A_{\mu}^{\prime j}(f)(k)\right) v_{j}=0 .
\end{aligned}
$$

Q.E.D.

Now let

$$
\begin{equation*}
\Omega_{\lambda, \mu}^{\prime}=\left\{f \in C^{\infty}\left(K, \sigma_{\lambda-\mu}\right) ; S_{\mu}^{\prime j}(f) \equiv 0 \text { for all } j \in I_{\pi}\right\} . \tag{4.1}
\end{equation*}
$$

Then we have the following
Lemma 4.5. $\Omega^{\prime}{ }_{2, \mu}$ is $G$-invariant and $S_{\mu}^{1}$ is injective on $\Omega^{\prime}{ }_{1, \mu \cdot}$.
Proof. This is clear from Proposition 3.2, Lemmas 4.1, 4.2 and 4.4. Q.E.D.

Theorem 4.6. Let $G=S U(n, 1)$ and suppose that $\mu$ satisfies
(A0) $\lambda-\mu$ is $\Delta_{k}{ }^{+}$-dominant,
(A1) $\left\langle\mu, \alpha_{0}\right\rangle>0$,
(A2) $i_{0}=d_{\pi}$.
Then $S_{\mu}^{j}(f) \in L^{2}\left(G, V_{\lambda}\right)$ for all $f \in \Omega_{\alpha^{\prime}, \mu}$ and $j \in I_{\pi}$.
Proof. Since

$$
S_{\mu}^{j}(f)(k g)=\tau_{\lambda}(k) \sum_{p \in I_{\pi}} \pi_{j p}(k) S_{\mu}^{p}(f)(g) \quad(k \in K, g \in G)
$$

(cf. the proof of Lemma 4.1), it follows from (2.3a) that

$$
\left\|S_{\mu}^{j}(f)\right\|_{L^{2}\left(a, V_{\lambda)}\right.}^{2}=\sum_{p \in I_{\pi}} \int_{K} \int_{C L\left(A^{+}\right)}\left\|S_{\mu}^{p}(f)(a k)\right\|^{2} D(a) d a d k
$$

Therefore, by noting (2.3 b), to obtain the square-integrability it is enough to show that

$$
\left\|S_{\mu}^{p}(f)\left(a_{t} k\right)\right\| \sim e^{-\left(\rho+\mu_{d_{\pi}}\right)\left(\log \left(a_{t}\right)\right)} \quad(t \rightarrow \infty)
$$

because $\left.\left\langle\mu_{d_{\pi}}, \alpha\right\rangle=\left\langle\mu, \alpha_{0}\right\rangle\right\rangle 0$ by (A1) and (A2) (see $\S 3$ ). Here, for simplicity, we put $d=d_{\pi}$ and

$$
\frac{\left\langle\mu_{i}, \boldsymbol{\alpha}\right\rangle}{\langle\boldsymbol{\alpha}, \boldsymbol{\alpha}\rangle}=n_{i} ;
$$

so $\mu_{i}\left(\log \left(a_{t}\right)\right)=n_{i} t$ and $n_{w(i)}=-n_{i}$. Then by Proposition 3.2 and (3.3) we see that

$$
S_{\mu}^{p}(f)\left(a_{t} k\right)=S_{\mu}^{p}\left(f_{k}\right)\left(a_{t}\right)=S_{\lambda}\left(\left(f_{k} \sim\right)_{p}\right)\left(a_{t}\right) e^{n_{p} t}
$$

Since $f$ belongs to $\Omega^{\prime}{ }_{\lambda, \mu}$, it follows from Lemmas 4.2 and 4.3 that $A_{2}^{\prime}\left(\left(f_{k}\right)_{j}\right) \equiv 0$ for all $j \in I_{\pi}$. Therefore, we can apply the asymptotic behavior (2.25) to $S_{\lambda}\left(\left(f_{k} \sim\right)_{p}\right)\left(a_{t}\right)$ and thus, as $t$ tends to $\infty$, we see that for $r=\operatorname{th} t / 2$

$$
\begin{aligned}
\left\|S_{k}\left(\left(f_{k} \sim\right)_{p}\right)\left(a_{t}\right)\right\| & \sim e^{-\rho\left(\log \left(a_{t}\right)\right)}\left\|\left(f_{k} \sim\right)_{p}\left(\operatorname{Ad}(u) a_{-\log (r)} w^{-1}\right)\right\| \\
& =e^{-\rho\left(\log \left(a_{t}\right)\right)}\left\|\left(\left(f_{k} \sim\right)\left(\operatorname{Ad}(u) a_{-\log (r)} w^{-1}\right), \pi\left(\operatorname{Ad}(u) a_{-\log (r)} w^{-1}\right) v_{p}\right)\right\|
\end{aligned}
$$

(see (3.2)), where we used the fact that $f_{k} \sim$ also has a holomorphic extension to $\Omega$ which follows from the $K$-type decomposition of $f$ in $\Omega^{\prime}{ }_{2, \mu}$ (cf. Lemma 5.3 below). We note that $\left(f_{k}^{\sim}\right)\left(\operatorname{Ad}(u) a_{-\log (r)} w^{-1}\right) \rightarrow f_{k}^{\sim}\left(w^{-1}\right)$ $(t \rightarrow \infty)$ and $\left\langle\beta, \alpha_{0}\right\rangle=\beta\left(H_{\alpha_{0}}\right)=0$ for all $\beta \in \Psi_{m}$ (cf. [He], pp. 221-224). Therefore, it follows from the definition (3.1) of $f_{k} \sim$ and (A2) that

$$
\left\|S_{\lambda}\left(\left(f_{k} \sim\right)_{p}\right)\left(a_{t}\right)\right\| \sim e^{-\rho\left(\log \left(a_{t}\right)\right)}\left(v_{d}, \pi\left(\operatorname{Ad}(u) a_{-\log (r)}\right) v_{w(p)}\right) .
$$

Now let $\left(\pi_{n}, V_{n}\right)(n \in N)$ denote the irreducible representation of $S L(2, C)$ with degree $n+1$, that is realized on the homogeneous polynomials of degree $n$ in variables $z_{1}$ and $z_{2}$ (cf. §6 and [Su], p. 326). Here noting that $H_{\alpha_{0}}$ and $E_{ \pm \alpha_{0}}$ generates a Lie algebra isomorphic to $\mathfrak{g l}(2, C)$, we may deduce that

$$
\begin{aligned}
\left(\pi_{n}\left(a_{-\log (r)}\right) z_{1}^{j} z_{2}^{n-j}, z_{2}^{n}\right) & =c(\operatorname{sh}(-\log (r)))^{j}(\operatorname{ch}(-\log (r)))^{n-j} \\
& \sim c\left(r^{-1}-r\right)^{j} \\
& \sim c e^{-j t},
\end{aligned}
$$

as $t$ tends to $\infty$. Therefore, regarding $\pi$ as a (reducible) representation of $\mathfrak{l l}(2, C)$, we can show that $\left(\pi\left(\operatorname{Ad}(u) a_{-\log (r)}\right) v_{i}, v_{d}\right)(r=\operatorname{th} t / 2)$ equals 0 or behaves asymptotically like $e^{-\left(n_{d}-n_{i}\right) t}(t \rightarrow \infty)$. Then

$$
\left\|S_{\lambda}\left(f_{k} \sim\right)_{p}\left(a_{t}\right)\right\| \sim e^{-\rho\left(\log \left(a_{t}\right)\right)} e^{-\left(n_{d}+n_{p}\right) t}
$$

and thus,

$$
\left\|S_{\mu}^{p}(f)\left(a_{t} k\right)\right\| \sim e^{-\left(\rho+\mu_{d}\right)\left(\log \left(a_{t}\right)\right)} \quad(t \rightarrow \infty) .
$$

This completes the proof of the theorem.
Q.E.D.

## §5. Main theorem.

We continue the notation in the previous section. Let $G=S U(n, 1)$ and suppose that $\mu$ satisfies (A0), (A1) and (A2) in Theorem 4.6.

For $f \in \Omega^{\prime}{ }_{\lambda, \mu}$ let

$$
\begin{equation*}
\|\boldsymbol{f}\|_{2, \mu}=\left\|\boldsymbol{S}_{\mu}^{1}(f)\right\|_{L^{2}\left(G, V_{\lambda}\right)} \tag{5.1}
\end{equation*}
$$

(see Lemma 4.5 and Theorem 4.6), and let $\Omega_{\lambda, \mu}$ denote the completion of $\Omega^{\prime}{ }_{1, \mu}$ with respect to this norm. Then by Proposition 3.2 and Lemma 4.5 we easily see that

Lemma 5.1. $\quad \pi_{o_{\lambda_{-\mu}}, \nu_{\lambda-\mu}}(g)(g \in G)$ preserves $\|\cdot\|_{\lambda, \mu}$ and $\Omega_{\lambda_{, \mu}}$ is $G$-invariant; so ( $\pi_{\sigma_{\lambda-\mu}, \nu_{-\mu}}, \Omega_{\lambda_{, \mu}}$ ) is a unitary representation of $G$.

Lemma 5.2. Let $H$ be a $G$-invariant closed subspace of $\Omega_{\lambda, \mu}$. If $\psi_{\tau, j_{0}}$ belongs to $H$ for some $j_{0} \in I_{\tau}$ and $\tau \in K_{\sigma_{\lambda}-\mu}^{\hat{\mu}}$, then all $\psi_{\tau, j}\left(j \in I_{\tau}\right)$ belong to $H$.

Proof. By the definition of $\psi_{\tau, j}$ we see that

$$
\begin{equation*}
\psi_{\tau, j_{0}}\left(k^{\prime} k\right)=\sum_{j \in i_{\tau}} \tau_{j j_{0}}(k) \psi_{\tau, j}\left(k^{\prime}\right) \quad\left(k, k^{\prime} \in K\right) \tag{5.2}
\end{equation*}
$$

and in particular,

$$
\begin{equation*}
\psi_{\tau, j}(k)=\int_{K} \psi_{\tau, j_{0}}\left(k k^{\prime}\right) \tau_{j j_{0}}\left(k^{\prime}\right)-d k^{\prime} . \tag{5.3}
\end{equation*}
$$

Since $H$ is $G$-invariant, $\psi_{\tau, j_{0}}\left(k k^{\prime}\right)$ also belongs to $H$ as a function of $k$. Therefore, by the definition of the Riemann integral and the fact that $H$ is closed, (5.3) means that $\psi_{\tau, j} \in H$ for all $j \in I_{r}$.
Q.E.D.

We put

$$
\begin{equation*}
K_{\lambda_{\lambda, \mu}}^{\hat{\prime}}=\left\{\tau_{\xi} \in K_{\sigma_{\lambda}-\mu} ; \xi>s_{0}(\lambda)+\mu=\lambda-\alpha_{0}+\mu\right\} . \tag{5.4}
\end{equation*}
$$

Then we see the following
Lemma 5.3. Let $f$ be in $\Omega_{2, \mu}$. Then $f$ has a decomposition such as

$$
f=\sum a_{\tau, j} \psi_{\tau, j},
$$

where $j \in I_{\tau}$ and $\tau \in K_{\hat{\lambda}, \mu}$.
Proof. We shall give attention to the right $K$-type decomposition of $f$ (see Lemma 2.4); it follows from (3.1) that $f$ and $f^{\sim}$ have the same $K$-types which appear in their decompositions, and from (3.2) that $f^{\sim}$ and $f_{i}^{\sim}$ have the difference of the $K$-types of $\pi$. So $f_{i}^{\sim}$ and $f$ have the difference of the $K$-types of $\pi$. Then the assumption implies that $S_{\mu}^{\prime j}(f) \equiv 0$ for all $j \in I_{\pi}$, and thus it follows from Lemmas 4.2 and 4.3 that $A_{2}{ }^{\prime}\left(f_{i}^{\sim}\right) \equiv 0$ for all $i \in I_{\pi}$. Therefore, the desired result follows from Theorem 12.6 in [KW].
Q.E.D.

Lemma 5.4. Let $\tau=\tau_{\lambda+\mu}$. Then $\psi_{\tau, j} \in \Omega_{\lambda, \mu}$ for all $j \in I_{\pi}$, and in particular, $\Omega_{\lambda, \mu} \neq\{0\}$.

Proof. By the same argument in the proof of Lemma 5.3 we see that highest weights of the $K$-types which appear in the decomposition of $\left(\psi_{\tau, j}\right)_{i}\left(i \in I_{\pi}\right)$ are greater than or equal to $\lambda$. Therefore, $S_{2}^{\prime}$ vanishes all $\left(\psi_{\tau, j}\right)_{i}$ (see [KW], Theorem 12.6). This means that $S_{\mu}^{\prime \prime}\left(\psi_{\tau, j}\right) \equiv 0$ for all $i, j \in I_{\pi}$ and thus $\psi_{\tau, j} \in \Omega^{\prime}{ }_{\lambda, \mu}$ for all $j \in I_{\pi}$.
Q.E.D.

Lemma 5.5. $S_{\mu}^{1}$ is injective on $\Omega_{\lambda, \mu}$.
Proof. This is clear from Lemma 4.5. Q.E.D.
Theorem 5.6. Let $G=S U(n, 1)$ and suppose that a $\Delta_{k}{ }^{+}$-dominant integral form $\lambda$ satisfies $\eta_{2}=\nu_{\lambda}=\rho$ and $a \Delta^{+}$-dominant integral form $\mu$ does (A0), (A1) and (A2) respectively. Then $\left(\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, \Omega_{\lambda_{,} \mu}\right)$ is an irreducible unitary representation of $G$, whose matrix coefficients are square-integrable on $G$.

Proof. We obtained in Lemma 5.1 that ( $\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, \Omega_{\lambda, \mu}$ ) is a unitary representation of $G$, so we shall prove the irreducibility. Let $H$ be a nonzero $G$-invariant, closed subspace of $\Omega_{\lambda, \mu}$ and let $f$ be a nonzero element in $H$. Then by Lemma 5.5 there exists a point $g_{0} \in G$ for which $S_{\mu}^{1}(f)\left(g_{0}\right) \neq 0$. Since $S_{\mu}^{1}$ is $G$-equivariant (see Proposition 3.2) and $H$ is $G$-invariant, by replacing $f$ with $f_{g_{0}}$, we may assume that $S_{\mu}^{1}(f)(e) \neq 0$, that is,

$$
\begin{align*}
S_{\mu}^{1}(f)(e) & =\sum_{i \in I_{\pi}} S_{\lambda}\left(f^{\sim} \sim_{i}\right)(e) \pi_{1 i}(e) \\
& =S_{\lambda}\left(f^{\sim} \sim_{1}\right)(e) \\
& =\int_{K} \tau_{\lambda}(k)^{-1} f^{\sim}{ }_{1}(k) d k \neq 0 . \tag{5.5}
\end{align*}
$$

Here we recall that $f$ can be written as $f=\sum a_{\tau, j} \psi_{\tau, j}$, where $\tau \in K_{\lambda, \mu}^{\hat{a}}$ (see Lemma 5.3); so the highest weight of $\tau$ is greater than or equal to $\lambda+\mu$ and thus, by the same argument in the proof of Lemma 5.3 highest weights of $K$-types which appear in the decomposition of $f_{1}^{\sim}$ are greater than or equal to $\lambda$. Therefore, if we put $\tau_{0}=\tau_{\lambda+\mu}$, we see that

$$
\int_{K} \tau_{\lambda}(k)^{-1}\left(\psi_{\tau, j}\right)_{1}(k) d k=0 \quad\left(\tau \neq \tau_{0}\right)
$$

Then (5.5) implies that $a_{\tau_{0}, j_{0}} \neq 0$ for some $j_{0} \in I_{\pi}$.

On the other hand, it follows that

$$
\begin{aligned}
\int_{K} \tau_{0 j_{0} j_{0}}\left(k^{\prime}\right)^{-} f\left(k k^{\prime}\right) d k^{\prime} & =\sum_{\tau, j} a_{\tau, j} \int_{K} \tau_{0 j_{0} j_{0}}\left(k^{\prime}\right)^{-} \sum_{m} \tau_{m j}\left(k^{\prime}\right) d k^{\prime} \psi_{\tau, m}(k) \\
& =a_{\tau, j_{0}} \psi_{\tau_{0}, j_{0}}(k) .
\end{aligned}
$$

Here we recall that $a_{\tau_{0}, j_{0}} \neq 0$ and $f$ is in a closed, $G$-invariant subspace $H$. Therefore, applying the proof of Lemma 5.2, we can deduce that $\psi_{\tau_{0}, j_{0}} \in H$ and thus, $\psi_{\tau_{0}, j} \in H$ for all $j \in I_{\pi}$ by Lemma 5.2. If $H \neq \Omega_{\lambda, \mu}$, by replacing $H$ with the orthogonal complement $H^{\prime}$ of $H$ in the above argument, we can also deduce that $\psi_{\tau_{0}, j} \in H^{\prime}$ for all $j \in I_{\pi}$. This contradicts the fact that $H \cap H^{\prime}=\{0\}$; so we see that $H=\Omega_{\lambda, \mu}$ and thus the representation is irreducible.

Now we shall consider the linear functional $L$ on $\Omega_{\lambda, \mu}$ defined by

$$
L(f)=\left\langle S_{\mu}^{1}(f)(e), e_{1}\right\rangle
$$

for $f \in \Omega_{\lambda_{, \mu}}$. Then there exists a $\phi$ in $\Omega_{\lambda_{, \mu}}$ for which

$$
\left\langle S_{\mu}^{1}(f)(e), e_{1}\right\rangle=(f, \phi),
$$

and thus, by Proposition 3.2, it follows that

$$
\left(\phi_{x}, \phi\right)=L\left(\phi_{x}\right)=\left\langle S_{\mu}^{1}\left(\phi_{x}\right)(e), e_{1}\right\rangle=\left\langle S_{\mu}^{1}(\phi)(x), e_{1}\right\rangle \quad(x \in G) .
$$

Therefore, the matrix coefficient ( $\phi_{x}, \phi$ ) belongs to $L^{2}(G)$ (see Theorem 4.6). Since the representation is irreducible and unitary, it follows from Theorem 1 in [V], p. 435 that all matrix coefficients are square-integrable on $G$.

This completes the proof of the theorem.
Q.E.D.

REMARK 5.7. If we start the argument with $\Delta^{+\prime}$ instead of $\Delta^{+}$, we can obtain another class of the discrete series of $G$.

## §6. Examples.

We shall apply Theorem 5.6 to the cases of $S U(1,1)$ and $S U(2,1)$, and check up on the representations ( $\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, \Omega_{\lambda, \mu}$ ).
6.1. Let $S U(1,1)$ be the subgroup of $S L(2, C)$ which leaves invariant the hermitian form $-\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$. Then the discrete series of $G$ is originally realized on the $L^{2}$ weighted Bergman space on the unit disc $D=\{z \in C ;|z|<1\}$ (cf. [Su], p. 237); actually, let $m \in \frac{1}{2} Z$ and $|m| \geqq 1$, then for $m \geqq 1$ the Bergman space $A_{2, m-1}(D)$ is defined by
$A_{2, m-1}(D)=\{F: D \rightarrow C ; F$ is holomorphic on $D$ and

$$
\begin{equation*}
\left.\|F\|_{2, m-1}=\left[\int_{D}|F(z)|^{2}\left(1-|z|^{2}\right)^{2 m-2} d z\right]^{1 / 2}<\infty\right\} \tag{6.1}
\end{equation*}
$$

and for $m \leqq-1, A_{2, m-1}(D)$ is made up of conjugate holomorphic functions on $D$ with finite norm, where we replace $m$ by $|m|$. Let $T_{m}(g)(g \in G)$ denote the operator on $A_{2, m-1}(D)$ defined by

$$
\begin{align*}
& T_{m}(g) F(z)=J\left(g^{-1}, z\right)^{-2 m} F\left(g^{-1} \cdot z\right) \quad(m \geqq 1),  \tag{6.2}\\
& T_{m}(g) F(z)=\left[\operatorname{conj} J\left(g^{-1}, z\right)\right]^{-2|m|} F\left(g^{-1} \cdot z\right) \quad(m \leqq-1),
\end{align*}
$$

where $J(g, z)=\beta^{-} z+\alpha^{-}$and

$$
g \cdot z=\frac{\alpha z+\beta}{\beta^{-} z+\alpha^{-}} \quad \text { for } \quad g=\left[\begin{array}{ll}
\alpha & \beta  \tag{6.3}\\
\beta^{-} & \alpha^{-}
\end{array}\right] \text {and } z \in D
$$

Then the representations $\left(T_{m}, A_{2, m-1}(D)\right.$ ) ( $m \in \frac{1}{2} Z$ and $|m| \geqq 1$ ) of $G$ are irreducible and unitary. They are called the holomorphic and antiholomorphic discrete series, respectively for $m \geqq 1$ and for $m \leqq-1$; they exhaust the whole discrete series of $G$ (cf. [Su], p. 290).

Let $\mu=\frac{1}{2} n \alpha_{0}(n \in N)$ and $V_{n}$ the vector space of all homogeneous polynomials of degree $n$ in variables $z_{1}$ and $z_{2}$, and let $\pi_{n}(g)(g \in G)$ denote the operator on $V_{n}$ defined by

$$
\begin{equation*}
\pi_{n}(g) \phi(z)=\phi(z \cdot g) \tag{6.4}
\end{equation*}
$$

where $z \cdot g=\left(a z_{1}+c z_{2}, b z_{1}+d z_{2}\right)$ for $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $z=\left(z_{1}, z_{2}\right)$. Then $\left(\pi_{n}, V_{n}\right)$ ( $n \in N$ ) is a finite dimensional representation of $G$ with lowest weight $-\mu ; d_{\pi_{n}}=\operatorname{dim} V_{n}=n+1$ and $\left\{v_{j}{ }^{\sim}=[(j-1)!(n+1-j)!]^{-1 / 2} z_{1}^{j-1} z_{2}^{n+1-j} ; 1 \leqq j \leqq\right.$ $n+1\}$ is the set of normalized weight vectors with respect to the compact Cartan subgroup $K=S O(2)$ of $G$ (see $\S 3$ and [Su], p. 326). Then we see that $\mu$ satisfies the conditions (A0), (A1) and (A2) in Theorem 5.6.

By comparing the infinitesimal characters and the lowest $K$-types, we see that the representation ( $\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, \Omega_{\lambda, \mu}$ ) $\left(\lambda=\rho, \mu=\frac{1}{2} n \alpha_{0}\right.$ ) constructed in Theorem 5.6 is equivalent to the antiholomorphic discrete series ( $T_{m}, A_{2, m-1}(D)$ ) for $m=-\frac{1}{2}(n+1)$. Therefore, there exists an intertwining operator between $\Omega_{\lambda, \mu}$ and $A_{2, m-1}(D)$. In fact, we can obtain the intertwining operator by applying the Fourier transform associated with a discrete series, which was investigated in [K] and [K2]; for $f \in L^{2}(G)$ the Fourier transform $F_{m}(f)$ associated with $T_{m}$ is defined by

$$
\begin{equation*}
F_{m}(f)(z)=\int_{G} f(g) T_{m}\left(g^{-1}\right) 1(z) d g \quad(z \in D) \tag{6.5}
\end{equation*}
$$

where 1 is the constant function on $D$ taking the value 1 . Some basic properties of $F_{m}$ are summarized as follows. Let $\psi$ be the normalized matrix coefficient of $T_{m}$ corresponding to the lowest $K$-type of $T_{m}$. Then $F_{m}(f)=F_{m}(\psi * f) \in A_{2, m-1}(D)$ and $F_{m}: \psi * L^{2}(G) \rightarrow A_{2, m-1}(D)$ is bijective and norm preserving (see $[\mathrm{K}]$, Theorem 5.2). On the other hand, since $\operatorname{dim} \tau_{\lambda}=1$, it follows from Theorem 4.6 that $S_{\mu}^{1}(f) \in L^{2}(G)$ for $f \in \Omega_{\lambda, \mu}$. Therefore, we can obtain a composition map

$$
\begin{equation*}
F \circ S_{\mu}^{1}: \Omega_{\lambda, \mu} \longrightarrow A_{2, m-1}(D) \tag{6.6}
\end{equation*}
$$

and it is $G$-equivariant (see Proposition 3.2 and (6.5)).
Theorem 6.1. Let $\lambda=\rho, \mu=\frac{1}{2} n \alpha_{0}$ and $m=-(n+1) / 2(n \geqq 1)$. Then the G-equivariant map $F_{m} \circ S_{\mu}^{1}$ is an intertwining operator between $\left(\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, \Omega_{\lambda, \mu}\right)$ and ( $T_{m}, A_{2, m-1}(D)$ ); that is, it is bijective and

$$
c 2^{-n}\|f\|_{\lambda, \mu}=n\left\|F_{m} \circ S_{\mu}^{1}(f)\right\|_{2, m-1} \quad \text { for } \quad f \in \Omega_{\lambda, \mu},
$$

where $c$ is a constant which does not depend on $f$ and $n$.
Before giving the proof we note the following
Lemma 6.2. Let $\pi=\pi_{n}$ and $C_{j}^{n}=\int_{K} \pi_{1 j}\left(k_{\theta}\right) e^{-i n \theta / 2} d \theta(1 \leqq j \leqq n+1)$. Then

$$
\sum_{i=1}^{n+1}\left|C_{j}^{n}\right|^{2}=2^{-n}
$$

Proof. We note that $u$ and $\operatorname{Ad}(u)$ (see §2) are respectively given by

$$
u=2^{-1 / 2}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

and

$$
\operatorname{Ad}(u) k_{\theta}=\left[\begin{array}{rr}
\cos \frac{1}{2} \theta & i \sin \frac{1}{2} \theta \\
i \sin \frac{1}{2} \theta & \cos \frac{1}{2} \theta
\end{array}\right]
$$

for $k_{\theta}=\operatorname{diag}\left(e^{i \theta / 2}, e^{-i \theta / 2}\right)$. Therefore, by substituting

$$
\pi_{i j}\left(k_{\theta}\right)=\left(\pi\left(k_{\theta}\right) v_{j}, v_{i}\right)=\left(\pi\left(\operatorname{Ad}(u) k_{\theta}\right) v_{j} \sim, v_{i} \sim\right)
$$

where $v_{j}{ }^{\sim}=[(j-1)!(n+1-j)!]^{-1 / 2} z_{1}^{j-1} z_{2}{ }^{n+1-j}(1 \leqq j \leqq n+1)$, we can obtain the desired result from combinatorial calculation.
Q.E.D.

Proof of Theorem 6.1. First we shall prove the equation of the norm. Since $\operatorname{dim} \tau_{\lambda}=1$, it follows from the proof of Theorem 5.6 that for $f \in \Omega_{\lambda, \mu} S_{\mu}^{1}(f)(x)=\left\langle S_{\mu}^{1}(f)(x), e_{1}\right\rangle(x \in G)$ is a matrix coefficient of the discrete series $T_{m}\left(m=-\frac{1}{2}(n+1)\right)$; so it is a linear combination of the normalized matrix coefficients of $T_{m}$ (see (3.2) in [Ka]). In particular, it follows from Lemma 3.1 and Theorem 5.2 in [Ka] that

$$
\begin{aligned}
n\left\|F_{m} \circ S_{\mu}^{1}(f)\right\|_{2, m-1} & =c\left\|\psi * S_{\mu}^{1}(f)\right\|_{L^{2}(G)} \\
& =c\left\|E_{m}\left(S_{\mu}^{1}(f)\right)\right\|_{L^{2}(G)}
\end{aligned}
$$

where $E_{m}(f)(x)=\int_{K} e^{i m \theta / 2} f\left(k_{\theta} x\right) d \theta(x \in G)$. Here we note that

$$
\begin{aligned}
E_{m}\left(S_{\mu}^{1}(f)\right)(x) & =\int_{K} e^{i m \theta / 2} \sum_{i \in I_{\pi}} S_{\lambda}\left(f_{i}^{\sim}\right)\left(k_{\theta} x\right) \pi_{1 i}\left(k_{\theta} x\right) d \theta \\
& =\int_{K} e^{-i n \theta / 2} \sum_{i \in I_{\pi}} S_{k}\left(f^{\sim}\right)(x) \sum_{j \in I_{\pi}} \pi_{1 j}\left(k_{\theta}\right) \pi_{j i}(x) d \theta \\
& =\sum_{j \in I_{\pi}} C_{j}^{n} S_{\mu}{ }^{j}(f)(x)
\end{aligned}
$$

Therefore, as in the proof of Theorem 4.6 we can deduce that

$$
\begin{aligned}
\left\|E_{m}\left(S_{\mu}^{1}(f)\right)\right\|_{L^{2}(G)} & =c_{\pi} \sum\left|C_{j}^{n}\right|^{2} \sum\left\|S_{\mu}^{j}(f)\right\|_{L^{2}(G)} \\
& =c_{\pi} 2^{-n}\|f\|_{\lambda, \mu} \quad \text { (by Lemma 6.2) }
\end{aligned}
$$

This is nothing but the desired equation. Especially, $F_{m} \circ S_{\mu}^{1}$ is injective and the image is closed in $A_{2, m-1}(D)$. Since the map $F_{m} \circ S_{\mu}^{1}$ is $G$-equivariant, the image must be $G$-invariant. Therefore, noting the irreducibility of $T_{m}$ we see that the image coincides with $A_{2, m-1}(D)$, so the surjectivity of $F_{m} \circ S_{\mu}^{1}$ is obtained.

This completes the proof of the theorem.
Q.E.D.

Remark 6.3. (1) The representation stated in Remark 5.7 corresponds to the holomorphic discrete series and Theorem 6.1 holds with $m=\frac{1}{2}(n+1) \geqq 1$.
(2) When $\mu=0$ ( $n=0, m= \pm \frac{1}{2}$ ), Theorem 6.1 also holds if we replace $A_{2, m-1}(D)$ by the Hardy space $H^{2}(D)$ for $m=\frac{1}{2}$ and the conjugation for $m=-\frac{1}{2}$. In this case, $F_{ \pm 1 / 2}$ are defined by using the limits of discrete series $T_{ \pm 1 / 2}$ (cf. [Su], Chap. V, §2). Especially, $S_{\mu}^{1}$, and $S_{\mu}^{1}$ coincide with $S_{\rho}$ and $S_{\rho}^{\prime}$ respectively; so this case is nothing but the classical theory of the Szegö operator (cf. [Ru] and [Ra], p. 178).
(3) Let $G=S U(n, 1)$ and suppose that the lowest $K$-type of the discrete series ( $\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, \Omega_{\lambda, \mu}$ ) is of one dimensional. Then it is possible
to generalize Theorem 6.1 as a relation between $\Omega_{\lambda, \mu}$ and the $L^{2}$ weighted Bergman space on $G / K$. Actually, by using the Fourier transform associated with a discrete series (see [K2]), we can obtain the generalization by the same argument as above.
6.2. Let $G=S U(2,1)$ be the subgroup of $S L(3, C)$ leaving the hermitian form $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}$ invariant; $K=S(U(2) \times U(1))$ and

$$
A=\left\{a_{t}=\left[\begin{array}{ccc}
\operatorname{ch} t & & \operatorname{sh} t  \tag{6.7}\\
& 1 & \\
\operatorname{sh} t & & \operatorname{ch} t
\end{array}\right] ; t \in \boldsymbol{R}\right\}
$$

Then $\mathrm{g}_{c}=\boldsymbol{b l}(3, C)=\left\{X \in M_{33}(C) ; \operatorname{tr}(X)=0\right\}$ and

$$
\begin{equation*}
\mathrm{t}_{c}=\left\{T_{a, b}=\operatorname{diag}(a, b, c) ; a+b+c=0, a, b, c \in C\right\} \tag{6.8}
\end{equation*}
$$

Let $\Delta_{0}{ }^{+}$be the positive root system of $\left(\mathfrak{g}_{c}, t_{c}\right)$ requiring that

$$
\begin{equation*}
\alpha\left(T_{1,0}\right)>0 \quad \text { for } \quad \alpha \in \Delta_{0}^{+} \tag{6.9}
\end{equation*}
$$

and let $\alpha_{1}, \alpha_{2}$ be the simple roots in $\Delta_{0}{ }^{+}$. Let $\Lambda_{1}$ and $\Lambda_{2}$ be the basic highest weights defined by

$$
\begin{equation*}
\Lambda_{1}=\frac{2 \alpha_{1}+\alpha_{2}}{3}, \quad \Lambda_{2}=\frac{\alpha_{1}+2 \alpha_{2}}{3} \tag{6.10}
\end{equation*}
$$

Then $2\left\langle\Lambda_{i}, \alpha_{j}\right\rangle /\left\langle\alpha_{j}, \alpha_{j}\right\rangle=\delta_{i j}(1 \leqq i, j \leqq 2) ; \Lambda_{1}$ and $\Lambda_{2}$ span $\mathrm{t}_{0}{ }^{*}$.
As obtained in $\S 7$ in [W] each element in $G^{\wedge}$, the set of all equivalence classes of irreducible unitary representations of $G$, is parametrized as $\pi_{1}$, where $\Lambda=k_{1} \Lambda_{1}+k_{2} \Lambda_{2}\left(k_{1}, k_{2} \in C\right)$. Actually, the discrete series and the limit of discrete series are parametrized by a pair of integers $k_{1}$ and $k_{2}$ satisfying the following conditions (see [W], pp. 183-184);
the holomorphic discrete series (HD):

$$
k_{1}+k_{2}<-2, k_{1}<0, k_{2} \geqq 0
$$

$$
\text { the antiholomorphic discrete series (AHD): } k_{1}+k_{2}<-2, k_{2}<0, k_{1} \geqq 0
$$

$$
\text { the nonholomorphic discrete series (NHD): } k_{1}+k_{2}<-2, k_{1}<-1, k_{2}<-1
$$

$$
\text { the limits of discrete series (LD1): } \quad k_{1}+k_{2}=-2, k_{1}>-1
$$

$$
\text { the limits of discrete series (LD2): } \quad k_{1}+k_{2}=-2, k_{2}>-1
$$

Then $G^{\wedge}$ consists of the representations listed above combined with the irreducible unitary principal series, the extra representations and the trivial representation.

Now we shall check up on the representations ( $\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, \Omega_{\lambda, \mu}$ ) obtained in Theorem 5.6. First we replace the positive root system $\Delta_{0}{ }^{+}$with

$$
\begin{equation*}
\Delta^{+}=\left\{-\alpha_{1}, \alpha_{2},-\alpha_{3}\right\}=s_{1} s_{2} \Delta_{0}^{+}, \tag{6.11}
\end{equation*}
$$

where $s_{i}$ is the reflection in $\mathrm{t}_{c}{ }^{*}$ with respect to $\alpha_{i}(1 \leqq i \leqq 2)$. Then $\alpha_{0}=-\alpha_{3}$ is the positive noncompact simple root and

$$
u_{\alpha}=\exp \left(\frac{1}{4} \pi\left(E_{\alpha}-E_{-\alpha}\right)\right)=\sqrt{2^{-1}}\left[\begin{array}{lll}
1 & & -1  \tag{6.12}\\
& \sqrt{2} & \\
1 & & 1
\end{array}\right]
$$

(see §2). Therefore, the Cayley transform $\operatorname{Ad}\left(u_{\alpha_{0}}\right)$ carries $\mathrm{t}_{c}$ to

$$
\left.\mathfrak{G}_{c}=\left\{H_{u, v}=\left[\begin{array}{ccc}
-u / 2 & & v / 2  \tag{6.13}\\
& u & \\
v / 2 & & -u / 2
\end{array}\right] ; u, v \in C\right)\right\} .
$$

Actually,

$$
\begin{equation*}
\operatorname{Ad}\left(u_{\alpha_{0}}\right)\left(T_{a, b}\right)=H_{u, v} ; \quad u=b, v=2 a+b \tag{6.14}
\end{equation*}
$$

and if we put $\beta_{i}=\operatorname{Ad}\left(u_{\alpha_{0}}\right) \alpha_{i}(1 \leqq i \leqq 3)$, we see that

$$
\begin{align*}
& \beta_{1}\left(H_{u, v}\right)=-3 u+v, \\
& \beta_{2}\left(H_{u, v}\right)=3 u+v,  \tag{6.15}\\
& \beta_{3}\left(H_{u, v}\right)=2 v .
\end{align*}
$$

Therefore, the positive roots system $\Psi^{+}$of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$ defined in $\S 2$ is given by

$$
\begin{equation*}
\Psi^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\} \tag{6.16}
\end{equation*}
$$

We note that the representation $\pi_{A}$ in [W] corresponds to $\pi_{-1-\delta_{k}+\delta_{n}}$ in our notation, and then, $\lambda=-\Lambda$ (see §2.3). Therefore, the limit of discrete series $\pi_{\Lambda}\left(\nu_{\lambda}=\rho\right)$ in $§ 2.3$ corresponds to (LD1) in [W] because $\lambda=$ $-\left(k_{1} \Lambda_{1}+k_{2} \Lambda_{2}\right)$ is dominant with respect to $\Delta_{k}^{+}=\left\{-\alpha_{1}\right\}$, so $k_{1} \geqq 0$, and $\nu_{\lambda}=\rho$ implies that $k_{1}+k_{2}=-2$.

Let $\pi=\pi_{\mu}$ be a finite dimensional representation of $G$ with lowest weight $-\mu \in \mathrm{t}_{c}{ }^{*}$ with respect to $\Delta^{+}$. In order to apply Theorem 5.6 to $S U(2,1)$ we have to determine the set of $\mu$ satisfying the conditions:

$$
\begin{align*}
& \lambda-\mu \text { is }{\Delta_{k}}^{+} \text {-dominant },  \tag{A0}\\
& \left\langle\mu, \alpha_{0}\right\rangle>0,  \tag{A1}\\
& i_{0}=d_{\pi_{\mu}} \tag{A2}
\end{align*}
$$

We recall that (A2) implies that $\mu_{i_{0}}=-\mu \circ \operatorname{Ad}\left(u_{0_{0}}\right)^{-1} \in \mathfrak{G}_{c}{ }^{*}$ is the highest
weight of $\pi_{\mu}$ with respect to $\Psi^{+}$(see §3). Then, by the classification of finite dimensional representations of $\mathfrak{l l}(3, C)$ (cf. [AS], p. 1231), we see that $\mu$ satisfies (A2) if and only if

$$
\begin{equation*}
\mu=-m \Lambda_{1} \quad(m=0,1,2, \cdots) \tag{6.18}
\end{equation*}
$$

Suppose that $\mu$ is of this form. Then $\mu$ satisfies (A1) for $m>0$ and (A0) for $m \leqq k_{1}$ when $\lambda=-k_{1} \Lambda_{1}-k_{2} \Lambda_{2}, k_{1}+k_{2}=-2$ and $k_{1} \geqq 0$; so the set of $\mu$ satisfying (6.17) is given by

$$
\begin{equation*}
\left\{\mu=-m \Lambda_{1} ; 1 \leqq m \leqq k_{1}\right\} \tag{6.19}
\end{equation*}
$$

for the above $\lambda$. Therefore, we conclude that the representations ( $\pi_{\sigma_{\lambda-\mu}, \nu_{\lambda-\mu}}, \Omega_{\lambda, \mu}$ ) correspond to the antiholomorphic discrete series with lowest $K$-type $\lambda+\mu$ ( $\pi_{1+\mu}$ in [W]), and they exhaust the whole (AHD) in the list.

Similarly, if we start the argument with $\Delta^{+}=s_{2} s_{1} \Delta_{0}^{+}$instead of $s_{1} s_{2} \Delta_{0}^{+}$, we can obtain the holomorphic discrete series (HD) in the list (see Remark 5.7). However, we cannot obtain the nonholomorphic discrete series (NHD) in our method, because $\mu$ has to satisfy the condition (6.19).

## References

[AS] J. P. Antorne and D. Speiser, Characters of irreducible representations of simple groups, I, J. Math. Physics, 5 (1964), 1226-1234.
[B] B. BLANK, Boundary behavior of limits of discrete series representations of real rank one semisimple groups, Pacific J. Math., 122 (1986), 299-318.
[GTKS] J. E. Gilbert, P. A. Tomas, R. A. Kunze and R.J. Stanton, Higher gradients and representations of Lie groups, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. 2, Wadsworth Math. Series, (1983), 416-436.
[HC] Harish-Chandra, Discrete series for semisimple Lie groups II, Acta Math., 116 (1966), 1-111.
[He] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press (1962).
[JW] K. Johnson and N. R. Wallach, Composition series and intertwining operators for the spherical principal series, I, Trans. Amer. Math. Soc., 229 (1977), 137-173.
[K] T. Kawazoe, Discrete part of $L^{p}$ functions on $S U(1,1)$, Keio Res. Rep., 10 (1986).
[K2] T. Kawazoe, A transform on classical bounded symmetric domains associated with a holomorphic discrete series, Tokyo J. Math., 12 (1989), 269-297.
[Kn] A. W. Knapp, Bounded symmetric domains and holomorphic discrete series, Pure Appl. Math., 8 (1972), 211-246, Marcel Dekker.
[Kn2] A. W. Knapp, Weyl group of a cuspidal parabolic, Ann. Sci. Ecole Norm. Sup. (4), 8 (1975), 275-294.
[KO] A. W. Knapp and K. Окamoto, Limits of holomorphic discrete series, J. Func. Anal., 9 (1972), 375-409.
[KS] A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math., 93 (1971), 489-578.
[KW] A. W. Knapp and N. R. Wallach, Szegö kernels associated with discrete series, Invent. Math., 34 (1976), 163-200.
[NO] M.S. Narasimhan and K. Okamoto, An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type, Ann. of Math., 91 (1970), 486-511.
[Ra] R. M. RANGE, Holomorphic Functions and Integral Representations in Several Complex Variables, GTM, 108 (1986), Springer-Verlag.
[Ru] W. Rudin, Function Theory in the Unit Ball of $C^{n}$, GmW, 241 (1980), SpringerVerlag.
[Sc] W. Schmid, On the realization of the discrete series of a semisimple Lie group, Rice Univ. Studies, 56, No. 2 (1970), 99-108.
[Su] M. Sugiura, Unitary Representations and Harmonic Analysis, Wiley (1975).
[V] V.S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Math., 576 (1977), Springer-Verlag.
[W] N. R. Wallach, On the Selberg trace formula in the case of compact quotient, Bull. Amer. Math. Soc., 87 (1976), 171-195.
[Z] G. Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math., 106 (1977), 265-308.

## Present Address:

Department of Mathematics, Faculty of Science and Technology, Keio University Hiyoshi, Конoku-ku, Yokohama 223, Japan


[^0]:    Received December 24, 1988

