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\S 0. Introduction.

In this article by a variety we mean an irreducible reduced projective
variety over the field of complex numbers.

Let $X$ be a 3-dimensional Fano variety with canonical singularities
and $H$ be a Cartier divisor satisfying $-K_{X}\sim r(X)H$ for the index $r(X)$

of $X$. The purpose of this article is to study the rational map $\Phi_{|H|}$ and
singularities of a general member of $|H|$ . In particular in the case of
$r(X)=2$ , which is the most essential, we find $\Phi_{|H|}$ to be as follows.
(1) When $d=H^{3}\geqq 3$ , a closed immersion into $P^{d+1}$ .
(2) When $d=2$ , a double covering over $P^{3}$ .
And
(3) when $d=1$ , a rational map that is defined except exactly one point
and the closure of whose general fiber is a smooth elliptic curve.

And furthermore a general member $S$ of $|H|$ has rational double points
at $S\cap Sing(X)$ .

(0.1) DEFINITION. A variety $V$ is called a Fano variety whenever
the following conditions are satisfied.

(1) $V$ is normal.
(2) $V$ is Gorenstein, i.e. $K_{V}$ is a Cartier divisor.
(3) The anticanonical divisor $-K_{V}$ is ample.

(0.2) DEFINITION. For an n-dimensional Fano variety $V$, we define
the index of $V$ to be $\max\{m\in Z|\exists$ a Cartier divisor $H$ such that
$-K_{V}\sim mH\}$ .

When $V$ is an n-dimensional Fano variety, we use the following
notation.
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$r(V)$ : the index of $V$,
$H$: a Cartier divisor such that $-K_{V}\sim r(V)H$,
$d(V)=H^{n}$ : the degree of $V$.
(0.3) DEFINITION. An n-dimensional Fano variety of index $n-1$ is

called a del-Pezzo variety.

The classification theory of 3-dimensional smooth Fano varieties, which
orig ted with G. Fano, was completed by Iskovskih ([I1], [I2], [I3]),

Shokurov ([S1], [S2]) and Mori-Mukai ([MM). Iskovs lh classified all the

smooth Fano 3-folds of indices $\geqq 2$ and those of indices $=1$ and $b_{2}=1$ as-
suming that two conjectures are true. One of them conjectures that

there exists a smooth member in the linear system $|H|$ and the other

does that there exists a quasi-line on a smooth Fano 3-fold of index 1.

Later all two of them are solved affirmatively by Shokurov. For smooth
Fano 3-folds of indices $=1$ and $b_{2}>1$ , Mori and Mukai completed the

classification theory.
The motivation of this article is to extend their method to the case

where objects have some singularities, say, canonical singularities. Since,

as will be shown in \S 3, Fano 3-folds with canonical singularities whose

indices $\geqq 3$ are immediately classified by applying Fujita’8 $\Delta$-genera theory

\langle $[F1]$), we may restrict our concern to the cases of indices 1 and 2.

In Iskovskih and Shokurov’s theory of classification of smooth del-

Pezzo 3-folds, the existence of a smooth member of $|H|$ plays a crucial

role. For the singular case Reid shows the following theorem by ex-
tending the arguments in [S1].

(0.4) THEOREM ([R]). Let $X$ be a 3-dimensional variety which has

only canonical singular’ities. Assume the Weil divisor $-K_{X}$ is a nu-
merically effective Cartier divisor and $(-K_{X})^{3}>0$ . Then a general member

of $|-K_{X}|$ is a K3-surface which has at worst rational double points as
its singularities and the dimension of the image of $X$ by a rational
map associated with $|-K_{X}|$ is 2 or 3.

REMARK. $\dim Bs|-K_{X}|\leqq 1$ .
REMARK. By [KMM, Theorem 3-1-1] and [KMM, Remark 3-1-2] we

may a88ume $-K_{X}$ to be ample in the above theorem.

Going a little further $8tarting$ from Reid’s theorem, we obtain the
following theorem, which is one of our main theorems.

(0.5) THEOREM. Assume all the hypotheses in (0.4). Then we have
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(1) If the index $r$ is greater than 1, then $Bs|-K_{X}|=\emptyset$ .
(2) If dim $Bs|-K_{X}|=1$ , then scheme-theoretically $Bs|-K_{X}|\cong P^{1}$ and

$Bs|-K_{X}|\cap SIng(S)=\emptyset$ for a general member $S\in|-K_{X}|$ , in particular,
$Bs|-K_{X}|\cap Sing(X)=\emptyset$ .

(3) If dim $Bs|-K_{X}|=0$ then $Bs|-K_{X}|$ consists of exactly one point
and a general member of Se $|-K_{X}|$ has an ordinary double point at
$Bs|-K_{X}|$ . In this case $Bs|-K_{X}|eSing(X)$ .

When the index $r(X)>1$ we are more interested in properties of a
general member of $|H|$ than those of a general member of $|-K_{X}|$ . In
this respect we obtain the following theorem.

(0.6) THEOREM. Let $X$ be a del-Pezzo 3-fold with canonical singu-
larities and $H$ be an ample Cartier divisor such that $-K_{X}\sim 2H$. By $W$

we denote the image of $X$ by the rational map associated with $|H|$ .
Then we have

(1) A general member $S$ of $|H|$ has at worst rational double points
as its singularities.

(2) d(X)>l\Leftrightarrow Bs|H|=\Leftrightarrow dimW=3.
(3) $d(X)=1\Leftrightarrow Bs|H|\neq\emptyset\Leftrightarrow Bs|H|=\{onepoint\}\Leftrightarrow\dim W=2$ .
Moreover a general Se $|H|$ is smooth at $Bs|H|$ if $d(X)=1$ .
(0.7) COROLLARY. Let $X$ and $H$ be the same as in (0.6). Then the

polarized variety (X, $p_{X}(H)$) has a regular ladder (see (3.2)).

From [HW, Theorem 4.4] and Theorem (0.6) (1) we immediately obtain
the following corollary.

(0.8) COROLLARY. Under the same hypothesis and notation as in
(0.6), we have

(1) If $d(X)\geqq 3$ then $H$ is very ample and $W$ is a projectively normal
subvariety of degree $d(X)$ in $P^{d(X)+1}$ . Moreover
(1.a) If $d(X)\geqq 4$ , then $W\subset P^{dtX)+1}$ is a scheme-theoretic intersection of
$d(X)(d(X)-3)/2$ quadrics.
(1.b) If $d(X)=3$ , then $W$ is cubic in $P^{4}$ .

(2) If $d(X)=2$ , then $\Phi_{|H|}$ gives a double cover over $P^{3}$ whose branch
divisor is a quadric hypersurface and $X$ is isomorphic to a hypersurface
of degree 4 in $P(1,1,1,1,2)$ . In particular $mH$ is very ample whenever
$m\geqq 2$ .

(3) If $d(X)=1$ then $X$ is isomorphic to a hypersurface of de-
gree 6 in $P(1,1,1,2,3)$ . In particular $mH$ is very ample whenever
$m\geqq 3$ .
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REMARK. We have another proof of (2) and (3) of Theorem (0.6)

through Corollary (0.8).
When $H$ is very ample and $\Delta(V, H)=1,$ $V$ is a subvariety of degree

$d$ in $P^{d+1}$ . Such varieties are studied in $[F3]$ .

The author is heartly grateful to Prof. Iitaka, S. and Prof. Kawamata,

Y. They encouraged the author to write this paper and pointed out
some diffuseness and mistakes of the original version. Especially Prof.
Kawamata taught the author a much simpler proof of Lemma (2.1).

\S 1. Preliminary.

First we recall some basic results.

(1.1) PROPOSITION. Let $V$ be an $arbit\gamma ary$ variety and $D$ a Cartier
divisor on V. If $H^{1}(V, P_{V}(-D))=0$ , then any member of $|D|$ is eon-
nected. Conversely if $D$ is reduced and connected, then $H^{1}(V, P_{V}(-D))=0$

provided that $H^{1}(V, \rho_{V})=0$ .
For instance in our case this proposition guarantees that every member

of $|mH|$ is connected for any positive integer $m$ .
(1.2) PROPOSITION. Let $V$ be an n-dimensional Fano variety with

canonical s’ingularities. Then
(1) $H^{i}(V, p_{\gamma}(mH))=0$ for any integers $m$ and $i$ such that $0<i<n$ ,

(2) $H^{0}(V, \mathcal{O}_{V}(mH))=0$ for $m<0$ , and
(3) $H^{n}(V, P_{V}(mH))=0$ for $m>-r(V)$ .
PROOF. The proof immediately follows from Serre duality and [KMM,

Theorem 1-2-5]. $\square $

(1.3) PROPOSITION. Let $V$ be a 3-dimensional Fano variety with

canonical singularities. Then

$h^{0}(mH)=\frac{m(m+r)(2m+r)}{12}d+\frac{2m}{r}+1$ .

PROOF. Applying Proposition (1.2) to Riemann-Roch formula,

$h^{0}(mH)=\frac{m(m+r)(2m+r)}{12}d+(\frac{2m}{\gamma}+1)\frac{c_{1}\cdot c_{2}}{24}$ .

When $m=0$ , from this we obtain $1=x(P_{V})=c_{1}\cdot c_{2}/24$ . Hence we obtain
the assertion. $\square $
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\S 2. Proof of (0.5).

The next lemma, which is a slight generalization of [SD, Proposition
8.1], iv the key to the proof of (1.5).

(2.1) LEMMA. Let $S$ be a nonsingular K3-surface and $D$ be a nu-
merically effective divisor on $S$ such that $D^{2}>0$ . Then either of the
followings holds.

(1) $Bs|D|=\emptyset$ .
(2) There exist a nonsingular elliptic curve $E,$ $a(-2)$-curve $\Gamma$ on

$S$ and an integer $k>1$ such that $ D\sim kE+\Gamma$ .
PROOF. Letting $F$ denote the fixed part of $|D|$ , we have $D\sim M+F$,

where $|M|$ is the movable part. The following properties hold.
(a) Every component $\Delta$ of $F$ is a (-2)-curve, i.e. $\Delta\cong P^{1}$ and

$\Delta\cdot\Delta=-2$ (see [SD, 2.7.1]).
(b) $M$ is linearly equivalent to

(b.1) a prime divisor, or
(b.2) $kE$ for a smooth elliptic curve $E$ and an integer $k\geqq 2$ .

Furthermore, $Bs|M|$ is empty in the both cases (see [SD, Proposition
2.6]).

(c) When $M\sim kE$ for an elliptic curve $E$ and an integer $k\geqq 2$ , there
exists a component $\Gamma$ of $F$ which intersects with $E$ effectively. Actually
this immediately follows from (1.1) and [KMM, Theorem 1-2-5].

Furthermore such a $\Gamma$ is unique and $\Gamma\cdot E=1$ (see [SD, 2.7.1]).
Let $L$ be $M$ in the case (b.1) or $ M+\Gamma$ in the case (b.2). By Riemann-

Roch formula and (1.1), we get

$h^{0}(L)=\frac{L^{2}}{2}+2$

$\Vert$

$h^{0}(D)=\frac{D^{2}}{2}+2$

and so $2L\cdot G+G\cdot G=0$ , where $D\sim L+G$ . On the other hand from nu.
merically effectiveness of $D,$ $L\cdot G+G\cdot G=0$ , therefore $D\cdot G=G\cdot G=0$ . This
implies $G=0$ by the Hodge index theorem. $\square $

The next corollary immediately follows from the above lemma.

(2.2) COROLLARY. Under the same condition as in (2.1), BslmD $|=\emptyset$

for $m\geqq 2$ .
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(2.3) PROOF OF (0.5). Theorem (0.4) shows a general member of
$|-K_{X}|$ is an irreducible normal Gorenstein surface with $p_{s}(K_{s})\cong p_{s}$ whose
singularities are at worst rational double points.

By the vanishing theorem, $H^{0}(X, P_{X}(-K_{X}))\rightarrow H^{0}(S, P_{S}(-K_{X}))$ is sur-
jective, hence $Bs|-K_{X}|$ coincides with $Bs|(-K_{X})\cdot S|$ . Let $\mu:T\rightarrow S$ be the
minimal resolution of S. $T$ is a smooth $K3$-surface. $D=\mu^{*}(-K_{X})$ is
numerically effective and $D^{2}>0$ .

If $r(X)>1$ then $Bs|D|$ must be empty by (2.2). Thus we obtain (1).

If $Bs|-K_{X}|$ is not empty, it must be a smooth rational curve or ex-
actly one point. We claim that $Bs|-K_{X}|\cap Sing(S)=\emptyset$ if dim $Bs|-K_{X}|=1$

and that $Bs|-K_{X}|eSing(S)$ if dim $Bs|-K_{X}|=0$ . Actually if the claim
were false, $|D|$ would have more than two fixed components, which
contradicts (2.1).

Therefore we only have to check $Bs|-K_{X}|\in Sing(X)$ when dim $Bs|-K_{X}|$

consists of a point. Assuming $Bs|-K_{X}|\in X_{r\epsilon g}$ , we shall derive a contra-
diction.

We take the monoidal transform $\pi:Y\rightarrow X$ with center $Bs|-K_{X}|$ .
When we write $\pi^{*}(-K_{X})\sim M+mE$ where $E$ is the exceptional divisor
of $\pi$ and $mE$ is the fixed part of $|\pi^{*}(-K_{X})|$ , we have $m=2$ . Let $T$ be
a general irreducible member of $|M|$ which dominates $S$ . We have

$h^{0}(T, \theta_{T}(M))=h^{0}(Y, \rho_{Y}(M))-1=h^{0}(X, \rho_{X}(-K_{X}))-1$ .
On the other hand

$h^{0}(T, \beta_{T}(\pi^{*}(-K_{X}))=h^{0}(S, \beta_{S}(-K_{X}))=h^{0}(X, \rho_{X}(-K_{X}))-1$ .
Thus it follows that $2E\cdot T=|\pi^{*}(-K_{X})\cdot T|_{Ax}$ , which contradicts (2.1). $\square $

\S 3. On the theory of polarized varieties.

In this section we collect some theorems from the theory of $\Delta$-genera
by T. Fujita. First of all we define some notation.

(3.1) DEFINITION. A prepolarized variety (V, $L$) is defined to be a
pair of a variety $V$ and a line bundle $L$ on $V$. For an n-dimensional
Gorenstein prepolarized variety (V, $L$) we define the following symbols
and call these values the degree, sectional genus and $\Delta$-genus of $(V, L)_{1}$

respectively:

$d(V, L)=L^{n}$ ,

$g(V, L)=\frac{(K_{\gamma}+(n-1)L)\cdot L^{n-1}}{2}+1$ ,
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$\Delta(V, L)=n+d(V, L)-h^{0}(V, L)$ .
Furthermore if $L$ is ample, we call (V, $L$) a polarized variety.

(3.2) DEFINITION. (1) Let (V, $L$) be an n-dimensional prepolarized
variety. When a sequence $(D_{n}, \cdots, D_{1})$ of subvarieties of $V$ satisfies the
conditions below, we call the sequence a ladder of (V, $L$).
(a) $D_{n}=V$.
(b) For $j>1,$ $D_{j-1}$ is an irreducible reduced member of $|L_{j}|$ , where $L_{f}$.
is a restriction of $L$ to $D_{j}$ .

(2) For a prepolarized variety (V, $L$), its ladder $(D_{n}, \cdots, D_{1})$ is
regular whenever natural homomorphisms $H^{0}(D_{j}, L_{j})\rightarrow H^{0}(D_{j-1}, L_{j-1})$ for
$n\geqq j\geqq 2$ are all surjective.

(3.3) DEFINITION. Let $V$ be a variety and $L,$ $M$ line bundles on $V$. We
denote by $R(L, M)$ the kernel of the natural homomorphism $\Gamma(L)\otimes\Gamma(M)\rightarrow$

$\Gamma(L\otimes M)$ . We say $L$ is simply generated whenever natural homomorphisms
$\Gamma(L)\otimes\Gamma(L^{\otimes t})\rightarrow\Gamma(L^{\otimes t+1})$ is suriective for every positive integer $t$ . Fur-
thermore $L$ is quadratically represented, whenever $L$ is simply generated
and $R(L^{\emptyset}, L^{\otimes t})\otimes\Gamma(L)\rightarrow R(L^{\otimes\epsilon}, L^{\otimes t+1})$ is surjective for every pair of posi-
tive integers $(s, t)$ .

(3.4) THEOREM ([Fl, Theorem 4.1]). Let (V, $L$) be a prepolarized
variety which has a ladder. Assume $\Delta(V, L)\leqq g(V, L)$ and $d(V, L)>0$ .
Then

(1) the ladder is regular if $d\geqq 2\Delta-1$ ,
(2) BslLl= if $ d\geqq 2\Delta$ ,
(3) $g(V, L)=\Delta(V, L)$ and $L$ is simply generated if $d\geqq 2\Delta+1$ , and
(4) $L$ is quadratically represented if $d\geqq 2\Delta+2$ .
(3.5) THEOREM ([F2, Theorem 1.9]). Let (V, $L$) be a polarized va-

riety. Then dim $Bs|L|<\Delta(V, L)$ , where dim $\emptyset$ is defined to be $-1$ . In
particular $\Delta(V, L)$ is not negative.

In the case of dimension three, which is our main concern, we have
the next corollary to Theorem (3.5).

(3.6) COROLLARY. If $X$ is a 3-dimensional Fano variety with ca-
nonical singularities, then the index of $X$ does not exceed 4. Further,
$d(X)=1$ if $r(X)=4$ . Moreover $d(X)=2$ if $r(X)=3$ .

PROOF. By definition,
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$\Delta(X, P_{X}(H))=3+d(X)-h^{0}(X, p_{X}(H))$

$=2-\frac{(r(X)+5)(r(X)-2)}{12}d(X)-\frac{2}{r(X)}\geqq 0$ .
Solving this inequality, we obtain the assertion. $\square $

(3.7) THEOREM ([F2, Theorem 2.1 and Theorem 2.2]). Let (V, $L$) be
an n-dimensional polarized variety. Then

(1) if $d(V, L)=1$ and $\Delta(V, L)=0$ , then (V, $L$) $\cong(P^{n}, \rho_{P^{n}}(1))$ , and
(2) if $d(V, L)=2$ and $\Delta(V, L)=0$ , then $V$ is isomorphic to a hy-

perquadric in $P^{n+1}$ and $H$ is the restriction of $\rho_{P^{n+1}}(1)$ to $V$.
(3.8). Here we compute $\Delta$-genera and sectional genera of 3-dimensional

Fano varieties $X$ with canonical singularities.
(1) When $r(X)=4$ ,

$\Delta(X, \rho_{X}(H))=0$ and $g(X, P_{X}(H))=0$ .
(2) When $r(X)=3$ ,

$\Delta(X, \rho_{X}(H))=0$ and $g(X, \rho_{X}(H))=0$ .
(3) When $r(X)=2$ ,

$\Delta(X, \rho_{X}(H))=1$ and $g(X, P_{X}(H))=1$ .
(4) When $r(X)=1$ ,

$\Delta(X, p_{X}(H))=\frac{d}{2}$ and $g(X, \rho_{X}(H))=\frac{d}{2}+1$ .
Applying (3.6) to our case, we obtain the following

(3.9) THEOREM. Let $X$ be a 3-dimensional Fano variety with ca-
nonical singularities. Then

(1) if $r(X)=4,$ $X$ is isomorphic to $P^{3}$ , and
(2) if $r(X)=3,$ $X$ is isomorphic to a hyperquadric in $P$‘.

\S 4. Proof of (0.6).

(4.1) PROOF OF THEOREM (0.6). Applying (3.5) to a polarized variety
\langle X, $p_{X}(H))$ , we have dim $Bs|H|<\Delta(X, \rho_{X}(H))=1$ .

Denoting the rational map associated with the linear system $|H|$ by
$\Phi:X\rightarrow\Phi(X)=W\subset P|H|,$ $\Phi$ cannot be a pencil because dim $Bs|H|\leqq 0$ , hence
dim $W\geqq 2$ .
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Let $\pi:Y\rightarrow X$ be a proper birational morphism that satisfies the fol-
lowing conditions $(a)-(c)$ . Define integers $\gamma_{\dot{f}}$ and $a_{j}$ as satisfying

$\pi^{*}H\sim M+\sum_{j=1}^{n}r_{j}E_{j}$ and $K_{Y}\sim\pi^{*}K_{X}+\sum_{j=1}^{n}a_{j}E_{j}$ ,

respectively, where the $E_{j}$ are all the exceptional divisors of $\pi$ .
(a) $Y$ is nonsingular.
(b) The movable part $M$ of $|\pi^{*}H|$ is base point free.
(c) If dim $\pi(E_{j})=1$ , then $a_{j}=0$ .

Because dim $W\geqq 2$ we can take an irreducible member $S$ of $|H|$ . Let
$T$ be an irreducible smooth member of $|M|$ that is dominating $S$. We
claim that $H^{1}(T, P_{T})=H^{2}(T, \rho_{T})=0$ .

$H^{2}(T, \rho_{T})=0$ follows from Serre duality and the fact that $-K_{s}$ is
ample.

By definition,

$h^{0}(S, \mathcal{O}_{s}(H))=h^{0}(T, P_{T}(M))\leqq h^{0}(\tau,$ $\rho_{T}(M+\sum_{j=1}^{n}a_{j}E_{j}))$ .
On the other hand by Riemann-Roch for surfaces and [KMM, 1-2-5],

we have

$h^{0}(T,$ $p_{T}(M+\sum_{\dot{s}=1}^{n}a_{j}E_{j}))=\pi^{*}H\cdot(M+\sum_{j=1}^{n}a_{j}E_{j})\cdot T-h^{1}(T, \rho_{T})+1$ .
Combining these inequality and equality, we obtain

$H^{8}+1\leqq\pi^{*}H\cdot(M+\sum_{j=1}^{n}a_{j}E_{j})\cdot T-h^{1}(T, \rho_{T})+1$ ,

hence

$h^{1}(T, P_{T})\leqq\pi^{*}H\cdot\{(M+\sum_{j\Leftarrow 1}^{n}a_{j}E_{j})\cdot M-(\sum_{j=1}^{n}r_{j}E_{\dot{f}}+M)^{2}\}$

$=\pi^{*}H\cdot\{\sum_{j=1}^{n}(a_{j}-r_{j})E_{j}\cdot M-\sum_{j=1}^{n}r_{j}E_{j}\cdot\pi^{*}H\}$ .
If dim $\pi(E_{j})=0$ , then $\pi^{*}H\cdot E_{j}\approx 0$ . On the other hand, when

dim $\pi(E_{\dot{g}})=1$ it follows that $\gamma_{j}=0$ from dim $Bs|H|\leqq 0$ and further $a_{j}=0$

follows from the construction of $\pi$ . Finally from the above inequality
we get $h^{1}(T, p_{T})=0$ .

Note that $S$ is normal because $S$ is Gorenstein and has only isolated
singularities.

Since $h^{2}(S, \rho_{s})=h^{0}(S, p_{s}(-H))=0$ and $h^{1}(T, P_{T})=0$ as was seen above,
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we have $R^{1}\pi_{*}\rho_{T}\cong 0$ , hence $S$ has only rational double points as its sin-
gularities.

If dim $W=3$ , then (X, $\rho_{X}(H)$) has a ladder. Note that if $d=1$ then
$h^{0}(X, \rho_{X}(H))=3$ , hence $W\cong P^{2}$ . So if dim $W=3$ , then BslHl= by
Theorem (3.4). Thus in order to complete the proof we only have to
check the assertion when dim $W=2$ .

$\mu\downarrow_{\Phi 1s}^{---\cdot\nu}\downarrow\nu U\tilde{V}S\rightarrow V\subset W$

Let $\mu:U\rightarrow S$ be the minimal resolution of singularities of $S$. In
particular $\mu^{*}K_{s}=K_{\sigma}$ . Denoting $\Phi(S)$ by $V$, we have dim $V=1$ . Let
$\nu;\tilde{V}\rightarrow V$ be the normalization. $\tilde{V}\cong P^{1}$ since $h^{1}(U, P_{U})=0$ . Note that $v$

factors $\Phi|_{s}$ . Because

$h^{0}(S, \rho_{s}(H))=h^{0}(V, P_{V}(1))\leqq h^{0}(\tilde{V}, \nu^{*}P_{\gamma}(1))\leqq h^{0}(S, P_{s}(H))$ ,

$\nu^{*}|P_{V}(1)|$ gives a complete linear system. Thus $\nu$ turns out to be an
isomorphism. So we have $\mu^{*}H_{s}\sim dE+Z$ for some Cartier divisor $E$ on
$U$ where $H_{s}$ is the restriction of $H$ to $S$ and $Z$ is the fixed part of
$|\mu^{*}H_{s}|$ .
(4.2) $d=(\mu^{*}H_{s})^{2}=d^{2}E^{2}+dE\cdot Z+\mu^{*}H_{s}\cdot Z=d^{2}E^{2}+dE\cdot Z$ .

Since $\mu^{*}H$ is numerically effective and $E$ is movable, none of $E^{2}$ and
$E\cdot Z$ is negative.

If $d>1$ , we get $E^{2}=0$ . Hence $E\cdot Z=1$ .
If $d=1$ and if $S$ is singular at a point $eB8|H_{s}|=Bs|H|$ , then the fixed

part $Z$ is not zero. So by (1.1), $E\cdot Z>0$ , hence $E^{2}=0$ and $E\cdot Z=1$ .
In the above two cases, we can compute the genus of $E$ as follows:

$2p_{g}-2=E\cdot(K_{\sigma}+E)=E\cdot(\mu^{*}K_{s}+E)=-E\cdot((d-1)E+Z)=-1$ .
This contradicts the fact that $p_{g}$ is a positive integer.

Consequently we have $d=1$ and $S$ is 8mooth at $B8|H|$ if dim $W=2$ .
Moreover observing (4.2) again we have $E^{2}=1$ , hence $Bs|H|$ consists of
exactly one point. This completes the proof. $\square $

(4.3) PROOF OF (0.8). Let $S$ be a general member of $|H|$ . By
[KMM, Theorem 1-2-5] a natural map $H^{0}(X, ff_{X}(tH))\rightarrow H^{0}(S, p_{s}(tH))$ is
surjective for $t\geqq 0$ . Then we can calculate the graded algebra $R(X, H)=$
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$\oplus_{t\gtrless 1}H^{0}(X, P_{X}(tH))$ from $R(S, H|_{S})$ . Thus we obtain the assertion by
[HW, Theorem 4.4]. $\square $
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