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§0. Introduction.

Let @ be a quadratic integer in a complex quadratic field Z(1 mq)
and N (= N(a)) be the norm of a. Let & be a set of quadratic integers
in Z(V'mi) whose cardinality is equal to the norm of a, and denote it by

@={709 AT "'N-—-l} ’ r; € Z(I/m'i) .

A pair (a, &) is c_a_.lled a number system on Z(1/mi) if every quadratie
integer B8 in Z(1m1t) is uniquely represented in the form

B=ry+ra+-+r;a’, rez (0=i=7) (0.1)

and we say that g8 is expanded with base a and digits r, (0<i<j) if it
is so represented. Most primitive example of the number system found
in [9] and [10] is as follows: take a¢=¢—1 and = ={0, 1}, then

1) (a, 2) is a number system on Gaussian field Z(¢), and

2) the Hausdorff dimension of the boundary of the set

a,,,e@}

X =3 aG-1
is equal to

2log ) -1 go3g
log2 -

where )\ is the positive root of \*—)\?*—2=0. This fact is extended as
follows:

THEOREM (Katai-Szabo [8] and Gilbert [7]). Let a be an imteger in
Z(z) and take 2={0,1, 2,--., N—1}, then
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1) (a, 2) 18 a number system if and only if
Rea<0 and Ima==+1

and
2) the Hausdorff dimension of the boundary of

X_ei= {3 au(—nxi)

akeg}

28 equal to

2 log A\,
log(n*+1)

where A\, 18 the positive root of \'—(@2n—1)\*—(n—1)'"A—(n*+1)=0.
As a generalization of 1) in the theorem, we have

THEOREM 0.1 (G_i_lbert [6]). Let a be a quadratic integer in a complex
quadratic field Z('mi) and N be the norm _gf a, and 2={0,1,---, N—1}.
Then (a, 2) is a number system on Z(V'mi) iof and only if

a=—n+tVmi n=0,1,2---) if —m=2 3 (mod.4),

a=—nt1i (n=1,2,---) if m=1,
and (0.2)
a= “2”+12i‘/mi =0,1,2,---) if —m=1 (mod.4)
—_ —2n+]éil/3i (n=2, 3’...) 'l;f m=3.

The purpose of this paper is to see that for each base a in Theorem
0.1, the boundary of the set

X.= {g aa”*

a.€{0,1,--, N—1}}

is essentially a fractal curve. To state more precisely, we have the
following result:

RESULT. For each number system (a, @) in Z(1/ mi) given by
Theorem 0.1, a curve K, satisfying the following property is constructed
on a complex plane:

(1) K,=boundary of X,,
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(2) (space tiling)
U (X,+2)=C and int.(X,+2)Nint.(X,+2)=2

26 Z(Ymi)

(if 22 € Z0 ' m7)) ,
(38) (self stmilarity)
N—1 .
aX.=U (X.+39),
(4) int.X,20,
(5) the Hausdorff dimension of the curve K, is equal to

2 log A\,
log N

where \, 18 a positive solution of

N=@n—LN—(N=200—N=0  if a=-ntV'mi
(—m=2, 8 (mod.4), n=1,2,---),

N—=2n—2\—(N-2n+1)A—N=0 if a= —2n+1+1vV'mi

2
(=m=1 (mod.4), n=1,2,...),
A —(N—1)Zy—N=0 if a=-1—f‘=-‘—2/-m—i

(—m=1 (mod.4)) ,
and
the curve K, is a rectangle, if a==+xvV"mi (—m=2, 3 (mod.4), m=2) .

To construct the curves K,, we consider endomorphisms 4 on the free
group of rank 2 associated with the number system (@, &). This idea
is essentially that of Dekking [6]. But we cannot apply directly the
Dekking’s method on the endomorphisms 4, because the endomorphisms
have “strong” cancellations. Therefore, we must consider the reduction
to the endomorphisms without cancellation. In fact, in §1 we consider
the first reduction of § which we call the adjoint 4, with respect to 4.
As the second step of reduction, the lifting endomorphism 6 on a free
group of rank 3, which has no cancellation, is introduced in §2.

ACKNOWLEDGEMENT. This paper consists of the main part of the
results obtained in the seminar theses written by the members of ITO’s
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Y. HANAMURA, K. KASAHARA, M. KISHI, A. KURITA, S. WAKAMEI,
Y. WATANABE, Y. YOSHIYA in 1986 and M. IMAKURA, M. MORISHITA,
M. NAKAYAMA, Y. NAKAYAMA, K. NARA, T. OKAZAKI,
N. TAKEKOSHI in 1987.

§1. Endomorphisms associated with number systems.

In this section, we introduce a class of endomorphisms on free group
G{a, b} associated with number systems (@, &) adopting Dekking’s method
[5].

Let G{a, b} be a free group of rank 2, that is, we consider G{a, b} as
the quotient set of the free semigroup S* generated by S:={a, b, a7, b7}
where we define the equivalence relation by setting w~wv (w, v€ S*) iff
w and v determine the same words after some cancellations, and we call
the words in S*/~ reduced words.

Let z: G{a, b}— Z(”mi) (cC) be a canonical homomorphism, i.e., =
is determined by =#(a), 7(b) together with the following:

a(w)=—n(w), =n(vw)=r®)+x(w) for v, weGla, b},

and the canonical homomorphism w, associated with base o is given by
specifying =.(a) and m.(b) as follows:

DEeFINITION 1.1,

a—1 -
ot b1/ if a=—n+vmi n=0,1,2,..:),
Lol if o= Vi (1=0,1,2,-+")
TCa- b__) —‘/7—1’—;‘&. l . - n m"& n"—“ ’ ’ ’ ’
a—1 — .
. _ . _ —2n+14+v'mr . _
ﬂa' b R 1+1/m1: lf a-—" 2 . (n—l, 2’ .o .)
2 .
a—1 . —on+1—V'mi ‘
Tyt 1—1v'mi if a= 5 ' (n=1, 2,--:).
b1

The case of a=(1+1"mi)/2 will be discussed in Remark 3.6.
Let # be an endomorphism of Gia, b}, i.e. § is determined by 6(a),
6(b) together with the following relations: -



FRACTAL CURVES

w ) =@w))™, 6(vw)=0w)o(w) for v, weG,
and the endomorphism 6, associated with base « is given as follows:
DEFINITION 1.2,

a — a¥bg—¥+m

e b— (a"b“l)”a"N i a= —ni‘/ﬁi (n=0! 1’ 2: * ') ’
S a— aba=+m . _ omtl4v i B
Oy ygn AT (n=1,2,-)

where a¢” means a string of n consecutive a’s.

Let T,: Z0/mi)— Z(/mi) be an endomorphism of Z(1”mi) defined by
multiplication by «, that is, 7T, is defined by

T.2)=az.

Then we have the following commutative diagram:

Gla, b} > G{a, b}
lna l”" . 1.1)
Z0 mi) —= 20/ mi)
ie. T,omw,=m,°0,.

For each base «a, we define a map K,, which assigns polygonal curves
to reduced words as follows: for s € S, K,[s] is the line segment from (0, 0)
to m,(s), i.e., K, [s]={tn.(8); 0=t<1}, and for s,---s,€ G{a, b}, K.[s, - -8:]
is the polygon with vertices (0, 0), z,(s), - -+, 7.(8;**+8,), i.e., K [s, +-8]=
Ui=y (Ta(8y* « +8;_1) + K, [8;]), where ¢+ A={x+y;y € A}). Moreover, if a re-
duced word w satisfies f(w)=0, then the curve K,[w] is defined by
S @)+ K, Jw,] where w, is given by w=v-w-v™! and v is chosen as longest
word satisfying w=v-w, v

For simplicity we denote sometimes 7, 6, @ and K instead of =,, 6., T,
and K,, respectively.

REMARK 1.3. We can reduce the case of base a=-—n—1" @ or
(—2n+1—1"m13)/2 to the case of base a=—n+1"mi or (—2n+1+1"m1)/2.
In fact, from Definitions 1.1 and 1.2, we know

6%(aba~b"") =6%(abab™") ,
K[6%(aba~D )] = K[6%(aba~"b~")]
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where z is the conjugate of z€C and A={@|a € A}. Therefore, we have
a *K|6:(aba~b")]|=a *K[6%(aba'db7")] .

Thus @& *K[6%(aba~'b"")] is obtained by flipping a *K[#*(aba~'b"')] over the
real axis.

Therefore, we only discuss the case of a=—n +V'mi or a=
(—2n+1+1"mi)/2, from now on.

By the definition of ¢ and K, we know that

K[a(aba'lb“‘)]=ajg:(F[aba“b‘1]+ ) 1.2)

where Flaba~'b~!] is the unit parallelogram whose boundary is K[aba™'b"].
The following property is obtained inductively from a geometric consid-
eration.

FUNDAMENTAL PROPERTY 1.4. Let F[6*(aba™'b"")] be the domain en-
closed by K[6*(abab7')], then the curve K[0*(aba™'b"")] and the domain
F[6*(aba™'b7")] satisfy the following properties for each k:

1) K[6*(aba"'b")] is a simple closed curve.

2) (k-step space tiling) '

i) U {a *F[6*(aba~'b"")]+2z}=C.

e Z(Vmie)
ii) int.{a *F[6*(aba~b~")]+2z} Nint.{a *F[6*(aba~b"!)]+ 2} =2 .
Gf z#2' € Z0/ mi)).
38) (k-step self similarity)

o F[6¥abab ] = U (@~ Flo-abab)]+5)
Y

where aA means {az|z¢€ A}.
PrROPOSITION 1.5. The following relation holds:
o ¥ F[6*(aba~bd™")] = Ur (a*"*Flaba~'b"] +2)

where '=3}1a,/a'|a,€{0,1,++, N—1}}. _
The proof is obtained from 3) of Property 1.4 by induction.

The purpose of this paper is to show that the limit set of the curve
o *K[6*(aba"'b"")] is the boundary enclosing the set X, in Result in §0.
But we cannot apply Dekking’s method directly, because the endomorphism
0 has cancellations. So we try to consider the steps of reduction in order
to apply Dekking’s method. '
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First step is to construet an endomorphism ¢, related to 4 as follows.
Let ¢ be an endomorphism on G{a, b} and w be an element of G{a, b},
then we define an endomorphism 4, by

0.(v)=w'0(v)w for veG{a, b}.

We call the endomorphism 4, an adjoint endomorphism of 6 with respect
to a word w.

DEFINITION 1.6. For each endomorphism @ in Definition 1.2, we define
the adjoint as follows:
a—ba™

' b __)a—(N—n)b—l(aub—-l)n_l if a= —’n+]/m7.: (n“—'-'O, 1, 2’ . -)

where w is chosen as w=a",

. a—ba™ : —2n+1+vVmi
ow. b ___,a—(N—n)b—l(anb—q)n-—z lf a= 2 (n—]-’ 27 )

where w is chosen as w=a".
Then we have a proposition:

PROPOSITION 1.7. a *K[6*(aba~'b"")] i8 congruent to a~*K[6,*(aba="b~")],
that s,

a *K[6*(abab")]=a K[, (aba"b"1)]+6, ,

where 6,=>}., a”'w(w).
PrROOF. From the definition of 4,, we see the following by induction:
6*(aba™b™) =w, 0, (aba= b~ )w,™*
where w,=w0,(w)8,2(w) -0, (w). Therefore,
K{0*(abab~)] =3 w(0.'(w)) + K[0.*@bab)] .
Using the relation zo4.,*=a*or by (1.1), we have

a *K[¢*(aba"'b")] =§; o ‘r(w)+a *K[6, (abab™Y)] .

§2. Lifting endomorphism.

In this section, we induce an endomorphism called a lifting of ¢
which has no cancellation.
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Let G{A, B, C} be a free group on generators A, B and C, and define
a homomorphism @: G{A, B, C}— G{a, b} called a block code map as follows:

DEFINITION 2.1.

REMARK 2.2. In the case of a==+1"mi, the adjoint 4, in Definition
1.6 has no cancellation, and moreover the relation

a~*K[0,*(aba~b"")]= K[aba~b"]

A—ba™"

®: B—oa %" if a=—n+vVmi (n=12,...),
| C—a”
A—ba™ .
| ®: B—oqg W-npt if a= —2n+]é+1/'mz (n=1, 2’ .. .) .
| C—a”
|
|

holds for all k. Therefore, we need not discuss this case any further
(see Example 2).

For each 6, we define the endomorphism 6, which is called a lifting
endomorphism of 6, on the free group G{A, B, C} as follows:

DEFINITION 2.3.

\
|
|
|
|
|
|
| A —> BA—@n=1
|
|
|
\
|
|
|

6 : B— A-W-m(C if a=—n+1v"mi (n=1,2,:-.),
C A¥
A___)BA—(21V—2) _

6 : B A-W-mC  if a= ’2”+§+‘/W (n=1,2,---).
C— A"

This definition is derived from an easy calculation as follows: in the
case of a=—n+vVmi (n=1,2,---),
6(A)=07(0.(ba™™))
=@—l(a—(N—n)b—l(anb—l)n—l(ba—n)—n)
=¢‘1(a,“”‘"’b'1(ba“”)"2’“”)
— A—(Zn—l)

and so on. Therefore we have the following proposition.
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PROPOSITION 2.4. The endomorphisms O defined above satisfy the
relation:

00(S)=0,°0(S) for Se{A*, B*, C*}.
LEMMA 2.5. 6*(ABC) has no cancellation for any k.
PROOF. Let us denote

G*(ABC)=AF AL ... A, (k=1,2,+.+),

and we call the pairs of alphabets A®A®, (j=1,2,---, s(k)—1) and
A%LAP admissible pairs in ©*(ABC). We consider the set & (k=
0,1, 2,:--) of all admissible pairs in 6*(ABC), and put %= U ;. Then
we obtain

,={AB, BC, CA, BA™", A7'A™", A™'C, AA, AB™, B'A,
A™'B, A7'C™', C'A, BA™} . (2.1)

In fact, in the case of a=—n+VvV"mi (n=1, 2,+:..), we know
7%, ={AB, BC, CA} .

From the relation that @(AB)=BA~*"YA~-?"-(C we see that the ad-
missible pairs appearing in ©(AB) are BA™!, A"'A™* and A~'C. After
similar considerations for the pairs BC and CA, we obtain

[={BA™, A7'A™', A7'C, CA, AA, AB}.

Continue this procedure till k=3, then we see ;=7 (k>3). In the
case of a=(—2n+1+vV"m%)/2 (n=1,2,.-:), we obtain (2.1) in the same
manner. For each pair S:-T € .9, it is easy to see that the cancellation
does not occur in 6(S)-6(T), that is, the endomorphism 6 has no can-
cellation on ©*(ABC) for any k.

Therefore, we have the following proposition:

PROPOSITION 2.6. Let © be the lifting endomorphism of 6 given by
Definition 2.3, then the endomorphism © has mo cancellation and @ has
no cancellation on O*(ABC) and moreover the following relation holds:

0., (abab™") =0-60*(ABC) .

PrOOF. The fact that ® has no cancellation on ©*(ABC) is discussed
in Lemma 2.5. On the other hand, from Definition 2.1, it is easy to
see the cancellation does not oceur in @(S)-@(T) for any admissible pair
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S.-Te 7. Therefore @ has no cancellation on 6*(ABC). From Definition
2.1, we know

0.(aba~b")=0(ABC)
and from Proposition 2.4, we obtain inductively

0., (aba~b"")=0-6*(ABC) .

§3. Fractal curves induced from endomorphisms.

‘In this section, we see the existence of a limit set of a *K[§*(aba'b")]
which is in fact a “fractal curve” except when a= +1"mi.
Let us define a map #: G{ABC}— C as follows:

Ai=mod . 3.1)
Then, we have the following proposition.

PROPOSITION 3.1. For each 6 defined in Definition 2.8, the following
diagram commutes:

G{4, B, C} =5 G(4, B, C)

& 1&
c I ¢

1.e. T,o=1706.
ProoF. This follows from
DPoO=0,o0 and mwolh,=7mo0 .
In fact,
RO =moPoO=m08,P=100oP=T,omoP=T,oR .

We define a map K, which assigns polygonal curves on C to reduced
words of free group G{A, B, C} of rank 3, as follows:

K[AA,---A):=K[0(A,A,---A)] for W=AA, --A,e€G{4, B, C}. (3.2
Then, from Proposition 2.6 and (3.2), we see
PROPOSITION 3.2. For each © in Definition 2.3, we have
K[6%(ABC)]=K[6.*"(aba~"b"1)] .
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Now, we show there exists a limit set of a *K[6,*(aba~'b"")] as a fractal
curve. Let us define a non-negative matrix Ny=(ay,) (S, T €{A, B, C}):

asr=the number of S or S~* appearing in 6(T).

From Definition 2.3, the matrix N, is given explicitly by

2n—1 N-—-2n N
N9=( 1 0 o) if a=—n+vmi (n=1,2,---)
0 1 0
(3.3)
2n—2 N—2n+1 N _
N9=( 1 0 o) if a= ‘2”'*12““‘/'”“ (n=1,2,.-.).
0 1 0

We know the matrix N, is aperiodie, that is, there exists » such that
N*>0.

Therefore, by Perron-Frobenius’ theorem, there exists an eigen row vector
x= (&4 %5 ¥c) with respect to the maximum eigenvalue r, (>1) of N,
satisfying the condition: '

Zy+2st+a.=1, T4y Tp, £c>0 .

Let us define the partition &, ={I(A*); 1=<1=j(k)} of interval I=[0, 1]
associated with 6*(ABC)=A®A® ... A%, inductively as follows:
(i) The partition ¢, is given by

&={I(A{"), I(A"), I(As™))

where (A", AP, A")=(A, B, C) and each I(A{®) (=1, 2, 8) is an interval
whose length is equal to €., namely, I(A{")=[0, X,m], I(AP)=[X, o,
X0+ X, 0], (AP)=[X,0+X,0, X,0+X,0+X,0].

(i) If the partition ¢,_, is given, the partition ¢, is constructed
by partitioning the interval I(A%* ) of &,_, according to B(AF V)=

In view of the relation
x51+$32+ oo +m3;(k—1,i) —_—)\lex‘dk—l) ’
we obtain the following proposition:

PROPOSITION 3.3. For the partition &, ={I(A®); 6*(ABC)=A®..- A}
of I, the length of imtervals are estimated uniformly as
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1
IA(”) I A cm——
43 Ihel®

Let us define a polygonal map +,: I—C mapping for each k& sub-
interval I(A{®) as follows:

AP =a-= S @AP)+RIAP]}  for each LAP)es,

then we see
(D) =a" %" K[6*(ABC)] . (8.4)

From the definition of K and 6, we know the end points of K[S], which
are given by 0 and #(S), coincide with the end points of a~*K[6(S)] for
all Se{4*, B*, C*'}. From Proposition 2.6, the endomorphism 6 and @
have no cancellation, and from Proposition 3.3, we have

d("kk(I), v"/’~k+1(I)) = do ¢ 7\:5,‘ (3.5)

where d(-, -) is the Hausdorff metric on a family of compact subset of
C and d, is given by

d,= max d(K(S), a'K[6(S)]) .

Set4,B,0C}

Therefore, by (3.4) and (3.5) we have

PROPOSITION 3.4. Let + be the limit of the curves +,. Then + is a
continuous closed curve and satisfies

(I) =}=i_,m o *K[6, (aba"b"")] .

ProOF. From (8.5), ¥ is well defined as a continuous closed curve.
From (3.4) and Proposition 8.2, the set lim,_... o *K[6.*(aba~'b7")] is char-
acterized as the image of I by +.

Now we state our theorem:

THEOREM 3.5. Let a be a base of number system on Z(V'mi) and 6
be the endomorphism associated with the base a. Then there exists a
curve ¥ I—C as the limit of a *K[0*(aba™'b"")]. Put F, be a closed set
enclosed by <., then F, satisfies the following condition:

1) (space tiling)

EJ__ (F,4+2)=C and int.(F,+2)Nint.(F,+2)=Q
26 Z(Ymi)
(Gf z#2' € Z0W/mi)),
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2) (self similarity)

N—1 .
aFe=N (Fat1),
A

3) int.F,50.

PROOF. By Proposition 1.7, we know that the set a *K[#*(aba='b7")]
is congruent to a *K[6, *(aba~b"1)] and 3,2, a~'n(w) converges. Therefore,
by Proposition 3.4, there exists a curve q«,: I—C as the limit of
a *K[6*(aba"'b"?)]. Now, since for each %, Fundamental Property 1.4 is
satisfied, we see by taking the limit as k—< that the conclusions 1)
and 2) of the theorem are valid. (In the case of a=+1V"mi, we have
the conclusions 1) and 2) from Proposition 1.7 and Remark 2.2 directly.)

For the statement 3), we know by Fundamental Property 1.4, 3)
that

Fl6*aba™b™]= U {Flaba™'b™"]+j}

where I',={r,+ra+-+r,_,a* 5 0=r,<N—1}. We observe that if we
put a*=>7, (N—1)|a|™*, then 2a* is greater than a diameter of the set
F,. TFrom Theorem 0.1, there exists k,€ N and aq, ay,* -+, @;u, € Z(V M)
such that

1) F[6(aba™b™)]D> U (Flaba b7+ a,)DoF[6*(aba™'d"")]

15157 (kg)
and

2) min |a;|=2a*.
15457 (kg)

Relation 1) can be extended inductively as follows:
1) F[6%*(aba~b"")]D> U (F[o"(aba"b7})]+aa a,)
15535 (ko)

DoF[6%t " (aba'b~1)].
Divide the relation 1) by a” and let n tend to infinity, then we have

a*F,O U (F,+a)Da"*K,.

1254 ()

Therefore, the distance of a®K, from the origin is estimated by

d(a®K,, 0)= min d(F,+a, 0)= min |a,|—a*=a*.
18957 (ko) 15957 (ko)

This is equivalent to saying that int.(F,)30.

REMARK 3.6. In the case of n=0 in (0.2) we consider the boundary
of the set X,={3.a.a | a,€{0,1,:++, N—1}} for a=1A+x1vmi)/2. It
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is easy to see that the sets X,,.z,. and X,_/z,. are congruent to
X 1vmnr and X, vz, Which is the case of n=1 in (0, 2), respectively.
More precisely, we know '

X, =X_,—3 (N=1)(—a) ™™,

Therefore, the shape of the boundary of X, is reduced to that of X_,.

If we want to find out how we can construct the boundary of X,
(a=1+1v"mi)/2) directly, we need a somewhat more complicated procedure
as follows: let us define the canonical homomorphism x, associated with
base a by '

a—1 —.

and the endomorphism 4, associated with base a by
. a—ab™
*" b—ba¥bt.
For 4,, consider fhe adjoint 4, such that
' a—bla

b—a?

and define the block code map @: G{a, B, 7} —G{a, b} such that

0, :

a—b™
?: B—a
Y —a"?

and define the blocks A, B and C such that

A:=ap,
B:=va™,
C:=p8"v",
and define lifting eiidomorphisms 6 and 6 such that
oa— /8—1;7-1
6: Bg—ap
v (@),
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a—7!
6 : B—a
7 8@,
then we see that
(1) @(ABC)=6,(aba'b7"),
(2) (D@"EABC) =0, (aba"*b?),
(8) é}‘l@(S)B=@(S) for s € {A*', B!, C*'},
(4) O(ABC) has no cancellatioP,
(5) @ has no cancellation on 6*(ABC).
Using this fact, we have

a~ "V K[6, (aba b )] =a~ % f(D(v,)) + a“‘k+1’K[¢(@(ABC))]

where v,=860(RB): - -0*'(3). Therefore the limit set of a~*"K[#*(aba~1b?)]
is characterized by the limit set of a~**"*K[®(@(ABC))]. (For details, see
Ito-Ohtsuki [11].)

§4-.‘ .Hausdorﬂ' dimension.

In this section, the Hausdorff dimension of the curve K, is calculated
by using Frostman’s lemma.

LEMMA (Frostman (cf. [1], [3])). If there exists a measure tt on a
set X satisfying

wB)=c-|B}* Jor any ball B, (4.1)

where |B| ts the radius of a ball B. Then the Hausdorffik’ dimension of
X 18 estimated as -

dimg,(X)=s .

For each base a except a==+1"mi, we induce the measure f, on
K, by

#a':("b‘a)*oh' (4'2)
where ) is the Lebesgue measure on I, then we see

PROPOSITION 4.1. Put s=2log \¢/log N, then the measure ., satisfies
the assumption (4.1) in Frostman’s lemma.

PROOF. Let B, be a ball with radius », then we have from (4.2)



314 SHUNJI ITO

H(B,)= P Ly (I(A)) N B,)

i¥(1(a{P))nB, 20

for all £ where I(A{") is as defined in Proposition 3.3. From Proposition
3.3 there exists a constant ¢, independent of %k, such that

tU(B,) S c-Ne~* Card{I(A;"); v(I(A")) N B, @} (4.3)
for all k. Now, we choose k so as to satisfy
lal* = r<llal™",
then we can rewrite (4.3) to read:
UB,)Sc-r*ios e/ 8N Card{I(A"); ¥ (I(4]")) N B, = @} .

We note that the cardinality of {I(A®); v(I(A¥)) N B, @} is smaller than
that of {(I(AP); a* ' v, L(AP)NB,#@}. On the other hand, the curves
o e (I(AP)) joint two points which are neighbouring points of the
lattice generated by {7(A4), #{B)} on R:. Therefore, the cardinality of
{I(AP); a4 (I(A¥)) N B, @} is uniformly bounded, and so the inequality
holds.

THEOREM 4.2. For each base a, the Hausdorff dimension of K, is
given by

. 2log A\
dim,K,==—=228
ik log N

where e 18 a positive solution of

AM—C2n—1N—(N—2n)A—N=0 if a=-—nxtV'mi
(—m=2, 3 (mod.4), n=1,2,---),

MN—@2r—-222—(N—2n+1)A—N=0 if a= —2n+lziVmi

(—m=1(mod.4), n=1,2,---),

and

2
(—m=1 (mod.4)) .

N —(N—1)—N=0 if aq=lEYmi

PrOOF. - By Proposition 4.1, we have the estimation from below:
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log A\
dim,K,=2. —=2¢
" log N

The opposite inequality is obtained by the growth rate Xg™ of the
length 6"(aba™'b"') and contractmg constant Ia! of the map T, (see [2],
[3D. |

§‘ 5. Examples.

EXAMPLE 1. The simplest base in Z(:) is known to be a=—1=+1,
which has the smallest norm among a¢=—mn-+4. On the base a=—1+1,
the canonical homomorph1sm 7 and the endomorphism 4 is given by

o a—1 5 - a — a’ba™®
T b—1 | " boaba 2.

Take the adjoint ¢, with w=a?, é,nd consider the block codé map &:

hgt A—ba™
. a— 0a . _1'_1
0. : b—s q-1p" ®: B—ab

C—a?,
then the lifting endomorphism © is given by

A— BA™!
®: B—-C
C— A2,

The curves a *K[6*(aba~'b7)] (k=1, 2,---) are obtained as in Figure 1.
In Figure 2, we see the manner of ‘

a *K[6%(aba™b)]

and the block code @. This set is known as the skin of twindragon
(cf. Dekking [4] and Mandelbrot [10]).

The shapes in the case of a=—n+1i (n=2, 3) are seen in Figure 3
(cf. Gilbert [7]).

EXAMPLE 2. In Z(1727), the base « is given by a=—n=+1"24. In
the case of a=1"214, the endomorphism ¢ and 6., are given by

0/_ a — a*ba? d 0 a—b
C b—a an “ pog
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1

552
%5

FIGURE (1) a=—1+1%, a*K[0*(aba~'b"1)]

(k=1v 2 . *)
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FIGURE () a=—1+41, a *K [0 (aba"b7V)] (k=1,2,--*)
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v

1
a=—2+14, dimg K=1.6087 a=—38+1, dimy K=1.5496
FIGURE (3)
a=+"214, dimg K=1 a=-1++21, dimy K=1.3768
FIGURE (4)
/I 7 Z / / s

/
V / /
a=:§%, dimy K=1.6575 a=—’i+—2‘/—3ll, dim Ky 1.5981

Fi1Gure (5)
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where w=a?. The curves a*K[6*(aba~'b"")] are congruent for all £ and
the limit set is a rectangle. In the case of n+#0, the curves K_,. /3, are
fractal (see Figure 4). ‘ - ‘ '

EXAMPLE 3. In Z(/34), the base a is given by a=(—2n+1+1"31)/2
(n=2, 3,-+--). The shapes of K, are given in Figure 5.

ExaMPLE 4. In 20/ T4), a=(x1+1 T4)/2 are basis with digits (0, 1}.
In the case of a=(—1+1V"71)/2, the canonical homomorphism 7 and the
endomorphism ¢ is given by

a—1 v_ | 0 a— a*ba™?
b—A+VT1)/2 T p—a™?

T

~ The curves a *K[¢*(aba~b"")] (k=1, 2,---) are obtained as in Figure

6. By Remark 1.3, we know that the curve K, .7,. is obtained by
flipping the curve K _,,.7,, over the real axis. And by Remark 3.6, the
curves K, .7y, and K._v7,,. are obtained by the parallel displacement
of K_,_v7y, and K_,.v7,, Trespectively.

References

[1] T.J. BEDFORD, Ph. D. Thesis, Warwick Univ. (1984).

[2] T.J. BEDFORD, Dimension and dynamics for fractal recurrent sets, preprint, King’s
College Research Centre, Cambridge (1985).

[38] F.M. DEKKING, Recurrent Sets: Fractal Formalism, Reports Dept. Math. Inf., no. 82-32
(1982), Delft. '

[4] F.M. DERKING, Recurrent sets, Adv. Math., 44 (1982), 78-104.

(5] F.M. DERKING, Replicating superfigures and endomorphisms of free groups, J. Combin.
"Theory Ser. A, 32 (1982), 315-320.

[6] W.J. GILBERT, Radix representatlons of quadratlc fields, J. Math. Anal. Appl., 83 (1981)
264-274.

[7] W.J. GILBERT, The fractal dimension of sets derived from complex basis, to appear in
Canad. Math. Bull.

[8] I. KaTal and J. SzABo, Canonical number systems for complex integers, Acta Sci. Math.
(Szeged), 37 (1974), 225-260.

[9] D.E. KxutH, The Art of Computer Programming 'vol 2, Seminumerical Algorithms,
Addison-Wesley (1981).

(10] B.B. MANDELBROT, The Fractal Geometry of Nature, Freeman (1983)

[11] Sh. ITo and M. OHTSUK], On the fractal curves induced from endomorphxsms on 2 states
free group, preprint.

Present Address:
DEPARTMENT OF MATHEMATICS, TSUDA COLLEGE
TsuDA-MACHI, KODAIRA, ToKYO 187, JAPAN




