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\S 1. Introduction.

In order to explain the aim of this paper we shall look at an example
by taking the Poincar\’e model of the hyperbolic plane $D$ and then consider
its generalization.

1.1. Let $D$ be the open unit disk $|z|<1$ in $C$ with the usual manifold
structure but given the Riemannian $8tructure$

$ds^{2}=(1-x^{2}-y^{2})^{-2}(dx^{2}+dy^{2})$ $(z=x+iy)$ . ( $ 1.1\rangle$

Let $G=SU(1,1)$ be the group of all C-linear transformations of $C^{2}$ pre-
serving $|z_{1}|^{2}-|z_{2}|^{2}$ and of determinant one. Then each element $g$ of $G$

acts transitively on $D$ as an analytic automorphism of $D$ under
$z\rightarrow z\cdot g=(\overline{\alpha}z+\beta)/(\overline{\beta}z+\alpha)$ (1.2)

and $K=SO(2)$ is the subgroup of $G$ fixing $0$ in $D$, so we have the
identification: $D=SO(2)\backslash SU(1,1)$ . If $f$ is a complex valued function on
$D$ , its Fourier transform $f^{\wedge}$ on $C\times\partial D,$ $\partial D$ the boundary of $D$ , is defined
as follows:

$f^{\wedge}(x, b)=\int_{D}f(z)e^{(i\lambda+1)\langle z,b\rangle}dz$ $(x\in C, b\in\partial D)$ (1.3)

for which this integral exists. Here $\langle z, b\rangle$ is the number given by the
relation

$e^{2\langle b\rangle}l,=(1-|z|^{2})/|z-b|^{2}$ $(x\in C, be\partial D)$ . (1.4)

Then the characterization of $L^{2}(D)^{\wedge}$ , the set of Fourier transforms of $L^{a}$

functions on $D$, is well-known as the Plancherel theorem on $D$ (cf. [He],
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p. 33), though the one of $L^{p}(D)^{\wedge}(1\leqq p<2)$ i8 an unsettled problem, even
if the transform is the ordinary Fourier transform on a Euclidean space
$R$ . Let $(V_{j},., L^{2}(\partial D))$ ($j=0,1/2$ and $seC$) be the principal series repre-
sentation of $G$ (cf. [Su], p. 212). Then by noting the identification $ D\cong$

$K\backslash G$ we can rewrite (1.3) as

$f^{\wedge}(x, b)=\int_{a}f(g)V_{0,(1/2)(-i\lambda+1)}(g^{-1})1(b)dg$ , (1.5)

where $f(g)$ is identified with $f(0\cdot g),$ $1(b)$ is the constant function on $\partial D$

taking the value 1 and $dg$ is a G-invariant measure on $G$ . In this sense
(1.3) is based on the principal series of $G$ , so we call (1.5) the Fourier
transform associated with the principal series of $G$ . Then the transform
can be extended to all (non left K-invariant) functions on $G$ for which
the integral exists.

Now we shall consider a transform which is defined by replacing the
principal series in (1.5) with the discrete series of $G$ . Let $(T_{n}, A_{2,n-1}(D))$

\langle$n\in(1/2)Z$ and $n\geqq 1$) be the (holomorphic) discrete series representation
of $G$ (cf. [Su], p. 237). Here $A_{p,r}(D)$ ($ 0<p<\infty$ and $reR$) denotes the
\langle $1-|z|^{2})^{2}$‘-weighted $L^{p}$ Bergman space on $D$ (cf. [CR], \S 2). Then for a
complex valued function $f$ on $G$ the Fourier transform $F_{n}(f)$ associated
with the discrete series $T_{n}$ is defined by

$F_{n}(f)(z)=\int_{a}f(g)T_{n}(g^{-1})1(z)dg$ $(z\in D)$ , (1.6)

where $1(z)$ is the constant function on $D$ taking the value 1. Unlike
the previous $ca8e$ , for a fixed $n$ , we can obtain a characterization of
$F_{n}(L^{p}(G))(1\leqq p\leqq 2)$ , the set of $F_{n}$-Fourier transform8 of $L^{p}$ functions on
$G$ , as follows:

If $(n, p)\neq(1,1)$ , then $F_{n}(L^{p}(G))=A_{p,(1/2)np-1}(D)$

and (1.7)

If $(n, p)=(1,1)$ , then $F_{1}(L^{1}(G))=H_{1,0}(D)$ ,

where $H_{1,0}(D)$ is the 8pace of all holomorphic function8 $F$ on $D$ 8uch that
$\partial F/\partial z$ belongs to $A_{1.0}(D)$ (see [Ka] and Theorem 5.5). This fact is a great
difference between the transforms (1.5) and (1.6), and essentially thi8 dif-
ference is due to the existence of a reproducing property of holomorphic
functions on $D$.

The Plancherel theorem for $G=SU(1,1)$ (cf. [Su], p. 344) implies
that each function $f$ in $L^{p}(G)\cap L^{2}(G)(1\leqq p\leqq 2)$ has a decompo8ition like
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$f=f_{p}+\circ f$, where $f_{p}$ consists of wave packets and $\circ f$ is a linear combina-
tion of matrix coefficients of the discrete series of $G$ . Then it easiIy
follows from the definitions of (1.5) and (1.6) that for $f\in L^{p}(G)\cap L^{2}(G)$

$f^{\wedge}(x, b)=f_{p}^{\wedge}(x, b)$ and $F_{n}(f)(z)=F_{n}(\circ f)(z)$ . (1.8)

Moreover, $F_{n}$ has its support on a linear combination of the matrix
coefficients of $T_{n}$ whose left K-type is just the lowest K-type of $T_{n}$ , that
is, if $\psi_{n}$ denotes the normalized matrix coefficient of $T_{n}$ corresponding
to the lowest K-type, then it follows that

$F_{n}(of)=F_{n}(\psi_{n}*of)=F_{n}(\psi_{n}*f)$ $(f\in L^{p}(G)\cap L^{2}(G))$ . (1.9)

Since $\psi_{n}*f$ belongs to $L^{2}(G)$ for $f\in L^{p}(G)$ (see [KS], Theorem 9, [Co] and
Proposition 3.10), the right hand side of (1.9) is well-defined for $f\in L^{p}(G)$

and especially, $\psi_{n}*f$ is a linear combination of matrix coefficients of $T_{n}$ .
Then by approximating $L^{p}(G)$ with $L^{p}(G)\cap L^{2}(G)$ we see that

$F_{n}(f)=F_{n}(\psi_{n}*f)$ $(f\in L^{p}(G))$ (1.10)

(see [Ka] and \S 4). Therefore, we can say that in (1.7) the transform
$F_{n}$ characterizes a ”discrete part” of $L^{p}(G)$ , the set of all $L^{2}$ functions
on $G$ being of the form $\psi_{n}*f$ for $f\in L^{p}(G)$ , as a space of holomorphic
functions on $D$. The fact that the discrete part $\psi_{n}*f$ of $f\in L^{p}(G)$ is in
$L^{2}(G)$ implies that $F_{n}(f)$ has a reproducing property on $D$ , and if the
discrete part is in $L^{p}(G)$ , the characterization of $F_{n}(L^{p}(G))$ is given by
the first case of (1.7). On the other hand the discrete part is not
always in $L^{p}(G)$ . This exceptional case, $n=p=1$ , corresponds to the
second characterization in (1.7), which is related with classical analysis of
fractional derivatives of holomorphic functions on $D$ (see [Ka] and \S 6).

1.2. We shall explain briefly the contents of this paper. Let $G$ be
a connected semisimple Lie group with finite center and $K$ a maximal
compact subgroup of $G$ . Then the Fourier transform associated with
the principal series has been investigated by various people; for example
the Plancherel theorem for $I^{2}(G)$ , K-biinvariant $L^{2}$ function8 on $G$ , is
obtained by Harish-Chandra (cf. [Wa], p. 353). On the other hand, the
Fourier transform (1.6) associated with the discrete series is not paid
any attention, although the operator valued transform, which is defined
by dropping $1(z)$ in (1.6), was investigated as a function on $n$ in [KS],

\S 9. So, our aim is to generalize the above result (1.7) on $D$ to other
8ymmetric spaces $G/K$ when $G$ has the discrete series. However, because
of difficulty in calculating an explicit number (see Lemma 4.4) we assume



272 TAKESHI KAWAZOE

that $\Omega^{\sim}=G/K$ is one of the classical bounded symmetric domains listed
in Table 1 (cf. [Hu] and [Kn]), and that the discrete series $T$, which will

TABLE 1

Type G $K$ $\Omega=\log(\Omega^{\sim})$

I $SU(m, n)$ $S(U(m)\times U(n))$ $\{z\in M_{mm}(C);I_{m}-z\overline{z}>0\}$

I $Sp(n, R)$ $U(n)$ $\{z\in M_{nn}(C);I_{n}-z\overline{z}>0, z=z\}$

$m$ $SO^{*}(2n)$ $Sp(n)\cap SO(2n)$ $\{z\in M_{\pi n}(C);I_{n}+z\overline{z}>0, z=-z\}$

$N$ $SO(n, 2)$ $SO(n)\times SO(2)$ $\{z\in C; |zz|^{2}+1-2z\overline{z}^{\prime}>0, |zz^{\prime}|<1\}$

be used to define the desired transform $F_{T}$ , is the holomorphic one whose
lowest K-type $\tau$ is one dimensional representation of $K$ (see [Kn] and
Table 3 in \S 3). Then under these assumptions we shall prove that $F_{T}$

characterizes exactly a discrete part of $L^{p}(G)(1\leqq p\leqq 2)$ as a space of
holomorphic functions on $\Omega=\log(\Omega^{\sim})$ .

The Fourier transform $F_{T}$ associated with $T$ is defined in the same
way we do on $D$ (see (1.6) and (4.2)). Then as in the case of $\Omega=D$, to
characterize the image of $L^{p}(G)$ we must prepare two types of function
spaces on $\Omega$ consisting of holomorphic functions on $\Omega$ . The selection of
type is decided according to the $L^{p}$ integrability of the matrix coefficients
of $T$; so let $\psi$ be the matrix coefficient corresponding to the lowest $ K\leftrightarrow$

type $\tau$ , and we say that $(\psi, p)$ is regular if $(\psi, p)$ satisfies the following
condition:

(R) $\psi\in L^{p}(G)$ . (1.11)

Then if $(\psi, p)$ is regular, the image $F_{T}(L^{p}(G))$ coincides with an $L^{p}$ weighted
Bergman space on $\Omega$ , and if it is not regular, it coincides with a space
defined by using a generalized fractional derivatives of holomorphic func-
tions on $\Omega$ (see (5.1), (5.2) and Theorem 5.5).

In \S 2 we shall recall some basic properties of bounded symmetric
domains $\Omega$ and holomorphic discrete series $T$ of $G$ (cf. [Kn]), and in \S 3
we shall obtain an $L^{p}$ estimate of the convolution of a matrix coefficient
of $T$ and $L^{p}$ functions on $G$ (see Proposition 3.10). Essentially, this
estimate is due to the two lemmas obtained in [CR] for the Bergman
kernel on $\Omega$ . Translating this $L^{p}$ boundedness, we can obtain the
characterization in the case of regular (see Proposition 3.9 and Theorem
5.5 (1)).

When $(\psi, p)$ is not regular, the above $L^{p}$ estimate does not hold and
the matrix coefficient of $T$ does not belong to $L^{1}(G)$ . However, we see
that the matrix coefficient is a ”discrete part” of an $L^{1}$ function on
$G$ (see Lemma 4.2). By using this fact we shall define the fractional
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derivatives of holomorphic functions on $\Omega$ (see Lemma 4.4 and (5.1)),
and then define a space consisting of holomorphic functions on $\Omega$ (see
(5.2)). This space is the desired one that characterizes the Fourier
transform $F_{T}(L^{p}(G))$ in the case of non regular (see Theorem 5.5 (2)).

In the last \S 6 we shall consider the continuation of the discrete
parameter and give an application of the exact characterization of
$F_{T}(L^{p}(G))$ . Actually, when a holomorphic function $u$ on $\Omega$ belongs to a
weighted Bergman space, we can decide the weighted Bergman space to
which the generalized fractional derivative of $u$ belongs (see Theorem 6.1).
In the case of $\Omega=D$ this result was obtained in [DRS], Theorem 5.

\S 2. Notation.

We shall recall some basic facts about the bounded symmetric domains
and holomorphic discrete series representations, which are summarized
in [Kn].

2.1. Let $G$ be a simple matrix group and $K$ a maximal compact
subgroup of $G$ , and let us suppose that $K\backslash G$ is Hermitian. Let $\mathfrak{g}$ and $f$

denote the corresponding Lie algebras, and $\mathfrak{h}$ a maximal abelian subalgebra
of $f$ . Then $\mathfrak{h}$ is also a maximal abelian subalgebra of $\mathfrak{g}$ . For an algebra
$\mathfrak{a}$ of matrices the complexification is denoted by $\mathfrak{a}_{c}$ . Let $\Sigma=\Sigma(\mathfrak{g}_{c}, \mathfrak{h}_{c})$ be
the set of non zero roots $\alpha$ for the pair $(\mathfrak{g}_{c}, \mathfrak{h}_{c})$ and let $\mathfrak{g}_{\alpha}$ be the cor-
responding root space. We choose an ordering in which every non compact
positive root is larger than every compact root. Let $\Sigma^{+}$ and $\Sigma_{n}$ denote
the sets of positive roots and non compact roots in $\Sigma$ respectively, and
let $\Sigma^{-}=\Sigma-\Sigma^{+}$ and $\Sigma_{k}=\Sigma-\Sigma_{n}$ . Then we let

$\mathfrak{n}_{c}^{-}=\sum_{\alpha e\Sigma^{-}}\mathfrak{g}_{\alpha}$
, $b=\mathfrak{h}_{c}+\mathfrak{n}_{c}^{-},$

$\mathfrak{p}^{+}=\sum_{\alpha e\Sigma^{+n\Sigma_{\#}}}\mathfrak{g}_{\alpha}$
and $\mathfrak{p}^{-}=$

$\sum_{-,\alpha e\Sigma\cap\Sigma_{\hslash}}\mathfrak{g}_{\alpha}$
. (2.1)

Let $G_{c}$ be an analytic subgroup of matrices with the Lie algebra $\mathfrak{g}_{c}$ , and
$N_{c}^{-},$ $B,$ $P^{+},$ $p-,$ $K_{\iota}$ , T. the subgroups of $G_{c}$ corresponding to $\mathfrak{n}_{c}^{-},$

$\mathfrak{y}\mathfrak{p}^{+},$ $\mathfrak{p}^{-}$ ,
$f_{c},$ $\mathfrak{h}_{t}$ respectively. It is known that the multiplication $P^{-}\times K_{c}\times P^{+}\rightarrow G_{c}$

is one to one, holomorphic and regular, that $BG$ is open in $G_{\iota}$ and there
exists a bounded set $\Omega^{\sim}$ in $P^{+}$ such that

$BG=P^{-}K_{c}G=P^{-}K_{\iota}\Omega^{\sim}\subset P^{-}K_{c}P^{+}$ . (2.2)

Let $p^{+}(x)$ refer to the $p+$-component of $x$ in $P^{-}K_{0}P^{+}$ . Then $G$ acts
transitively on $\Omega^{\sim}$ by $z\cdot g=p^{+}(zg)$ as a holomorphic automorphism on $\Omega^{\sim}$,
and $G\cap P^{-}K_{\iota}=K$ is the subgroup of $G$ fixing 1 in $\Omega^{\sim}$ , so we have the
identification
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$\Omega^{\sim}=K\backslash G$ . (2.3)

Let log be the inverse mapping of the exponential map $exp;\mathfrak{p}^{+}\rightarrow P^{+}$ and
let $\Omega=\log(\Omega^{\sim})$ .

2.2. Let $\Lambda\in(\mathfrak{h}_{\iota})^{*}$ , the 8et of complex linear functionals on $\mathfrak{h}_{c}$ , and
suppose that $\Lambda$ is an integral form on $\mathfrak{h}_{c}$ dominant with respect to $f$ .
Let $(\tau_{A}, V_{A})$ be an irreducible unitary representation of $K$ (and $K_{0}$ by
holomorphical extension) with highest weight $\Lambda$ , and let $\phi_{A}$ be a nor-
malized highest weight vector and $\chi_{A}$ the associated character of $\tau_{A}$ .
Then we define

$\psi_{A}(x)=(\tau_{A}(\mu(x))\phi_{A}, \phi_{A})$ $(x\in P^{-}K_{c}P^{+})$ , (2.4)

vhere $\mu(x)$ refers to the $K$ -component of $x$ in $P^{-}K_{G}P^{+}$ , and for a complex
valued function $f$ on $G_{\epsilon}$ , we define a projection operator which maps $f$

to the left $\tau_{A}$-component of $f$ as

$E_{A}(f)(x)=\dim V_{A}\cdot\int_{K}\chi_{A}(k^{-1})f(kx)dk$ $(x\in G_{c})$ . (2.5)

Since $\Lambda$ is integral,

$\xi_{A}(h)=\exp\Lambda(\log(h))$ $(h\in T_{\iota})$ (2.6)

is a well-defined character of $T_{c}$ and by setting $\xi_{A}(n)=1$ for $n$ in $N_{c}^{-}$ ,
we can extend it to a holomorphic character of $B=N_{\theta}^{-}T_{c}$ . We define

$\Gamma(\Lambda)=\{f$ : $BG\rightarrow C$ ; (1) $f$ is holomorphic on $BG$ , (2.7)

(2) $f(bx)=\xi_{A}(b)f(x)$ for $b\in B,$ $x\in BG$}

and for $ 0<p<\infty$

$A_{A}^{p}=\{f\in\Gamma(\Lambda)$ ; $||f\Vert_{p}^{p}=\int_{a}|f(g)|^{p}dg<\infty\}$ ,
(2.8)

$A_{A}^{p}(G)=\dagger f|G$ ; $f\in A_{A}^{p}$}.

Some known properties of $\psi_{A}$ are the following

LEMMA 2.1 (cf. [Kn]). (1) $E_{A}\psi_{A}=\psi_{A}$ as a function on $P^{-}K_{c}P^{+}$ .
(2) The restriction to $BG$ of $\psi_{A}$ belongs to $\Gamma(\Lambda)$ .
(3) $\psi_{A}(x^{-1})=\overline{\psi}_{A}(x)(x\in G)$ .
(4) If $\langle\Lambda+\rho, \alpha\rangle<0$ for every non compact positive root $\alpha$ , then

$||\psi_{A}||_{2}<\infty$ , in particular, $\psi_{A}$ belongs to $A_{A}^{2}$ .
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REMARK 2.2. The constant $c_{A}=||\psi_{A}||_{2}$ in Lemma 2.1 (4) was explicitly
calculated by [HC], p. 608.

2.3. Let $w(z)$ be a positive function on $\Omega$ . We define the w-weighted
$L^{p}(0<p<\infty)$ Bergman space on $\Omega$ as follows:

$A_{w}^{p}(\Omega)=\{$ $F:\Omega\rightarrow C$ ; (1) $F$ is holomorphic on $\Omega$ , (2.9)

(2) $||F\Vert_{p,w}^{p}=\int_{\rho}|F(z)|^{p}w(z)dz<\infty\}$ ,

where $dz$ is a Euclidean measure on $\Omega$ . Let $B(z,\overline{w})$ denote the Bergman
kernel on $\Omega$ listed below (cf. [CR] and [Hu]):

TABLE 2

Type $B\langle z,\overline{w}$ ) $\gamma$

I $\det(I_{m}-z\overline{w}^{\prime})^{-(n+m)}$ $n+m$

II $\det(I_{n}-z\overline{w})^{-(n+1)}$ $n+1$

$m$ $\det(I_{n}+z\overline{w})^{-(n-1)}$ $n-l$

IV $(1+|zw|^{2}-2z\overline{w}^{\prime})^{-n}$ $n$

We recall that a G-invariant measure on $\Omega$ is given by

$B(z,\overline{z})dz$ . (2.10)

In the following sections we shall use the weight $w_{A,p,\alpha}(z)(0<p<\infty, \alpha eR)$

defined by

$w_{A,p,\alpha}(z)=|\psi_{A}(x)|^{(1+\alpha)p}B(z, \overline{z})$ $(z=0\cdot x)$ (2.11)

and for simplicity we put

$A_{A}^{p}(\Omega)=A_{w_{\Lambda,p,0}}^{p}(\Omega)$ . (2.12)

2.4. Let $\Lambda$ be as in 2.2 and suppose that $\langle\Lambda+\rho, \alpha\rangle<0$ for every
non compact positive root $\alpha$ . Then $A_{A}^{2}\neq\{0\}$ by Lemma 2.1 (4) and the
operator $U_{A}$ on $A_{A}^{2}$ defined by $U_{A}(g)f(x)=f(xg)$ ($f\in A_{A}^{2},$ $g\in G$ and $xeBG$)
preserves the $A_{A}^{2}$-norm of $f$. Then $(U_{A}, A_{A}^{2})$ is a continuous irreducible
unitary representation of $G$ whose matrix coefficients are square integrable
on $G$ , what is called the holomorphic discrete series of $G$ (cf. [Kn], p. 231).
As a representation of the compact group $K$, the space $A_{A}^{2}$ is decomposed
into irreducible components which we denote by $V_{A_{i}}(i\in N),$ $80$ we choose
a complete orthonormal system $\phi_{j}^{i}=\phi_{A_{f}}^{i}(1\leqq j\leqq d_{i}=\dim V_{x_{i}}, i\in N)$ of $A_{A}^{2}$ such
that $\phi_{j}^{i}\in V_{A_{i}}(1\leqq j\leqq d_{i})$ and we may assume that $\Lambda_{1}=\Lambda$ and $\phi_{1}^{1}=c_{A}^{-1}\psi_{A}$ .
Then the matrix coefficient of $U_{A}$ is given by
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$U_{ff}::’(x)=U_{A\dot{g}\dot{g}}^{ii^{\prime}}(x)=(U_{A}(x)\phi_{\dot{g}^{\prime}}^{i^{\prime}}, \phi_{\dot{f}}^{i})$ $(xeG)$ . (2.13)

Since $U_{I},(x)$ is a unitary operator on $A_{A}^{2}$ , for fixed $j^{\prime},$
$i^{\prime}$ and $x$ , each $U_{\dot{f}\dot{f}^{\prime}}^{ii^{\prime}}(x)$

i8 a Fourier coefficient of the $L^{2}$ function $U_{A}(x)\phi_{\dot{g}^{\prime}}^{i^{\prime}}$ on $G$ , and thus it
follows that

$\sum_{i,j}|U_{gj^{\prime}}:l^{\prime}(x)|^{2}<\infty$ . (2.14)

For simplicity we put

$U_{j}=U_{1\dot{f}}^{1i}$ . (2.15)

Then $U_{1}^{1}=\psi_{A}$ (cf. [Kn], p. 236). Ba8ic properties of these matrix coefficients
are summarized in the following two lemmas.

LEMMA 2.3. (1) $\int_{a^{\prime}}U_{4\dot{g}\dot{g}^{\prime}}^{i^{\prime}}(x)\overline{U}_{A^{\prime}qq}^{pp^{\prime}}(x)dx=\delta_{AA^{\prime}}\delta_{p}\delta_{jq}\delta_{i^{\prime}p^{\prime}}\delta_{j^{\prime}q^{\prime}}^{\infty f}c_{A}-$

(2) $A_{A}^{2}(G)=E_{A}A_{A}^{2}(G)=theL^{2}$ span of $\{U_{j} ; 1\leqq j\leqq d_{i}, ieN\}$ .
(3) $E_{A^{\prime}}U_{f_{\dot{J}};}^{i^{\prime}}=\delta_{A_{l}I^{\prime}}\delta_{1i}U_{Aj\dot{g}^{\prime}}^{1}$ .
(4) $U_{j}=c_{A}\phi_{j}$

PROOF.$-(1)$ follows from general theory of discrete series (cf. [Va],
p. 437) and the rest are obvious from (1) and definition. Q.E.D.

LEMMA 2.4. (1) $U_{gj^{\prime}}:i^{\prime}(xy^{-1})=\sum_{p.q}U_{gq}:p(x)\overline{U}_{jq}^{i^{\prime}p}(y)(x, y\in G)$ .
(2) $U_{A\dot{g}j}^{i^{\prime}},*U_{A^{\prime}qq}^{pp^{\prime}}=\delta_{AA^{\prime}}\delta_{p}’\delta_{j^{\prime {}_{q}C_{A}^{2}}}U_{A\dot{g}q^{\prime}}^{ip^{\prime}}$ .
(3) $f=c_{A}^{-2}\psi_{A}*f$ for $f\in A_{A}^{2}(G)$ .
PROOF. (1) follows from (2.13) and (2.14). Especially, by the Schwarz

inequality the sum of the right hand side is absolutely convergent.
Therefore, since $\sum_{p,q}|(f, U_{gq}:p)|^{2}<\infty$ for $feL^{2}(G)$ by the Plancherel theorem
on $G,$ (2) follows from (1) and Lemma 2.3 (1), and moreover (3) is obvious
for a finite linear combination of $U_{j}^{i}$ . Now let $f$ be an arbitrary function
in $A_{A}^{2}(G)$ . Since $\psi_{A}*f$ is a continuous function on $G$ and $||\psi_{A}*f||_{\infty}\leqq$

$||\psi_{A}||_{2}||f\Vert_{2}<\infty$ , (3) is also valid from Lemma 2.3 (2) and the argument
approximating $f$ with a finite linear combination of $U_{\dot{f}}^{i}$ . Q.E.D.

\S 3. Estimate for matrix coeficients.

Throughout the rest of the paper we assume that

ASSUMPTION. $\Omega$ is one of the classical bounded symmetric domains
in Table 1 and $\tau_{A}$ (see 2.2) is one $dimen8ional$ representation of $K$.

It is known that the dominant integral forms on $\mathfrak{h}_{l}$ which correspond
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to one dimensional representations of $K$ are parametrized by integers,
say $\Lambda_{l}(leZ)$ . Explicitly $\tau_{A_{l}}$ is given as follows (cf. [Mu]):

TABLE 3

$TTypek\in K\tau A_{l}(k)\ovalbox{\tt\small REJECT}$

I $\left\{U & V\right\}$ $(\det V)^{l}$

$\rightarrow-$ . I $[_{-V}U$ $UV]$ $(\det(U+iV))^{-l}-$
$--$

$m$ $\left\{\begin{array}{ll}U & V\\-V & U\end{array}\right\}$ $(\det(U+iV))^{-(1/2)l}$

IV $\left\{\begin{array}{lll}U & & \\ & cos\theta & 8in\theta\\ & -8in\theta & cos\theta\end{array}\right\}$ $e^{il\theta}$

3.1. Under the assumption that dim $\tau_{A_{l}}=1$ the relation between $\psi_{A}\dagger$

and $B(z, \overline{z})$ is given by the following

LEMMA 3.1.
$|\psi_{A_{l}}(g)|=B(z, \overline{z})^{-\iota/2\gamma}$ $(z=0\cdot g)$ ,

where $\gamma$ is the number listed in Table 2.

PROOF. We choose positive non compact roots $\gamma_{1},$ $\gamma_{2},$ $\cdots,$
$\gamma$ and the

root vectors $X_{\gamma_{i}}(1\leqq i\leqq s)$ such that $\sum_{i}R(X_{\gamma_{i}}+X_{-\gamma_{i}})$ is a maximal abelian
subspace of $\mathfrak{p}$, where $\mathfrak{g}=f+\mathfrak{p}$ is a Cartan decomposition of $\mathfrak{g}$ (cf. [Kn],
p. 228). Then each element $g\in G$ has a decomposition that $g=$

$k^{\prime}\exp(\sum_{i}t_{i}(X_{\gamma_{i}}+X_{-\gamma_{i}}))k$ ($k,$ $k’\in K$ and $t_{i}\geqq 0$). Since $\psi_{A_{l}}(g)=\tau_{A_{l}}(\mu(g))$

$(g\in P^{-}K_{\epsilon}P^{+})$ by the definition (2.4), it easily follows from Corollary in
[Kn], p. 229 that

$|\psi_{x_{l}}(g)|=(cht_{1} ch t_{2}\cdots ch t.)^{-l}$ .
On the other hand, $z=0\cdot g=\zeta\cdot k$ , where $\zeta=0\cdot\exp(\sum t_{i}(X_{\gamma_{i}}+X_{-\gamma_{i}}))$ .
Therefore, by substituting for $z$ in $B(z,\overline{z})$ given in Table 2, we can
deduce the desired equality. Q.E.D.

Now we shall obtain a condition of $l$ for which $\psi_{A_{l}}$ belongs to $L^{p}(G)$ .
Since a G-invariant measure on $\Omega i8$ given by $B(z, \overline{z})dz$, fixed from now
on, it follows from Lemma 3.1 that

$||\psi_{A_{l}}\Vert_{p}^{p}=\int_{\rho}B(z, \overline{z})^{-lp/2\gamma+1}dz$ . (3.1)

This type of integrals is calculated in [Hu], Theorems 2.2.1, 2.3.1, 2.4.1
and 2.5.1. So, we can decide the $L^{2}$ and $L^{p}$ conditions for $\psi_{A_{l}}$ as in
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Table 4. Especially, the $L^{2}$ condition implies that $(U_{x_{l}}, A_{4_{l}}^{2})$ (see 2.4)
corresponds to a holomorphic diserete series of $G$ . If $\psi_{A_{l}}$ does not belong
to $L^{1}(G)$ , we can find the least number $\alpha_{A_{l}}>0$ satisfying

$|\psi_{1_{l}}\ell|^{1+a}\in L^{1}(G)$ for all $\alpha>\alpha_{A_{l}}$ . (3.2)

TABLE 4

$\ovalbox{\tt\small REJECT} TypeL- conditionL^{p}- condition\alpha_{4_{l}}Il>n+m-ll>2(n+m-l)/p2(n+m-1)/l-1$

$\Pi$ $l>n$ $l>2n/p$ $2n/l-1$

$m$ $l>n-3/2$ $\iota>(2n-3)/p$ $(2n-3)/l-1$

IV $l>n-1$ $l>2(n-1)/p$ $2(n-1)/l-1$

REMARK 3.2. (1) Except type III the $L^{2},$ $L^{p}$-conditions and $\alpha_{A_{l}}$ are
given by $l>\gamma-1,$ $l>2(\gamma-1)/p$ and $2(\gamma-1)/l-1$ respectively.

(2) If $\psi_{\tau}p_{l}$ is in $L^{2}(G)$ but not in $L^{1}(G)$ , then $0\leqq\alpha_{l}t_{l}<1$ .
3.2. We shall define an intertwining operator between $A_{I}^{l}$ and $A_{A}^{2}(\Omega)$

when these spaces don’t vanish. So, we assume that $\Lambda=\Lambda_{\iota}$ satisfies the
$L^{2}$-condition (see Lemma 2.1 (4) and Table 4). For a complex valued
function $f$ on $BG$ satisfying $E_{4\ell}f=f$ we define

$I_{A}(f)(z)=\psi_{A}(g)^{-1}f(g)$ $(z=0\cdot g)$ , (3.3)

and for a complex valued function $F$ on $\Omega$ we define

$(T_{A}(g)F)(z)=\psi_{A}(x)^{-I}\psi_{1}\ell(xg)F(z\cdot g)$ (3.4)

where $g,$ $x\in G$ and $z=0\cdot x$ . Under the assumption that dim $\tau_{A}=1$ these
definitions are well-defined, and it easily follows that

LEMMA 3.3. $(U_{A}, A_{A}^{2})$ and $(T_{A}, A_{A}^{2}(\Omega))$ are unitary equivalent and $I_{A}$

is an intertwining operator of $A_{A}^{2}$ onto $A_{4}^{2}(\Omega)$ .
We put

$\psi_{f}:=\psi_{A\dot{g}}^{i}=I_{A}(\phi_{\dot{f}}^{i})$ $(1\leqq j\leqq d_{i}, i\in N)$ . (3.5)

Then, $\{\psi_{j}^{i}\}$ is a complete orthonormal system in $A_{1}^{2}\ell(\Omega)$ and, as considered
in [Hu] (see Table 5 below), we may assume that each $\psi_{f}$: is a homogeneous
polynomial on $\Omega$ whose degree depends on $i$ . Therefore, by (3.3), (3.5)
and Lemma 2.3 (4) we can find a constant $c_{i}$ , which only depends on $i$ ,
such that

$|U_{A\dot{g}}|\leqq c|\psi_{A}|$ for all $1\leqq j\leqq d_{i}$ . (3.6)
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Now we shall obtain a similar estimate for $U_{\Lambda jj}^{ii^{\prime}},$ . The following
first two Lemmas obtained by [CR], Lemmas 2.2 and 2.8 are important
estimates we will need for the Bergman kernel, where the constant $\epsilon_{D}$

in [CR] corresponds to $ 1/\gamma$ in our paper.

LEMMA 3.4 ([CR]). If $\alpha>r>-1/\gamma$ , then

$\int_{\rho}|B(z, \overline{\zeta})|^{1+\alpha}B(\zeta, \overline{\zeta})^{-r}d\zeta\leqq C_{\alpha,r}B(z, \overline{z})^{\alpha-r}$ $(z\in\Omega)$ ,

where $C_{\alpha,r}$ does not depend on $z$ .
LEMMA 3.5 ([CR]). Let us suppose that $p>1,$ $r>-1/\gamma,$ $\theta>(p-2)(r+1)$

and $\alpha=2\gamma+2+\theta$ . Then the operator $T$ which sends the function $F$ defined
on $\Omega$ to the new function $TF$ on $\Omega$ defined by

$(TF)(z)=\int_{\rho}F(\zeta)|B(z, \overline{\zeta})|^{\alpha/p}B(\zeta, \overline{\zeta})^{\alpha/p+1}d\zeta$ $(z\in\Omega)$

is a bounded operator of $L^{p}(\Omega, B(\zeta, \overline{\zeta})^{-r}d\zeta)$ into itself.
LEMMA 3.6.

$\psi_{A}(xy^{-1})=c_{A}^{2}\psi_{\Lambda}(x)\overline{\psi}_{A}(y)B(z, \overline{\zeta})^{l/\gamma}$

where $x,$ $yeG,$ $z=0\cdot x$ and $\zeta=0\cdot y$ .
PROOF. For $f$ in $A_{A}^{2}(G)$ it follows from Lemma 2.4 (3) that

$\psi_{A}(x)^{-1}f(y)=c_{A}^{-2}\int_{a}[\psi_{A}(x)^{-1}\psi_{A}(xy^{-1})\psi_{A}(y)]\psi_{A}(y)^{-1}f(y)dy$ .
By Lemmas 3.3 and 3.1 this means that for $F$ in $A_{A}^{2}(\Omega)$

$ F(z)=c_{A}^{-2}\int_{\rho}[\psi_{A}(x)^{-1}\psi_{A}(xy^{-1})\overline{\psi}_{A}(y)^{-1}]F(\zeta)B(\zeta, \overline{\zeta})^{-l/\gamma+1}d\zeta$ ,

where $z=0\cdot x$ and $\zeta=0\cdot y$ . Then noting the form of $[\cdots]$ and comparing
the reproducing formula in [CR], Lemma 2.1, we can obtain the desired
relation. Q.E.D.

LEMMA 3.7. For each $\epsilon>0$

$\sup_{x\epsilon G}|\psi_{A}(x)|^{-1+}\int_{a}|\psi_{A}(xy^{-1})||\psi_{A}(y)|dy<\infty$ .
PROOF. By Lemmas 3.1 and 3.6 the assertion is equivalent to
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$\sup_{e}B(z, \overline{z})^{-\alpha}\int_{\rho}|B(z, \overline{\zeta})|^{\beta}B(\zeta, \overline{\zeta})^{-\beta+1}d\zeta<\infty$ ,

where $\beta=l/\gamma$ and $\alpha>0$ . We recall that $l>\gamma-1$ and, since $|\psi_{A}|\leqq 1$ ,
$B(z, \overline{z})=|\psi_{f}|^{-2\gamma/l}\geqq 1$ . Therefore, replacing $B(\zeta, \overline{\zeta})^{-\beta+1}$ in the integrand by
$B(\zeta, \overline{\zeta})^{-\beta+\delta+1}(0<\delta<\alpha)$ , we can obtain the desired finiteness from Lemma
3.4. Q.E.D.

Then we see that

COROLLARY 3.8. For each $i,$ $i^{\prime}\in N$ and $\epsilon>0$ there exists a constant
$c_{ii^{\prime}}$ such that

$|U_{Aj\dot{g}^{\prime}}^{\prime}|\leqq c_{ii^{\prime}}|\psi_{A}|^{1-*}$ for $1\leqq j\leqq d_{i},$ $1\leqq j^{\prime}\leqq d_{i^{\prime}}$ .
PROOF. It follows from Lemma82.4 (2), 2.1 (3) and (3.6) that $|U_{A\dot{g}\dot{g}^{\prime}}^{ii^{\prime}}|\leqq$

$\ell_{A}^{-2}|U_{A\dot{g}1}^{i1}|*|U_{A1j^{\prime}}^{1i^{\prime}}|\leqq c_{A}^{-2}c{}_{i}C_{i^{\prime}}|\psi_{A}|*|\psi_{A}|$ . Therefore, Lemma 3.7 implies the de-
sired inequality. Q.E.D.

3.3. Let $(\Lambda, p)$ be a pair of a dominant integral form on $\mathfrak{h}_{\iota}$ and
$1\leqq p\leqq 2$ . We say that $(\Lambda, p)$ or $(\psi_{A}, p)$ is regular if $(\Lambda, p)$ satisfies the
condition that

(R) $\psi_{A}\in L^{p}(G)$

(see Table 4). Then the condition (R) is equivalent to the one of the
following three conditions:

(RO) $\psi_{A}\in L^{p}(G)$ and $1<p<2$

(R1) $\psi_{A}\in L^{1}(G)$ and $p=1$ (3.7)

(R2) $\psi_{A}\in L^{2}(G)$ and $p=2$ .
If $(\Lambda, p)$ is regular, each $U_{j}$ belongs to $L^{p}(G)$ by (3.6) and then it

satisfies the norm equality:

$||U_{f}:||_{p}=c_{f}||\psi_{\dot{f}}^{i}\Vert_{p,W_{A,p,0}}$ (3.8)

\langle see Lemma 2.3 (4), Lemma 3.1, (2.10), (2.11), (3.3) and (3.5)). Here we
note that

$A_{\Lambda}^{p}(\Omega)$ is the $||\cdot||_{p.W_{A,p,0}}$ norm $8pan$ of $\{\psi_{j}\}$ . (3.9)

In fact, $A_{A}^{p}(\Omega)$ contains densely all functions holomorphic in a domain
bigger than $\Omega$ and they can be approximated by a finite linear combination
of $\{\psi_{\dot{f}}^{i}\}$ (cf. the proof of [DRS], Theorem 3). Therefore, it follow8 that
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PROPOSITION 3.9. Let us suppose that $(\Lambda, p)$ is regular.
(1) $A_{A}^{p}(G)=E_{A}A_{A}^{p}(G)=theL^{p}$-span of $\{U_{Aj}^{i};1\leqq j\leqq d_{i}, i\in N\}$ .
(2) $(U_{A}, A_{A}^{p})$ and $(T_{\Lambda}, A_{\Lambda}^{p}(\Omega))$ are equivalent as Banach space repre-

sentation and $I_{\Lambda}$ is the norm preserving intertwining operator of $A_{A}^{p}(G)$

and $A_{A}^{p}(\Omega)$ .
We recall that

if $(\Lambda, p)$ is regular, then $p>2(\gamma-1)/l$ . (3.10)

Actually, except Type III, the condition $p>2(\gamma-1)/l$ is equivalent to the
$L^{p}$ condition (R) and when $\Omega$ is of Type III, it is weaker than (R) (see
Remark 3.2 and Table 4).

Moreover, since $|U_{Ajg^{\prime}}^{ii^{\prime}}\cdot|\leqq c_{A}^{-2}c_{i}c_{i^{\prime}}|\psi_{A}|*|\psi_{A}|$ (see the proof of Corollary 3.8),
we see that

if $(\Lambda, p)$ satisfies (R1), then $\Vert U_{A\dot{g}j^{\prime}}^{ii^{\prime}}\Vert_{1}\leqq c$ , (3.11)

where $c=c_{A}^{-z}c_{i}c_{t^{\prime}}||\psi_{A}||_{1}^{2}$ , which does not depend on $j$ and $j’$ .
PROPOSITION 3.10. If $(\Lambda, p)$ is regular, then for each $i,$ $i^{\prime}\in N$ there

exists a constant $C_{il}$ , such that
$\Vert U_{Aj\dot{g}}^{i^{\prime}},*f\Vert_{p}\leqq C_{ii^{\prime}}\Vert f\Vert_{p}$ for all $f\in L^{p}(G)$ and $j,$ $j^{\prime}$ .

PROOF. First let $(\Lambda, p)$ satisfy (R2). Then it is enough to show the
inequality for $f\in C_{c,F}^{\infty}(G)$ , the set of all compactly supported $C^{\infty}$ functions
on $G$ with finite K-types, because $C_{c,F}^{\infty}$ is dense in $L^{2}(G)$ .

Let $\phi$ be an elementary spherical function on $G$ (cf. [Va], Part II,
\S 8). Then for all $\epsilon>0$ it belongs to $L^{2+\epsilon}(G)$ (cf. [Va], Theorem 80). On
the other hand, by Corollary 3.8 and Table 4, $U_{Ajj}^{ii^{\prime}}$, belongs to $L^{2-\delta}(G)$

for a sufficiently small $\delta>0$ . Therefore, $(\phi, U_{Ajj^{\prime}}^{ii^{\prime}})$ is well defined, and it
must be equal to $0$ , because both the functions are eigenfunctions of the
center of the universal enveloping algebra of $\mathfrak{g}_{c}$ with different eigenvalues.
Then noting the Plancherel theorem for $f\in C_{c,F}^{\infty}$ (see [HC2]), we see that
the operator $U_{\Lambda jj^{\prime}}^{li^{\prime}}*vanishes$ the finite wave packets of $f$. Moreover, by
the same argument, it vanishes a finite linear combination of the matrix
coefficients of discrete series different from $U_{\Lambda}$ . Thus, it follows that

$U_{A\dot{g}\dot{g}^{\prime}}^{ii^{\prime}}*f=U_{Ajj}^{ii^{\prime}},*^{O}f_{A}$ ,

where $\circ f_{A}=c_{A}^{-1}\sum_{p,q,p^{\prime},q^{\prime}}(f, U_{4\{qq}^{pp^{\prime}},)U_{Aqq}^{pp^{\prime}}$, (the sum is finite). Then it follows
from Lemma 2.4 (2) that

$U_{\Lambda jj^{\prime}}^{ii^{\prime}}*f=c_{A}\sum_{p}(f, U_{Ajq^{\prime}}^{ip^{\prime}})U_{\ell\dot{g}q^{\prime}}^{ip^{\prime}}$
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and from the Perseval equality for $f$ that

$||U_{Ajj^{\prime}}^{ii^{\prime}}*f||_{2}^{2}=c_{A}\sum_{p,q^{\prime}}|(f, U_{Ajq^{\prime}}^{ip^{\prime}})|^{2}\leqq c_{r^{2}}||f||_{2}^{2}$ .
If $(\Lambda, p)$ satisfies (R1), then the desired inequality is obvious from

(3.11).
Now let us suppose that $(\Lambda, p)$ satisfies (RO). By (3.10) we can

choose an $\epsilon>0$ such that $p>2(\gamma-1)/l(1-\epsilon)$ . Then by Corollary 3.8 we
have $|U_{Ajj}^{ii^{\prime}}*f|\leqq c_{ii^{\prime}}|\psi_{A}|^{1-e}*|f|$ . Therefore, applying Lemma 3.6, we see that

$|U_{A\dot{g}j^{\prime}}^{ii^{\prime}}*f(x)||\psi_{A}(x)|^{-(1-\epsilon)}$

$\leqq c_{ii^{\prime}}c_{A}^{2t\iota-\epsilon)}\int_{\rho}[|f|_{K}(g)|\psi_{A}(g)|^{-(1-*)}]$

$\times|B(z, \xi)|^{(1-\cdot)l/\gamma}B(\zeta, \overline{\zeta})^{-(1-\epsilon)l/\gamma+1}d\zeta$ ,

where $z=0\cdot x$ , $\zeta=0\cdot g$ and $|f|_{K}(g)=\int_{K}|f(kg)|dk$ . Here we note that
$|f||\psi_{A}|^{-(1-*)}$ belongs to $L^{p}(\Omega, B(\zeta,\overline{\zeta})^{-r}d\zeta)$ for $r=(1-\epsilon)lp/2\gamma-1$ . Therefore,
applying Lemma 3.5 as $\theta=0$ and $r=(1-\epsilon)lp/2\gamma-1$ , we see $\underline{t}hat$ the left
hand side of the above inequality also belongs to the $B(\zeta, \zeta)^{-}$ -weighted
$L^{p}$ space on $\Omega$ , in particular, $U_{Ajj}^{ii^{\prime}}*f$ belongs to $L^{p}(G)$ (see $Lemma3.1$)

$Q.E.D$ .
REMARK 3.11. The case of $G=SU(1,1)$ and $\Omega=D$ we can obtain the

estimate in Proposition 3.10 by using the Kunze-Stein phenomenon (see

[CS] and [Co]). In our general case the phenomenon is also applicable
to obtain the $L^{p}$ estimate, however we have to replace the condition (RO)

with the following (RO)‘:

(RO)’ $1<p<2$ and $\psi_{4}\ell\in L^{q}(G)$ for all $q>1$

(see [CS]). Although this condition is equivalent to (RO) in the case of
$SU(1,1)$ , generally, it is stronger than (RO).

\S 4. Fourier transform associated with $T_{A}$ .
We retain the notation and assumption in the previous section.
Before giving the definition of the Fourier transform associated with

$T_{A}$ we shall give a sense of the following equation (4.1). Let $f$ be in
$L^{p}(G)$ and $1\leqq p\leqq 2$ . Since $U_{ln}^{km}$ is in $L^{q}(G)$ for all $q\geqq 2$ by (3.1) and
Corollary 3.8, $U_{ln}^{km}*f$ is well-defined. Then we can obtain that

$U_{jl}^{ik}*(U_{ln}^{kn}*f)=(U_{\dot{s}l}^{ik}*U_{ln}^{km})*f$ (4.1)

$=c_{A}^{2}U_{\dot{g}n}^{im}*f$ .
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Here the second equation follows from Lemma 2.4 (2), and the first one
is guaranteed by the Fubini theorem. Actually, when $p=2$ ,

$\Vert U_{jl}^{ik}*(U_{ln}^{km}*f)\Vert_{\infty}\leqq||U_{jl}^{lk}\Vert_{2}\Vert U_{ln}^{km}*f||_{2}$

$\leqq c_{A}^{8}\Vert f\Vert_{2}<\infty$

by Lemma 2.3 (1) and Proposition 3.10, and when $1\leqq p<2$ ,

$|1U_{jl}^{lk}*(U_{ln}^{km}*f)||_{\infty}\leqq||U_{jl}^{tk}||_{2}\Vert U_{ln}^{km}*f||_{2}$

$\leqq cc_{A}^{2}\Vert f\Vert_{p}<\infty$

by the Kunze-Stein phenomenon (see [Co]). Especially, $U_{ln}^{km}*f$ is an $L^{2}$

function on $G$ .
Let $\Lambda=\Lambda_{l}$ be a dominant integral form on $\mathfrak{h}_{c}$ , which corresponds to

one dimensional representation
$\tau_{A_{l}}$ of $K$ (see Table 3), and suppose that

$\Lambda$ satisfles the $L^{2}$-condition in Table 4. Then $(T_{A}, A_{J}^{z_{I}}(\Omega))$ is a holomorphic
discrete series of $G$ . For $f$ in $L^{p}(G)(1\leqq p\leqq 2)$ we define the Fourier
transform $F_{Aj}^{l}(f)(1\leqq j\leqq d_{i}, i\in N)$ as follows:

$F_{Aj}^{i}(f)(z)=\int_{a}f(g)T_{A}(g^{-1})\psi_{Aj}^{i}(z)dg$ $(z\in\Omega)$ (4.2)

$=I_{A}(\phi_{j}^{i}*f)(z)$ .
Moreover, we define

$P_{Aj}^{l}(f)=c_{A}^{-2}U_{A\dot{g}j}^{ii}*f$ , (4.3)

and call it a “discrete part” of $f$. As pointed in the equation (4.1), these
convolution operators are well-defined on $L^{p}(G)(1\leqq p\leqq 2)$ and the discrete
part is an $L^{2}$ function on $G$ . For simplicity we put

$F_{A}=F_{\Lambda 1}^{1}$ and $P_{\Lambda}=P_{A1}^{1}$ . (4.4)

Now, applying (4.1) and Lemma 2.4 (2), we see that
$U_{jj}^{it}*(U_{jj}^{ii}*f)=c_{A}^{2}(U_{jj}^{ii}*f)$ ,
$U_{1\dot{g}}^{1i}*(U_{jj}^{ii}*f)=c_{A}^{2}(U_{1j}^{1i}*f)$ , (4.5)
$U_{j1}^{i1}*(U_{1j}^{1i}*f)=c_{\Lambda}^{2}(U_{jj}^{ii}*f)$ ;

so, $U_{1\dot{g}}^{1i}*(U_{\dot{f}\dot{f}}^{ii}*f)=0$ means that $0=U_{\dot{g}1}^{i1}*(U_{1j}^{1i}*f)=c_{A}^{2}U_{jj}^{il}*f$ . Therefore, $P_{A\dot{g}}^{i}$ is
a projection operator which maps $f\in L^{p}(G)$ to the discrete part of $f$ and
moreover,

$F_{4j}{}^{t}(L^{p}(G))=F_{A;}^{i}(P_{A\dot{g}}^{i}(L^{p}(G)))$ amd
$F_{Aj}^{i}$ is injective on $P_{Aj}^{i}(L^{p}(G))$ . (4.6)
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Especially, Propositions 3.10 and 3.9 (1) imply that

if $(A, p)$ is regular, $P_{Aj}^{i}(L^{p}(G))\subset L^{p}(G)$ and
(4.7)

$P_{A}(L^{p}(G))=A_{A}^{p}(G)$ .
Our problem can be stated as follows.

PROBLEM. Give a characterization of $F_{A\dot{g}}^{i}(L^{p}(G))(1\leqq p\leqq 2)$ as a space
of holomorphic functions on $\Omega$ .

The first result for $F_{Aj}^{i}(L^{p}(G))$ is the independence of $i$ and $j$ .
THEOREM 4.1. Let $1\leqq p\leqq 2$ and $\Lambda=\Lambda_{\iota}$ satisfy the $L^{2}$-condition. Then

$F_{Aj}^{i}(L^{p}(G))=F_{A}(L^{p}(G))$ for all $1\leqq j\leqq d_{i},$ $ieN$ .
PROOF. By (4.1), (4.2) and (4.6) it is enough to prove that the

correspondence of $f$ and $f^{\sim}=U_{j}^{i}*f$ gives a bijection between $P_{A\dot{f}}^{i}(L^{p}(G))$

and $P_{A}(L^{p}(G))$ .
The case of $(\Lambda, p)$ is regular: it follows from Proposition 3.9 and

(4.7) that $feP_{Aj}^{i}(L^{p}(G))$ belongs to $L^{p}(G)$ . Then, by Proposition 3.10 $f^{\sim}$

also belongs to $L^{p}(G)$ . Since $P_{A}(f^{\sim})=f^{\sim}$ by (4.1), $f^{\sim}$ belongs to $P_{A}(L^{p}(G))$ .
Clearly, this argument is reversible because of $f=c_{A}^{-2}U_{\dot{g}1}^{i1}*f^{\sim}$ . Then we
can obtain the desired bijection.

The case of $(\Lambda, p)$ is non regular: first we shall prove a lemma which
will play an important role in \S 5.

LEMMA 4.2. For each $U_{\dot{f}\dot{f}}^{ii^{\prime}}=U_{A\dot{g}j^{\prime}}^{ii^{\prime}}(\Lambda=\Lambda_{l})$ and $\alpha>\alpha_{A}$ we put

$[U_{\dot{g}\dot{g}^{\prime}}^{ii^{\prime}}](g)=C|\psi_{A}(g)|^{\alpha}U_{\dot{f}\dot{f}^{\prime}}^{ii^{\prime}}(g)$ $(g\in G)$ ,

where the constant $C=C(\alpha;i, j;i^{\prime}, j’)$ is given by

$C\int_{a}|\psi_{A}(g)|^{\alpha}|U_{j\dot{g}^{\prime}}^{ii^{\prime}}(g)|^{2}dg=c_{A}^{2}$ .
Then $[U_{j\dot{g}^{\prime}}^{ii^{\prime}}]$ is an $L^{1}$ function on $G$ such that

$U_{\dot{g}\dot{g}^{\prime}}^{ii^{\prime}}=P_{Aj}^{i}([U_{\dot{g}j}^{i^{\prime}}])$ .
PROOF. We take an $\epsilon>0$ such that $\alpha-\epsilon>\alpha_{A}$ . Then by Corollary 3.8

it follows that
$[U_{j\dot{g}}^{ii^{\prime}}]\leqq c_{ii^{\prime}}|\psi_{A}|^{\alpha}|\psi_{\{}|^{1-e}=c_{ii^{\prime}}|\psi_{I}4|^{1+(\alpha-e)}$

and thus $[U_{\dot{f}\dot{f}}^{ii^{\prime}},]$ belongs to $L^{1}(G)$ (see (3.2)). Then, since $U_{\dot{f}f}^{i}:’\in L^{2}(G)\cap L^{\infty}(G)$ ,
$U_{\dot{f}\dot{f}}^{ii}*[U_{\dot{g}\dot{g}^{\prime}}^{ii^{\prime}}]$ also belongs to $L^{2}(G)\cap L^{\infty}(G)$ . Therefore,
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$P_{4j}^{i}([U_{\dot{f}\dot{f}^{\prime}}^{ii^{\prime}}])(x)=c_{A}^{-2}U_{\dot{g}j}^{i}*[U_{gj}^{ii^{\prime}},](x)$

$=c_{A}^{-g}\int_{a}U_{j\dot{g}}^{u}(xy^{-1})[U_{j\dot{g}}^{ii^{\prime}},](y)dy$

$=Cc_{A}^{-2}\int_{a}\sum_{p,q}U_{\dot{g}q}^{ip}(x)\overline{U}_{jq}^{ip}(y)|\psi_{A}(y)|^{\alpha}U_{;\dot{g}^{\prime}}^{ii^{\prime}}(y)dy$

(see Lemma 2.4 (1)), and by changing the variable $y$ to $kyk’(k, k’ eK)$ ,

$=Cc_{A}^{-2}\int_{a}\int_{K}\int_{K}\sum_{p,q}U_{jq}^{p}(x)\overline{U}_{\dot{g}q}^{ip}(kyk^{\prime})|\psi_{A}(kyk’)|^{\alpha}U_{\dot{g}j}^{i^{\prime}},(kyk^{\prime})dkdkdy$ .
Here we recall the assumption that dim $\tau_{A_{l}}=1$ , and so $|\psi_{A}(kyk^{\prime})|=|\psi_{A}(y)|$ .
Then the orthogonal relations over $K$ and $K$’ deduce that

$=C_{C_{4^{-2}}}.U_{\dot{g}j}^{ii^{\prime}},(x)\int_{a}:’$,

$=U_{\dot{g}\dot{g}^{\prime}}^{ii^{\prime}}(x)$

by the definition of $C$. Q.E.D.

REMARK 4.3. For an $L^{p}(1\leqq p\leqq 2)$ function $f$ on $G$ the notation $[f]$

means the class, or a representative of the class, of all functions on $G$

whose discrete parts are the same as the one of $f$.
Now we shall return to the proof of the non regular case. Let ussuppose that $f$ is in $P_{\Lambda\dot{g}}{}^{t}(L^{p}(G))$ . This means that there exists an $L^{p}$

function $[f]$ on $G$ such that $f=c_{A}^{-2}U_{j\dot{g}}^{ii}*[f]$ , and thus, by (4.1), $f^{\sim}=$

$c_{A}^{-2}U_{j}^{i}*[f]$ . Then by Lemma 4.2 we can choose an $L^{1}$ function $[U_{j}^{i}]$ on
$G$ such that $U_{j}^{i}=c_{A}^{-2}U_{1}^{1}*[U_{\dot{f}}^{i}]$ . Since $U_{1}^{1}$ belongs to $L^{q}(G)$ for all $q\geqq 2$ , itfollows that

$|I(U_{1}^{1}*[U_{j}])*[f]\Vert_{\infty}\leqq||U_{1}^{1}*[U_{\dot{f}}^{l}]||_{q}||[f]||_{p}\leqq||U_{1}^{1}||_{q}||[U_{\dot{f}}^{i}]||_{1}||[f]||_{p}<\infty$

,

where $1/p+1/q=1$ . Therefore, by the Fubini theorem, we see that
$f^{\sim}=c_{A}^{-4}(U_{1}^{1}*[U_{\dot{f}}^{i}])*[f]=c_{A}^{-2}P_{A}([U_{j}]*[f])$ .

Since $[U_{j}^{i}]*[f]$ belongs to $L^{p}(G)$ , the above relation means that $f^{\sim}$ also
belongs to $P_{A}(L^{p}(G))$ . As before, this argument is reversible, so we can
obtain the desired bijection. Q.E.D.

The constant $C(\alpha;1,1;i, j)$ in Lemma 4.2 will play an important
role in the following sections. So, by calculating explicitly the integral
in the definition, in the next lemma we shall show that the constant
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does not depend on $j$ and the square of $C(\alpha;1,1;i, j)$ corresponds to
$C(2\alpha;1,1;i, j)$ . In this calculation we need the assumption that $\Omega^{\sim}=G/K$

is one of the classical bounded symmetric domains in Table 1, because
we shall cite the results obtained by [Hu].

LEMMA 4.4. Let notation be as in Lemma 4.2. $C(\alpha;i, j;i’, j^{\prime})$ can be

defined for $a>a_{A}-1,$ $C(a;1,1;i, j)$ does not depend on $1\leqq j\leqq d_{i}$ , and if
we say $C_{\alpha}^{i}$ , that is,

$C_{\alpha}\int_{a}|U_{j}^{i}(x)|^{2}|\psi_{A}(x)|^{\alpha}dx=c_{A}^{2}$ , (4.8)

then
$(C_{\alpha}^{i})^{2}\sim C_{2\alpha}^{i}$ for all $i\in N$ , (4.9)

where $‘‘\sim$ means that the ratio of the left and the right is bounded
below and above by positive constants which do not depend on $i$ .

PROOF. By (3.2), Corollary 3.8 and Table 4 it easily follows that

the integral in the definition of the constant exists for $\alpha>\alpha_{A}-1$ . The
rest of the assertions will be proved by an explicit calculation.

First we shall replace the complete orthonormal system $\{\psi_{\dot{f}}^{i}\}$ in
$A_{A}^{2}(\Omega)$ (see (2.12) and (3.5)) by another complete orthogonal system $\{\psi_{j}^{r_{i}}\}$

in $A^{2}(\Omega)=A_{1}^{2}(\Omega)$ ($w\equiv 1$ in (2.9)), where each $A^{2}$ norm of $\psi_{j}^{\prime i}$ only depends

on the homogeneous degree, so on $i$ . This replacement of the basis
clearly does not effect the assertion of the independence on $j$ of
$C(\alpha;1,1;i, j)$ . On the other hand, it follows from the definition of
$C(\alpha;1,1;i, j)$ that

(1) $C(\alpha;1,1;i, j)^{-2}=(c_{A}^{-2}\int_{\rho}|\psi_{\dot{f}}^{i}(\zeta)|^{2}|\psi_{A}(x)|^{2+\alpha}B(\zeta, \overline{\zeta})d\zeta)^{2}$

and

$ C(2\alpha;1,1;i, j)^{-1}=c_{A}^{-2}\int_{\rho}|\psi_{j}^{i}(\zeta)|^{2}|\psi_{A}(x)|^{2+2\alpha}B(\zeta, \overline{\zeta})d\zeta$

(2) $=c_{A}^{-2}\int_{\rho}|\psi_{\dot{f}}^{i}(\zeta)|^{2}|\psi_{A}(x)|^{2+2\alpha}B(\zeta, \overline{\zeta})d\zeta$

$\times\int_{\rho}|\psi_{\dot{f}}^{i}(\zeta)|^{2}|\psi_{A}(x)|^{2}B(\zeta, \overline{\zeta})d\zeta$

where $\zeta=0\cdot x$ . The last integral i8 equal to one since each $\psi_{\dot{f}}^{i}$ is a
normalized $ba8e$ in $A_{A}^{2}(\Omega)$ (see (3.5) and (2.12)). Here we note that the

assertion (4.9) is equivalent to the $‘‘\sim$ relation of the right hand sides
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of (1) and (2) and moreover, it is invariant under a scalar multiplication:
$\psi_{j}^{i}\rightarrow c\psi_{j}^{l}$ Therefore, if we regard (4.9) as the $‘‘\sim$ relation of the right
hand sides of (1) and (2), the replacement of the basis also does not
effect the assertion of (4.9).

Actually, such a system $\{\psi_{j}^{\prime i}\}$ of $A^{2}(\Omega)$ is given by homogeneous
polynomials on $\Omega$ , which are denoted by $\psi_{f}^{(i)}$ in [Hu], p. 100, p. 131,
p. 138 and p. 147 for Type I, II, III and IV respectively.

TABLE 5

$\ovalbox{\tt\small REJECT}_{f=(f_{1},\cdot f_{m})}TypeC.O.S.IndexI\psi_{f}^{(i)}1\leqq i\leqq N(f_{1},.\cdot.,\cdot\cdot,f_{m})N(f_{1}, \cdots,f_{m}, 0, \cdots, 0)$

I $\psi_{f}^{(i)}$

$1\leqq i\leqq N(2f_{1},.\cdots, 2f_{n})f=(f_{1},\cdot\cdot,f_{n})$

$IVm$ $(zz)^{l}\psi_{f-2l}^{(i)}\psi_{f}^{w}$ $1\leqq i\leqq N(f_{1},.f_{1},\cdots,f_{n},f_{n})1\leqq i\leqq N_{f-2l}-N_{f-2l-2}f=(f_{1},\cdot\cdot,f[n/2])$

Roughly speaking, “$f$
’ implies the homogeneous type of $\psi_{J^{(t)}}$ , that

is “$f$
’ and $i$

’ correspond respectively to $i$ and $j$ in our notation. The
exact definitions of $\psi_{J^{(l)}},$ $N(f_{1}, \cdots, f_{n})$ and $N_{f}$ are given in [Hu], 5.1.
Fortunately, we need not quote the definition to carry out the calculation
of the integrals of (4.8) and in the right hand sides of (1) and (2), because
the similar integrals have already calculated in [Hu]; so it is enough to
quote only results in [Hu].

Now we shall calculate the integral of (4.8): the ones in the right
hand sides of (1) and (2) are obtained by taking the square of it and
multiplying the values replacing $\alpha$ with $0$ and $ 2\alpha$ respectively.

Type I. The calculation in [Hu], p. $100-p$.109 deduces that

$\int_{9}|\psi_{f}^{(i)}(\zeta)|^{2}|\psi_{A}(x)|^{2+\alpha}B(\zeta, \overline{\zeta})d\zeta$ (4.10)

$=c\int_{I,-\iota\overline{z}^{\prime}>\theta ,ze^{\hslash}M_{mm}(c)}\chi_{f_{1},\cdots,f_{m}}(z\overline{z}^{\prime})\det(I_{m}-z\overline{z}^{\prime})^{\lambda}dz$
,

where $x=(2+a)l/2-(n+m)$ and $\chi_{f_{1},\cdots,J_{m}}(x)(x\in GL(m))$ is the trace of a
representation of $GL(m)$ with signature $(f_{1}, \cdots, f_{m})$ (see [Hu], 1.4). Then

$=c\int_{I_{n}-x_{\hslash}\overline{x_{l\hslash}}^{\prime}>0}\chi_{f_{1}+(n-m),\cdots,f_{2\hslash}+(n-n)}(x\overline{x}^{\prime})\det(I_{n}.-x\overline{x}’)^{\lambda}dx$

$=c$ det $|B(f_{l}-i-k+(n+m)+1, x+1)|_{1}^{m}$ ,

where $B(\cdot, )$ is the Bessel function, $|a_{ik}|_{1}^{m}$ the $(m, m)$ matrix whose $(i, k)$
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entry $equal8a_{k}(1\leqq i, k\leqq m)$ and $c$ does not depend on $f$ and $i$ .
Type II. The calculation in [Hu], $p.130-p.138$ deduces that

$\int_{\rho}|\psi_{f}^{(i)}(\zeta)|^{2}|\psi_{A}(x)|^{2+\alpha}B(\zeta, \overline{\zeta})d\zeta$ (4.11)

$=c\delta_{i_{1}}^{1}\cdots\delta^{n}.B(f_{i_{1}}-n-i_{1}+1, x+1)B(f_{i_{1}}+f_{i_{2}}-2n-(i_{1}+i_{2})+2, x+1)$

$\times\cdots\times B(f_{1}+\cdots+f_{i_{*}}-n^{2}-(i_{1}+\cdots+i_{n})+n, x+1)$ ,

where $x=(2+a)l/2-(n+1)$ and $c$ does not depend on $f$ and $i$ .
Type III. This case is similar to Type I. We shall omit it.
Type IV. Let $ z=\gamma\xi$ ($zeC^{n}$ and $r=|z|$ ). Then by [$Hu1,7.4$ we easily

see that

$\int_{\rho}|\zeta\zeta’|^{2l}|\psi_{f-2l^{(t)}}(\zeta)|^{2}|\psi_{A}(x)|^{2+\alpha}B(\zeta, \overline{\zeta})d\zeta$ (4.12)

$=cB(f+n, x+1)$ ,

where $x=(2+\alpha)l/2-n$ and $cdoe8$ not depend on $f$ and $i$ .
In each type the value of the integral does not depend on $i’$ ($j$ in

our notation), so the constant $C(\alpha;1,1;i, j)$ defined by the integral is
independent of $j$ . Moreover, since

$\Gamma(a)/\Gamma(a+\mu)\rightarrow a^{-\mu}$ ($a,$ $\mu\in R^{+}$ and $ a\rightarrow\infty$ ),

the values of the integrals in the right hand sides of (1) and (2) have the
same behaviour when “

$f$’($’\dot{b}$ in our notation) goes to infinity. Therefore,
we can obtain the desired results. Q.E.D.

\S 5. Characterization of $F_{A}(L^{p}(G))$ .
By Theorem 4.1 our problem $i8$ reduced to the case of $F_{A}(L^{p}(G))$ .

As mentioned in 1.2, the answer has two forms, and the choice of the
forms depends on whether $(\Lambda, p)$ is regular or not. Especially, to char-
acterize the non regular case we need a generalization of the fractional
derivatives of holomorphic functions on $\Omega$ . So, first we shall define the
fractional derivative $F^{[\alpha]}(\alpha\geqq 0)$ of a holomorphic function $F$ on $\Omega$ and
then define a space $H_{A,\alpha}(\Omega)$ that will give a characterization of the non
regular case. When $\Omega=D$ and $p=\alpha=1$ , this space corresponds to $H_{1,0}(D)$

in (1.7) (see (5.2) and Remark 5.6 (1)).

5.1. Let $F=\sum_{l,m}a_{1n}\psi_{\Lambda n}^{l}$ be a holomorphic function on $\Omega$ . Then the
fractional derivative $F^{[a]}$ of $F$ of order $\alpha$ ($\alpha>\alpha_{A}-1$ and $\alpha\geqq 0$) is defined
formally by
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$F^{[\alpha]}=\sum_{l,m}c_{\alpha}^{l}a_{lm}\psi_{Am}^{l}$ , (5.1)

where $c_{\alpha}^{\iota}(leN)$ is the constant defined by (4.8). Obviously, this definition
is applicable to the case of $\alpha>a_{A}-1$ and $\alpha<0$ , and such an $F^{[\alpha]}$ cor-
responds to the fractional integral of $F$.

As an example of the fractional derivative on $\Omega$ , we shall calculate
$(T_{A}(g^{-1})1)^{[\alpha]}(z)(z\in\Omega)$ explicitly for a fixed $g$ in $G$ (see (3.4)), and then
prove that it belongs to $A_{W_{d}}^{I}l,1,\alpha(\Omega)$ (see (2.9) and (2.11)) and its norm is
uniformly bounded on $g\in G$ . This fact will be used in the proof of the
main theorem.

LEMMA 5.1. Let $\Lambda=\Lambda_{l}$ satisfy the $L^{2}$ condition and let $\alpha>\alpha_{A}-1$ .
Then for a fixed $g$ in $G$

$(T_{A}(g^{-I})1)^{[\alpha]}(z)=c_{A}^{2}\overline{\psi}_{A}(g)B(z, \overline{\zeta})^{(2+\alpha)l/2\gamma}$ ,

where $\zeta=0\cdot g$ and $ ze\Omega$ .
PROOF. First we shall prove that for a fixed $x\in G$

$S_{x}(g)=c_{A}^{-2}|\psi_{A}(g)|^{\alpha}\sum_{l,m}c_{\alpha}^{l}U_{m}^{\iota}(x)\overline{U}_{m}^{l}(g)$ $(geG)$

is an $L^{2}$ function on $G$ and it satisfies

$\overline{\psi}_{A}*S_{x}(g)=\psi_{A}(xg^{-1})$ .
Let $S_{x}^{n}(neN)$ denote the partial sum of $S_{x}$ requiring that $l\leqq n$ .

Then by the same argument as in the proof of Lemma 4.2 it follows
from (4.8) and (4.9) that

$||S_{x}^{n}||_{2}^{2}=c_{A}^{-4}\sum_{l\leq n}(c_{\alpha}^{\iota})^{2}|U_{m}^{\iota}(x)|^{2}\int_{a}|U_{m}^{l}(g)|^{2}|\psi_{A}(g)|^{2\alpha}dg$

$=c_{A}^{-2}\sum_{l\leq n}(c_{\alpha}^{l})^{2}(c_{2\alpha}^{l})^{-1}|U_{m}^{l}(x)|^{2}$

$\sim c_{A}^{-2}\sum_{l\leqq n}|U_{m}^{l}(x)|^{2}$ .
Therefore, (2.14) implies that $S_{x}$ is an $L^{2}$ function on $G$ . By the same
way it follows from Lemma 2.4 (1) and (4.8) that

$\overline{\psi}_{A}*S_{\$}^{n}(g)=\int_{a}\overline{\psi}_{A}(gy^{-1})S_{x}^{n}(y)dy$

$=c_{A}^{-2}\sum_{l\leq n}c_{\alpha}^{l}\int_{a}|U_{m}^{l}(y)|^{2}|\psi_{A}(y)|^{\alpha}dyU_{m}^{l}(x)\overline{U}_{m}^{l}(g)$

$=\sum_{l\leq n}U_{m}^{l}(x)\overline{U}_{m}^{\iota}(g)$ .
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So, Lemma 2.4 (1) implies that $\overline{\psi}_{A}*S_{r}=\psi_{A}(xg^{-1})$ .
For all $f$ in $A_{A}^{2}(G)$ we see that

$\int_{a}f(g)S_{x}(g)dg=\int_{a}c_{A}^{-2}\psi_{A}*f(g)S_{x}(g)dg$ by Lemma 2.4 (3)

$=\int_{a}f(g)c_{A}^{-2}\overline{\psi}_{A}*S_{x}(g)dg$

$=c_{A}^{-2}\int_{e}f(g)\psi_{A}(xg^{-1})dg$

$=f(g)$ .
On the other hand, it follows from Lemma 2.4 (1) and (3.4) that

$T_{A}(g^{-1})1(z)=\psi_{A}(x)^{-1}\psi_{A}(xg^{-1})=\psi_{A}(x)^{-1}\sum_{l,m}U_{r*}^{l}(x)\overline{U}_{m}^{l}(g)$

for $z=0\cdot x(xeG)$ and thus, from Lemma 2.3 (4), (3.5) and (5.1) that

$(T_{\Lambda}(g^{-1})1)^{[\alpha]}(z)=\psi_{A}(x)^{-1}\sum_{l,m}c_{\alpha}^{l}U_{f\hslash}^{l}(x)\overline{U}_{m}^{l}(g)$ .
Then the above equation means that for all $F$ in $A_{A}^{2}(\Omega)$

$ F(z)=\int_{0}F(\zeta)[c_{A}^{-2}(T_{A}(g^{-1})1)^{[\alpha]}(z)\overline{\psi}_{A}(g)^{-1}]B(\zeta, \overline{\zeta})^{-(2+\alpha)l/2\gamma+1}d\zeta$ .

Then noting the form of $[\cdots]$ and comparing the reproducing formula
in [CR], Lemma 2.1, we can obtain the desired relation. Q.E.D.

REMARK 5.2. Lemma 3.6 is nothing but the case of $\alpha=0$ in Lemma
5.1.

PROPOSITION 5.3. Let $\Lambda=\Lambda_{l}$ satisfy the $L^{2}$ condition and $\alpha>\alpha_{A}$ .
Then

$\sup_{peG}||(T_{A}(g^{-1})1)^{[\alpha]}||_{1,W_{A,1,\alpha}}<\infty$ ,

($see(2.9)$ and (2.11)).

PROOF. By Lemmas 5.1 and 3.1 it is enough to prove that

$\sup_{Ce\rho}B(\zeta, \overline{\zeta})^{-\beta}\int_{\rho}|B(z, \overline{\zeta})|^{(2+\alpha)\beta}B(z, \overline{z})^{-(1+\alpha)\beta+1}dz<\infty$ ,

where $\beta=l/2\gamma$ . Then this is clear from Lemma 3.4. Q.E.D.

5.2. We shall define $H_{A,\alpha}^{p}(\Omega)$ ($1\leqq p\leqq 2$ and $\alpha>\alpha_{A}-1$) as follows:
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$H_{A,\alpha}^{p}(\Omega)=\{F:\Omega\rightarrow C;(1)F$ is holomorphic on $\Omega$ , (5.2)

(2) $F^{[\alpha]}$ belongs to $A_{W_{A,p.\alpha}}^{p}(\Omega)$ }.

Obviously, since $F^{[0]}=F$,

$A_{\Lambda}^{p}(\Omega)=A_{A,0}^{p}(\Omega)$

(see (2.12)). Especially, when $p=2$ , we see the following

PROPOSITION 5.4. Let $\Lambda=\Lambda_{l}$ satisfy the $L^{2}$ condition and $a>a_{A}-1$ .
Then $A_{A}^{2}(\Omega)=H_{\Lambda,\alpha}^{2}(\Omega)$ , actually for all $F$ in $A_{A}^{2}(\Omega)$

$\Vert F\Vert_{2,W_{A,2,0}}\sim\Vert F^{[\alpha]}\Vert_{2,W_{A,2,\alpha}}$ , (5.3)

where $‘‘\sim$ means that the ratio of the left and the right is bounded
above and below by positive constants which do not depend on $F$.

PROOF. Let $F=\sum_{l,m}a_{lm}\psi_{m}^{l}$ be in $A_{A}^{2}(\Omega)$ . Then

$\Vert F^{[\alpha]}||_{2,W_{A,2,\alpha}}^{2}$

$=\int_{0}|\sum_{l,m}c_{\alpha}^{l}a_{tm}\psi_{m}^{l}(\zeta)|^{2}|\psi_{A}(x)|^{2(1+\alpha)}B(\zeta, \overline{\zeta})d\zeta$ ,

where $\zeta=0\cdot x$ . Then rewriting this integral over $\Omega$ as the one over $G$

(see (2.10)) and applying the same argument as in the proof of Lemma
4.2, we can deduce that

$=\sum_{l,m}(c_{\alpha}^{l})^{2}|a_{lm}|^{2}\int_{a}|\psi_{m}^{l}(\zeta)|^{2}|\psi_{A}(x)|^{2(1+\alpha)}dg$

$=c_{A}^{2}\sum_{l,m}(c_{\alpha}^{l})^{2}|a_{lm}|^{2}(c_{2\alpha}^{l})^{-1}$ by (3.3), (3.5), (4.8)

$\sim\sum_{l,m}|a_{lm}|^{2}$ by (4.9)

$=\Vert F\Vert_{l.W_{A,2,0}}^{2}$ . Q.E.D.

Now we shall state our main theorem.

THEOREM 5.5. Let $\Lambda=\Lambda_{l}$ satisfy the $L^{2}$ condition and $1\leqq p\leqq 2$ . Then
(1) If $(\Lambda, p)$ is regular, then $F_{A}(L^{p}(G))=A_{A}^{p}(\Omega)$ and $ F_{A}:P_{\Lambda}(L^{p}(G))\rightarrow$

$A_{A}^{p}(\Omega)$ is bijective and norm preserving.
(2) If $(\Lambda, p)$ is not regular, then $F_{A}(L^{p}(G))=H_{A.\alpha}^{p}(\Omega)$ for all $a>\alpha_{A}$

and $F_{A}:P_{A}(L^{p}(G))\rightarrow H_{A,\alpha}^{p}(\Omega)$ is bijective.

PROOF. (1) We note that $F_{A}(L^{p}(G))=F_{A}(P_{A}(L^{p}(G)))$ by (4.6) and, since
$(\Lambda, p)$ is regular, $F_{\Lambda}=I_{A}$ on $P_{4}(L^{p}(G))=A_{A}^{p}(G)$ by (4.2) and (4.7). Therefore,
(1) is nothing but Proposition 3.9.
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(2) It follows from Table 4 that if $(\Lambda, p)$ is non regular $(\Lambda, 1)$ is
also non regular. So, we shall prove this case first.

The case of $(A, 1)$ : Let $f$ be in $L^{1}(G)$ . Then by Proposition 5.3 we
see that for $\alpha>\alpha_{A}$

$\Vert(F_{A}(f))^{[\alpha]}\Vert_{1,W_{A,1,a}}\leqq c_{A}^{-1}\int_{a}|f(g)|||(T_{A}(g^{-1})1)^{[\alpha]}||_{1,W_{A,1,\alpha}}dg$

$\leqq c\Vert f||_{1}<\infty$ .
This means that $F_{A}(f)\in H_{A,\alpha}^{1}(\Omega)$ and thus, $F_{A}(L^{1}(G))$ i8 contained in
$H_{A,\alpha}^{1}(\Omega)$ .

Conversely, let $F=\sum_{l,,n}a_{l,n}\psi_{n}^{l}$ be in $H_{A,\alpha}^{1}(\Omega)(\alpha>\alpha_{A})$ , and let

$f(g)=\sum_{l,n}a_{lm}U_{m}^{l}(g)=c_{A}^{-1}\psi_{A}(g)F(z)$

and

$[f](g)=\sum_{\iota_{i\hslash}}a_{lm}[U_{n*}^{l}](g)$ (5.4)

$=|\psi_{A}(g)|^{\alpha}\sum_{l,n}c_{\iota}^{l}a_{ln}.U_{n}^{l}(g)$

$=c_{A}^{-1}|\psi_{4}p(g)|^{\alpha}\psi_{A}(g)F^{[\alpha]}(z)$ ,

where $z=0\cdot g$ (see Lemmas 4.2 and 4.4). Then since $F^{[\alpha]}$ belongs to
$A_{W_{A,1,\alpha}}^{1}(\Omega)$ , it is easy to see that

$\Vert[f]\Vert_{1}=c_{A}||F^{[\alpha]}\Vert_{1,W_{A,1,\alpha}}<\infty$ .
Since $\alpha>\alpha_{\Lambda}$ , it follows from (2.11) and (3.2) that $A_{W_{A,1.\alpha}}^{2}(\Omega)$ is con-

tained in $A_{W_{A,1,\alpha}}^{1}(\Omega)$ and moreover, it is a dense subspace, for $A_{W_{A,1,\alpha}}^{2}(\Omega)$

contains all functions holomorphic in a domain bigger than $\Omega$ and such
functions are dense in $A_{W_{A.1,\alpha}}^{1}(\Omega)$ . Therefore there exists a sequence
$\{F_{n}\}$ of holomorphic functions on $\Omega$ such that $F_{n}^{[\alpha]}\in A_{W_{A,1,\alpha}}^{2}(\Omega)$ and
$||F^{[\alpha]}-F_{n}^{[\alpha]}||_{1,W_{A.1,\alpha}}\rightarrow 0(n\rightarrow\infty)$ . Especially, we can deduce that $F_{n}^{[\alpha]}$ con-
verges to $F^{[\alpha]}$ pointwisely on $\Omega$ (cf. [DRS], Theorem 3 $(i)$). Now let $f_{n}$

and $[f_{n}]$ denote the functions on $G$ which are respectively given by
replacing $F$ in (5.4) with $F_{n}$ . Then as above we see that $\Vert[f]-[f_{n}]\Vert_{1}\rightarrow 0$

$(n\rightarrow\infty)$ and $[f_{n}]$ converges to $[f]$ pointwisely on $G$ .
Now we recall that $|\psi_{A}|\leqq 1$ (see Lemma 3.1), and thus each $F_{n}^{[\alpha]}$

belongs to $A_{W_{A,2,\alpha}}^{2}(\Omega)$ . Then by Proposition 5.4 we see that $F_{n}\in A_{A}^{2}(\Omega)$

and $f_{n}\in L^{2}(G)$ (see (5.4)). Therefore, applying the same argument used
in the proofs of Lemmas 4.2 and 5.1, we can deduce that

$c_{A}^{-1}\psi_{A}*[f_{n}]=c_{A}f_{n}$ .
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Since $\Vert\psi_{A}*([f]-[f_{n}])||^{2}\leqq\Vert\psi_{\Lambda}\Vert_{2}\Vert[f]-[f_{n}]\Vert_{1}\rightarrow 0$ when $n\rightarrow\infty,$ $c_{A}f_{n}$ converges
to $c_{A}^{-1}\psi_{A}*[f]$ , say $h$ for simplicity, in $L^{2}$ norm. Then $c_{A}F_{n}^{[\alpha]}$ converges
to $F_{A}(h)^{[\alpha]}$ in $H_{A,\alpha}^{2}(\Omega)$ by Proposition 5.4, and thus it converges pointwisely
(cf. [DRS], Theorem 3 $(i)$), so we can obtain that $c_{A}F^{[\alpha]}=F_{A}(h)^{[a]}$ . Since
$c_{A}^{-1}heL^{2}(G)$ is a discrete part of $[f]$ , the first case (1) $(p=2)$ means that
it is of the form $\sum_{l,m}b_{lrn}U_{m}^{l}(g)$ . Then $h$ must be equal to $c_{A}f$ and it
follows that

$c_{A}^{-1}\psi_{A}*[f]=c_{A}f$ .
Especially,

$F_{A}([f])=I_{A}(\phi_{1}^{1}*[f])=c_{A}I_{A}(f)=F$ .
This means that $F\in F_{A}(L^{1}(G))$ and thus, $H_{A,\alpha}^{1}(\Omega)$ is contained in $F_{A}(L^{1}(G))$ .
Therefore, we conclude that $F_{A}(L^{1}(G))=H_{\Lambda,\alpha}^{1}(\Omega)$ for all $\alpha>\alpha_{A}$ , and $F_{A}$ is
biiectIve on $P_{\Lambda}(L^{1}(G))$ by (4.4).

This completes the proof of the case of $(\Lambda, 1)$ .
The general case of non regular $(\Lambda, p)$ : By the same way as in the

previous case of $(\Lambda, 1)$ we see that $H_{A,\alpha}^{p}(\Omega)$ is contained in $F_{A}(L^{p}(G))$ for
all $\alpha>\alpha_{A}$ , where in the argument of the $L^{2}$ convergence of $c_{A}^{-1}\psi_{A}*[f_{n}]$

we use the Kunze-Stein phenomenon (see [C]). Therefore, by noting
(4.4) in order to accomplish the proof of the theorem it is enough to
show that $F_{A}(L^{p}(G))\subset H_{A,\alpha}^{p}(\Omega)$ . Actually, this fact will be shown by an
interpolation argument as follows.

Since $\Lambda$ satisfies the $L^{2}$ condition, but not the one of $L^{1},$ $\alpha_{A}-1$ is
negative (see Remark 3.2), so it follows from Lemma 4.4 that the
fractional derivative of order $\alpha$ (see (5.1)) is defined for $\alpha\geqq 0$ . Then for
an $L^{p}(1\leqq q\leqq 2)$ function $f$ on $G$ we can define the operator $K_{\alpha}(\alpha\geqq 0)$ as
follows:

$K_{\alpha}$ : $f\mapsto(F_{\Lambda}(f))^{[\alpha]}$ .
As shown in the case of $(\Lambda, 1)$ , if $\alpha>\alpha_{A},$ $K_{\alpha}$ is bounded of $L^{1}(G)$ into
$A_{W_{A,1,\alpha}}^{1}(\Omega)$ . On the other hand, since $(\Lambda, 2)$ is regular, (1) implies that
$K_{0}$ is bounded of $L^{2}(G)$ into $A_{A}^{2}(\Omega)=A_{W_{A,2,0}}^{2}(\Omega)$ . Then by Proposition 5.4
we see that

$\Vert K_{\alpha}(f)\Vert_{2,W_{A,2,\alpha}}=\Vert K_{0}(f)\Vert_{2,W_{A,2,0}}\leqq c\Vert f\Vert_{2}$ .
This means that $K_{\alpha}(\alpha>\alpha_{A})$ is also bounded of $L^{2}(G)$ into $A_{W_{A,2,\alpha}}^{2}(\Omega)$ .
Therefore, the interpolation argument (cf. [BL], p. 17) deduces that $K_{\alpha}$

is bounded of $L^{p}(G)$ into $A_{W_{A,p,\alpha}}^{p}(\Omega)(1<p<2)$ , and then $F_{A}(L^{p}(G))\subset H_{A,\alpha}^{p}(\Omega)$ .
Q.E.D.
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REMARK 5.6. (1) Theorem 5.5 (2) implies that $H_{A,\alpha}^{p}(\Omega)(\alpha>\alpha_{A})$ does
not depend on $\alpha$ . Therefore, we can put

$H_{A}^{p}..(\Omega)=H_{A,\alpha}^{p}(\Omega)$ $(\alpha>\alpha_{A})$ .
Moreover, we easily see that the proof in the case of non regular is
also applicable to the case of regular, and thus, Theorem 5.5 (2) is valid
for all $(\Lambda, p)$ . In particular,

if $(A, p)$ is regular, then $A_{A}^{p}(\Omega)=H_{A,*}^{p}(\Omega)$ .
(2) As $8aid$ in \S 4 the discrete part of $L^{p}(G)(1\leqq p\leqq 2)$ is contained

in $L^{2}(G)$ . Therefore, it $follow8$ from Theorem 5.5 that

$H_{A,*}^{p}(\Omega)\subset A_{A}^{2}(\Omega)$ .
(3) Let $(\Lambda, p)(\Lambda=\Lambda_{l}, leZ)$ be regular and $F$ be in $A_{A}^{p}(\Omega)$ . Then

Theorem 5.5 (1) means the reproducing formula for $F$, that is,

$ F(z)=\int_{\rho}F(\zeta)B(z, \overline{\zeta})^{l/\gamma}B(\zeta, \overline{\zeta})^{-\iota/\gamma+1}d\zeta$ (5.5)

(see Lemma 2.4 (3), (3.3) and (4.2)). Let $F$ be in $H_{A,*}^{1}(\Omega)$ and let fdenote
an $L^{1}$ function on $G$ such that $F_{2}\ell(f)=F$. Then noting the proof of the
case $(\Lambda, 1)$ in Theorem 5.5, we can deduce that for $a>\alpha_{A}$

$F^{[\alpha]}(z)=c_{A}^{-2}\int_{a}f(g)(T_{A}(g^{-1})1)^{[\alpha]}(z)dg$

(5.6)
$=\int_{\rho}F(\zeta)B(z, \overline{\zeta})^{(2+\alpha)l/2\gamma}B(\zeta, \overline{\zeta})^{-l/\gamma+1}d\zeta$

(see Lemmas 3.1 and 5.1) and then $F^{[\alpha]}\in A_{W_{A,1,\alpha}}^{1}(\Omega)$ by Theorem 5.5 (2).

(4) Let us suppose that $F$ is in $A_{A}^{p}(\Omega)=A_{W_{f,p,0}}^{p}(\Omega)(1<p<2)$ and
$l>2(\gamma-1)/p$ . Then applying Lemma 3.5, in which we take $r$ and $\theta$ as
$(1+\alpha)lp/2\gamma-1$ and $-\alpha lp/2\gamma$ respectively, we see that the integral formula
(5.6) is valid for $2(\gamma-1)/lp-1<\alpha<(2-p)/(p-1)$ and $F^{[\alpha]}$ is contained in
$A_{W_{A,p,\alpha}}^{p}(\Omega)$ . Here we note $2(\gamma-1)/lp-1<0<\alpha_{A}$ . Roughly speaking, this
result corresponds to an interpolation between (5.5) and (5.6); however,
for $F$ in $A_{A}^{2}(\Omega)(p=2)$ the fractional derivative $F^{[\alpha]}$ of $F$ of order $a>0$

could not be defined by the integral formula (5.6). Therefore, in \S 5 we
adopted the definition (5.1) without using the integral formula.

(5) In the proof of Theorem 5.5 (2) we used the interpolation
argument between $(A, 1)$ and $(\Lambda, 2)$ , so we need the condition $\alpha>\alpha_{A}$ that
is necessary for the boundedness of $K_{\alpha}$ in the case of $(\Lambda, 1)$ . Therefore,
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if we could prove the assertion in Theorem 5.5 (2) without using the
interpolation argument, we may weaken the condition of $a$.

CONJECTURE. In the statement of Theorem 5.5 (2) we can replace
the condition $a>\alpha_{A}$ by $\alpha>(\alpha_{A}+1)/p-1$ .

\S 6. Application.

We shall obtain some properties of the fractional derivatives of
holomorphic functions on $\Omega$ . In the previous sections the parameter $l$

must be integer, for $\Lambda_{l}$ is an integral form on $\mathfrak{h}_{e}$ .
6.1. We shall consider the continuation of the parameter. Let $l,$ $\alpha$

and $p\in R$ and we put

$w_{l,p,\alpha}(z)=B(z,\overline{z})^{-(1+\alpha)lp/2\gamma+1}$

(cf. (2.11) and Lemma 3.1). Then as noted in Remark 5.6 (3) and (4),
for $F$ in $A_{W_{l.p’ 0}}^{p}(\Omega)$ the fractional derivative $F^{[\alpha]}$ of $F$ can be defined by
the integral formula (5.6) for which the integral exists. Especially, $l$

needs not be integral, and when $p=1$ , Lemma 3.4 implies that $F^{[\alpha]}$ is
well-defined for all $\alpha>2(\gamma-1)/l-1$ and it is contained in $A_{W_{l,1,\alpha}}^{1}(\Omega)$ .
Therefore, combining with Theorem 5.5 (1), we see that

THEOREM 6.1. Let $l\in R,$ $1\leqq p\leqq 2$ and let $F$ be in $A_{W_{l,p’\alpha}}^{p}(\Omega)$ .
(1) If $(\Lambda, p)(l\in Z)$ is regular or $p=1$ and $l>2(\gamma-1)$ then $F^{[\alpha]}$

belongs to $A_{W_{l,p,\alpha}}^{p}(\Omega)$ for all $\alpha\geqq 0$ .
(2) If $l>2(\gamma-1)/p$ and $1<p<2$ , then $F^{[\alpha]}$ belongs to $A_{W_{l,p,\alpha}}^{p}(\Omega)$ for

all $0\leqq\alpha<(2-p)/(p-1)$ .
6.2. We shall consider the case of $G=SU(1,1)$ and $\Omega=D^{n}$ . Let

$F(z)=\sum_{j}a_{si}\psi_{\dot{f}}^{i}(z)$
$(z\in D^{n})$ (6.1)

be a holomorphic function on $D^{n}$ . Then referring to the calculation of
Type I in Lemma 4.4, we see that the fractional derivative of $F^{[\alpha]}$ of
$F$ of order $\alpha$ , where $\alpha>a_{A}=2n/l-1$ , is given by

$F^{[\alpha]}(z)=C_{n.l,\alpha}\sum_{i_{\dot{J}}}\Gamma(i+l+(1/2)al)\Gamma(i+l)^{-1}a_{ij}\psi_{;}(z)$ , ($ 6.2\rangle$

where the constant $C_{n,l,\alpha}$ does not depend on $i$ and $j$. Here we put

$F^{(\beta)}(z)=F^{[2\beta\prime l]}(z)$ $(\beta\geqq 0)$ . (6.3)
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Then, when $n=1$ and $\Omega=D$, if we take $l>2$ and $p=1$ in Theorem 6.1 (1),

we can deduce Theorem 5 in [DRS]:

PROPOSITION 6.2 ([DRS]). If $F$ belongs to $A_{W_{l,10}}^{1},(D)(l>2)$ , then $F^{(\beta)}$

belongs to $A_{w_{1,1,2\beta 1}}^{1}(D)$ .
If we take $a=2/l$ in Theorem 6.1, we see that

PROPOSITION 6.3. Let $1<p<2$ and $p>2n/l$ . Suppose that $leN$ or
$p<2(l+1)/(l+2)$ . Then if a holomorphic $funct\dot{j}onF$ on $D$ satisfies

$\int_{D^{n}}|F(z)|^{p}(1-|z|^{2})^{lp/g-(n+1)}dz<\infty$ ,

the derivative $F^{(1)}$ satisfies
$\int_{D^{\hslash}}|F^{(1)}(z)|^{p}(1-|z|^{2})^{(\iota+2)p/2-(n+1)}dz<\infty$ .

Add in the proof.

(1) For a holomorphic function $F$ on $\Omega$ the fractional derivative
$F^{[\alpha]}$ of $F$ is defined by (5.1) in which we use the $constant8$ given by
\langle 4.8). One of the reason we adopt $thi8$ definition is, when $\Omega=D$, a
modification $F^{(\alpha)}$ of $F^{[\alpha]}$ (see (6.3)) coincides with the $clas8ical$ fractional
derivative defined in [DRS], p. 35. On the other hand, if we replace

$|\psi_{d}4(x)|^{\alpha}$ in (4.8) by a positive spherical function $\Psi(x)$ on $G$ satisfying

$\Psi(x)\psi_{A}(x)^{2}\in L^{1}(G)$

\langle cf. (3.2)), we can define a new fractional derivative by usin$g$ the $con8tants$

$c_{r}$ given by

$c,\int_{0}|U_{j}^{i}(x)|^{2}\Psi(x)dx=c_{A}^{2}$ .
Clearly, if Lemma 4.4 is valid for $c^{i},$ , the whole results in \S 5 and \S 6
are also valid for this type of the fractional derivative.

(2) In \S 3 and the $8ucceeding$ sections we $a8sume$ that $\Omega$ is one of
the classical bounded symmetric domains listed in Table 1. We need
this assumption essentially in the calculation in Lemma 4.4 adopted from
[Hu]. Other results related with Bergman kernel can be generalized to
arbitrary bounded symmetric domains (cf. [RV] and [VR]).
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