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Abstract. We deal with the class of branched surfaces $K$ such that 1) the branch set
$S$ of $K$ is an embedded circle, 2) all connected components of $K\backslash S$ are orientable and their
number is two or three. We show that in this class only two topological types admit
expanding immersions. In the proof of the result, the Euler class of the tangent bundle of
$K$ plays an important role.

\S 0. Introduction.

R. Williams [1], [2], [3] introduced the concept of branched manifolds
and expanding immersions in order to study the dynamics of expanding
attractors. Using his own tools, he succeeded in classifying 1 dimensional
expanding attractors. Our final aim is to study the topological conjugacy
classes of 2 dimensional expanding attractors. As the first step toward
it we propose the following problem:

Find some topological invariants of branched surfaces which
admit expanding immersions.

As an approach to solve this problem, we consider the simplest class
of them, i.e., the class of branched surfaces with branch sets a circle.

First of all let us give two examples of expanding immersions. First
take a rectangle $[0,1]\times[0,2]$ in the coordinate plane, and take two disks
$D_{1}$ and $D_{2}$ whose radii are 1/10 and centers are (4/5, 4/5) and $(4/5, 4/5+1)$

respectively. We define the equivalence relation among the points in the
rectangle; $(s, t)\sim(s, t’)\Leftrightarrow 1)(s, t)$ and $(s^{\prime}, t^{\prime})$ do not belong to $D_{1}$ and $D_{2}$ ,
and $(s-t)\equiv 0,$ $(s^{\prime}-t^{\prime})\equiv 0$ mod 1. 2) $(s, t)=(s^{\prime}, t^{\prime})\in D_{1}$ or $D_{2}$ . We denote
the quotient space by this equivalence relation by $T^{*}$ . Then $T^{*}$ is a
branched surface whose branch set is homeomorphic to a circle. Notice
that there exists a canonical projection $p:T^{*}\rightarrow T^{2}$ . The dilation by 2
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yields a map $f:T^{2}\rightarrow T^{2}$ . Clearly $f$ lifts to a map $\overline{f}:T^{*}\rightarrow T^{*}$ in a way
that $\overline{f}$ is surjective. Thus $T^{*}$ admit8 an expanding immersion.

The second example is as follows. We regard $T^{2}$ as a rectangle
$[0,1]\times[0,1]$ , and take two disks $D_{1}$ and $D_{2}$ in it whose radii are 1/10
and centers are (1/2, 1/4) and (1/2, 3/4) respectively. We define the
following equivalence relation in $T^{2}$ ; $(s, t)\sim(s^{\prime}, t’)\Leftrightarrow 1)(s, t)\in D_{1}$ and
$(s’, t’)\in D_{2}$ , or $(s, t)\in D_{2}$ and $(s’, t^{\prime})\in D_{1}$ , and $2t\equiv 2t’,$ $s\equiv s^{\prime}$ mod 1. 2)
$(s, t)=(s^{\prime}, t’)$ . We consider the quotient space by this equivalence re-
lation and denote it by $T_{*}$ . $T_{*}$ Is a branched surface whose branch set
i8 homeomorphic to a circle, too. The dilation by 2, $f:T^{2}\rightarrow T^{2}$ , projects
down to a map -f: $T_{*}\rightarrow T_{*}$ via the natural projection $T^{2}\rightarrow T_{*}$ . This shows
that $T_{*}$ admits an expanding immersions.

Suppose a branched surface $K$ has a branch set $S$ homeomorphic to
a circle. Then a neighborhood of $S$ is homeomorphic to one of the
following $N_{0}$ and $N_{1}$ . Take two copies of a rectangle $I\times I$, where $I=$

$[-1,1]$ , and identify the subsets $I\times[-1,0]$ of them. (See Figure 1.)

FIGURE 1

$\tilde{N}$ denotes the quotient space. We take subsets $I_{a}$ and $I_{a}^{\prime}$ in $\tilde{N}$ which
are the images of $\{-1\}\times I$ and $\{1\}\times I$, contained in one of two copies,
respectively, and let $I_{b}$ and $I_{b}^{\prime}$ be the images of $\{-1\}\times I$ and $\{1\}\times I$,
contained in the other of them, respectively. Then $N$ is obtained by
connecting $I_{a}$ with $I_{a}^{\prime}$ and $I_{b}$ with $I_{b}^{\prime}$ , or connecting $I_{a}$ with $I_{b}^{\prime}$ and $I_{b}$

with $I_{a}^{\prime}$ . We denote the former by $N_{0}$ and the latter by $N_{1}$ . We define
subsets of $N_{0}$ and $N_{1}$ as follows. Let $J_{1}^{+}$ and $J_{2}^{+}$ be the images in $N_{0}$

of two copies of $I\times\{1\}$ in two copies of $I\times I$ respectively, and let $J^{-}$ be
the image in $N_{0}$ of $I\times\{-1\}$ . In $N_{1}$ , let $J^{+}$ and $J^{-}$ be the images of
$I\times\{1\}$ and $I\times\{-1\}$ .

Using $N_{0}$ and $N_{1}$ , we define the types of S. $S$ is called untwested
(or $tw\dot{r}sted$) if $S$ has a neighborhood homeomorphic to $N_{0}$ (or $N_{1}$).

The main result of this paper is as follows. We consider the class
of branched surfaces $K$ such that 1) the branch set $S$ of $K$ is an em-
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bedded circle, 2) all connected components of $K\backslash S$ are orientable and
their number is two or three. In this class, only $T^{*}$ and $T_{*}$ admit ex-
panding immersions.

In \S 1, after giving definitions of branched surfaces and expanding
immersions, a precise statement of our result is described. \S 2 and \S 3
are devoted to its proof.

The author thanks the referee for suggesting the use of the Euler
class of the tangent bundle of $K$. It makes the proof of the theorem
clear and simple.

\S 1. Definitions and the statement of the result.

In order to define branched surfaces, three types of local neighbor-
hoods are needed. Let us define:
1) $U_{(1)}=I\times I$, where $I$ is an open interval $(-1,1)$ .
2) $ U_{(2)}=U_{(1)}^{1}4LU_{(1)}^{2}/\sim$ , which means a quotient space of two copies of $U_{(1)}$ ,
$U_{(1)}^{1}$ and $U_{(1)}^{2}$ , by the equivalence relation generated by $(t, s)\sim(t^{\prime}, s^{\prime})\Leftrightarrow$

$(t, s)eU_{(1)}^{1},$ $(t^{\prime}, s)\in U_{(1)}^{2}$ and $-1<t=t^{\prime}\leqq 0,$ $s=s$ .
3) $ U_{(3)}=U_{(2)}\lrcorner LU_{(1)}^{3}/\sim$ , which means a quotient space of the copy $U_{(1)}^{a}$ of
$U_{(1)}$ and $U_{(2)}$ by the equivalence relation generated by $(t, s)\sim(t’, s’)\Leftrightarrow$

$(t, s)\in U_{(t)}^{2}\subset U_{(2)},$ $(t’, s’)\in U_{(1)}^{8}$ and $t=t’,$ $-1<s=s\leqq 0$ .

FIGURE 2

Here we have natural maps $\pi_{2}:U_{(2)}\rightarrow U_{(1)}$ and $\pi_{s}:U_{(3)}\rightarrow U_{(1)}$ such that
$\pi_{i}|U_{(i)}^{\dot{f}}$ is a natural identification of the copy $U_{(t)}^{\dot{f}}$ with $U_{(1)}$ itself, where
$i=2$ and $j=1$ or 2, or $i=3$ and $j=1,2$ or 3.

DEFINITION 1 [3]. A compact Hausdorff space $K$ is called a $C^{r}$

branched surface if it has a finite family $\{(U_{j}, \varphi_{j})\}$ satisfying
1) $K=\bigcup_{j}U_{\dot{f}}$ ,
2) For each $j$ there exi8ts a homeomorphism $g_{j}:U_{j}\rightarrow U_{(t)}$ ($i=1,2$ or 3)
such that $\varphi_{j}=\pi_{(i)}\circ g_{j}$ ,
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3) For $j$ and $j^{\prime}$ such that $ U_{j}\cap U_{j^{\prime}}\neq\emptyset$ , there exists a $C^{r}$ map $\pi_{j^{\prime}\dot{g}}:\varphi_{\dot{f}}(U_{j}\cap$

$U_{j^{\prime}})\rightarrow\varphi_{j^{\prime}}(U_{j}, \cap U_{j})$ such that $\pi_{j^{\prime}j}\circ\varphi_{\dot{f}}=\varphi_{j^{\prime}}$ .
We call $(U_{i}, \varphi_{j})$ a coordinate neighborhood and $\{(U_{j}, \varphi_{j})\}$ a coordinate
neighborhood system of $K$.

$S=\{x\circ\in K;x$ does not have a neighborhood homeomorphic to an open
disk $D^{2}$ } is called the branch set of $K$.

A8 in the case of ordinary manifolds, we define the tangent bundle
$TK$ of $K$ as the quotient space of $\perp_{j}\varphi_{\dot{f}}^{*}TU_{(1)}$ by the natural identification
induced by the coordinate change, where $\varphi_{\dot{f}}^{*}TU_{(1)}$ denotes the pull back
of the tangent bundle $TU_{(1)}$ by $\varphi_{j}$ . (For detail, see [3].) For $x\in K$,
$p^{-1}(x)$ is called the tangent space at $x$ and is denoted by $T.K$, where
$p:TK\rightarrow K$ denotes the proiection map, which is induced by $ p_{j}:\varphi_{\dot{f}}^{*}TU_{(1)}\rightarrow$

$U_{j}$ naturally.
A Riemannian metric on $K$ i8 defined as a positive deflnite symmetric

bilinear form on $TK$.
Next, we define a $C$‘ map from a branched surface to a branched

surface, a $C^{r}$ immersion and an expanding immersion.
DEFINITION 2. Let $K$ and $L$ be C’ branched $8urfaces$ , and $\{(U_{j}, \varphi_{j})\}$

and $\{(V_{k}, \psi_{k})\}$ be their coordinate neighborhood systems respectively.
1) A map $f:K\rightarrow L$ is called a $C^{r}$ map if for any $i,$ $j$ and $k$ with

$ f^{-1}(V_{k})\cap U_{j}^{i}\neq\emptyset$ , the composite

$U_{(1)}\rightarrow f^{-1}(V_{k})\cap U_{\dot{f}}^{i}\underline{(\varphi_{j}|U_{\dot{f}}^{i})^{-1}}\rightarrow^{f}V_{k}\rightarrow^{\psi_{k}}U_{(1)}$

is $C^{r}$ , where $U_{\dot{f}}^{i}=g_{j}^{-1}(U_{(’*)}^{i})$ .
For a $C^{r}$ map $f:K\rightarrow L$ , we can define the differential of $f,$ $ df:TK\rightarrow$

$TL$ , by using the above local representation of $f$ (See [3]). We denote
$df|T_{x}K$ by $df_{x}$ .

2) A map $f:K\rightarrow L$ is called a $C^{r}$ immersion if $f$ is a $C^{r}$ map and
$df_{x}:T_{x}K\rightarrow T_{f(x)}L$ is iniective for any $x\in K$.

3) A map $f:K\rightarrow K$ is called a $C^{r}$ expanding immersion if it satisfies
i) $f$ is a $C^{r}$ immersion,
ii) there exist numbers $\alpha>0$ and $v>1$ such that for any positive integer
$n$ and $v\in T_{x}K,$ $||df_{x}^{n}(v)||\geqq\alpha\nu^{n}||v||$ , where $||\cdot\Vert$ means a Riemannian metric,
iii) there exists a positive integer $\overline{n}$ such that for any $x\in K$ and some
neighborhood $U$ of $x,$ $f^{\overline{n}}(U)$ is homeomorphic to an open disk,
iv) the nonwandering set $\Omega(f)$ of $f$ is equal to $K$.

Our branched surfaces are more restrictive than Williams’. His
original definition admits more varied types of neighborhoods. But
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Williams himself showed that ours are sufficiently general to study ex-
panding immersions.

THEOREM. Suppose $K$ is a $C^{1}$ branched surface such that
1) $K$ admits an expanding immersion,
2) The braneh set $S$ of $K$ is homeomorphic to a circle,
3) All connected components of $K\backslash S$ are orientable and their number is
2 or 3.

Then $K$ is homeomorphic to $T^{*}$ or $T_{*}$ .

\S 2. Proof of Theorem (1).

In this section we deal with the case when the number of connected
components of $K\backslash S$ is equal to 3. We show that in this case only $T^{*}$

admits expanding immersions.
Assume that $K$ admits an expanding immersion $f$. Let $K_{0}^{o},$ $K_{1}^{o}$ and

$K_{2}^{o}$ be connected components of $K\backslash S$ such that $\mathring{K}_{0}\supset J^{-},$ $K_{1}^{o}\supset J_{1}^{+}$ and $K_{2}^{o}\supset J_{2}^{+}$ .
For $i=0,1$ or 2, we attach $\partial K_{i}^{o}$ to $K_{i}^{o}$ , and denote the obtained space
by $K_{i}$ . (Below, generally for an open subspace $X\subset Y$, we denote the
one obtained by attaching the copies of boundary $\partial X$ to $X$ as $X^{\sim}$ . For
example, $K_{i}=K_{l^{\wedge}}^{o}.$ )

We construct manifolds $M_{1}$ and $M_{2}$ from $K_{0}$ and $K_{1}$ , and $K_{0}$ and $K_{2}$

by identifying their boundaries respectively. $M_{1}$ and $M_{2}$ are embedded
in $K$ by natural inclusions $f_{1}:M_{1}\rightarrow K$ and $f_{2}:M_{2}\rightarrow K$. By easy calculation,
we know that $H_{2}(K;Z)\cong Z\oplus Z$ and is generated by $m_{1}=(\ell_{1})_{*}[M_{1}]$ and
$m_{2}=(f_{2})_{*}[M_{2}]$ , where $[M_{1}]$ and $[M_{2}]$ are the fundamental homology classes
of $M_{1}$ and $M_{2}$ such that they induce the same orientation on $K$.

LEMMA 1. Let

$(f^{2n})_{*}m_{1}=\alpha_{n}m_{1}+\beta_{n}m_{2}$ , $(f^{2n})_{*}m_{2}=\gamma_{n}m_{1}+\delta_{n}m_{2}$ .
Then $\alpha_{n},$ $\beta_{n},$ $\gamma_{n}$ and $\delta_{n}\geqq 0$ , and both $\alpha_{n}+\beta_{n}$ and $\gamma_{n}+\delta_{n}$ become large as
$n$ becomes large.

PROOF. Since $f^{2n}$ is orientation preserving, $\alpha_{n},$ $\beta_{n},$ $\gamma_{n}$ and $\delta_{n}\geqq 0$ .
Let $\omega$ be the volume form on $K$ whose local representation is

$\sqrt{d}\overline{et(g_{i\dot{g}})}dx_{1}\wedge dx_{2}$ when the local representation of the Riemannian metric
is $\sum_{0\leqq i,j\leqq 2}g_{ij}dx_{i}\otimes dx_{j}$ . Let us denote the areas of $M_{1},$ $M_{2}$ and $K$ by $a(M_{1})$ ,
$a(M_{2})$ and $a(K)$ respectively.

We calculate the Kronecker product of $(f^{2n})_{*}m_{1}$ and $\omega$ :



68 EIJIROU HAYAKAWA

$\langle\omega, (f^{2n})_{*}m_{1}\rangle=\alpha_{n}\langle\omega, m_{1}\rangle+\beta_{n}\langle\omega, m_{2}\rangle$

$=\alpha_{n}\int_{r_{1}}(\ell_{1})^{*}\omega+\beta_{n}\int_{r_{2}}(\ell_{2})^{*}\omega=\alpha_{n}\cdot a(M_{1})+\beta_{n}\cdot a(M_{2})$ .
On the other hand, we have

$\langle\omega, (f^{2n})_{*}m_{1}\rangle=\langle(f^{2n})^{*}\omega, m_{1}\rangle=\int_{r_{1}}(\det Df^{2n})\cdot(\ell_{1})^{*}\omega$

$\geqq\min_{pe\Pi_{1}}\det(Df^{2n})_{p}\cdot a(M_{1})$
,

where $\det(Df^{2n})_{p}$ denotes the determinant of $(Df^{2n})_{p}$ for the orthonormal
bases of $T_{p}K$ and $T_{f^{2n}(p)}K$. Hence we obtain the following inequality:

$\alpha_{n}\cdot a(M_{1})+\beta_{n}\cdot a(M_{2})\geqq\min_{peM_{1}}\det(Df^{2n})_{p}\cdot a(M_{1})$ .
By Definition 2, 3), ii), the right-hand side of the above inequality be-
comes large as $n$ becomes large. Hence we have the desired result for
$\alpha_{n}+\beta_{n}$

For $\gamma_{n}+\delta_{n}$ , we can show the
$\alpha_{n}+\beta_{n}$

lemma in the same way as for
$\square $

Let $e(K)$ be the Euler class of the tangent bundle of $K$. We calcu-
late the Kronecker product of $e(K)$ and $m_{1}$ :

$\langle e(K), m_{1}\rangle=\langle e(K), (f_{1})_{*}[M_{1}]\rangle=\langle(f_{1})^{*}e(K), [M_{1}]\rangle=\langle e(M_{1}), [M_{1}]\rangle=x(M_{1})$ .
On the other hand, since $(f^{2n})^{*}e(K)=e(K)$ ,

$\langle e(K), m_{1}\rangle=\langle(f^{2n})^{*}e(K), m_{1}\rangle=\langle e(K), (f^{2n})_{*}m_{1}\rangle=\alpha_{n}\chi(M_{1})+\beta_{n}\chi(M_{2})$ .
Hence we obtain for any $n$ :

$\chi(M_{1})=\alpha_{n}\chi(M_{1})+\beta_{n}\chi(M_{2})$ . (1)

Calculating $\langle e(K), m_{2}\rangle$ , we also have:

$\chi(M_{2})=\gamma_{n}\chi(M_{1})+\delta_{n}\chi(M_{2})$ . (2)

By Lemma 1, for sufficiently large $n,$ $\alpha_{n}+\beta_{n}$ and $\gamma_{n}+\delta_{n}$ are large. Then
from the equalities (1) and (2), we have only the following two cases:
$1^{o}\chi(M_{1})=0$ or $\chi(M_{2})=0,2^{o}\chi(M_{1})>0$ and $\chi(M_{2})<0$ .

We show that the case 2’ cannot occur. In the case $2^{o},$ $M_{1}$ is a
sphere $S^{2}$ and $M_{2}$ is the Riemann surface $\Sigma_{g}$ of genus $g\geqq 2$ . Assume
the case $2^{o}$ occurs. First we show that $f(M_{1})$ is not equal to $M_{2}$ . If
$f(M_{1})=M_{2}$ , then $f|M_{1}$ is a covering map from $S^{2}$ to $\Sigma_{g}$ . But it is im-
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possible. So $f(M_{1})\supset M_{1}$ , and it is easy to show $(f|M_{1})^{-1}(M_{1})=M_{1}$ . Hence
$f(M_{1})=M_{1}$ . But, since $M_{1}=S^{2}$ , the degree of the covering map $f|M_{1}$ is
equal to 1. This contradicts Definition 2, 3), ii).

In the case $1^{o}$ , first, we consider the case (a): $\chi(M_{1})=0$ and $\chi(M_{2})=0$ .
Next we deal with the case (b): $\chi(M_{1})\neq 0$ and $\chi(M_{2})=0$ .

In the case (a), we can consider two cases: i) $K_{0}\approx D^{2}$ and $ K_{1}\approx K_{2}\approx$

$T^{2}-\mathring{D}^{2}$ . ii) $K_{0}\approx T^{2}-\mathring{D}^{2}$ and $K_{1}\approx K_{2}\approx D^{2}$ . We show that the case i) cannot
occur. Assume the case i) occurs. As $(f|M_{i})^{-1}(K_{0})$ , for $i=1$ or 2, are
mutually disjoint disks embedded in $M_{i},$ $M_{i}\backslash (f|M_{i})^{-1}(K_{0})$ is connected. So
we have that $f^{2}(M_{1})=M_{1}$ and $f^{2}(M_{2})=M_{2}$ , because $f$ is surjective. Hence
$f^{2}(K_{0})\subset K_{0}$ . This contradicts Definition 2, 3), ii). In the case ii) $K$ be-
comes $T^{*}$ .

In the case (b), set $f_{*}m_{2}=\gamma m_{1}+\delta m_{2}$ . Then, by the same calculation
as above, we have $\chi(M_{2})=\gamma\chi(M_{1})+\delta\chi(M_{l})$ . A8 $\chi(M_{1})\neq 0$ and $\chi(M_{2})=0$ , we
know $\gamma=0$ . Hence $f_{*}m_{2}=\delta m_{2}$ , and this means that $f(M_{2})=M_{2}$ . If, for
$x\in K_{1}^{o},$ $f(x)\in M_{2}$ , then $x$ is not a nonwandering point, because $f^{n}(f(x))\in M_{2}$

for any integer $n\geqq 1$ . Hence $f(K_{1}^{o})\subset K_{1}^{o}$ . Moreover, by the equality (1),

we know $\alpha_{n}=1$ . So $f^{2n}|K_{1}$ is injective. This contradicts Definition 2, 3),

ii), and so, in the case (b), we have no branched surface which admits
expanding immersions. This completes the proof.

\S 3. Proof of Theorem (2).

In this section, we consider the case when the number of connected
components of $K\backslash S$ is two. In this case, there are three types of
branched surfaces, two of which have untwisted branch sets and one of
which has a twisted branch set.

Fir8t we consider branched surfaces $K$ which have untwisted branch
sets. Let $K_{1}^{o}$ and $K_{2}^{o}$ be connected components of $K\backslash S$ . Two types of
them are as follows: 1) $K_{1}^{o}\supset J_{1}^{+}$ and $J_{2}^{+}$ , and $K_{2}\supset J^{-},$ $2$) $K_{1}\supset J_{1}^{+}$ and $J^{-}$ ,

and $K_{2}^{o}\supset J_{2}^{+}$ .
In the case 1), we show that only $T_{*}$ admits expanding immersions.

Set $K_{1}=\dot{K}_{1}^{\wedge}$ and $K_{2}=K_{2^{\wedge}}^{o}$ . We connect $K_{1}$ with two copies of $K_{2}$ by
identifying their boundaries naturally, and denote the obtained space by
$M$. Then $M$ has a differentiable structure such that the natural projec-
tion $\pi:M\rightarrow K$ becomes an immersion. We construct a lift $\tilde{f}:M\rightarrow M$ of
$f:K\rightarrow K$ as follows. For $x\in M-\pi^{-1}\circ f^{-1}(K_{2})$ , set $\tilde{f}(x)=\pi^{-1}\circ f\circ\pi(x)$ . For
each connected component $\tilde{K}$ of $\pi^{-1}\circ f^{-1}(K_{2})$ , we take a sufficiently small
neighborhood $\tilde{L}$ of $\tilde{K}$. Then $f\circ\pi(\tilde{L})$ is uniquely lifted to $M$ so as to be
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continuously connected with the image of $M-\pi^{-1}\circ f^{-1}(K_{2})$ . It is clear
that $\tilde{f}$ is an immersion, and then $\tilde{f}:M\rightarrow M$ is a covering map whose
degree is greater than 2. Hence we conclude that $M$ is a torus, and
$K_{2}\approx D^{2}$ and $K_{1}\approx T^{2}-(D^{2}\perp D^{2})$ . By Definition 2, 3), iii), two copies of $K_{2}$

in $M$ have the same image for $\tilde{f}$. Then $K$ is obtained from $M$ by
identifying two copies of $K_{2}$ by an orientation preserving $C^{1}$ diffeomor-
phism. It follows that $K\approx T_{*}$ .

Next we show that in the case 2) there exists no branched surface
which admits expanding immersions. Assume $K$ admits an expanding
immersion $f$, and we will deduce a contradiction. Set $M=K\backslash K_{2}^{o}$ . Then
$M$ is a manifold. Remark that $K_{1}^{o}$ is orientable, but $M$ is not necessarily
orientable.

LEMMA 2. $f(M)$ is equal to $M$.
PROOF. First in the case when $M$ is orientable, we show the lemma.

We know easily that $H_{2}(K;Z)\cong Z$ and it is generated by $m=\ell_{*}[M]$ , where
$\ell_{*}$ is the induced homomorphism of the inclusion $\ell:M\rightarrow K$, and $[M]$ is
the fundamental homology class of $M$. Here we assume that $f(M)\neq M$.
Then $f(M)=K$. Take $x\in K_{2}^{o}$ , and consider the following commutative
diagram:

$H_{2}(M;Z)\rightarrow H_{2}(K;Z)\underline{f*}$

$ p\downarrow$ $\downarrow q$

$H_{2}(M, M\backslash f^{-1}(x);Z)\rightarrow^{\overline f*}H_{2}(K, K-\{x\};Z)$

First we have $q\circ f_{*}(m)=0$ . Remark that we can define an orientation
on $K_{2}$ compatible with the orientation of $M$, and that $f$ is orientation
preserving or reversing. Then $\overline{f}_{*}^{-}\circ p(m)=\pm(\# f^{-1}(x)\cap M)\cdot O_{x}$ , where $O_{x}$ is
a generator of $H_{2}(K, K-\{x\};Z)$ . By the assumption, $\# f^{-1}(x)\cap M\neq 0$ . This
is a contradiction. Hence $f(M)=M$.

Next we assume $M$ is nonorientable. We take the orientation co-
vering of $K,$ $\pi:\tilde{K}\rightarrow K$. We can construct it in the same way as for
ordinary manifolds. We take a lift $\tilde{f}:\tilde{K}\rightarrow\tilde{K}$ of $f$. Notice that $\tilde{K}$ is a
branched surface whose tangent bundle is orientable and $\tilde{f}$ can be taken
as an orientation preserving immersion satisfying $\sigma\circ\tilde{f}\circ\sigma=\tilde{f}$, where $\sigma$ is
the nontrivial covering transformation of $\pi:\tilde{K}\rightarrow K$. Let $\tilde{M}=\pi^{-1}(M)$ . Then
$\tilde{M}$ is an orientable manifold.

We know $H_{2}(\tilde{K};Z)\cong Z\oplus Z$, and we take a pair of generators as
follows. We take submanifolds $K_{1}^{(1)}$ and $K_{1}^{(2)}$ in $\tilde{K}$ such that $\pi(K_{1}^{(1)})=$
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$\pi(K_{1}^{(2)})=M$, $K_{1}^{(1)}\cup K_{1}^{(2)}=\tilde{M}$ and $K_{1}^{(1)}\cap K_{1}^{(2)}=\pi^{-1}(S)$ , and take submanifolds
$K_{2}^{(1)}$ and $K_{2}^{(2)}$ such that $\pi(K_{2}^{(1)})=\pi(K_{2}^{(2)})=K_{2}$ . Set $L_{1}=K_{1}^{(1)}\cup K_{2}^{(1)}\cup K_{2}^{(2)}$ and
$L_{2}=K_{1}^{(2)}\cup K_{2}^{(1)}\cup K_{2}^{(2)}$ . We choose a pair of generators $l_{1}$ and $l_{2}$ of $H_{2}(L_{1};Z)$

and $H_{2}(L_{2};Z)$ such that $\overline{l}_{1}+\overline{l}_{2}=\tilde{m}$ , where $\overline{l}_{1}=(\ell_{1})_{*}l_{1},$ $\overline{l}_{2}=(\ell_{2})_{*}l_{2}$ and $\tilde{m}=c_{*}[\tilde{M}]$ ,
and $\ell_{1}:L_{1}\rightarrow\tilde{K},$ $t_{2}:L_{2}\rightarrow\tilde{K}$ and $c:\tilde{M}\rightarrow\tilde{K}$ are inclusions. Then $\overline{l}_{1}$ and $\overline{l}_{2}$ are
generators of $H_{2}(\tilde{K};Z)$ . Let $\tilde{f}_{*}\overline{l}_{1}=\alpha\cdot\overline{l}_{1}+\beta\cdot\overline{l}_{2}$ and $\tilde{f}_{*}\overline{l}_{2}=\gamma\cdot\overline{l}_{1}+\delta\cdot\overline{l}_{2}$ . Since

$\sigma\circ\tilde{f}\circ\sigma=\tilde{f}$, we have $\alpha=\delta$ and $\beta=\gamma$ . Then $\tilde{f}_{*}\tilde{m}=\tilde{f}_{*}\overline{l}_{1}+\tilde{f}_{*}\overline{l}_{2}=(\alpha+\beta)$ .
$(\overline{l}_{1}+\overline{l}_{2})=(\alpha+\beta)\cdot\tilde{m}$ . Hence in the same way as the above case, we obtain
that $\tilde{f}(\tilde{M})=\tilde{M}$, and $f(M)=M$. $\square $

By Definition 2, 3), iii), for some positive integer $\overline{n}$ and $x\in K_{2}^{o}$ suf-
ficiently near $S$ , there exists $y\in M$ such that $f^{\overline{n}}(x)=f^{\overline{n}}(y)$ . Since $f(M)\subset M$

by Lemma 2, for any positive integer $m,$ $f^{\overline{n}+m}(x)=f^{\overline{n}+n}(y)\in M$. This
contradicts Definition 2, 3), iv).

Finally we consider the last type, each of which has a twisted
branch set. We also assume that $K$ admits an expanding immersion $f$.
Let $K_{1}^{o}$ and $K_{2}^{o}$ be connected components of $K\backslash S$ such that $K_{1}^{o}\supset J^{+}$ and
$K_{2}^{o}\supset J^{-}$ , and let $K_{1}^{N}$ and $K_{2}^{N}$ be connected components of $K\backslash N^{o}$ such that
$K_{1}^{N}\subset K_{1}^{o}$ and $K_{2}^{N}\subset K_{2}^{o}$ , where $N$ is a neighborhood of $S$ homeomorphic to
$N_{1}$ . Easily we have $H_{2}(K;Z)\cong Z$, and denote a generator by $[K]$ .

LEMMA 3. Set $f^{2n}[K]=\alpha_{n}\cdot[K]$ . Then as $n$ becomes large, $\alpha_{n}$ becomes
large.

PROOF. Consider the following commutative diagram:

$0\rightarrow H_{2}(K;Z)\rightarrow^{p}H_{2}(K, S;Z)\rightarrow H_{1}(S;Z)\underline{\partial}\leftrightarrow H_{1}(K;Z)$

$\cong\uparrow r_{2}$ $\cong\uparrow r_{1}$

$H_{2}(K, N;Z)$ $H_{1}(N;Z)$

$\uparrow f_{2}$ $\uparrow f_{1}$

$H_{2}(K_{1}^{N}, \partial K_{1}^{N};Z)\oplus H_{2}(K_{2}^{N}, \partial K_{2}^{N};Z)^{\partial_{1}\oplus\partial_{2}}\rightarrow H_{1}(\partial K_{1}^{N};Z)\oplus H_{1}(\partial K_{2}^{N};Z)$

Take fundamental homology classes $[K_{1}^{N}, \partial K_{1}^{N}]$ and $[K_{2}^{N}, \partial K_{2}^{N}]$ of $K_{1}^{N}$

and $K_{2}^{N}$ such that they induce the same orientation on $K$ induced by
$[K]$ . Moreover let $[S]$ be a generator of $H_{1}(S;Z)$ such that $[S]=$

$r_{1}\circ\ell_{1}\circ\partial_{2}[K_{2}^{N}, \partial K_{2}^{N}]$ . Since $\gamma_{1}\circ\ell_{1}\circ\partial_{1}\oplus\partial_{2}([K_{1}^{N}, \partial K_{1}^{N}]+2[K_{2}^{N}, \partial K_{2}^{N}])=-2[S]+$

$2[S]=0$ , we have $\partial\circ r_{2}\circ f_{2}([K_{1}^{N}, \partial K_{1}^{N}]+2[K_{2}^{N}, \partial K_{2}^{N}])=0$ . Hence, $p[K]=$

$r_{2}\circ f_{2}([K_{1}^{N}, \partial K_{1}^{N}]+2[K_{2}^{N}, \partial K_{2}^{N}])$ .
For $x\in K_{1}^{o}$ such that $ f^{-2n}(x)\cap S=\emptyset$ , set $\{y_{i}^{1}\}_{t=1}^{k(1)}=f^{-2n}(x)\cap K_{1}^{o}$ and

$\{y_{j}^{2}\}_{j=1}^{k(2)}=f^{-2n}(x)\cap K_{2}^{o}$ . We consider the commutative diagram:
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$H_{2}(K;Z)^{(f^{2n})_{*}}p_{1}\downarrow\downarrow p_{2}\ovalbox{\tt\small REJECT}\rightarrow H_{2}(K;Z)$

$(\bigoplus_{i=1}^{k(1)}H_{2}(K_{1}, K_{1}-\{x_{i}^{1}\};Z))\oplus(\bigoplus_{\dot{g}=1}^{k(2)}H_{2}(K_{2}, K_{2}-\{x_{\dot{f}}^{l}\};Z))\rightarrow H_{2}(K, K-\{x\};Z)t\overline{f^{2n}})_{*}$

Then

$(\overline{f^{2n}})_{*}\circ p_{1}[K]=(\overline{f^{2n}})_{*}(\sum_{i=1}^{k(1)}O_{i}^{1}+2\cdot\sum_{\dot{g}=1}^{k(2)}o_{\dot{f}}^{2})=(k(1)+2\cdot k(2))\cdot O_{x}$ ,

since $p[K]=r_{2}\circ f_{2}([K_{1}^{N}, \partial K_{1}^{N}]+2[K_{2}^{N}, \partial K_{2}^{N}])$ , where $O_{i}^{1}$ and $O_{\dot{f}}^{2}$ denote gener-
ators of $H_{2}(K_{1}, K_{1}-\{x_{i}^{1}\};Z)$ and $H_{2}(K_{2}, K_{2}-\{x_{\dot{f}}^{2}\};Z)re8pectively$ , and $O_{x}$

denotes a generator of $H_{2}(K, K-\{x\};Z)$ . On the other hand, $p_{2}\circ(f^{2n})_{*}[K]=$

$\alpha_{n}\cdot O_{x}$ . Hence we have $\alpha_{n}=k(1)+2k(2)\geqq\# f^{-2n}(x)$ . By Definition 2, 3), ii),
the right-hand side of the above inequality becomes large as $n$ becomes
large. So we complete the proof. $\square $

We calculate the Kronecker product of $[K]$ and $e(K)$ . $Fir8t$ , since
$(f^{2n})^{*}e(K)=e(K),$ $\langle e(K), [K]\rangle=\langle(f^{2n})^{*}e(K), [K]\rangle=\langle e(K), (f^{2n})_{*}[K]\rangle=\alpha_{n}\langle e(K)$ ,
$[K]\rangle$ . By Lemma 3, we have $\langle e(K), [K]\rangle=0$ . On the other hand, in
the same way as the proof of the index theorem $\langle e[M], [M]\rangle=x(M)$ for
an ordinary manifold $M$, we calculate $\langle e(K), [K]\rangle$ by using a vector field
$X$ with finite singularities such that the indices of $X|\dot{K}_{1}$ and $X|\dot{K}_{2}$ are
equal to $\chi(K_{1})$ and $\chi(K_{2})$ . As $p[K]=r_{2}\circ\ell_{2}([K_{1}, \partial K_{1}]+2[K_{2}, \partial K_{2}])$ , we have
$\langle e(K), [K]\rangle=x(K_{1})+2\chi(K_{2})$ . Hence $\chi(K_{1})+2\chi(K_{2})$ must be zero, but $\chi(K_{1})$

is odd 8ince $K_{1}$ has one boundary circle. It follow8 that in thi8 case we
have no branched surface which admits expanding $immer8ions$ .
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