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\S 1. Introduction.

Let us consider semilinear evolution equations in a Hilbert space $X$

(E) $du/dt=Lu+Nu$ , $t>0$ .
Here $L$ is the generator of an analytic semigroup and $N$ is a nonlinear
operator defined near $0$ . We suppose that the spectrum $\sigma(L)$ of $L$ is
divided into two parts $\sigma_{1}(L)$ and $\sigma_{2}(L)$ in such a way that

$(\alpha_{2}\equiv)\sup_{\sigma e\sigma_{2}(L)}{\rm Re}\sigma<\inf_{\sigma e\sigma,(L)}{\rm Re}\sigma(\equiv\alpha_{1})$ .

If $N$ is identically zero, the eigenspace $X_{i},$ $i=1,2$ , corresponding to $\sigma_{t}(L)$

is invariant in the following sense: If an initial value $x$ is contained in
$X_{i}$ then the solution $u(t, x)$ of (E) with the initial value $x$ is also con-
tained in $X_{i}$ for $t>0$ .

In this paper we are interested in the persistency of the invariance
and smoothness of the manifolds $X_{i}$ under small perturbation $N$. Let
$N(x)$ be a $C^{k}$-mapping, $ 1\leqq k<\infty$ , with $N(O)=0$ . We first ask if there
exists an invariant manifold $M$ “near $X_{i}’$ , provided that $\Vert D_{x}N\Vert$ is small
enough. ($D.N$ denotes the Fr\’echet derivative of $N(x)$ with respect to
$x.)$ If it does, we next ask if invariant manifolds are $C^{k}$ .

The following facts have been known. See, e.g., [1-11, 14-17,
19-22].
(i) If $\inf_{\sigma e\sigma_{1}(L)}{\rm Re}\sigma\geqq 0$ , then an invariant $C^{k}$-manifold $M_{1}$ “near $X_{1}$

“

exists. It is called a center-unstable manifold. In particular, if
$\inf_{\sigma e\sigma_{1}(L)}{\rm Re}\sigma>0$ (resp. ${\rm Re}\sigma=0$ for $\sigma\in\sigma_{1}(L)$), then the manifold is called
an unstable (resp. a center) manifold.
(ii) If $\sup_{\sigma e\sigma_{2}(L)}{\rm Re}\sigma<0$ , then an invariant $C^{k}$-manifold “near $X_{2}$

’ exists.
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It is called a stable manifold.
In this paper we shall prove that an invariant $C^{1}$-manifold $M_{i}$ “near

$X_{i}$
’ exists if $||D_{x}N||$ is small enough. The problem of smoothne8s of $M_{i}$

is more delicate. It depends on the structure of the spectrum of $L$ .
We 8tate a result on the smoothness of $M_{1}$ . A similar result holds on
the smoothness of $M_{2}$ .

THEOREM. Let the above hypotheses hold. Suppose that there exists
an integer $r$ with $\alpha_{2}<r\alpha_{1},1\leqq r\leqq k$ . Then a $C^{f}$-invariant manifold exists
if $\Vert D_{x}N||$ is small enough.

This result is optimal in the following sense. If $\alpha_{2}=k\alpha_{1}(<0)$ , then
there is an example such that there does not exi8t any $C^{k}$-invariant
manifold $M_{1}$ “near $X_{1}$ ‘. Such an example is given in section 2.

In section 2 we 8tate our hypotheses and results. The proofs of
Theorems 1, 2, and 3 are based on re8u1ts of Hirsch, Pugh, and Shub
[12]. In 8ection 3 we state them in an adequate form to our use. In
section 4 we prove our results by applying them to a time s-mapping
$u(s, )$ .

\S 2. Main results.

Throughout the present paper we postulate the following two hy-
potheses concerning $L$ and $N$.

HYPOTHESIS 1. (i) $L$ generates an analytic semigroup $\{e^{tL}\}_{t>0}$ in $X$.
(ii) The spectrum $\sigma(L)$ of $L$ is divided into two parts:

$\sigma(L)=\sigma_{1}(L)\cup\sigma_{2}(L)$ ,
$(\alpha_{2}\equiv)\sup_{\sigma e\sigma_{2}(L)}{\rm Re}\sigma<\inf_{\sigma e\sigma_{1}(L)}{\rm Re}\sigma(\equiv\alpha_{1})$ .

By Hypothesis 1 (i) there exists a constant $\alpha$ with $\sup_{\sigma e\sigma_{1}(L)}{\rm Re}\sigma<\alpha$ . In
the following we fix such a number $\alpha$ . Let $\beta$ be such that $0\leqq\beta<1$ .
We denote by $X_{\beta}$ the Banach space consi8ting of all elements in the
domain of $(-L+\alpha)^{\beta}$ . The norm of $X_{\beta}$ is the graph norm of $(-L+\alpha)^{\beta}$ ,
which we denote by $||$ $||$ .

HYPOTHESIS 2. The nonlinear operator $N$ is a $C^{k}$-mapping of some
neighborhood $U$ of $0$ in $X_{\beta}$ into $X$ such that $N(O)=0$ .

Let $P_{i},$ $i=1,2$ , be the projection associated with $\sigma(L)$ . The re-
striction $P_{i}|X_{\beta}$ of $P_{i}$ to $X_{\beta}$ is also the projection of $X_{\beta}$ onto $P_{i}X_{\beta}$ . Then
$X_{\beta}$ is decomposed into the direct sum: $X_{\beta}=P_{1}X_{\beta}\oplus P_{l}X_{\beta}$ . For simplicity
we write $X$ for $PX_{\beta}$ .
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We give a definition of local invariance. Let $M\subset U(\subset X_{\beta})$ . We say
that a set $M$ is locally invariant if the following holds: Let $x\in M$. Then
there exists a $t>0$ such that $u(s, x)\in M,$ $0<s\leqq t$ .

Our problem can be formulated as follows.

PROBLEM. Let $\sup_{xeU}\Vert D_{x}N(x)\Vert$ be small enough. Does there exist a
$C^{k}$-mapping $w_{i},$ $i=1,2$ , defined in a neighborhood $V_{i}$ of $0$ in $X_{i}$ into $X_{3-i}$

which satisfies
(i) $w_{i}(0)=0,$ $\sup_{xev_{i}}\Vert D_{x}w_{i}(x)\Vert$ is small,
(ii) the graph of $w_{i}$ is locally invariant.

Our main results are given by the following theorems.

THEOREM 1. Assume that Hypotheses 1 and 2 are satisfied. Then
there exist an open neighborhood $V_{i},$ $i=1,2$ , of $0$ in $X_{i}$ and a $C^{1}$-mapping
$w_{i}$ of $V_{i}$ into $X_{3-i}$ with the properties (i) and (ii) in Problem.

THEOREM 2 (Smoothness of $w_{1}$). Assume that Hypotheses 1 and 2 are
satisfied. Let $r$ be the largest integer which satisfies $\alpha_{2}<r\alpha_{1},1\leqq r\leqq k$ .
Then if $\Vert D_{x}N(0)\Vert$ is small enough, then there exist an open neighborhood
$V_{1}$ of $0$ in $X_{1}$ and a $C^{r}$-mapping $w_{1}$ of $V_{1}$ into $X_{2}$ which satisfy (i) and
(ii) in Problem.

THEOREM 3 (Smoothness of $w_{2}$). Assume that Hypotheses 1 and 2 are
satisfied. Let $r$ be the largest integer whic $h$ satisfies $r\alpha_{2}<\alpha_{1},1\leqq r\leqq k$ .
Then if $||D_{x}N(0)||$ is small enough, then there exist an open neighborhood
$V_{2}$ of $0$ in $X_{2}$ and a $C^{r}$-mapping $w_{2}$ of $V_{2}$ into $X_{1}$ which satisfy (i) and
(ii) in Problem.

REMARK. The smoothness of a mapping $w_{i},$ $i=1,2$ , is optimal in
the following sense. Suppose that $\alpha_{2}=k\alpha_{1}$ (resp. $k\alpha_{2}=\alpha_{1}$). Then there
is an example such that even if $N$ is a $C^{\infty}$-mapping, there does not
exist any $C^{k}$-mapping of a neighborhood of $0$ in $X_{1}$ into $X_{2}$ (resp. $X_{2}$

into $X_{1}$). In the rest of this section we give such an example.

Consider the sy8tem of equations

$dx/dt=-x$ , $dy/dt=-ky+x^{k}$

Straightforward computation shows that the solution $(x, y)$ with initial
value $(x_{0}, y_{0}),$ $x_{0}\neq 0$ , satisfies

$y=(y_{0}/x_{0}^{k})x^{k}-x^{k}\log(x/x_{0})$ .
If we set
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$C=y_{0}/x_{0}^{k}+\log|x_{0}|$

then $(x, y)$ satisfies
$y=-x^{k}$ log $|x|+Cx^{k}$ .

If $x_{0}=0$ , then the solution satisfies $x=0$ . Therefore we conclude that
the invariant curve $x=0$ corresponds to the graph of $w_{2}$ and that the
other invariant curves are not $C^{k}$ at $x=0$ .

\S 3. Results of Hirsch, Pugh, and Shub.

In this section we recall results of $Hir8ch$ , Pugh, and shub [12,
Theorem 5.1]. We state them in a modified form which are adequate
to our use.

Let $E$ be a Banach space divided into the direct sum: $E=E_{1}\oplus E_{2}$ .
Let $T$ be a bounded linear operator on $E$. We denote by $P_{:},$ $i=1,2$ ,
the projection of $E$ onto $E_{i},$ $i=1,2$ . We suppo8e that the following
condition8 hold.

HYPOTHESIS T. (i) $TE\subset E_{t},$ $i=1,2$ .
(ii) The restriction $T_{1}$ of $P_{1}T$ to $E_{1}$ has a bounded inverse.
(iii) The following inequality holds:

(3.1) $||T_{1}^{-1}||||T_{2}||<1$ ,

where $T_{2}$ denotes the restriction of $P_{2}T$ to $E_{2}$ .
The results of Hirsch, Pugh, and Shub are stated in the following

theorems.

THEOREM 4. Assume that Hypothesis $T$ holds. Then there exist
$\epsilon_{1}>0$ and two constants $\rho_{i},$ $i=1,2$ , with $\rho_{2}<\rho_{1}$ such that the following
statements hold. Suppose that a $C^{1}$-mapping $f$ : $E\rightarrow E$ which satisfies
$f(O)=0,$ $||D_{x}f-T||(=\epsilon)<\epsilon_{1}$ , then there exist two maps $\xi_{f}$ : $E_{1}\rightarrow E_{2}$ and
$\xi_{f^{-1}}$ : $E_{2}\rightarrow E_{1}$ with the following properties:
(i) $\sup_{x\in E_{1}}||D_{x}\xi_{f}(x)||$ and $8up_{xeB_{2}}||D_{x}\xi_{f^{-1}}(x)||$ tends to $0$ as $\epsilon\rightarrow 0$ .
(ii) If $x\in W_{1}\equiv graph\xi_{f}=\{x=(y, z) : z=\xi_{f}(y), y\in E_{1}\}$ , then there exists a
unique sequence $\{x_{-n}\}$ in $W_{1},$ $n\in N$, whieh satisfies $f^{n}(x_{-n})=x$ , and

(3.4) $||x_{-n}||\leqq\rho_{1}^{-n}||x||$ .
Conversely if there exists a sequence $\{x_{-n}\}$ which satisfies $f^{n}(x_{-n})=x$ , and
$||x_{-n}||\rho_{1}^{n}$ is bounded, then $x\in W_{1}$ .
(iii) If $x\in W_{2}\equiv graph\xi_{J^{-1}}=\{x=(y, z) : y=\xi_{f^{-1}}(z), z\in E_{2}\}$ , then for $n\geqq 0$
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(3.5) $\Vert f^{n}(x)\Vert\leqq\rho_{2}^{n}\Vert x\Vert$ .
Conversely if $\Vert f^{n}(x)\Vert/\rho_{2}^{n}$ is bounded, then $x\in W_{2}$ .

On further smoothness of $\xi_{f}$ and $\xi_{J^{-1}}$ the following theorems hold.

THEOREM 5 (Smoothness of $\xi_{f}$). Under the hypotheses of Theorem 4,
we further assume that

(3.6) $||T_{1}^{-1}||^{k}||T_{2}||<1$ .
Then there exists $0<\epsilon_{k}\leqq\epsilon_{1}$ such that for any $C^{k}$-mapping $f$ which satisfies
$f(O)=0$ and $||D_{x}f-T||<\epsilon_{k}$ , the mapping $\xi_{f}$ obtained in Theorem 4 is $C^{k}$ .

THEOREM 6 (Smoothness of $\xi_{f^{-1}}$). Under the hypotheses of Theorem
4, we further assume that

(3.7) $\Vert T_{1}^{-1}\Vert\Vert T_{2}\Vert^{k}<1$ .
Then there exists $0<\epsilon_{k}\leqq\epsilon_{1}$ such that for any $C^{k}$-mapping $f$ which satisfies
$f(O)=0$ and $\Vert D_{x}f-T||<\epsilon_{k}$ , the mapping $\xi_{f}-1$ obtained in Theorem 4 is
$C^{k}$ .

\S 4. Proofs of Theorems 1, 2, and 3.

Instead of the evolution equation (E), we consider a modified equation

$(E_{\epsilon})$ $du/dt=Lu+\chi(u/\epsilon)N(u)$ ,

where $\chi\in C^{k}(X_{\beta}, R)$ with $\chi(x)=1(||x\Vert<1),$ $=0(\Vert x\Vert>2)$ . We state the
following lemma, which is elementary, but plays a fundamental role in
the proofs.

LEMMA. For any $x\in X_{\beta}$ a solution $u_{\epsilon}(t, x)$ of $(E_{\epsilon})$ with initial value
$x$ exists on $[0, \infty$ ). For each $t>0$ a mapping $x\rightarrow u_{\epsilon}(t, x)$ is a $C^{k}$-mapping
and satisfies
(4.1) $||D_{x}u_{\epsilon}(t, x)-e^{tL}||\leqq K(e^{\delta(\epsilon)Kt}-1)e^{\alpha}$

“ , $t\geqq 1$

where $K$ and $\delta(\epsilon)$ are constants independent of $t$ and $x$ such that $\delta(\epsilon)$

tends to $0$ as $\epsilon\rightarrow 0$ .
The proof is standard. See, e.g., [11].

PROOF OF THEOREM 1. First we give an outline of the proof of
Theorem 1. We set $T(s)=e^{\epsilon L}$ . We write $f_{\epsilon}(t)x$ for the solution $u_{e}(t, x)$ .
Then, by Lemma, $f_{e}(t)$ is a $C^{k}$-mapping of $X_{\beta}$ into itself. We first choose
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$s>0$ so large that the condition (3.1) in Hypothesi8 $T$ holds with $T$

replaced by $T(s)$ . We next choose $\epsilon$ so small that the inequality

(4.2) $\Vert D_{x}f_{\epsilon}(s)-T(s)\Vert<\epsilon_{1}$

holds. Then we apply Theorem 4 with $f$ replaced by $f_{\epsilon}$ . Thus we shall
obtain a C’-mapping $w_{i}$ , the graph of which satisfies (i), (ii), and (iii) of
Theorem 4. We set $W_{i.\epsilon}=graphw_{i}$ . For the proof of Theorem 1 we
have only to establish that $W_{i,\epsilon}$ is invariant under the semiflow $f_{*}(t)$ .

Now we determine $s$ as follows. Choose real numbers $\beta_{1}$ and $\beta_{2}$

such that $\alpha_{2}<\beta_{2}<\beta_{1}<\alpha_{1}(<\alpha)$ . Then the following inequalitie8 hold.

(4.3) $||e^{tL}||\leqq Ke^{\alpha t}$ , $t\geqq 0$ ,

(4.4) $||e^{-tL}|X_{1}||\leqq Ke^{-\beta_{1}t}$ , $t\geqq 0$ ,

(4.5) $\Vert e^{tL}|X_{2}\Vert\leqq Ke^{\beta_{l}t}$ , $t\geqq 0$ ,

where $K$ is a con8tant independent of $t$ , and $e^{-tL}|X_{1}$ is the inverse of
$e^{tL}|X_{1}$ : $X_{1}\rightarrow X_{1}$ . Since $\beta_{1}<\beta_{1}$ , we can choose $s$ so large that $K^{2}e^{(\rho_{2}-\beta_{1})}<1$ .
Then, by (4.4) and (4.5), we get

$||e^{L}|X_{2}||||e^{-\cdot L}|X_{1}||\leqq K^{2}e^{(\beta_{2}-\beta_{1}\}\iota}<1$

and so the inequality (3.1) holds. By (4.1) we can choose $\epsilon>0$ so 8mall
that the inequality (4.2) hold8. Thus we can apply Theorem 4 to a
time s-mapping $T(s)$ . Hence we obtain a mapping $w_{1}$ (resp. $w_{2}$) of $X_{1}$

into $X_{2}$ ($re8p$ . $X_{2}$ into $X_{1}$) which satisfies (i), (ii), and (iii) of Theorem 4.
We first claim that $W_{2,\epsilon}$ is invariant under $f_{e}(t)$ .
Proof of the claim. Let $t>0$ and let $k=[t/s]$ . Then, by the semi-

group property of $f_{e}(t)$ , we get

$f_{\epsilon}^{n}(s)u_{e}(t, x)=u_{e}(ns+t, x)=u_{\epsilon}(t-ks, f_{\epsilon}^{n+k}(s)x)$ .
On the other hand, since $u_{\epsilon}(t, 0)=0$ , we get by Lemma and (4.3)

$||u_{*}(t, x)||\leqq Ke^{(a+\delta(\epsilon)K)\iota}||x\Vert$ , $t\geqq 0$ .
Hence we obtain

$\Vert f_{\epsilon}^{n}(s)u_{\epsilon}(t, x)||\leqq Ke^{(\alpha+\delta(\epsilon)K)(t-k\cdot)}||f_{\epsilon}^{n+k}(s)x\Vert$

$\leqq Ke^{\{\alpha+\delta(e)K)}\rho_{2}^{n+k}\Vert x||$ .
Therefore $||f_{*}^{n}(s)u_{*}(t, x)||/\rho_{2}^{n}$ is bounded for $n\geqq 0$ . Thu8, by Theorem 4 (iii)
we conclude that $u_{\epsilon}(t, x)eW_{z,*},$ $t>0$ .
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We next claim that $W_{1,\epsilon}$ is invariant under the semiflow $f_{\epsilon}(t)$ .
Proof of the claim. Let $x\in W_{1,\epsilon}$ . Then by Theorem 4 (ii) there exists

a sequence $\{x_{-n}\}_{n\geqq 0}$ which satisfies $f_{\epsilon}^{n}(s)x_{-n}=x$ and

(4.6) $\Vert x_{-n}\Vert\leqq\rho_{1}^{-n}\Vert x\Vert$ .
Since $f_{e}^{n}(s)f_{e}(t)x_{-n}=f_{\epsilon}(t)x$ , for the proof of invariance of $W_{1,\epsilon}$ under $f_{\epsilon}(t)$ ,
it suffices to show that $\Vert f_{e}(t)x_{-n}\Vert\rho_{1}^{n}$ is bounded. Let $k=[t/s]$ . Then, by
Lemma and (4.6) we have

$||f_{e}(t)x_{-n}\Vert\rho_{1}^{n}=\Vert f_{\epsilon}(t-ks)x_{k-n}\Vert\rho_{1}^{n}$

$\leqq Ke^{\alpha\epsilon}||x_{k-n}||\rho_{1}^{n}\leqq Ke^{\alpha}\rho_{1}^{k-n}\rho_{1}^{n}||x||=Ke^{\alpha}\rho_{1}^{k}\Vert x\Vert$ .
Hence it follows that $\Vert f_{l}(t)x_{-n}||\rho_{1}^{n}$ is bounded for $n\geqq 0$ . Thus we conclude
that $W_{1,\epsilon}$ is invariant under the semiflow $f_{\text{{\it \’{e}}}}(t)$ . Q.E.D.

PROOFS OF THEOREMS 2 AND 3. We have only to show that (3.6)
and (3.7) hold, respectively, with $T$ replaced by $e^{\iota L}$ . We $8how$ that (3.6)
holds. Suppose that $\alpha_{2}<r\alpha_{1}$ . Then there exists $\beta_{1}$ and $\beta_{2}$ with $\beta_{2}<r\beta_{1}$

such that (4.4) and (4.5) hold. Choose $s>0$ so large that $K^{2}e^{t-\beta_{1}r+\beta_{2})\iota}<1$ .
Then we obtain

$\Vert e^{-\cdot L}|X_{1}\Vert^{r}\Vert e^{L}|X_{2}||\leqq K^{2}e^{(-\beta_{1}r+\beta_{2})}<1$ .
The proof of (3.7) is similar. Thus the proofs of Theorems 2 and 3 are
complete.
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