On the Equation $s\left(1^{k}+2^{k}+\cdots+x^{k}\right)+r=b y^{2}$

Hiroyuki KANO

Keio University
(Communicated by Y. Ito)

§ 1. Introduction.

We consider the equation

$$
\begin{equation*}
s\left(1^{k}+2^{k}+\cdots+x^{k}\right)+r=b y^{z} \tag{1}
\end{equation*}
$$

where b, s, r, and k are integer constants and investigate the conditions under which we can assert that the equation has only finitely many solutions in integers $x>0, y \geqq 2$, and $z \geqq 2$.

This was proved by K. Györy, R. Tijdeman and M. Voorhoeve [4] in the case $b \neq 0, k>0, s=1$, and r arbitrary, provided that $k \notin\{1,3,5\}$. They also stated the same condition when s is a certain squarefree odd integer.
B. Brindza [2] proved the assertion in the case when s is squarefree and $z \notin\{1,2,3,4,6\}$ or if s is odd and $k \notin\{1,2,3,5\}$.

In this paper, we obtain new conditions on k, r, and s which allow us to show that (1) has only finitely many solutions in integers $x>0$, $|y| \geqq 2$, and $z \geqq 2$.

§2. Results.

For an integer $n \neq 0$ and a prime p, there exists an integer $m \geqq 0$ for which $p^{m} \| n$. Then we put $\nu_{p}(n)=m$ and define, for a nonzero rational number $\alpha=m / n$ with $m, n \in Z$,

$$
\nu_{p}(\alpha)=\nu_{p}(m)-\nu_{p}(n)
$$

which depends only on α. Also we write num $\alpha=m$ and $\operatorname{den} \alpha=n$ for a rational number $\alpha=m / n$ with $m, n \in Z, n>0$, and $(m, n)=1$, where (m, n) denotes the greatest common divisor of m and n.

THEOREM. For given integers $b \neq 0, r \neq 0, s \neq 0$, and $k>0$, the equation
(1) has only finitely many solutions in integers $x>0, y$ with $|y| \geqq 2$, and $z \geqq 2$, provided that k, r, and s satisfy one of the following conditions;

I) $k \equiv 0(\bmod 2), \nu_{2}(s / r) \leqq 0$,
II) $k \equiv 0(\bmod 2), \nu_{2}(s / r)=2$,
III) $k=2^{h}(h \in N), \nu_{2}(s / r)=1$,
IV) $k \equiv 3(\bmod 4), \nu_{2}(s /(r(k+1))) \neq k+1$.

Remark 1. Each condition in Theorem is equivalent to the following statement: If $(s, r)=1$,
I) k is even and s is odd,

II) k is even and $s \equiv 4(\bmod 8)$,
III) k is a power of 2 and $s \equiv 2(\bmod 4)$,
IV) $k \equiv 3(\bmod 4)$ and $\operatorname{num}(s /(k+1)) \not \equiv 2^{k+1}\left(\bmod 2^{k+2}\right)$.

If $(s, r) \neq 1, s$ should be replaced by $s /(s, r)$.
Remark 2. In Theorem we assumed $r \neq 0$. If $r=0$, one can deduce from Theorem 2 in [4] that the equation (1) has only finitely many solutions in integers $x>0, y$ with $|y| \geqq 2$, and $z \geqq 2$ provided that $k \notin$ $\{1,3,5\}$.

Corollary 1. Let $b \neq 0, r, s \neq 0$, and $k>0$ be given integers. If s is odd and $k \notin\{1,3,5\}$, the equation (1) has only finitely many solutions in integers $x>0, y$ with $|y| \geqq 2$, and $z \geqq 2$.

Remark 3. If s is odd but $k \in\{1,3,5\}$, the equation (1) may have infinitely many solutions in integers $x>0, y \geqq 2$, and $z \geqq 2$, under some conditions for b and r; for instance when $s=1, k \in\{1,3,5\}, b=1$, and $r=0$ (cf. [5]).

Corollary 2. For given integers $a, b \neq 0, k>0, r$, and $s \neq 0$, each of the equations

$$
\begin{equation*}
s\left\{a^{k}+(a+1)^{k}+\cdots+x^{k}\right\}+r=b y^{z} \quad(x \geqq a,|y| \geqq 2, z \geqq 2) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
s\left\{x^{k}+(x+1)^{k}+\cdots+a^{k}\right\}+r=b y^{z} \quad(x \leqq a,|y| \geqq 2, z \geqq 2) \tag{3}
\end{equation*}
$$

has only finitely many solutions in integers x, y, and z, provided that k and s satisfy one of the following conditions;
V) $k \equiv 0(\bmod 2), s \equiv 1(\bmod 2)$,
VI) $k>3, k \equiv 3(\bmod 4), s \neq 0\left(\bmod 2^{k+3}\right)$.

§ 3. Lemmas.

The left-hand side of (1) can be written as

$$
\frac{s}{k+1}\left\{B_{k+1}(x+1)-B_{k+1}\right\}+r,
$$

where B_{i} is the Bernoulli number defined by

$$
\frac{z}{e^{z}-1}=\sum_{i=0}^{\infty} \frac{B_{i} z^{i}}{i!}
$$

and $B_{k}(x)$ is the Bernoulli polynomial given by

$$
B_{k}(x)=\sum_{i=0}^{k}\binom{k}{i} B_{i} x^{k-i}
$$

We remark that $B_{0}=1, B_{1}=-1 / 2, B_{i}=0$ for odd $i>1$, and

$$
\begin{align*}
& B_{k}(1-x)=(-1)^{k} B_{k}(x), \tag{4}\\
& {B_{k}}^{\prime}(x)=k B_{k-1}(x) . \tag{5}
\end{align*}
$$

Lemma 1 (von Stadt-Clausen's theorem).

$$
\operatorname{den} B_{2 i}=\prod_{p-1 \mid 2 i} p \quad(i \geqq 1)
$$

In particular, den $B_{2 i}$ is squarefree and $2 \| \operatorname{den} B_{2 i}$.
Lemma 2 (K. Györy, R. Tijdeman, and M. Voorhoeve [4] Lemma 1 and Lemma 2). Let $P(x) \in \mathbb{Q}[x]$ be a polynomial having at least three simple zeros, and let $b \neq 0$ be an integer. Then the equation

$$
P(x)=b y^{z}
$$

has only finitely many solutions in integers $x>0$, y with $|y| \geqq 2$, and $z \geqq 2$.

§4. Proofs.

Proof of Theorem. By Lemma 2 we have only to prove that the equation in x,

$$
\frac{s}{k+1}\left\{B_{k+1}(x+1)-B_{k+1}\right\}+r=0,
$$

has at least three simple roots. Since the number of the roots as well
as their multiplicity of an algebraic equation is not varied by replacing x by a linear polynomial, we have

$$
S\left\{B_{k+1}(x)-B_{k+1}\right\}+R=0,
$$

where $S=s / g, R=r(k+1) / g$ with $g=(s, r(k+1))$, so that $(S, R)=1$. Furthermore, denoting by d the least common multiple of the denominators of the coefficients appearing in the polynomial on the left-hand side of (6), we have

$$
\begin{align*}
P(x) & :=d(k+1) g^{-1}\left[s\left\{1^{k}+2^{k}+\cdots+(x-1)^{k}\right\}+r\right] \\
& =d S\left\{B_{k+1}(x)-B_{k+1}\right\}+d R \\
& =d S \sum_{i=0}^{k}\binom{k+1}{i} B_{i} x^{k+1-t}+d R \\
& =d S\left\{x^{k+1}-\frac{k+1}{2} x^{k}+\sum_{i=1}^{k / 2}\binom{k+1}{2 i} B_{2 i} x^{k+1-2 i}\right\}+d R=0 . \tag{7}
\end{align*}
$$

Here $P(x) \in \boldsymbol{Z}[x]$ is a primitive polynomial, because of the choice of d and $(S, R)=1$. We note that d is squarefree, $(d, S)=1, d$ is odd when S is even, and d is even when S is odd and k is even. We also remark that $\nu_{2}(S / R)=\nu_{2}(s /(r(k+1)))$ and that $\nu_{2}(S / R)=\nu_{2}(s / r)$ when k is even. Hence in Theorem we may replace $\nu_{2}(s / r)$ and $\nu_{2}(s /(r(k+1)))$ by $\nu_{2}(S / R)$. In what follows, we shall prove that $P(x)=0$ has at least three simple roots. The proof will be divided into four cases I), II), III), and IV).

Case I). k is even and $\nu_{2}(S / R) \leqq 0$. The last inequality implies that S is odd, since $(S, R)=1$. It follows from (7) that

$$
\begin{align*}
P(x)+x P^{\prime}(x)= & d S \cdot(k+2) x^{k+1}-\frac{1}{2} d S \cdot(k+1)^{2} x^{k} \\
& +\sum_{i=1}^{k / 2} d s\binom{k+1}{2 i} B_{2 t} \cdot(k+2-2 i) x^{k+1-2 t}+d R . \tag{8}
\end{align*}
$$

Here $2 \| d$, and $d s\binom{k+1}{2 i} B_{2 i} \in Z$, and so

$$
\begin{aligned}
& d S \cdot(k+2) \equiv 0(\bmod 2), \quad-\frac{1}{2} d S \cdot(k+1)^{2} \equiv 1(\bmod 2), \\
& d S\binom{k+1}{2 i} B_{2 i} \cdot(k+2-2 i) \equiv 0(\bmod 2), \quad d R \equiv 0(\bmod 2) .
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
P(x)+x P^{\prime}(x) \equiv x^{k} \quad(\bmod 2) . \tag{9}
\end{equation*}
$$

Since $\operatorname{deg} P(x)=k+1 \geqq 3$, we have only to prove that $P(x)=0$ has no multiple root. Suppose that $P(x)=0$ has a multiple root. Then there exists a non-constant polynomial $Q(x) \in Z[x]$ such that

$$
\begin{equation*}
\{Q(x)\}^{2}|P(x), \quad Q(x)| P^{\prime}(x) \tag{10}
\end{equation*}
$$

and so

$$
Q(x) \mid P(x)+x P^{\prime}(x)
$$

Hence we have by (9) and (10)

$$
\begin{equation*}
Q(x) \equiv x^{m}(\bmod 2), \quad P^{\prime}(x) \equiv x^{m} R(x)(\bmod 2) \tag{11}
\end{equation*}
$$

for some integer $m \geqq 0$ and some polynomial $R(x) \in Z[x]$. Here we find

$$
P^{\prime}(0) \equiv 1 \quad(\bmod 2),
$$

since $P^{\prime}(0)=d S \cdot(k+1) B_{k}$ with $2 \| d, S$ odd, k even, and den B_{k} is even; so that (11) implies $m=0$. Hence we have $Q(x) \equiv 1(\bmod 2)$, and so we may write

$$
Q(x)=2 S(x)+1, \quad S(x) \in Z[x] .
$$

Noticing that neither $Q(x)$ nor $S(x)$ is a constant and that $\{2 S(x)+1\}^{2} \mid P(x)$ by (10), the leading coefficient $d S$ of $P(x)$ is divisible by 4 , which is a contradiction.

Case II). k is even and $\nu_{2}(S / R)=2$. The last equality implies that R and d are odd, since $(S, R)=1$. We also note that $d S\binom{k+1}{i} B_{i} \equiv 0$ $(\bmod 2)$, since $2 \| \operatorname{den} B_{i}$ by Lemma 1. Hence we have by (7),

$$
\begin{equation*}
P(x) \equiv 1 \quad(\bmod 2) . \tag{12}
\end{equation*}
$$

Since $\operatorname{deg} P(x) \geqq 3$, we have only to prove that $P(x)=0$ has no multiple root. Suppose that $P(x)=0$ has a multiple root. Then there exist a non-constant polynomial $Q(x) \in Z[x]$ and a polynomial $R(x) \in Z[x]$ such that

$$
P(x)=\{Q(x)\}^{2} R(x) .
$$

Since $\operatorname{deg} P(x)$ is odd, $\operatorname{deg} R(x)$ is odd, and so $R(x)$ is not a constant. Noticing that $Q(x), R(x) \mid P(x)$, we have by (12)

$$
Q(x) \equiv 1(\bmod 2), \quad R(x) \equiv 1(\bmod 2)
$$

and so we may write

$$
Q(x)=2 S(x)+1, \quad R(x)=2 T(x)+1,
$$

where $S(x), T(x) \in Z[x]$. Hence we get

$$
P(x)=\{2 S(x)+1\}^{2}\{2 T(x)+1\},
$$

where neither $S(x)$ nor $T(x)$ is a constant. Therefore the leading coefficient $d S$ of $P(x)$ is divisible by 8 , which is a contradiction.

Case III). $k=2^{h}(h \in N)$ and $\nu_{2}(S / R)=1$. The last equality implies that R and d are odd since (S, R)=1. As in the Case I), we have (8). Noticing that k is even, $2 \| S$, and $d S\binom{k+1}{2 i} B_{2 i} \in Z$, we find

$$
\begin{aligned}
& d S \cdot(k+2) \equiv 0(\bmod 2), \quad-\frac{1}{2} d S \cdot(k+1)^{2} \equiv 1(\bmod 2), \\
& d S\binom{k+1}{2 i} B_{2 i} \cdot(k+2-2 i) \equiv 0(\bmod 2), \quad d R \equiv 1(\bmod 2) .
\end{aligned}
$$

Therefore it follows from (8) with $k=2^{k}$ that

$$
\begin{equation*}
P(x)+x P^{\prime}(x) \equiv x^{k}+1 \equiv(x+1)^{k} \quad(\bmod 2) . \tag{13}
\end{equation*}
$$

We will show that $P(x)=0$ has no multiple root. Suppose that $P(x)=0$ has a multiple root. Then there exists a non-constant polynomial $Q(x) \in Z[x]$ such that

$$
\{Q(x)\}^{2}|P(x), \quad Q(x)| P^{\prime}(x),
$$

and so

$$
Q(x) \mid P(x)+x P^{\prime}(x) .
$$

Hence it follows from (13) that

$$
\begin{equation*}
Q(x) \equiv(x+1)^{m}(\bmod 2), \quad P(x) \equiv(x+1)^{2 m} R(x)(\bmod 2) \tag{14}
\end{equation*}
$$

for some integer $m \geqq 0$ and polynomial $R(x) \in Z[x]$. But we have by (7)

$$
P(3)=d(k+1) S \cdot\left(1+2^{k}\right)+d R,
$$

so that

$$
P(3) \equiv 1 \quad(\bmod 2)
$$

since d and R are odd and S is even. On the other hand, we have by (14)

$$
P(3) \equiv 4^{2 m} R(3) \quad(\bmod 2) .
$$

Thus we get $m=0$, and hence (14) gives $Q(x) \equiv 1(\bmod 2)$. Therefore, as in the Case I), we find $4 \mid d S$, which is a contradiction.

Case IV). $k \equiv 3(\bmod 4)$ and $(d, S)=(S, R)=1$. It follows from (5) and (8) that

$$
P^{\prime}(x)=d S \cdot(k+1) B_{k}(x) .
$$

Since k is odd, we can show, by the same way as in the proof of Theorem 2 in [4], that the equation $B_{k}(x)=0$ as well as $P^{\prime}(x)=0$ has no multiple root. Hence the multiplicity of a root of $P(x)=0$ is at most 2. Thus we can write

$$
\begin{equation*}
P(x)=\{Q(x)\}^{2} R(x), \tag{15}
\end{equation*}
$$

where $Q(x), R(x) \in Z[x]$ have only simple zeros and no common zeros. It is enough to prove that

$$
\operatorname{deg} R(x) \geqq 3
$$

For this we prove first that

$$
\begin{equation*}
P\left(\frac{1}{2}\right) \neq 0 . \tag{16}
\end{equation*}
$$

If S is odd, it is easily seen that $2^{k+1} P(1 / 2)$ is odd for odd d and $2^{k} P(1 / 2)$ is odd for even d; and hence (16) holds for odd S. If S is even, then d and R are odd. We put $S=\nu_{2}(S) S^{\prime}$, where S^{\prime} is odd, so that $2 d S^{\prime}\binom{k+1}{i} B_{i} \in Z . \quad$ We note that $\nu_{2}(S / R)=\nu_{2}(S) \neq k+1$ by IV). If $\nu_{2}(S)<$ $k+1$,

$$
2^{k+1-\nu_{2}(S)} P\left(\frac{1}{2}\right)=d S^{\prime}-(k+1) d S^{\prime}+2 \sum_{i=2}^{k} 2 d S^{\prime}\binom{k+1}{i} B_{i} 2^{i-2}+2^{k+1-\nu_{2}(S)} d R
$$

is odd. Similarly $P(1 / 2)$ is odd when $\nu_{2}(s)>k+1$. Hence (16) holds also for even S.

Now it follows from (4) and (7) with odd k that

$$
P(1-x)=P(x)
$$

Hence the roots of $P(x)=0$ are located symmetrically about $x=1 / 2$, and the multiplicity of the corresponding roots are equal. The same is true for the roots of $Q(x)=0$. By (16) we get $\operatorname{deg} Q(x) \equiv 0(\bmod 2)$, so that $\operatorname{deg}\{Q(x)\}^{2} \equiv 0(\bmod 4)$. Hence we find by (15)

$$
\operatorname{deg} R(x) \equiv \operatorname{deg} P(x)=k+1 \equiv 0 \quad(\bmod 4)
$$

Thus it is sufficient to prove that $R(x)$ is not a constant. Suppose that $R(x)$ is a constant, say $c \neq 0$. Then we may write

$$
\begin{equation*}
P(x)=c\{Q(x)\}^{2} \tag{17}
\end{equation*}
$$

where $\operatorname{deg} Q(x)=(k+1) / 2$. Recalling that every term of $P(x)$ of odd degree not greater than $(k+1) / 2$ is zero and $P(0) \neq 0$, we can prove by comparing the coefficients of the both sides of (17), that every term of odd degree of $Q(x)$ and also that of $P(x)$ is zero, which contradicts the fact that the coefficient of x^{k} of $P(x)$, where k is odd, is different from zero. The proof of our Theorem is now complete.

Proof of Corollary 1. By the result of B. Brindza [2] mentioned in the introduction, we have only to prove the statement when $k=2$. Thus if $r \neq 0$, Corollary 1 follows from Case I) in Theorem. The case of $r=0$ is already discussed in Remark 2.

Proof of Corollary 2. The conditions V) and VI) are special cases of I) and IV) in Theorem respectively. Equation (2) has a specific form of (1) with suitable modified r. (3) is reduced to (2) by multiplying the both sides by $(-1)^{k}$.

I would like to express my thanks to Professor Iekata Shiokawa for his valuable advice concerning the paper.

References

[1] Z. I. Borevich and I. R. Shafarevich, Number Theory, 2nd. ed., Academic Press, 1967.
[2] B. Brindza, On some generalizations of the diophantine equation $1^{k}+2^{k}+\cdots+x^{k}=y^{2}$, Acta Arith., 44 (1984), 99-107.
[3] K. DilCher, On a diophantine equation involving quadratic characters, Compositio Math., 57 (1986), 383-403.
[4] K. Györy, R. Tiddeman and M. Voorhoeve, On the equation $1^{k}+2^{k}+\cdots+x^{k}=y^{z}$, Acta Arith., 37 (1980), 233-240.
[5] J. J. Schäffer, The equation $1^{p}+2^{p}+3^{p}+\cdots+n^{p}=m^{q}$, Acta Math., 95 (1956), 155-189.
[6] T. N. Shorey, A.J. Van der Poorten, R. Tijdeman and A. Schinzel, Applications of the Gel'fond-Baker method to Diophantine equations, Transcendence Theory: Advances and Applications, Academic Press, 1979, 59-77.
[7] J. Urbanowicz, On the equation $f(1) 1^{k}+f(2) 2^{k}+\cdots+f(x) x^{k}+R(x)=b y^{z}$, Acta Arith., 51 (1988), 349-368.

Present Address:

Department of Mathematics, Faculty of Science and Technology, Keio University Hiyoshi, Kohoku-ku, Yokohama 223, Japan

