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\S 1. Introduction.

We consider the equation

$s(1^{k}+2^{k}+\cdots+x^{k})+\gamma=by^{f}$ (1)

where $b,$ $s,$ $r$ , and $k$ are integer constants and investigate the conditions
under which we can assert that the equation has only finitely many
solutions in integers $x>0,$ $y\geqq 2$ , and $z\geqq 2$ .

This was proved by K. Gy\"ory, R. Tijdeman and M. Voorhoeve [4]
in the case $b\neq 0,$ $k>0,$ $s=1$ , and $r$ arbitrary, provided that $k\not\in\{1,3,5\}$ .
They also stated the same condition when $s$ is a certain squarefree odd
integer.

B. Brindza [2] proved the assertion in the case when $s$ is squarefree
and $z\not\in\{1,2,3,4,6\}$ or if $s$ is odd and $k\not\in\{1,2,3,5\}$ .

In this paper, we obtain new conditions on $k,$ $r$ , and $s$ which allow
us to 8how that (1) has only finitely many solutions in integers $x>0$ ,
$|y|\geqq 2$ , and $z\geqq 2$ .

\S 2. Results.

For an integer $n\neq 0$ and a prime $p$ , there exists an integer $m\geqq 0$

for which $p^{m}\Vert n$ . Then we put $\nu_{p}(n)=m$ and define, for a nonzero rational
number $\alpha=m/n$ with $m,$ $n\in Z$,

$\nu_{p}(\alpha)=\nu_{p}(m)-\nu_{p}(n)$

which depends only on $\alpha$ . Also we write num $\alpha=m$ and den $\alpha=n$ for
a rational number $\alpha=m/n$ with $m,$ $n\in Z,$ $n>0$ , and $(m, n)=1$ , where
$(m, n)$ denote8 the greatest common divisor of $m$ and $n$ .

THEOREM. For given integers $b\neq 0,$ $\gamma\neq 0,$ $s\neq 0$ , and $k>0$ , the equation
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(1) has only finitely many solutions in integers $x>0,$ $y$ with $|y|\geqq 2$ , and
$z\geqq 2$ , provided that $k,$ $r$ , and $s$ satisfy one of the follow’ing conditions;

I) $k\equiv 0(mod 2),$ $\nu_{2}(s/r)\leqq 0$ ,
II) $k\equiv 0(mod 2),$ $\nu_{2}(s/r)=2$ ,
III) $k=2^{h}(h\in N),$ $\nu_{2}(s/r)=1$ ,
IV) $k\equiv 3(mod 4),$ $\nu_{2}(s/(\gamma(k+1)))\neq k+1$ .
REMARK 1. Each condition in Theorem is equivalent to the following

statement: If $(s, r)=1$ ,
I) $k$ is even and $s$ i8 odd,
II) $k$ is even and $s\equiv 4(mod 8)$ ,
III) $k$ is a power of 2 and $s\equiv 2$ (mod4),
IV) $k\equiv 3(mod 4)$ and $num(s/(k+1))\not\equiv 2^{k+1}(mod 2^{k+2})$ .

If $(s, r)\neq 1,$ $s$ should be replaced by $s/(s, r)$ .
REMARK 2. In Theorem we assumed $r\neq 0$ . If $r=0$ , one can deduce

from Theorem 2 in [4] that the equation (1) has only finitely many
solutions in integers $x>0,$ $y$ with $|y|\geqq 2$ , and $z\geqq 2$ provided that $ k\not\in$

$\{1,3,5\}$ .
COROLLARY 1. Let $b\neq 0,$ $\gamma,$

$s\neq 0$ , and $k>0$ be given integers. If $s$

is odd and $k\not\in\{1,3,5\}$ , the equation (1) has only finitely many solutions
in integers $x>0,$ $y$ with $|y|\geqq 2$ , and $z\geqq 2$ .

REMARK 3. If $s$ i8 odd but $k\in\{1,3,5\}$ , the equation (1) may have
infinitely many solutions in integers $x>0,$ $y\geqq 2$ , and $z\geqq 2$ , under some
conditions for $b$ and $r$ ; for instance when $s=1,$ $k\in\{1,3,5\},$ $b=1$ , and
$r=0$ (cf. [5]).

COROLLARY 2. For given integers $a,$ $b\neq 0,$ $k>0,$ $r$ , and $s\neq 0$ , each
of the equations

$s\{a^{k}+(a+1)^{k}+\cdots+x^{k}\}+r=by^{z}$ $(x\geqq a, |y|\geqq 2, z\geqq 2)$ (2)

and

$s\{x^{k}+(x+1)^{k}+\cdots+a^{k}\}+r=by^{z}$ $(x\leqq a, |y|\geqq 2, z\geqq 2)$ (3)

has only finitely many solutions in integers $x,$ $y$ , and $z$ , provided that
$k$ and $s$ satisfy one of the following conditions;

V) $k\equiv 0(mod 2),$ $s\equiv 1(mod 2)$ ,
VI) $k>3,$ $k\equiv 3(mod 4),$ $s\not\equiv O(mod 2^{k+3})$ .



EQUATION 443

\S 3. Lemmas.

The left-hand side of (1) can be written as

$\frac{s}{k+1}\{B_{k+1}(x+1)-B_{k+1}\}+r$ ,

where $B_{i}$ is the Bernoulli number defined by

$\frac{z}{e^{f}-1}=\sum_{i=0}^{\infty}\frac{B_{i}z^{i}}{i!}$

and $B_{k}(x)$ is the Bernoulli polynomial given by

$B_{k}(x)=\sum_{i=0}^{k}\left(\begin{array}{l}k\\i\end{array}\right)Bx^{k-i}$ .

We remark that $B_{0}=1,$ $B_{1}=-1/2,$ $B_{i}=0$ for odd $i>1$ , and

$B_{k}(1-x)=(-1)^{k}B_{k}(x)$ , (4)

$B_{k}’(x)=kB_{k-1}(x)$ . (5)

LEMMA 1 (von Stadt-Clausen’s theorem).

den $B_{2i}=\prod_{p-1|2\ell}p$
$(i\geqq 1)$ .

In particular, den $B_{2i}$ is squarefree and 2 $||$ den $B_{2i}$ .
LEMMA 2 (K. Gyory, R. Tijdeman, and M. Voorhoeve [4] Lemma 1

and Lemma 2). Let $P(x)\in Q[x]$ be a polynomial having at least three
simple zeros, and let $b\neq 0$ be an integer. Then the equation

$P(x)=by^{x}$

has only finitely many solutions in integers $x>0,$ $y$ with $|y|\geqq 2$ , and
$z\geqq 2$ .

\S 4. Proofs.

PROOF OF THEOREM. By Lemma 2 we have only to prove that the
equation in $x$ ,

$\frac{s}{k+1}\{B_{k+1}(x+1)-B_{k+1}\}+r=0$ ,

has at least three simple roots. Since the number of the root8 as well
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as their multiplicity of an algebraic equation is not varied by replacing
$x$ by a linear polynomial, we have

$S\{B_{k+1}(x)-B_{k+1}\}+R=0$ , (6)

where $S=s/g,$ $R=r(k+1)/g$ with $g=(s, r(k+1))$ , so that $(S, R)=1$ . Fur-
thermore, denoting by $d$ the least common multiple of the denominators
of the coefficients appearing in the polynomial on the left-hand side of
(6), we have

$P(x):=d(k+1)g^{-1}[s\{1^{k}+2^{k}+\cdots+(x-1)^{k}\}+r]$

$=dS\{B_{k+1}(x)-B_{k+1}\}+dR$

$=dS\sum_{i=0}^{k}\left(\begin{array}{l}k+1\\i\end{array}\right)Bx^{k+1-i}+dR$

$=dS\{x^{k+1}-\frac{k+1}{2}x^{k}+\sum_{i=1}^{k/2}\left(\begin{array}{l}k+l\\2i\end{array}\right)B_{2i}x^{k+1-2i}\}+dR=0$ . (7)

Here $P(x)\in Z[x]$ is a primitive polynomial, because of the choice of $d$

and $(S, R)=1$ . We note that $d$ is squarefree, $(d, S)=1,$ $d$ is odd when
$S$ is even, and $d$ is even when $S$ is odd and $k$ is even. We a18o remark
that $\nu_{2}(S/R)=\nu_{2}(s/(r(k+1)))$ and that $\nu_{2}(S/R)=\nu_{2}(s/r)$ when $k$ is even.
Hence in Theorem we may replace $\nu_{2}(s/r)$ and $\nu_{2}(s/(r(k+1)))$ by $\nu_{l}(S/R)$ .
In what follows, we shall prove that $P(x)=0$ has at lea8t three simple
roots. The proof will be divided into four ca8es I), II), III), and IV).

Case I). $k$ is even and $\nu_{2}(S/R)\leqq 0$ . The last inequality implies that
$S$ is odd, since $(S, R)=1$ . It follows from (7) that

$P(x)+xP^{\prime}(x)=dS\cdot(k+2)x^{k+1}-\frac{1}{2}dS\cdot(k+1)^{2}x^{k}$

$+\sum_{i=1}^{k/2}ds\left(\begin{array}{l}k+1\\2\dot{j}\end{array}\right)B_{2}\cdot(k+2-2i)x^{k+1-2i}+dR$ . (8)

Here 2 $||d$ , and $ds(k2^{l}+i1)B_{2i}eZ$, and so

$dS\cdot(k+2)\equiv 0(mod 2)$ , $-\frac{1}{2}dS\cdot(k+1)^{2}\equiv 1(mod 2)$ ,

$dS\left(k & +12i\right)B_{2i}\cdot(k+2-2i)\equiv 0(mod 2)$ , $dR\equiv 0(mod 2)$ .

Therefore we have

$P(x)+xP’(x)\equiv x^{k}$ $(mod 2)$ . (9)
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Since $\deg P(x)=k+1\geqq 3$ , we have only to prove that $P(x)=0$ has no
multiple root. Suppose that $P(x)=0$ has a multiple root. Then there
exists a non-constant polynomial $Q(x)\in Z[x]$ such that

$\{Q(x)\}^{2}|P(x)$ , $Q(x)|P’(x)$ (10)

and so

$Q(x)|P(x)+xP’(x)$ .
Hence we have by (9) and (10)

$Q(x)\equiv x^{m}(mod 2)$ , $P’(x)\equiv x^{m}R(x)(mod 2)$ (11)

for some integer $m\geqq 0$ and some polynomial $R(x)\in Z[x]$ . Here we find
$P’(0)\equiv 1$ $(mod 2)$ ,

since $P^{\prime}(O)=dS\cdot(k+1)B_{k}$ with 2 $\Vert d,$ $S$ odd, $k$ even, and $denB_{k}$ is even;
so that (11) implies $m=0$ . Hence we have $Q(x)\equiv 1(mod 2)$ , and so we
may write

$Q(x)=2S(x)+1$ , $S(x)\in Z[x]$ .
Noticing that neither $Q(x)$ nor $S(x)$ is a constant and that $\{2S(x)+1\}^{2}|P(x)$

by (10), the leading coefficient $dS$ of $P(x)$ is divisible by 4, which is a
contradiction.

Case II). $k$ is even and $\nu_{2}(S/R)=2$ . The last equality implies that
$R$ and $d$ are odd, since $(S, R)=1$ . We also note that $dS\left(\begin{array}{l}k+1\\i\end{array}\right)B_{i}\equiv 0$

$(mod 2)$ , since 2 $\Vert$ den $B_{i}$ by Lemma 1. Hence we have by (7),

$P(x)\equiv 1$ $(mod 2)$ . (12)

Since deg $P(x)\geqq 3$ , we have only to prove that $P(x)=0$ has no multiple
root. Suppose that $P(x)=0$ has a multiple root. Then there exist a
non-constant polynomial $Q(x)\in Z[x]$ and a polynomial $R(x)\in Z[x]$ such
that

$P(x)=\{Q(x)\}^{2}R(x)$ .
Since $\deg P(x)$ is odd, $\deg R(x)$ is odd, and so $R(x)$ is not a constant.
Noticing that $Q(x),$ $R(x)|P(x)$ , we have by (12)

$Q(x)\equiv 1(mod 2)$ , $R(x)\equiv 1(mod 2)$ ,

and so we may write
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$Q(x)=2S(x)+1$ , $R(x)=2T(x)+1$ ,

where $S(x),$ $T(x)\in Z[x]$ . Hence we get

$P(x)=\{2S(x)+1\}^{2}\{2T(x)+1\}$ ,

where neither $S(x)$ nor $T(x)$ is a constant. Therefore the leading coef-
ficient $dS$ of $P(x)$ is divisible by 8, which is a contradiction.

Case III). $k=2^{h}(heN)$ and $\nu_{2}(S/R)=1$ . The last equality implies
that $R$ and $d$ are odd since $(S, R)=1$ . As in the Case I), we have (8).

Noticing that $k$ is even, $2||S$ , and $dS\left(k & +12i\right)B_{2i}\in Z$, we find

$dS\cdot(k+2)\equiv 0(mod 2)$ , $-\frac{1}{2}dS\cdot(k+1)^{2}\equiv 1(mod 2)$ ,

$dS\left(\begin{array}{l}k+l\\2i\end{array}\right)B_{2i}\cdot(k+2-2i)\equiv 0(mod 2)$ , $dR\equiv 1(mod 2)$ .

Therefore it follows from (8) with $k=2^{h}$ that

$P(x)+xP’(x)\equiv x^{k}+1\equiv(x+1)^{k}$ $(mod 2)$ . (13)

We will show that $P(x)=0$ has no multiple root. Suppose that $P(x)=0$

has a multiple root. Then there exists a non-constant polynomial
$Q(x)\in Z[x]$ such that

$\{Q(x)\}^{2}|P(x)$ , $Q(x)|P’(x)$ ,

and so
$Q(x)|P(x)+xP^{\prime}(x)$ .

Hence it follows from (13) that

$Q(x)\equiv(x+1)^{*}(mod 2)$ , $P(x)\equiv(x+1)^{2n}R(x)(mod 2)$ (14)

for some integer $m\geqq 0$ and polynomial $R(x)\in Z[x]$ . But we have by (7)

$P(3)=d(k+1)S\cdot(1+2^{k})+dR$ ,

so that

$P(3)\equiv 1$ (mod2)

since $d$ and $R$ are odd and $S$ is even. On the other hand, we have by
(14)

$P(3)\equiv 4^{2}’ R(3)$ $(mod 2)$ .
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Thus we get $m=0$ , and hence (14) gives $Q(x)\equiv 1$ (mod2). Therefore,

as in the Case I), we find 4 $|dS$ , which is a contradiction.
Case IV). $k\equiv 3(mod 4)$ and $(d, S)=(S, R)=1$ . It follows from (5)

and (8) that

$P^{\prime}(x)=dS\cdot(k+1)B_{k}(x)$ .
Since $k$ is odd, we can show, by the same way as in the proof of
Theorem 2 in [4], that the equation $B_{k}(x)=0$ as well as $P’(x)=0$ has no
multiple root. Hence the multiplicity of a root of $P(x)=0$ is at most 2.
Thus we can write

$P(x)=\{Q(x)\}^{2}R(x)$ , (15)

where $Q(x),$ $R(x)\in Z[x]$ have only simple zeros and no common zeros. It
is enough to prove that

deg $R(x)\geqq 3$ .
For this we prove first that

$P(\frac{1}{2})\neq 0$ . (16)

If $S$ is odd, it is easily seen that $2^{k+J}P(1/2)$ is odd for odd $d$ and $2^{k}P(1/2)$

is odd for even $d$ ; and hence (16) holds for odd $S$ . If $S$ is even, then
$d$ and $R$ are odd. We put $S=\nu_{2}(S)S^{\prime}$ , where $S$ ’ is odd, so that
$2dS^{\prime}\left(\begin{array}{l}k+1\\i\end{array}\right)B_{i}\in Z$. We note that $\nu_{2}(S/R)=\nu_{2}(S)\neq k+1$ by IV). If $\nu_{2}(S)<$

$k+1$ ,

$2^{k+1-\nu_{2}(S)}P(\frac{1}{2})=dS’-(k+1)dS’+2\sum_{i=2}^{k}2dS^{\prime}\left(\begin{array}{l}k+1\\i\end{array}\right)B_{i}2^{i-2}+2^{k+1-\nu_{2}(S)}dR$

is odd. Similarly $P(1/2)$ is odd when $\nu_{2}(s)>k+1$ . Hence (16) holds also
for even $S$ .

Now it follow8 from (4) and (7) with odd $k$ that

$P(1-x)=P(x)$ .
Hence the roots of $P(x)=0$ are located symmetrically about $x=1/2$ , and
the multiplicity of the corresponding roots are equal. The same is true
for the roots of $Q(x)=0$ . By (16) we get $\deg Q(x)\equiv 0$ (mod2), so that
$\deg\{Q(x)\}^{2}\equiv 0(mod 4)$ . Hence we find by (15)

deg $R(x)\equiv\deg P(x)=k+1\equiv 0$ $(mod 4)$ .
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Thus it is sufficient to prove that $R(x)$ is not a constant. Suppose that
$R(x)$ is a constant, say $c\neq 0$ . Then we may write

$P(x)=c\{Q(x)\}^{2}$ (17)

where deg $Q(x)=(k+1)/2$ . Recalling that every term of $P(x)$ of odd
degree not greater than $(k+1)/2$ is zero and $P(O)\neq 0$ , we can prove by
comparing the coefficients of the both sides of (17), that every term of
odd degree of $Q(x)$ and also that of $P(x)$ i8 zero, which contradicts the
fact that the coefficient of $x^{k}$ of $P(x)$ , where $k$ i8 odd, is different from
zero. The proof of our Theorem is now complete.

PROOF OF COROLLARY 1. By the result of B. Brindza [2] mentioned
in the introduction, we have only to prove the statement when $k=2$ .
Thus if $r\neq 0$ , Corollary 1 follows from Case I) in Theorem. The case of
$r=0$ is already di8cussed in Remark 2.

PROOF OF COROLLARY 2. The conditions V) and VI) are special case8
of I) and IV) in Theorem $re8pectively$ . Equation (2) has a specific form
of (1) with suitable modified $r$ . (3) is reduced to (2) by multiplying the
both sides by $(-1)^{k}$ .

I would like to express my thanks to Professor Iekata Shiokawa for
his valuable advice concerning the paper.
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