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Remarks on Blowing-Up of Solutions for Some
Nonlinear Schr\"odinger Equations
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Gakushuin University and University of Tokyo

Abstract. We study the blowing-up conditions of solutions for nonlinear SchrOdinger
equations with interaction which does not satisfy known Glassey’s condition [4]. We also
give some remarks on the blowing-up conditions on an exterior domain with a star-shaped
complement under the Dirichlet boundary condition and on a complement of a ball under
the Neumann boundary condition. Finally, we show global exi8tence of solutions for the
equation: $i\frac{\partial u}{\partial t}=\Delta u+(\frac{1}{|x|^{2}}*|u|^{2})u$ .

\S 1. Introduction.

In this paper we are concerned with the problem of blowing-up of
solutions to the following nonlinear Schrodinger equations:

(1.1) $i\frac{\partial u}{\partial t}=\Delta u+f(|u|^{2})u$ , $t\geqq 0,$ $ x\in\Omega$ ,

(1.1’) $i\frac{\partial u}{\partial t}=\Delta u+(V*|u|^{2})u$ , $t\geqq 0,$ $ x\in\Omega$ .
Here $i=\sqrt{-1},$ $\Omega$ is a smooth domain in $R^{n}(n\geqq 3)$ and $f,$ $V$ are real
valued functions. For the case $\Omega=R^{n}$ we study the blowing-up conditions
for the Cauchy problem (1.1) (or (1.1)) with initial data (1.2):

(1.2) $u(0, x)=u_{o}(x)$ , $ x\in\Omega$ .
For the case $\Omega\neq R^{n}$ we study the blowing-up conditions for the mixed
problem (1.1) (or (1.1’)) with the initial condition (1.2) and the Dirichlet
boundary condition (1.3) or the Neumann boundary condition (1.4):

(1.3) $u(t, x)=0$ , $t\geqq 0,$ $ X\in\partial\Omega$ ,
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(1.4) $\frac{\partial u}{\partial n}=0$ , $t\geqq 0,$ $ x\in\partial\Omega$ .

For local interaction $f(|u|^{2})u$ Glassey [4] studied the blowing-up conditions
and showed that if the nonlinear term $f(|u|^{2})u$ satisfies the following
condition (G), solutions of (1.1) and (1.2) blow up in a finite time for
suitable initial data.

(G) $f(t)$ is a real-valued function from $R_{+}(=[0, +\infty))$ to $R^{1}$ and
there is a constant $c>1+2/n$ such that $cF(t)\leqq tf(t)$ for all
$t\geqq 0$ , where $F(t)=\int_{0}^{t}f(s)ds$ .

In particular, single power interaction $f(|u|^{2})u=|u|p-1u$ with $p>1+4/n$

satisfies the condition (G). (For $p=1+4/n$ , see, e.g., Cazenave and
Weisslar [1], Nawa [13], Nawa and M. T8utsumi [14], M. Tsutsumi [18],
Weinstein [20].) However the interaction

(1.5) $f(|u|^{2})u=|u|^{p-1}u+|u|^{q-1}u$ with $1<p<1+\frac{4}{n}<q$

does not satisfy Glassey’8 condition (G). For nonlocal interaction $(V*|u|^{2})u$

Matsumoto and Mochizuki [9] showed that if $V(x)$ satisfies the following
conditions:

(V.1) $V(-x)=V(x)$ ,

(V.2) $|V(x)|\leqq\frac{M}{|x|^{\lambda}}$ , $0<x<n$ , $M>0$ ,

(V.3) $z\cdot\nabla V(x)\leqq-cV(x)$ for some $c\geqq 2$ ,

for all $xeR^{n}$ , then the blowing-up occurs for suitable initial data. In
the case $V(x)=1/|x|^{\lambda}$ the condition (V.3) means $2\leqq x<n$ . The condition
(V.3) $(c>2)$ corresponds to Glassey’s condition (G). However the in-
teraction

(1.6) $((\frac{1}{|x|^{\lambda}}+\frac{1}{|x|^{\mu}})*|u|^{2})u$ with $0<x<2<\mu<n$

does not satisfiy the condition (V.3).
One of the main purposes of this paper is to show that even for

interactions (1.5) and (1.6) solutions for the Cauchy problem (1.1) (or
(1.1)) and (1.2) blow up in a finite time for suitable initial data (see

section 3).
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The second purpose of this paper is to give the blowing-up conditions
for the Dirichlet problem $(1.1)-(1.3)$ in an exterior domain $\Omega$ with a
star-shaped complement, and for the Neumann problem (1.1), (1.2) and
(1.4) in the complement of a ball. Kavian [6] studied the blowing-up
of solutions for the problem $(1.1)-(1.3)$ with $F(|u|^{2})u=|u|^{p-1}u,$ $p\geqq 5$ , on
$\Omega=(bal1)^{c}$ and considered only some examples for the Neumann boundary
condition. We shall prove the pseudo-conformal conservation law under
the Neumann boundary condition and give the blowing-up conditions for
the problem (1.1), (1.2) and (1.4).

In this paper we are mainly concerned with the blowing-up conditions.
But we just mention that, recently, several articles have appeared ([1],
$[10]-[14],$ $[19],$ $[21]$ , [22]) in which the behaviour of the solutions of
$(1.1)-(1.2)$ (with $\Omega=R^{n}$) near the blow-up time is studied for some in-
teractions.

Finally, we show that the global existence of solutions for the Cauchy
problem $(1.1)-(1.2)$ with nonlocal interaction $(V*|u|^{2})u=(1/|x|^{2}*|u|^{2})u$ can be
proved for small initial data. This is an analogue of Weinstein’s work
[20].

We use the following notations throughout this paper.

$\nabla=(\nabla_{1}, \cdots, \nabla_{n})$ , $\nabla_{j}=\frac{\partial}{\partial x_{j}}$ , $\alpha=\frac{n+2}{n-2}(n\geqq 3)$ ,

$\Vert u\Vert_{p}=\Vert u||_{L^{p}(\Omega)}(p>0)$ ,

$(V*|u|^{2})(x)=\int_{0}V(x-y)|u|^{2}(y)dy$ ,

$\Sigma_{o}=\{ueH_{0}^{1}(\Omega) ; |x|u(x)\in L^{2}(\Omega)\}$ ,
$\Sigma=\{ueH^{1}(\Omega) ; |x|u(x)\in L^{2}(\Omega)\}$ ,
$H_{r}^{1}=$ {$ueH^{1}(R^{n})$ ; $u$ is radially symmetric}.

\S 2. Preliminaries.

In this section we collect several identities which are used throughout
this paper. First, we consider the problem $(1.1)-(1.3)$ . We assume that
$f\in C^{1}([0, +\infty))$ is a real-valued function and that $\Omega$ is a smooth domain
with compact boundary. We also assume that there is a solution
$u\in C^{1}([0, T);L^{2}(\Omega))\cap C([0, T);H_{0}^{1}(\Omega)\cap H^{2}(\Omega))$ of the problem $(1.1)-(1.3)$ for
some $T>0$ . We put $F(t)=\int_{0}^{t}f(s)ds$ . Then we have the following lemma.

LEMMA 2.1. Let $n\geqq 3$ . We assume that $f(t^{2})t^{2},$ $F(t^{2})\leqq Ct^{\alpha+1}$ for large
$t>0$ where $C>0$ is a constant. Let $u_{o}\in H_{o}^{1}(\Omega)$ and let $u(t)$ be a solution
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in $C^{1}([0, T);L^{2}(\Omega))\cap C([0, T);H_{0}^{1}(\Omega)\cap H^{2}(\Omega))$ of $(1.1)-(1.3)$ for some $T>0$ .
Then for any $t<T$ we have

(2.1) $||u(t)\Vert_{2}=\Vert u_{0}||_{2}$ ,

(2.2) $E(u(t))=\frac{1}{2}||\nabla u(t)\Vert_{2}^{2}-\frac{1}{2}\int_{\rho}F(|u(t)|^{2})dx=E(u_{o})$ .
Moreover, if $u_{o}e\Sigma_{o}\cap H^{2}(\Omega)$ , the solution $u$ satisfies $|x|u(t, x)eL^{2}(\Omega)$ for
$0<t<T$ and the following identity holds:

(2.3) $|||x|u(t)||_{2}^{2}=|||x|u_{o}||_{2}^{z}-4({\rm Im}\int_{\rho}(x\cdot\nabla u_{o}(x))dx)t$

$+4\int_{0}^{t}(t-s)\{2\Vert\nabla u(s)||_{2}^{2}+n\int_{\rho}F(|u(s, x)|^{2})dx$

$-n\int_{\rho}f(|u(s, x)|^{2})|u(s, x)|^{2}dx$

$-\int_{\partial 9}(x\cdot n(x))|\nabla u(s, x)|^{2}d\tau\}ds$ .

This lemma is well-known ($8ee$ , e.g., Glas8ey [4], Ginibre and Velo
[2] for $\Omega=R^{n}$ , Kavian [6], Otani [15] for general domains, and see also
the proof of Lemma 2.2.).

Next, we consider the problem (1.1), (1.2) and (1.4). We assume
that there is a solution $ueC^{1}([0, T);H^{1}(\Omega))\cap C([0, T);H^{\epsilon}(\Omega))$ of the
problem (1.1), (1.2) and (1.4) for some $T>0$ . Recall that $\Sigma=$

$\{ueH^{1}(\Omega);|x|u(x)\in L^{2}(\Omega)\}$ .
LEMMA 2.2. Let $f$ and $F$ be as in Lemma 2.1 and $u_{o}eH^{1}(\Omega)$ . Let

$u(t)$ be a solution in $C^{1}([0, T);H^{1}(\Omega))\cap C([0, T);H^{\theta}(\Omega))$ of (1.1), (1.2) and
(1.4) for some $T>0$ . Then the identities (2.1) and (2.2) also hold for
all $0\leqq t<T$. Moreover, if $u_{o}e\Sigma\cap H^{3}(\Omega)$ , then $|x|u(t, x)eL^{2}(\Omega)$ for $0<t<T$

and the solution $u$ satisfies

(2.4) $|||x|u(t)||_{2}^{2}=|||x|u_{0}||_{2}^{2}-4({\rm Im}\int_{\rho}(x\cdot\nabla u_{o}(x))u_{0}(x)dx)t$

$+4\int_{0}^{t}(t-s)[2||\nabla u(s)||_{2}^{2}+n\int_{\rho}F(|u(s, x)|^{2})dx$

$-n\int_{\rho}f(|u(s, x)|^{2})|u(s, x)|^{l}dx+\int_{\partial\rho}(x\cdot n(x))\{|\nabla u(s, x)|^{2}$

$-F(|u(s, x)|^{2})-{\rm Im}(\frac{\partial u}{\partial s}(s, x)\overline{u(s,x)})\}d\Gamma]ds$ .

PROOF. We have only to show (2.4). We prove it similarly to
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Kavian [6]. Let $\phi\in C_{0}^{4}(R^{n})$ be a function satisfying $\phi(x)\geqq 0,$ $\phi\not\equiv 0$ . Put

(2.5) $V(t)=\frac{1}{2}\int_{0}\phi(x)|u(t, x)|^{2}dx$ .
From (1.1) we have

(2.6) $V^{\prime}(t)={\rm Re}\int_{\Omega}\phi(x)\overline{u(t,x)}\frac{\partial u(t,x)}{\partial t}dx$

$={\rm Im}\int_{\rho}\emptyset(x)\overline{u(t,x)}\Delta u(t, x)dx$

$=-{\rm Im}\int_{\Omega}\nabla\phi(x)\cdot\nabla u(t, x)\overline{u(t,x)}dx$ .
By integrating by parts and using (1.4) we have, for $h\in R^{1}$ ,

(2.7) $V’(t+h)-V’(t)$

$=-{\rm Im}\int_{0}\nabla\phi\cdot\nabla(u(t+h, x)-u(t, x))(\overline{u(t+h,x)}-\overline{u(t,x}))dx$

+2 ${\rm Im}\int_{\rho}(u(t+h, x)-u(t, x))\nabla\phi\cdot\nabla\overline{u(t,x)}dx$

$+{\rm Im}\int_{\Omega}(u(t+h, x)-u(t, x))\Delta\phi\overline{u(t,x)}dx$

$-{\rm Im}\int_{\partial\rho}(u(t+h, x)-u(t, x))\overline{u(t,x)}\frac{\partial\phi}{\partial n}d\Gamma$ .

Under the assumption on the regularity of the solution $u$ , we can see
from (2.7) that $V$ is a $C^{2}$-function and satisfies

(2.8) $V^{\prime\prime}(t)=2{\rm Im}\int_{0}\frac{\partial u(t,x)}{\partial t}\nabla\phi\cdot\nabla\overline{u(t,x)}dx$

$+{\rm Im}\int_{\Omega}\frac{\partial u(t,x)}{\partial t}\Delta\phi\overline{u(t,x)}dx$

$-{\rm Im}\int_{\partial D}\frac{\partial u(t,x)}{\partial t}\overline{u(t,x)}\frac{\partial\phi}{\partial n}d\Gamma$ .

The first term of the right hand side of (2.8) is equal to

2 ${\rm Im}\int_{0}\nabla\phi\cdot\nabla\overline{u(t,x)}(-i\Delta u(t, x)-if(|u(t, x)|^{2})u(t, x))dx$

$=-2{\rm Re}\int_{\Omega}\nabla\phi\cdot\nabla\overline{u(t,x)}\Delta u(t, x)dx-\int_{\Omega}\nabla\phi\cdot\nabla F(|u(t, x)|^{2})dx$

$=2{\rm Re}\int_{\Omega}\nabla(\nabla\phi\cdot\nabla\overline{u(t,x}))\cdot\nabla u(t, x)dx-\int_{\Omega}\nabla\phi\cdot\nabla F(|u(t, x)|^{2})dx$
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$=2\int_{0}(H(\phi)\nabla u(t, x)|\nabla u(t, x))dx+\int_{\partial\rho}\frac{\partial\phi}{\partial n}|\nabla u(t, x)|^{2}d\Gamma$

$-\int_{\rho}\Delta\phi|\nabla u(t, x)|^{2}-\int_{\partial Q}\frac{\partial\phi}{\partial n}F(|u(t, x)|^{2})d\Gamma$

$+\int_{\rho}\Delta\phi F(|u(t, x)|^{l})dx$ ,

where
$(H(\phi)\nabla u(t, x)|\nabla u(t, x))=\sum_{1\leqq j,k\leqq n}\nabla_{j}\nabla_{k}\phi\nabla_{\dot{f}}u(t, x)\nabla_{k}\overline{u(t,x)}$ .

On the other hand, the second term of the right hand side of (2.8)
is equal to

${\rm Im}\int_{\rho}\Delta\phi\overline{u(t,x)}(-\dot{j}\Delta u(t, x)-if(|u(t, x)|^{2})u(t, x))dx$

$=-{\rm Re}\int_{0}\Delta\phi\overline{u(t,x)}\Delta u(t, x)dx-\int_{\rho}\Delta\phi f(|u(t, x)|^{2})|u(t, x)|^{2}dx$

$=\int_{\rho}\Delta\phi|\nabla u(t, x)|^{2}dx+\frac{1}{2}\int_{\partial\rho}|u(t, x)|^{2}n(x)\cdot\nabla(\Delta\phi)d\Gamma$

$-\frac{1}{2}\int_{\rho}|u(t, x)|^{2}\Delta^{2}\phi dx-\int_{0}\Delta\phi f(|u(t, x)|^{2})|u(t, x)|^{2}dx$ .

Hence we have the following identity:

(2.9) $V^{\prime\prime}(t)=2\int_{\rho}(H(\phi)\nabla u(t, x)|\nabla u(t, x))dx$

$+\int_{0}\Delta\phi\{F(|u(t, x)|^{2})-f(|u(t, x)|^{2})|u(t, x)|^{2}\}dx$

$-\frac{1}{2}\int_{\rho}\Delta^{2}\phi|u(t, x)|^{2}dx+\int_{\partial Q}\frac{\partial\phi}{\partial n}\{|\nabla u(t, x)|^{2}-F(|u(t, x)|^{2})\}d\Gamma$

$+\int_{\partial\rho}\frac{\partial\Delta}{\partial n}\phi-|u(t, x)|^{2}d\Gamma-{\rm Im}\int_{\partial Q}\frac{\partial\phi}{\partial n}\frac{\partial u(t,x)}{\partial t}\overline{u(t,x)}d\Gamma$ .
We take the function $\zeta$ : $R_{+}\rightarrow R_{+}$ such that

$\zeta(-t)=\zeta(t)$ , $\zeta(t)=1$ for $|t|\leqq 1$ , $\zeta(t)=0$ for $|t|\geqq 2$ ,

$\zeta(t)\leqq 0$ for $t\geqq 0$ and $\zeta\in C^{\infty}$

For each integer $m\geqq 1$ we put $\phi_{n}.(x)=\not\in|x|^{2}\zeta(|x|/m)$ and define $V.(t)$ as $V(t)$

with $\phi=\phi_{n*}$ in (2.5). Then $V.(t)$ satisfies the assumption in the argument
above and we can apply (2.9) for this function $V.(t)$ . Since $V.(t)$ is a
$C^{2}$-function we have
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(2.10) $V_{m}(t)=V_{m}(0)+V_{m}^{\prime}(0)t+\int_{0}^{t}(t-s)V_{m}^{\prime}(s)ds$ .

By the properties of the function $\zeta$ and $\phi_{m}$ , we obtain as $ m\rightarrow+\infty$

(2.11) $V_{m}(t)\rightarrow\frac{1}{4}\int_{0}|x|^{2}|u(t, x)|^{2}dx$ ,

(2.12) $V_{m}^{\prime}(0)\rightarrow-{\rm Im}\int_{\rho}(x\cdot\nabla u_{o}(x))\overline{u_{o}(x)}dx$ ,

(2.13) $V_{m}^{\prime\prime}(t)\rightarrow W(t)$ ,

where

$W(t)=2\int_{0}|\nabla u(t, x)|^{2}dx+n\int_{0}\{F(|u(t, x)|^{2})-|u(t, x)|^{2}f(|u(t, x)|^{2})\}dx$

$+\int_{\partial\Omega}(x\cdot n(x))\{|\nabla u(t, x)|^{2}-F(|u(t, x)|^{2})-{\rm Im}(\frac{\partial u(t,x)}{\partial t}\overline{u(t,x)})\}dx$ .

Therefore we can conclude that identity (2.4) holds. $\square $

Next, we consider the problem (1.1’), (1.2) and (1.3). We may assume
that the origin $0$ belongs to $\Omega$ . We assume that $V\in C^{1}(\Omega\backslash \{0\})$ satisfies
the following conditions:

(W.1) $V(-x)=V(x)$ ,

(W.2) $|V(x)|\leqq\frac{C}{|x|^{\lambda}}+\frac{D}{|x|^{\mu}}$ with $0<x\leqq\mu<\min(4, n)$ ,

(W.3) $|\nabla V(x)|\leqq\frac{C}{|x|^{\lambda+1}}+\frac{D}{|x|^{\mu+1}}$

for all $xe\Omega\backslash \{0\}$ , where $C$ and $D$ are positive constants. We also assume
that for $u_{0}\in\Sigma\cap H^{2}(\Omega)$ there is a solution $u\in C^{1}([0, T);L^{2}(\Omega))\cap C([0, T)$ ;
$\Sigma\cap H^{2}(\Omega))$ of the problem (1.1’), (1.2) and (1.3) for some $T>0$ .

LEMMA 2.3. Assume (W. $1$ ) $-(W.3)$ and suppose in addition that
$\mu+1<n$ . Let $u(t)$ be a solution in $C^{1}([0, T);L^{2}(\Omega))\cap C([0, T);\Sigma\cap H^{2}(\Omega))$

of (1.1’), (1.2) and (1.3) for some $T>0$ . Then $u(t)$ satisfies the following
identities:

(2.14) $||u(t)||_{2}=||u_{o}\Vert_{2}$ ,

(2.15) $E(u(t))=\frac{1}{2}||\nabla u(t)||_{2}^{2}-\frac{1}{2}P(u(t))=E(u_{o})$ ,
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where $P(u(t))=\not\in\int\int_{0\times D}V(x-y)|u(t, x)|^{2}|u(t, y)|^{2}dxdy$ . Moreover, we have

(2.16) $\Vert|x|u(t)||_{2}^{2}=|||x|u_{0}||_{2}^{2}-4({\rm Im}\int_{\rho}(x\cdot\nabla u_{o}(x))\overline{u_{o}(x)}dx)t$

$+4\int_{0}^{t}(t-s)\{2\Vert\nabla u(s)||_{2}^{2}-\frac{1}{2}\int_{0}((x\cdot\nabla V)*|u(s)|^{2})|u(s, x)|^{2}dx$

$-\int_{\partial\Omega}(x\cdot n(x))|\nabla u(s, x)|^{2}d\Gamma\}ds$ .
The proof of Lemma 2.3 is analogous to the proof of Lemmas 2.1

and 2.2 (see also, e.g., Kavian [6], Matsumoto and Mochizuki [9]).

\S 3. Blowing-up condition for $f(|u|^{2})u=|u|p-1u+|u|^{q-1}u$ .
In this section we consider the Cauchy problem (1.1) and (1.2) with

the interaction:

(3.1) $f(|u|^{2})u=|u|^{p-1}u+|u|^{q-1}u$ , $1<p<1+\frac{4}{n}<q<\alpha(n\geqq 3)$ .
For such nonlinearity it is known that $(1.1)-(1.2)$ has a unique local
solution in the class $C^{1}([0, T);H^{k-2}(R^{n}))\cap C([0, T);\Sigma\cap H^{k}(R^{n}))$ for $k=1,2$
(see Ginibre and Velo [1], Kato [5]). We state the main result of this
section.

THEOREM 3.1. We assume that $u_{o}\in\Sigma\cap H^{2}(R^{n})$ satisfies either of the
following conditions (3.2) and (3.3):

(3.2) $E(u_{o})<-\frac{e_{o}}{(q-1)n}$ ,

(3.3) $E(u_{0})\geqq-\frac{e_{o}}{(q-1)n}$ , ${\rm Im}\int_{R^{n}}(x\cdot\nabla u_{o}(x))\overline{u_{o}(x)}dx>0$ and

$2|{\rm Im}(\int_{R^{n}}(x\cdot\nabla u_{0}(x))\overline{u_{o}(x)}dx)|^{2}\geqq(e_{o}+(q-1)nE(u_{o}))|||x|u_{o}\Vert_{2}^{2}$

where $e_{o}$ is a positive constant depending only on $n,$ $p,$ $q$ , and $\Vert u_{O}\Vert_{2}$ .
Then the solution $u$ of $(1.1)-(1.2)$ blows up in a finite time, more precisely,
there is a finite time $T_{1}>0$ such that

(3.4)
$\lim_{t\rightarrow T_{1}}||\nabla u(t)\Vert_{2}=\infty$ .

REMARK 3.1. $e_{0}$ is explicitly given by
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(3.5) $e_{0}=C_{1}\Vert u_{0}\Vert_{2}^{\kappa}$ , $\kappa=\frac{4\theta}{\{2-(\alpha+1)(1-\theta)\}}$ ,

where $\theta$ is determined by $p+1=2\theta+(\alpha+1)(1-\theta),$ $C_{1}$ is a positive constant
depending only on $n,$ $p$ and $q$ and $ C_{1}\rightarrow+\infty$ as $q\rightarrow 1+4/n$ (see (3.11) and
(3.12)). We can show that condition (3.2) is satisfied for suitable initial
data at least for $p<p_{0}$ , where $p_{0}$ is some constant in $(1, 1+4/n)$ . In
fact, for any $v_{0}\in\Sigma\cap H^{2}(R^{n})$ we can show that there is a large constant
$x_{0}>0$ such that the initial data $u_{0}(x)=xv_{0}(x)$ satisfies the condition (3.2)
for all $\lambda\geqq\lambda_{o}$ .

REMARK 3.2. The class of solution in Theorem 3.1 is $C^{1}([0, T)$ ;
$L^{2}(R^{n}))\cap C([0, T);H^{2}(R^{n}))$ . Note that for the initial data $u_{o}\in\Sigma\cap H^{2}(R^{n})$

we have $|x|u(t, x)\in L^{2}(R^{n})$ for $t>0$ , and hence $u\in C([0, T);\Sigma\cap H^{2}(R^{n}))$ .
For a weak solution $u\in C([0, T);\Sigma)$ , satisfying the integral equation
associated with $(1.1)-(1.2)$ , we can prove the same result by using the
well-known pseudoconformal conservation law (see, e.g., Ginibre and Velo
[2]).

REMARK 3.3. Glassey’s condition is not satisfied for such $f(|u|^{2})u$ as
given in (3.1). It seems that the blowing-up of solution more likely
occurs in the case of Theorem 3.1 than the single power nonlinearity
case $f(|u|^{2})u=|u|^{p-1}u$ with $p>1+4/n$ , which satisfies Glassey’8 condition
(G). The condition (3.2) or (3.3) for initial data is more restricted than
that of the case $f(|u|^{2})u=|u|^{p-1}u$ (see, e.g., Glassey [4]), but we do not
know whether these conditions are optimal or not.

For $f(|u|^{2})u=|u|^{p-1}u+|u|^{q-1}u,$ $1<p<q$ , we can summarize as follows:
(i) if $q<1+4/n$ , then $(1.1)-(1.2)$ has global solutions for all initial data;
(ii) if $p\geqq 1+4/n$ , then Glassey’s condition holds and the finite time blowing-
up occurs;
(iii) if $ p<1+4/n<q<\alpha$ , then Glassey’s condition does not hold, but
Theorem 3.1 is applicable to this case;
(iv) if $p<1+4/n=q$ , we do not know whether the finite time blowing-
up occurs or not.

For $f(|u|^{2})u=|u|^{p-1}u-|u|^{q-1}u,$ $1<p\neq q$ , we can summarize as follows:
(v) if $ p<q<\alpha$ or $p<1+4/n$ , then $(1.1)-(1.2)$ has global solutions for all
initial data;
(vi) if $p\geqq 1+4/n>q$ or $p>q\geqq 1+4/n$ , then Glassey’s condition holds and
the finite time blowing-up occurs.

REMARK 3.4. Theorem 3.1 can be generalized as follows. We assume
that
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(f.1) $f(t)=f_{1}(t)+f_{2}(t)$ , $f_{\dot{f}}(t)\in C^{1}([0, +\infty))$

and putting $F_{j}(t)=\int_{0}^{t}f_{j}(s)ds(j=1,2)$ ,

(f.2) $f_{1}(t)t\leqq Ct^{(p+1)/2}$ , $\frac{q+1}{2}F_{2}(t)\leqq f_{2}(t)t$ ,

with

$ 1<p<1+\frac{4}{n}<q<\alpha$ ,

for $8ufficiently$ large $t>0$ , where $C$ is a constant. Note that (f.2) implies
that for sufficiently large $t>0$ there is a constant $C>0$ such that

$F_{1}(t)\leqq Ct^{(p+1)/2}$ , $f_{2}(t)t\geqq Ct^{(q+1)/2}$ .
Under the assumptions (f.1) and (f.2), the solutions of $(1.1)-(1.2)$ blow
up in a finite time for suitable initial data.

In this section, unless otherwise stated, the region of integration in
$x$ is always understood to be $R^{n}$ .

PROOF (OF THEOREM 3.1). For the nonlinearity of $f(t)$ in Theorem
3.1, Lemma 2.1 implie8 that

(3.6) $|||x|u(t)||_{2}^{2}=|||x|u_{o}||_{2}^{2}-4({\rm Im}\int(x\cdot\nabla u_{o}(x))\overline{u_{o}(x)}dx)t$

$+4\int_{0}^{t}(t-s)W(s)ds$ ,

where

(3.7) $W(s)=2||\nabla u(s)||_{2}^{2}+n\{\frac{2}{p+1}-1\}||u(s)||_{p}^{p}\ddagger_{1}^{1}$

$+n\{\frac{2}{q+1}-1\}||u(s)||_{q}^{q}\ddagger_{1}^{1}$ .

We note that Lemma 2.1 a18o implies that $ueC([0, T);\Sigma\cap H^{2}(R^{n}))$ . Using
the conservation of energy we can eliminate the $L^{q+1}$-norm from (3.7).
Hence we obtain

(3.8) $W(s)=\{2-\frac{(q-1)n}{2}\}||\nabla u(s)||_{2}^{2}$

$+\{\frac{n(q-p)}{(p+1)}\}||u(s)||_{p}^{p}\ddagger_{1}^{1}+(q-1)nE(u_{o})$ .
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Note that $\delta\equiv\{2-(q-1)n/2\}$ is negative by the assumption $1+4/n<q$ . By
Gagliardo and Nirenberg’s inequality, we have

(3.9) $||u(s)\Vert_{p}^{p}\ddagger_{1}^{1}\leqq M||u(s)\Vert_{z^{\theta}}^{2}\Vert\nabla u(s)\Vert_{2}^{(a+1)(1-\theta)}$ ,

where $M$ is a constant depending only on $n$ and $p$ , and $\theta e(0,1)$ is de-
termined by $p+1=2\theta+(\alpha+1)(1-\theta)$ . The assumption $p<1+4/n$ implies
that

(3.10) $\eta\equiv(\alpha+1)(1-\theta)<2$ .
Here we consider the function $h(s)$ :

(3.11) $h(s)=\delta s^{2}+\gamma M\Vert u_{o}\Vert^{2\theta}s^{\eta}$ ,

where $\gamma\equiv(q-p)n/(p+1)>0$ and $M$ is a constant in (3.9). By (3.10) $h(s)$

achieves its maximum

(3.12) $e_{0}=C_{1}||u_{0}\Vert_{2}^{4\theta/(2-\eta)}$

on $se(0, +\infty)$ , where $C_{1}$ is a positive constant depending only on $n,$ $p$

and $q$ . From (3.8) and the conservation of $L^{2}$-norm of $u$ , we obtain

(3.13) $W(s)\leqq e_{o}+(q-1)nE(u_{0})$ ,

for all $s<T$. (3.6) and (3.13) yield the following inequality:

(3.14) $\Vert|x|u(t)\Vert_{2}^{2}\leqq|||x|u_{0}||_{2}^{2}-4({\rm Im}\int(x\cdot\nabla u_{o}(x))\overline{u_{o}(x)}dx)t$

$+2(e_{o}+(q-1)nE(u_{o}))t^{2}$ .
Therefore, under the assumptions in Theorem 3.1 there is a finite time
$T^{*}>0$ such that

(3.15) $\lim_{t\rightarrow T*}||x|u(t)||_{2}^{2}=0$ .
By the conservation of $L^{2}$-norm and the following inequality:

(3.16) $||u(t)||_{2}^{2}\leqq M’|||x|u(t)||_{2}\Vert\nabla u(t)\Vert_{2}$ , $ u\in\Sigma$ ,

we can conclude that there is a finite time $0<T^{**}(\leqq T^{*})$ such that

(3.17) $\lim_{t\rightarrow\tau**}\Vert\nabla u(t)\Vert_{2}^{2}=+\infty$ . $\square $

Next, we consider the nonlocal version of Theorem 3.1. We consider
the problem $(1.1’)-(1.2)$ with the following nonlocal interaction:
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(3.18) $(V*|u|^{2})u=(V_{1}*|u|^{2})u+(V_{2}*|u|^{2})u$ ,

$V_{1}(x)=\frac{1}{|x|^{\lambda}}$ and $V_{2}(x)=\frac{1}{|x|^{\mu}}$

with $0<x<2<\mu<\min(4, n)$ and $\mu+1<n$ . We note that for any
$u_{0}eH^{2}(R^{n})$ , there is a solution $ueC^{1}([0, T);L^{2}(R^{n}))\cap C([0, T);H^{2}(R^{n}))$ for
the problem $(1.1’)-(1.2)$ and if $ u_{0}e\Sigma$ , then $ u(t)e\Sigma$ for all $t>0$ (see
Ginibre and Velo [3]).

THEOREM 3.2. We assume that $u_{o}e\Sigma\cap H^{2}(R^{n})$ and satisfies either of
the following conditions (3.19) and (3.20): for some $e_{1}>0$

(3.19) $E(u_{o})<-\frac{e_{1}}{2\mu}$ ,

(3.20) $E(u_{o})\geqq-\frac{e_{1}}{2\mu}$ , ${\rm Im}\int(x\cdot\nabla u_{o}(x))u_{o}(x)dx>0$ and

$2|{\rm Im}\int(x\cdot\nabla u_{o}(x))\overline{u_{0}(x)}dx|\geqq(e_{1}+2\mu E(u_{o}))|||x|u_{0}||_{2}^{2}$ ,

where $e_{1}$ is a positive constant depending only on $n,$ $\lambda,$ $\mu$ , and $||u_{o}||_{2}$ .
Then the solution $u$ of $(1.1^{\prime})-(1.2)$ blows up in a finite time.

Thi8 theorem can be proved in the same way as the proof of
Theorem 3.1 by using Lemma 2.3, therefore we omit the details. We
only note that we use the following inequalities to prove Theorem 3.2.
Put

(3.21) $P(u)=\frac{1}{2}\int_{0}(V*|u|^{2})|u|^{2}dx$ ,

for any $u\in H_{o}^{1}(\Omega)$ , where $\Omega$ is a smooth domain in $R^{n}$ and $V(x)=1/|x|^{\lambda}$

with $0<x<\min(4, n)$ . Then the Hardy-Littlewood-Sobolev inequality
implie8

(3.22) $P(u)\leqq C||u||_{2}^{4-\lambda}||\nabla u||_{2}^{\lambda}$ ,

for some positive constant C. (3.22) is used instead of (3.9). We also
remark that the fact $ u(t)e\Sigma$ for all $t>0$ and the $as8umption\mu+1<n$
yield the following identity:

(3.23) $\int x\cdot\nabla(V_{j}*|u(s)|^{2})|u(s)|^{2}dx=\frac{1}{2}\int((x\cdot\nabla V_{\dot{f}})*|u(s)|^{2})|u(s)|^{2}dx$ ,

for $j=1,2$ .
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The positive constant $e_{1}$ is obtained as the maximum of the following
function

(3.24) $h(s)=(2-\mu)s^{2}+\frac{1}{2}(\mu-x)C||u_{o}\Vert_{2}^{4-\lambda}s^{\lambda}$ ,

where $C$ is a positive constant appearing in the estimate

(3.25) $\int(V_{1}*|u(s)|^{2})|u(s)|^{2}dx\leqq C||u_{o}||_{2}^{4-\lambda}||\nabla u(s)||_{2}^{\lambda}$ .

\S 4. Blowing-up conditions for general domains.

In this section we study the blowing-up conditions for volutions of
$(1.1)-(1.3)$ on an exterior domain $\Omega$ with a star-shaped complement $\Omega^{\iota}$ .
We also 8tudy the blowing-up conditions for the solutions of the Neumann
problem (1.1), (1.2) and (1.4) on a complement of a ball. For the problem
$(1.1)-(1.3)$ with $\Omega^{C}=ball$ Kavian [6] proved that if $f(|u|^{2})u=|u|^{p-1}u$ with
$5\leqq p$ then solutions of $(1.1)-(1.3)$ blow up in a finite time for suitable
initial data.

We assume that

(D) $\Omega$ is an exterior domain in $R^{n}(n\geqq 3)$ with a bounded complement
$\Omega^{0}$ which is star-shaped with respect to some point $x_{0}e\Omega^{0}$ and
the boundary $\partial\Omega$ is smooth.”

Define $D,$ $d>0$ and $p_{0}$ as follow8:
(4.1) $D=\inf\{r>0;B(x_{0}, r)\supset\Omega^{c}\}$ ,

$d=\sup\{r>0;B(x_{o}, r)\subset\Omega^{c}\}$ ,

$p_{0}=\frac{\{n+4(n-1)(D/d)^{n}+4\}}{n}$ .
We assume that there is a solution $ u\in C^{1}([0, T);L^{2}(\Omega))\cap C([0, T);H_{o}^{1}(\Omega)\cap$

$H^{2}(\Omega)\cap L^{p+1}(\Omega))$ of $(1.1)-(1.3)$ with local interaction $f(|u|)^{2}u=|u|^{p-1}u$ .
THEOREM 4.1. Let (D) be satisfied. We assume that $p\geqq p_{0},$ $ u_{o}e\Sigma_{o}\cap$

$H^{2}(\Omega)$ and $u_{0}sati\epsilon fies$ either of the following conditions (4.2) and (4.3):

(4.2) $E(u_{o})=\frac{1}{2}||\nabla u_{o}||_{2}^{2}-\frac{1}{p+1}||u_{0}||_{p}^{p}\ddagger_{1}^{1}<0$ ,

(4.3) $E(u_{0})\geqq 0$ , ${\rm Im}\int_{\rho}(\nabla\Phi(x)\cdot\nabla u_{o}(x))\overline{u_{o}(x)}dx>0$ and

$|{\rm Im}\int_{\rho}(\nabla\Phi(x)\cdot\nabla u_{o}(x))\overline{u_{o}(x)}dx|^{2}\geqq 4\{(n-1)(\frac{D}{d})^{n}+1\}E(u_{o})\int_{9}\Phi|u_{o}|^{2}dx$ ,
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where

(4.4) $\Phi(x)=\frac{1}{2}|x-x_{o}|^{2}+(\frac{1}{n-2})D^{n}\frac{1}{|x-x_{o}|^{n-2}}$ .

Then the solution $u(t, x)$ of $(1.1)-(1.3)$ blows up in a finite time.

Theorem 4.1 can be stated in a somewhat generalized form. Let $\Omega_{1}$

and $\Omega_{2}$ be domains which are star-8haped with respect to some point
$x_{o}e\Omega_{2}$ , with $\Omega_{1}\supset\Omega_{2}$ and let $\Omega_{2}$ be bounded ( $\Omega_{1}$ is not necessarily bounded).

We also assume that there is an $r_{o}>0$ such that $\Omega_{1}\supset B(x_{O}, r_{o})\supset\Omega_{2}$ . Define
$D$ and $d>0$ a8 follow8:

$D=\inf\{r>0;\Omega_{1}\supset B(x_{0}, r)\supset\Omega_{2}\}$ ,
(4.5)

$d=8up\{r>0;B(x_{o}, r)\subset\Omega_{2}\}$ .
Define $p_{0}$ as in Theorem 4.1 by using (4.5).

THEOREM 4.1’. Let $\Omega$ be a smooth domain such that $\Omega=\Omega_{1}\backslash \overline{\Omega_{2}}$,
with $\Omega_{1}$ and $\Omega_{2}$ as above. Then the same statement as in Theorem 4.1
holds.

REMARK 4.1. Our proof of Theorem 4.1 is a modification of the
argument of Kavian [6]. We note that when $\Omega=(bal1)^{c}$ we have $p_{0}=5$ .
The function $\Phi$ is introduced by Kavian [6], and thi8 function is a key
of our proof of Theorem 4.1. $\Phi$ also plays an important role when we
later consider the Neumann problem on the complement of a ball.

PROOF (OF THEOREM 4.1 AND THEOREM 4.1’). We 8hall give the
proof of Theorem 4.1 with some comments on the proof of Theorem
4.1’. Without losing generality we may assume that $x_{o}=0$ . Put

(4.6) $V(t)=\frac{1}{2}\int_{\rho}\Phi(x)|u(t, x)|^{2}dx$ .

As can be seen by an approximation argument as in [6], we have only
to obtain the upper bound for the following function $W(t)$ :

(4.7) $W(t)=2\int_{0}\sum_{1\leq\dot{g}.k\leq n}\nabla_{\dot{f}}\nabla_{k}\Phi(x)\nabla_{\dot{f}}u(t, x)\nabla_{k}\overline{u(t,x)}dr$

$+n\dagger\frac{2}{p+1}-1\}\int_{\rho}|u(t, x)|^{p+1}dx$

$-|_{\partial Q}|\nabla u(t, x)\cdot n(x)|^{2}\nabla\Phi(x)\cdot n(x)dx$ .
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Here $n(x)$ is an outward unit normal at $ x\in\partial\Omega$ . (Here we have used
$\nabla\Phi=n$ in $\Omega.$ ) By the assumption on the domain $\Omega$ and the definition
of $D$, we have $x\cdot n(x)\leqq 0$ and $D/|x|\geqq 1$ for all $ xe\partial\Omega$ . Since $\nabla_{j}\Phi(x)=$

$\{1-(D/|x|)^{n}\}x_{j}$ , we have

(4.8) $\nabla\Phi(x)\cdot n(x)=\{1-(\frac{D}{|x|})^{n}\}(x\cdot n(x))\geqq 0$

for all $ x\in\partial\Omega$ . (In the proof of Theorem 4.1’ we note that for $xe\partial\Omega_{2}$

we can argue as above and for $xe\partial\Omega_{1}$ we also have (4.8) because of
$x\cdot n(x)\geqq 0$ and $D/|x|\leqq 1.$ )

Since

$\nabla_{j}\nabla_{k}\Phi(x)=\delta_{jk}\{1-(\frac{D}{|x|})^{n}\}+nD^{n}\frac{x_{j}x_{k}}{|x|^{n+2}}$

and $|x|\geqq d$ for all $ xe\Omega$ , we obtain

(4.9) $\sum_{1\leq\dot{g},k\leq n}\nabla_{j}\nabla_{k}\Phi(x)\nabla_{j}u(t, x)\nabla_{k}\overline{u(t,x)}\leqq\{(n-1)(\frac{D}{d})^{n}+1\}|\nabla u(t, x)|^{2}$ ,

for all $ xe\Omega$ . Consequently we have

(4.10) $W(t)\leqq 2\{(n-1)(\frac{D}{d})^{n}+1\}||\nabla u(t)||_{2}^{2}$

$+n\{\frac{2}{p+1}1\}||u(t)||_{p}^{p}\ddagger_{1}^{1}$ .
Using the conservation of energy we obtain the following estimate:

(4.11) $W(t)\leqq 4\{(n-1)(\frac{D}{d})^{n}+1\}E(u_{0})$

$+[n\{\frac{2}{p+1}-1\}+\frac{4}{p+1}\{(n-1)(\frac{D}{d})^{n}+1\}]||u(t)||_{p}^{p}\ddagger_{1}^{1}$ .
Under the assumption $p\leqq p_{0}$ the coefficient of the second term of the
right hand side of (4.11) is non-positive. Therefore we have the following
upper bound:

(4.12) $W(t)\leqq 4\{(n-1)(\frac{D}{d})^{n}+1\}E(u_{0})$ .
From (4.12) we can $a88ert$ that

(4.13) $0<V(t)\leqq V(0)+V’(0)t+2\{(n-1)(\frac{D}{d})^{n}+1\}E(u_{o})t^{2}$ .
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Therefore under the assumption (4.2) or (4.3) there is a finite time
$T^{*}>0$ such that

(4.14) $\lim_{t\rightarrow\tau*}V(t)=0$ .
We now recall the following inequalities:

(4.15) $||u||_{2}^{2}\leqq C|||x|u||_{2}||\nabla u||_{2}$ for $ue\Sigma_{o}$ ,

(4.16) $|||x|u(t)||_{2}\leqq\frac{1}{\sqrt{2}}V(t)^{1/2}$ ,

where $C$ is a $con8tant$ depending only on $n$ . (4.15) and (4.16) yield

(4.17) $||u_{o}||_{2}^{2}\leqq C(V(t))^{1/2}||\nabla u||_{2}$ .
Therefore by (4.14) and (4.17) we conclude that there is a finite time
$(0<)T^{**}(\leqq T^{*})$ such that $||\nabla u(t)||_{2}\rightarrow+\infty$ as $t\rightarrow T^{**}$ . $\square $

Next, we consider the Neumann problem (1.1’), (1.2) and (1.4) with
local interaction $f(|u|^{2})u=|u|^{p-1}u$ with $p\geqq 5$ on $\Omega=B(0, r)^{\iota}$ . We assume
that for an initial data $u_{o}eH^{\theta}(\Omega)$ there is a solution $ ueC^{1}([0, t);H^{1}(\Omega))\cap$

$C([0, T);H^{3}(\Omega))$ . Then we have the following theorem.

THEOREM 4.2. We assume that $ u_{o}eH^{s}(\Omega)\cap\Sigma$ and that $u_{o}$ satisfies
either of the following condit’ions (4.18) and (4.19).

(4.18) $E(u_{o})<0$ ,

(4.19) $E(u_{\Phi})\geqq 0$ , ${\rm Im}\int_{\rho}(\nabla\Phi(x)\cdot\nabla u_{o}(x))\overline{u_{0}(x)}dx>0$ and

$|{\rm Im}\int_{\rho}(\nabla\Phi(x)\cdot\nabla u_{o}(x))\overline{u_{o}(x)}dx|^{2}\geqq 4nE(u_{o})||\Phi u_{a}||_{2}^{2}$ ,

where

(4.20) $\Phi(x)=\frac{1}{2}|x-x_{o}|^{2}+\frac{1}{(n-2)}r^{n}|x|^{-(n-2)}$ .

Then the solution $u$ of (1.1‘), (1.2) and (1.4) blows up in a finite time.

PROOF. Applying the argument used in the proof of Lemma 2.2 we
have

(4.21) $V(t)=\frac{1}{2}||\Phi u_{0}||_{2}^{2}-({\rm Im}\int_{\rho}(\nabla\Phi(x)\cdot\nabla u_{o}(x))\overline{u_{o}(x)}dx)t$

$+\int_{0}^{t}(t-\epsilon)W(s)ds$ ,
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where $V(t)=\not\in\int_{\rho}\Phi(x)|u(t, x)|^{2}dx$ and

$W(s)=2\Vert\nabla u(s)\Vert_{2}^{2}+\{\frac{2}{(p+1)}-1\}n\Vert u(s)\Vert_{p}^{p}\ddagger_{1}^{1}$

$+\int_{\partial Q}\frac{\partial\Phi(x)}{\partial n}\{|\nabla u(s, x)|^{2}-\frac{2}{(p+1)}|u(s, x)|p+1\}d\Gamma$

$-{\rm Im}\int_{\partial\Omega}\frac{\partial\Phi(x)}{\partial n}\frac{\partial u(s,x)}{\partial s}\overline{u(s,x)}d\Gamma$ .
Here we note that $\nabla_{j}\Phi(x)=(x-x_{0})_{j}(1-(\gamma/|x-x_{0}|)n)(1\leqq j\leqq n)$ implies

(4.22) $\frac{\partial\Phi(x)}{\partial n}=0$ ,

for all $ xe\partial\Omega$ . Conservation of energy, (4.22) and the assumption $p\geqq 5$

yield

(4.23) $W(s)\leqq\{\frac{6}{(p+1)}-1\}||u(s)\Vert_{p}^{p}\ddagger_{1}^{1}+4nE(u_{o})$

$\leqq 4nE(u_{o})$ .
Hence we obtain

(4.24) $V(t)\leqq\frac{1}{2}||\Phi u_{0}||_{2}^{z}$

$-({\rm Im}\int_{\rho}(\nabla\Phi(x)\cdot\nabla u_{o}(x))\overline{u_{o}(x)}dx)t+2nE(u_{o})t^{2}$ .
By assumption (4.18) or (4.19) we can conclude that there is a finite
time $T^{*}>0$ such that $V(t)\rightarrow 0$ as $t\rightarrow T^{*}$ , and hence $\Vert u(t)\Vert_{H^{1}\langle\rho)}\rightarrow+\infty$ as
$t\rightarrow T^{**}(\leqq T^{*})$ . $\square $

We close this section by giving several remarks on some related
results on blowing-up conditions for local or nonlocal interactions.

REMARK 4.2. Kavian [6] studied the blowing-up condition for solu-
tions of the problem $(1.1)-(1.3)$ in a star-shaped domain only for single
power interaction. It can be immediately extended to general local
interactions which satisfy Glassey’s condition. For local interaction such
as $f(|u|^{2})u=|u|^{p-1}u+|u|^{q-1}u$ with $1<p<1+4/n<q$ , which does not satisfy
Glassey’s condition, we can obtain the blowing-up re8u1t similar to
Theorem 3.1. Moreover, for a domain as in Theorem 4.1 (or Theorem
4.1’) and for the interaction $f(|u|^{2})u=|u|^{p-1}u+|u|^{q-1}u$ with $1<p<p_{0}<q$ ,
we can obtain the result analogous to Theorem 4.1.
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The following remark is a nonlocal version of Kavian [6] ($8ee$ also
Matsumoto and Mochizuki [9]).

REMARK 4.3. Let $\Omega$ be a domain in $R^{n}(n\geqq 3)$ which is star-shaped
with respect to some point $ x.e\Omega$ . We consider the problem (1.1’), (1.2)
and (1.3) with $V(x)=1/|x|^{\lambda},$ $2<x<\min(4, n),$ $x+1<n$ . As8ume that an
initial data $u_{o}sati8fie8$ the following condition (4.25) or (4.26):

(4.25) $E(u_{o})=\frac{1}{2}\Vert\nabla u_{0}||_{2}^{2}-\frac{1}{4}\int_{\rho}(V*|u_{o}|^{2})|u_{o}|^{2}dx<0$ ,

(4.26) $E(u_{o})\geqq 0$ , ${\rm Im}\int_{\rho}(x-x_{o})\cdot\nabla u_{o}(x)\overline{\nabla u_{o}(x})dx>0$ and

$|{\rm Im}\int_{\rho}(x-x_{o})\cdot\nabla u_{o}(x)\overline{u_{o}(x)}dx|^{2}\geqq E(u_{o})\int_{\rho}|x-x_{o}|^{2}|u_{o}(x)|^{2}dx$ .
Then the 8olution $ueC^{1}([0, T);L^{2}(\Omega))\cap C([0, T);\Sigma_{o}\cap H^{2}(\Omega))$ blows-up in a
flnite time.

The following remark is a nonlocal version of Theorem 3.1 and
Remark 4.2.

REMARK 4.4. We con8ider the problem (1.1’), (1.2) and (1.3) for
nonlocal interaction $(V*|u|^{2})u=(V_{1}*|u|^{2})u+(V_{2}*|u|^{2})u$ , where $V_{1}(x)=1/|x|^{\lambda}$

and $V_{2}(x)=1/|x|^{\mu}$ with $0<x<2<\mu<\min(4, n)$ and $x+1<n$ . Let $\Omega$ be a
domain in $R^{n}(n\geqq 3)$ which i8 star-shaped with respect to some point
$ x_{0}e\Omega$ . Then there is a positive con8tant $e_{3}$ such that if the following
condition

(4.27) $E(u_{\Phi})=\frac{1}{2}||\nabla u_{o}||_{2}^{2}-\frac{1}{4}\int_{\rho}(V_{1}*|u|^{2})|u|^{2}dx$

$-\frac{1}{4}\int_{0}(V_{2}*|u|^{z})|u|^{2}dx<-e_{8}$

is satisfied, the solution $ueC^{1}([0, T);L^{2}(\Omega))\cap C([0, T);\Sigma_{o}\cap H^{2}(\Omega))$ blows-up
in a finite time.

\S 5. Remark on global solution for nonlocal interaction.

In thi8 section we briefly state the global existence of solutions for
the following Cauchy problem:

(5.1) $\prime i\frac{\partial u}{\partial t}=\Delta u+(V*|u|^{2})u$ , $t\geqq 0$ , $xeR^{n}$ ,
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(5.2) $u(0, x)=u_{0}(x)$ , $x\in R^{n}$ ,

where $V(x)=1/|x|^{2}$ . Matsumoto and Mochizuki [9] ploved that solutions of
$(5.1)-(5.2)$ blow-up in a finite time for suitable initial data. For 8mall
initial data, we can prove the global existence of the weak solution for
(5.1), (5.2).

First, we consider the following minimizing problem:

(5.3) $\Theta=\inf\{Q(u)\equiv\frac{\Vert u||_{2}^{2}\Vert\nabla u\Vert_{2}^{2}}{P(u)}$ ; $u\in H^{1}(R^{n}),$ $u\neq 0\}$

where $P(u)=\int_{R^{n}}(V*|u|^{2})|u|^{2}dx$ . We note that $\Theta$ is also represented a8

(5.4) $\Theta=\inf\{\frac{1}{2}\Vert u\Vert_{2}^{2};E(u)=0,$ $u\in H^{1}(R^{n})\}$ ,

where $E(u)=\not\in\Vert\nabla u\Vert_{2}^{2}-\neq P(u)$ . For the minimizing problem (5.3) we can
prove the existence of a minimizer $U(x)$ by using Schwarz’s 8ymmetriza-
tion and Strauss’ compactness lemma (see, e.g., Lieb [7], Strauss [17]).
The fact that $Q(u)$ is invariant under the transformation

(5.5) $u(x)\rightarrow v(x)=au(bx)$ , $a,$ $b>0$ ,

also plays an important role in the proof.
We have the following theorem.

THEOREM 5.1. (1) There is a minimizer $R$ for $\Theta$ which satisfies
the nonlinear elliptic equation:

(5.6) $(1-\Delta)R=(V*|R|^{2})R$ , $R>0$ , in $R^{n}$

Moreover, $\Theta$ is given by $\frac{1}{2}\Vert R||_{2}^{2}$ .
(2) If $u_{o}\in H^{1}(R^{n})(n\geqq 3)$ and $||u_{O}||_{2}<||R||_{2}$ , then there $\dot{j}S$ a unique

solution $ueC([0, +\infty);H^{1}(R^{n}))$ of $(5.1)-(5.2)$ .
REMARK 5.1. The existence of a positive solution of (5.6) was

proved by Lions [8], but his proof depends on the critical point theory
and the relation to the minimizing problem (5.3) is not stated in the
paper [8].

Local existence of $H^{1}$-solution can be proved by the contraction
mapping principle (see Ginibre and Velo [3]). Hence we have only to
obtain the uniform $H^{1}$-estimate. By Theorem 5.1 (1) and the conser-
vation of $L^{2}$-norm and energy we obtain the following estimate:
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(5.7) $\frac{1}{2}\{1-(\frac{||u_{t}||_{2}}{||R||_{2}})^{2}\}||\nabla u(t)\Vert_{2}^{2}\leqq E(u_{a})$ .
Hence we have Theorem 5.1 (2).
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