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Introduction.

The purpose of this paper is to give an extension, to a higher
dimensional case, of the result [3] concerning time reversal of random
walks. ,

Suppose we are given a pseudo-order <t in R? such that <1y implies
x+z2<1y+z for any ze R:. We write xay if <ty and z#y, and put
K={xe R*:0<1z}. Then xz<iy if and only if y—2 € K. The set K contains
0 and satisfies

(1) r+yeK if z,yecK.

Throughout the paper we assume that the set K is infinite and Borel.
Given a random walk S,=37_, X, in R% we define a random time 7
by

(2) r=min{n=1 : S,«S, for 0=Vk=n—1},

and assume that r< o a.s. One more assumption, which is technical
and might probably be removed, is that the random walk is countably
valued, namely, if I" denotes the (countable) set of « such that
P{X,=2}>0 then

(3) P(X,el}=1.
Next we consider the time reversal
(4 ) (0, Sr—l—s‘r’ Sr—z'_sn tt S1'_Sn —Sr)

and regard this as a (finite length) path-valued random variable. Taking
independent copies w,, k=1, of (4), we define a process {W,, n=0} by
(1.1). Then our main result is that {W,, n=0} is a Markov chain with
transition function 7.(x, ¥) given by (1.3). The result of [3] is a special

Received October 27, 1989




376 HIROSHI TANAKA

case of the present result obtained by taking K=[0, «) in R

In analogy with the ladder variables discussed in Chapter XII of [1]
7z may be called the first descending strict ladder time. We also consider
time reversal defined in terms of the first descending weak ladder time
and, when S, is a simple symmetric random walk on Z: we clarify its
relation to a theorem of Pitman type.

§1. The main results.

Given i.i.d. random variables with values in R? and satisfying (3),
we put

p(z, y)=Ple+ X,=y}=p0, y—=) ,
o(x, y)=Ple— X,=y}=p(y, ©)=p0, 2—y) ,
F,={z—z : zeT}={y : P, y)>0},

and consider the random walk:
S,=X,+---+X, n=1), S,=0.

The first descending strict ladder time 7 defined by (2) is assumed to be
finite a.s.

Let K,=K\{0}. Let [=1 be an integer and let z,€¢ K, 1<k=<l.
When =2, a sequence (x,---, x;) is said to be admissible if, for any
k=1,2,-..,1—1, there exists j such that k<j=<l! and x,#z,". When
l=1, any sequence (x,) of length 1 is said to be admissible. Note that
the admissibility implies that all the z,’s are in K.

We consider the (countable) space

W=(Lp, X,y ***, L) :
@ =1,
(i) 2,=0, p(x;, 2,_)>0 A=VEk=)),
(iii) the sequence (x,,---, x;) is admissible

=

Note that the condition (iii) implies that x,€ K, A<Vk=<l). Let
(w” W, * * .) EF =" XHF KXo,

and writing w,=(w,(0), w,(1), - -+, w,(l,)), k=1, let us define W ={W,, n=0}
by

1) x+y means that r<y does not hold.
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w,(n) for 0=n<l,,
w1(l1) + wz(n - ll) fOI' l1 < n .S_- l1 + lz ’
1.1) W,=4 :

k—1 : ;-1 : k—1 k
E. w,(l,)—i-’wk(n—- l,) fOI‘ Z la<n§2 lj ’
1 J=1 J=1

= i=1

We also write W=w,w,:-- for simplicity. We thus defined a map
P —W (P(w, We ++*) =W, W,* **)

where W={W :{0, 1,.--}—>R?%. Since 22 is a Polish space (a countable
space with the discrete topology), %7 = is also a Polish space. W is
likewise a Polish space. It will not be hard to prove that ¢ is a Borel
injection and hence the image W,=@(37 =) is a Borel subset of W. We
denote by g the probability distribution of the random variable (4) which,
as is easily seen, takes values in 27 and by P the image measure (on
W, of p°=pQRuK--- under the map . We thus have a stochastic
process {W,, n=0} defined on the probability space (W,, P).
For each xc K, let 27, ,={(x)}, let for [=2

(®yy o2 -y @)
W = i) «,=z and p(x,, x,-,)>0 C=VEZ]),
ii) the sequence (#,,---, ;) is admissible) ,

and put
WF,G .
=1
For each w=(x, -, x) € %, define ¢'(w) by

i 1—1
= 7] : >
1.2) #'(w): {1}1 P&y X) ’!;[lp(x,,, Tpi1) if [=2,

and then define &(zx), € K, by
> p(w) for zekK,,
&(x) = l“’:’

for xz=0.

Next put
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K={0}, K,= U (Knl) @zD,

K=UK,,
n=0
and finally define p.(z, ¥), =, y € K, by
(1.3) Pe(, ¥)=——P (=, YW 1e, W) ,
&(x)

where 1., is the indicator function of K,. Then K is a countable subset
of K and it will be proved that &(x) is finite for any xe€ K and that
Pe(x, ¥) is a Markov transition function on K (Lemma 3). Now our first
main result is as follows:

THEOREM 1. {(W,, n=0, P} is a Markov chain on K with (one-step)
transition function Dz, y).

We next give another expression of &(x) in the special case where
K is given by (1.4)_ below. Let a,,---, a,.€ R’ be given and assume that
they are linearly independent, so 1=m=<d. Let

1.4) K={xeR’: {x,a,)=0, 1=Vj=<=m},

where (-, -> denotes the usual inner product in R’. For each beoK
(the boundary of K) put

J®)={j : <b, ap=0},

V=the vector space (CR%) spanned by {a;, 1=<j<=m},
Vi={xeV: (x, a;)<0 for VjeJ(b) and (=, a,)=0 for Vk¢ J(b)},
H[b]l={b+x : xe V,}.

Take a copy K* of K, let ¢: K*—K be the natural identification map
and put K*=K*{0*} where 0*=6"'(0). We denote by K the disjoint
sum KUK?* and then introduce a transition function on K as follows:

pE, ¥) if ZekK, jek,
p@&, z) if FcK, jeoK*,

ze H[O(H) IO ()}

e | DO, (D)) if ¥eK;, e K~9dK™*,
(1‘5) p(x’ y)::-‘ ~ . ~ * ~ x*
Hz[‘, ]p(o(x), z) if TeKS, geoK*,
e Ho (§) :
1 if Z=%=0*,

0 otherwise .



RANDOM WALKS 379

Let {Y,, n=0} be a Markov chain on K starting at 0 and with (one-step)
transition function (&, 7). Then ¥, c K for 0=<n<T, ¥,c K* for n=T
where

T=min{n=1 : ¥, e K*} (min @ =) ,
and 0* is a trap. We put

o~

_{Y,, if 0sn<T,
" le(Y)  if ax=T.

Then our second main result is the following:

THEOREM 2. If K 1is given by (1.4), then for each x¢€ K,

(1.6) @) =E( 3 1Y)+ E(3 1a(Y.)) ,
where _
A={y : O<y=ax}, B={y : 0way<ix}.

§2. Proof of Theorem 1.

Before proving Theorem 1 we prepare three lemmas.

LeMMA 1. (i) For any w=(x, ,, -, ;) € #  we have
(2.1) L(w) =P(0, 2)D(,, ) -+« P(Xiyy @) -
(1) If weZ 1is expressed as w=(0, w') with w' € %7,, then
(2.2) t(w)=10(0, 2)p' (w') .
ProOOF. Recalling the meaning of the phrase “w=(x,, «,, -+, ;) € Z”,

we see that the event {r=[, S, ,—S,=x, A=Vk=l)} is the same as the
event {S,=z,_,—x, 1=VEk=l)}. Therefore
#(W)=P{T:l, S,_,,——Sl=x,, (1§Vk§_l)}

=P{S,=x,_,—x, ASVE<D))

=0(0, &, —2)P(@i_,—Xs, Ty —T1) * + * D@, — L1, — L)

=@y, )D&y, Xiy) * + + D@y 0)

=the right hand side of (2.1).
The identity (2.2) immediately follows from (2.1) and the definition of .

LEMMA 2. For any re K
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2.3) >, Pz, y)zs(y)=ye % s D(x, ¥)&(y)=&(x) .

ve Ky

PrOOF. Let x=0. Then the left hand side of (2.3) equals
2 p(O VEW)= DYV p(O Y (w)=w(>#")=1.

veKyNn I‘o weW

Next, let x€ K,. Then the left hand side of (2.3) equals
DI p(w VW)= KE{‘.er 2 ﬁ(w, L (w)

yEeKon 0

= 2, 2 p(w, Yt (w)

veEK, nP w € W

+ >, D P, e (w),

Ye(KN\K NIy wewy

where K,={yc R*: y—xec K,}. Note that z ¢ K, implies K,CK,, or more
generally, z € K, implies K,CK,. Let ye€ K, (x€ K,) and put

F;) ={w=W,, -+, Y) € #;: Y€K, for L=VEk=l}.
Then
> B, Y w)=_ 3, D, yp'w)+ 3 B, Y (w) ,
weFy weF Y\¥ §

weEY v
and consequently

PN p(w VW)= 2. >, D, Y (w)

yvekonl yeK NI, wew

+ 3. Z D, Y (w)

veK NIy wesr \ ¥ v

+ > Z p(w, Y (w) .

ye(Ko\Kz)ﬂI‘ we

The first term of the right hand side of the above equals 1 while the
second term plus the third term yields

S S pw)=¢@)—1.

=2 ‘weyz 1
This completes the proof of Lemma 2.

LEMMA 3. &(x) is finite for any z€ K and Pe(x,y) 18 a Markov
transition function on K, t.e.,

(2.4) S D, )= >, De(, y)=1, zeK.
yek yeKOnl‘x

PROOF. Recall that the identity (2.8) was proved without using the
finiteness of &(x). Putting =0 in (2.3), we see that ¢&(x)< o for any
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x € K, and so inductively £(x) <~ for any x € K,, n=1. Therefore &(x)< o
for any x € K. The identityA(2.4) follows immediately from (2.8) and the
fact that « € K implies K,NI",Cc K.

PROOF OF THEOREM 1. Given a,, 0<n=<m (m=1), satisfying

a,=0, a, €K, (l=vnsm)

(2.5) R
(@, a,)>0 for 1=vn=<m,

we are going to compute P{4} where

| A={WeW,: W,=a, (0ZVn=m)} .
We note that any element W of W, admits a unique representation
(2.6) W=w,w,---

where w,=(w,(0), w, ), -+, w,(l,)) € %, k=1. For W of the form (2.6)
we call » (e N) a ladder time of W if n=Il+..-+1, for some k=1.
Then n (€ N) is a ladder time of W if and only if

2.7) wW,aW,. for all »n'>n.
For each we W, we put
L=L(W)=min{n=m : n is a ladder time of W},
and consider the event
A=AN{L=m+1—1}, l=1.
For typographical convenience we write @ instead of a, and put

W.=a, 0=Vnsm) ,
A'=iWeW,: W,=2,_ps, (mM=V=m-+1—1)
LW)=m+1—-1

for each w=(x,, -+, )€ %,,, |=1. Then

A”—"ZC_JZAZ:D U 4= U 4”.

=1 we¥ 4, weN g

Making use of Lemma 1 we can compute P{4*} for each w=(z,,- -, ;) € ;.
The result is

Pt} ={{1 $(@._, ad}r(w) .
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Therefore we have

Pity=_3 {11 p@.-, ad} )

€ n=1

= {ﬁ P(an_,, a,.)}e(a,)

=1

li
1=t

ﬁe(an—n an) .

This means that {W,, n=0, P} is a Markov chain with transition function
De(x, ¥).

§3. Proof of Theorem 2.

We need some preliminaries. Let V denote the vector space (CR?)
spanned by a,, -+, a.. Put K@) =K,U{z}={yecR*: <y}, x€R’. For
a finite set F' in R? we define vertex F' as the unique maximum element
(with respect to <1) of the set {x€V : K(x)DF}. It is easy to see that
vertex F' can be given by

(3.1a) vertex F'= ,ZE, e »

where ¢,, + -+, ¢, are determined uniquely by

(8.1b) z'__'. (@ wye;=min(a, @,y ,  1sk=m .

Making use of the representation (3.1), one can easily verify the following

assertions.
1°. For any be R*

3.2) vertex[F' U {b}] =vertex F' -+ vertex{0, b—vertex F'} .
2°. (i) For each be KNoK
3.3) x—vertex{0, 2}=b —— x=b.

(ii) For each beoK
3.4) x—vertex{0, x}=b <= xe€ H[b].

38°. () If b, b,€oK and b,+#b,, then H[b]N H[b]=2.

() Usesx Hb]=(K\OK)". |

To proceed, suppose we are given w=(x,,*+, ;) € #,,;, x€ K,, |=2.
Since w is admissible, we have
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(38.5) for any k (1=k<l) there exists j
such that k<j=<l and z, ;.

We next define (%, Z,,:--, Z;,_,) by
(3.6) Ix\kle ks Oékél—l .
Then (8.5) is equivalent to

8.7 for any k (1=<k<!l) there exists j
such that 0=j<k and Z,#Z; .

We now define T=T(&, &, -+, #_,) by
(8.8) T=max{k: %, £, -, &, K&)}+1.

LEMMA 4. The condition (8.7) (and so (8.5)) is equivalent to the
Jollowing (8.9):

3.9) vertex{Z,, Z,, «* -, Z,}#%, of T=<k<l.

PROOF. Suppose (8.7) holds. To prove that (3.9) holds it is enough
to show that

(38.10) vertex{Z, Z,, -+, Z,} =%,

implies %, #,, -+, £, € K(#,). So suppose (8.10) holds. Then
8.11) oy Byy oo+, 2, € K(&,)

or equivalently

(3.12) 2, <Tyy By 000y Byy -

On the other hand, it follows from (8.7) that there exists 7 such that
0=<=j<k and Z,#Z;. (8.12) then implies Z,=%;. If 7>0, then by (8.12)
£; <Xy, By, e+, ;,_;, 80 by a similar argument we see that there exists
7' (0=j'<j) such that #,=%,;=%,. Repeating this argument we see that
Z,=%, and this combined with (8.11) implies %, %,,-:-, £,€ K(%,). The
converse implication (3.9)=(8.7) is easily verified.

If we define (x,/, «/,---, ,_,) by
(8.138) x, =%, —vertex{Z, %, -, T,}, os=s<it,

then 2, € K, and using (8.2) we see that
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(3.14) z, =, ,+%,—%,_,—vertex{0, z,_,+%,—Z,_,} , 1<5k<l.
We finally define (%, %,, -, %,_,) by

x,’ if 0<k<T,

3.15 % ).
(8.15) BT o) it T<k<l.

Then (%, &,, -+, % _,) is a sequence in K with the following property:

(a) %=0,

(b) 0<%, ,«ax if T=oo

(¢) #%,e K} for any k such that T<k<!,
(@) if T<l, then %; ¢ 0K* and 0«4, )<z .

(3.16)

Here T=T%, %,,+--, %,_,) is defined by
3.17) T=min{k : %, € K*) (min @ =) .

Let B(% %) be defined by (1.5). Then the equality >;.z &, #)=1
is a consequence of 8°. For each x€ K, and /=2 we denote by %,,
the space of all sequences (%, %,,---, ¥,_,) in K with the property (3.16)
and B(&,_, %,)>0, 1=<k<l. We then define a map o, ;: %,,—»%,, by
@, (w)=w where W= (&, %, -, %,_,) is determined by w=(x, -, %) € 7,
via (3.6), (8.13) and (3.15).

LEMMA 5. Let €K, and 1=2. Then for each w= (%, %, +--,
Z,_,) € WN,,, we have

Z ¢ (w)= Hp(w,,_l, %) .

w€¢z l("’)

Proor. We denote by %, the space of all sequences w=(%, Z,,

, Z,_) in K, satisfying (i) #,_,=uz, (11) p(x,,_l, Z,)>0 for 1=vk<l!l and
(111) (3.9) holds. Define a map cp,,l %,—»%, by @, (@)=% where
W= (&, &,*++, %,_,) and W=(F, %, *++, &,_,) is determined by (8.13) and
(8.15). Since the map:

(mv °t a7!) € %,t—" u7=(x,, Ly_19*°°, xl) € %.l

is a bijection, we have

(3.18) > H(w)= Z Hp(wk » &) .

wepy ) wep i k=
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We next denote by %% (w) the space of all sequences (Z,, %,, * * +, Z,_,) with
the following properties (3.19) and (3.20).

3.19) z,_,=x.
(8.20a) If 1<k<T, then %,—%,_ ,=%,—%,_, .

(3.20b) If 1<k=T<I, then %, —%, ,—y—7%, , for some y € H[0®F)INOE,)}
with p(%,_,, y)>0.

(8.20c) If T<k<l, then
(i) Z,—Z%,_,=60%,)—0(Z,_,) provided %, ¢ oK™,
(i) #%,—%,_,=y—0(%,_,) for some yec H[I(F,)] with p(6(Z,_,), ¥)>0
provided %, €oK™.
We are going to prove that @;},(@):% (w). Notice first that @;y(w)
consists of all sequences (%, Z%,,*:+, Z;_,) € %,, satisfying (8.14) where
(), 2/, +++ x,,) is determined by (3.15) with T replaced by 7. Then,
regarding (8.14) as an equation with unknown «,”+%,—Z%,_, and making
use of 2°, we can see that any (&, %,,---, %,_,) in &;3(w) satisfies (3.20).
Clearly it also satisfies (8.19). Conversely, we assume W=(Z, &,, ***,
z,_)e %,,(ﬁ)) and prove @€ @;i(@). The nontrivial part of this proof
is to show
(i) {v\keKoy 0§k<l’
(ii) (8.14) holds where z,” is determined by (3.15) with T replaced
by T.
To prove (i), rewrite (3.20) in the form

3.21) #,_,—0&, )

B, —Z, if 1<k<T,
_ {Z,—0(Z,)} + {0(F) — v} it 1=sk=T<1,
%, —6(F,) if T<k<l and %,€0K*,

—to
s

(&%, —0Z,)} +{0(X,) —y} T<k<l and %, €o0K*,
where 6(%)=% or (%) according as ¥€ K or ¥€ K*. Then, making use
of (8.21) and also the fact that %, ,—6(%,_,)=z—0&,_) e K if T<l and
#_,—%,_,€K, if T=c, one can prove that #,—8(,) € K for T<k<l and
z,—%,€ K, for 1=k<T (induction), from which (i) follows. (ii) can also
be proved by using (3.20).

Once P;4(W)=%" (W) is proved, (3.18) yields
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2 Hw= % Hp(xk-u %)

wep, () bes (@) b

==kl'I1 P&, %)  (use (1.5)),

so the lemma was proved.

We can now complete the proof of Theorem 2. By Lemma 5 we
have

Ek-—u xk) ’ re Ko ’

uml

(3.22) &(x)= l};, %,
where the second summation is taken over all @ in 9%,,. But this is
another expression of (1.6) as can be seen as follows. The right hand
side of (1.6) equals

3 Bl DL YD)+ 2 B{Lom(T)1a( ¥}

=1+3 [P0« Y, <z, T>n}+P0aY,<iz, T<n)]

n=1

=the right hand side of (3.22).

§4. Time reversal defined in terms of descending weak ladder
times.

We define the first descending weak ladder time o by
4.1) oc=min{n=1 : S,<1S, for 0<vk=n—1},

and assume g< < a.s. throughout this section. Then we can define a
process {V,, n=0} exactly in the same way as we defined {W,, n=0} but
with the replacement of r by ¢. This section is concerned with the
Markovian property of {V,, n=0}. The result will be stated without
proof, since the proof is similar to that for {W,, n=0}.

As in §1 we introduce the weak admissibility. Given x, € K, 1<k=<l
(1=2), a sequence (x,,:--, x,) is said to be weakly admissible if, for any
k=1,2,---,1—1, there exists j such that k<j=<! and z,<z;, When
l=1, any sequence (&, in K (of length 1) is said to be weakly admissible.
Note that if #,=0 and if (x,---, x) is weakly admissible, then [=1.
Put
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V=g Ly, **+, L) :
@ =1,
(ii) «,=0, p(x,, x,_,)>0 for 1<Vk<I,
(iii) the sequence (x,, -+, ;) is weakly admissible_ .

‘For (v, v5,+++)eP*=7" X7 X .+ we consider
V=v2v,---,

which is short for V={V,, n=0} with V, defined in a way similar to
(1.1). Let y: 7>—W be defined by (v, v,,*++*)=v,0,--+ where W=
(W :{0,1,.--}—>R% as before, and put V=+(7"~). We denote by v the
probability distribution of

{0’ Sa—l_Sa’ Sa——Z_Sa’ ) S1'—Sa’ ’""Sa)

which, as is easily seen, is a random variable taking values in 7; and
by @ the image measure (on V) of v*=pRQv--- under the map v. We
thus have a stochastic process {V,, n=0} defined on the probability space

(v, Q.
For each x€ K let 7, ,={(x)}, let for [=2

((wl, RN R
Yen=4 1) x,=2 and p(x,, x,_,)>0 for 2<VEk=<l,
l ii) the sequence (x,,---, x;) is weakly admissible) ,

and put
7:=U7 .
=1

Note that 7;,=© for |=2. For each v=(x,, .-+, x,) € 7; define v'(v) by

11—

1 -1

’ D(Xps1y ) =TT D(4y Xpy) if =2,
V'(v)={k=1 k=1

1 if =1,

and then define »(x), x€ K, by

>y V'(w) for zeK,,
77<x)= VEF ,
1 for 2=0.

Next define p,(x, ¥), z, y€ K, by
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1
7(®)

Dy, y)= D(x, YY) 1Y) .
Then it can be proved that 7(x)<~ for any xz€ K and that p,(x, y) is
a Markov transition function on K (remember that K was defined in

S1).

THEOREM 3. {V,n=0, Q} is a Markov chain on K with (one-step)
transition function D,(, ¥).

Next we give another expression of 7(x) in the special case where
K is given by (1.4) with linearly independent a,,:--, a,. If we define

p'(z, ¥), %, y€ K, by

, p(x, Y) if zeK,ye KNoK ,
P, ¥)= S @2 it seK yedk,
zeHly

then p'(zx, ¥) is a Markov transition function on K. Let {Y,, n=0} be a
Markov chain on K starting at 0 and with (one-step) transition function
p'(x, y). Also let T'=min{n=1 : Y,’=0}. Then the following theorem
can be proved.

THEOREM 4. If K is given by (1.4), then for any x€ K,
n(@)=1+3, P04Y, <z, T'>n} .

Finally we specialize the situation as follows: K is the 2-dimensional
quadrant consisting of the points of Z* with nonnegative coordinates
and {S,, =0} is a simple symmetric random walk on Z* (namely, the
i.i.d. random variables defining S, are assumed to satisfy P{X,=e,}=
P{X,= —e;}=1/4, i=1, 2, where e, denotes the unit vector in R* whose
2-th coordinate is 1).

In this case p'(z, ¥), #, ¥ € K, is given by

1/4 if zekK, y=xz=+e,,
1/4 if O*x=yedK,
1/2 if z=y=0,

0 otherwise ,

p'(x, Y)=

and 7(x)=(x'+1)(@”+1) where x’ and z” are the first and the second
coordinates of z, respectively, because
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n@—1=3 5 P(Y,'=y, T">n)
=57y =@ + 16" +1)-1;

in the above Y, is taken over all y€ Z? such that 0«y<ixz and #n(y)
denotes the probability that the p’-chain starting at y hits 0, which is
equal to 1.

On the other hand, let Si=S,—2min{S,: 0=<k<n} where the mini-
mum is taken coordinatewise. Then it is known that {S% n=0} is a
Markov chain with transition function 9,(x, ¥) (see [2]). Thus {V, n=0, Q}
and {S}, n=0} are equivalent.
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