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\S 0. Introduction.

In this paper we study compact oriented hyperbolic 3-manifolds each
of which has a totally geodesic boundary. By a hyperbolic manifold,
we mean a Riemannian manifold with constant sectional curvature $-1$ .
We construct such 3-manifolds by gluing the hexagonal faces of hyperbolic
truncated tetrahedra by isometries, where a hyperbolic truncated tetra-
hedron is a polyhedron in the hyperbolic 3-space $H^{3}$ bounded by four
totally geodesic right-angled hexagons and four triangles (precise definition
is given by Proposition 2.1). Such a construction was presented by W. P.
Thurston in a lecture at the University of Warwick in July in 1984 (the

author learned it from Professor Sadayoshi Kojima).
We deal with a detailed study of constructing hyperbolic 3-manifolds

by gluing hyperbolic truncated tetrahedra in \S 1 and \S 2, and after these
preparations, we will show the following result in \S 3.

THEOREM 3.1. There are exactly eight mutually non-isometric com-
pact oriented hyperbolic 3-manifolds with totally geodesic boundary such
that they can be decomposed into two hyperbolic truncated tetrahedra and
that their boundaries are closed surfaces of genus 2.

We can easily obtain the presentations of fundamental groups of the
above eight 3-manifolds. But it is quite difficult to distinguish them,
even though we compute the first homology group of the n-fold covering
of each of them by using the Reidemeister-Schreier method (for each
$n\geqq 2)$ . So we shall distinguish the above eight 3-manifolds geometrically
by using the shortest return path, where a return path is a geodesic arc
which starts from and returns back to the boundary surface with the
right angle.
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By the way, there exist infinitely many mutually non-isometric
compact oriented hyperbolic 3-manifolds each of which has a totally
geodesic boundary of genus 2 (Fujii [2]). Among such 3-manifolds, the
above eight hyperbolic 3-manifolds have the following special property:
i.e., these eight hyperbolic 3-manifold8 have the same volume and this
value is the minimal one among all compact oriented hyperbolic 3-manifold8
with totally geode8ic closed boundary (Kojima-Miyamoto [3]). This value
is about 6.452. Then the minimal volume among all closed oriented hy-
perbolic 3-manifolds each of which has two sided totally geodesic closed
surfaces is about 12.904. This value is extremely large in comparison with
the minimal volume among all complete oriented hyperbolic 3-manifolds
(by Thurston, there exist8 such a value and it is at most 0.98 which is
the value of the volume of the manifold obtained by performing $(5, 1)$

Dehn surgery on the figure-eight knot in the 3-sphere).
The author would like to express his sincere gratitude to Profe8sor

Shigeyuki Morita and Professor Sadayoshi Kojima for their constant en-
couragement and many useful suggestions.

\S 1. Preliminaries.

In this section we prepare some formulae in hyperbolic geometry and
consider hyperbolic 3-manifold8 obtained by gluing the faces of geodesic
polyhedra in the hyperbolic 3-space $H^{3}$ .

PROPOSITION 1.1 (Beardon [1]). For polygons in the hyperbolic plane
$H^{2}$ as illustrated in Fig. 1.1, the following equations hold:

cosh $C=\frac{CO8\alpha CO8\beta+\cos\gamma}{\sin\alpha 8in\beta}$ (a)

cosh $C=\frac{\cosh\alpha CO8h\beta+\cosh\gamma}{\sinh\alpha\sinh\beta}$ (b)

sinhA sinh B $=\cosh D$ (c)

(b) (c)

FIGURE 1.1. Various values indicated above give the lengths of the corresponding
geodesics or the $angle8$ .
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Now consider polyhedra in $H^{3}$ each of which is bounded by totally
geodesic surfaces. Suppose that we are given finitely many oriented
polyhedra in $H^{3}$ from which we are going to construct some hyperbolic
3-manifold. We assume that the following conditions are satisfied. First
of all, the faces of these polyhedra are divided into two kinds: one is
the boundary face and the other is the interior face. For any boundary
face, we assume that it intersects perpendicularly with all edges of the
corresponding polyhedron. For the interior faces, we assume that the
following gluing pattern is given. Namely for each interior face another
such face is paired so that they are mutually isometric and moreover
there is given an orientation reversing isometry between them. We also
assume that the dihedral angles add up to $\pi$ around each edge of the
boundary faces. Now choose some gluing pattern such that we identify
pairs of 2-faces of these polyhedra with isometries, so we can only glue
two congruent faces. Let $M^{3}$ be a resulting 3-manifold by using such
a gluing pattern.

Polyhedra in $H^{3}$ which consist $M^{3}$ determine a hyperbolic structure
on $M^{3}\backslash $ { $interior$ edges}, since we only glue congruent faces. Now consider
the condition for the hyperbolic structure on $M^{3}\backslash $ { $interior$ edges} to give a
hyperbolic structure on $M^{3}$ itself (not necessarily complete). By Thurston
[4], it is the condition that its developing map, in a neighborhood of each
interior edge, should come from a local homeomorphism of $M^{3}$ itself.
Then the hyperbolic structure extends over each interior edge of $M^{3}$ if
and only if the dihedral angles between the two faces which have this
interior edge as their boundaries add up to $ 2\pi$ .

\S 2. Hyperbolic truncated tetrahedron.

In this section we deal with a hyperbolic truncated tetrahedron
(definition is given by the following Proposition 2.1) which is a main
constituent element of a hyperbolic 3-manifold with boundary.

PROPOSITION 2.1. Let $\theta_{i}(i=1, \cdots, 6)$ be six real numbers each of
which satisfies the following:

$\theta_{t}\in(0, \pi)$ $i=1,$ $\cdots,$
$6$

$\theta_{1}+\theta_{2}+\theta_{3}<\pi$ ,
$\theta_{3}+\theta_{4}+\theta_{b}<\pi$ ,
$\theta_{2}+\theta_{4}+\theta_{6}<\pi$ ,
$\theta_{1}+\theta_{b}+\theta_{6}<\pi$ .
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Then there exists a unique (up to conformal transformation) polyhedron
in $H^{3}$ whose four boundary hexagons are all right-angled as shown in Fig.
2.1. We call such a polyhedron a hyperbolic truncated tetrahedron.

FIGURE 2.1. Parameters $\theta_{i}(i=1, \cdots, 6)$ indicated above give the
corresponding dihedral angles. The dihedral angles are $\pi/2$

except where indicated.

In the case where we glue some hyperbolic truncated tetrahedra to
construct hyperbolic 3-manifolds, all its hexagonal faces are interior faces
and all its triangle faces are boundary faces.

PROOF OF PROPOSITION 2.1. For any $\theta_{1},$ $\theta_{2},$ $\theta_{3}\in(0, \pi)$ , where $\theta_{1}+\theta_{2}+$

$\theta_{3}<\pi$ , up to conformal transformation, we can write three circle8 on
$C\cup t\infty\}$ with dihedral angles equal to $\theta_{1},$ $\theta_{2},$ $\theta_{3}$ . By a conformal trans-
formation, we can transfer one of the inter8ection points to $\infty$ on
$C\cup t\infty\}$ . (See Fig. 2.2. Let us name these three circles $C_{1},$ $C_{2},$ $C_{3}$ re-
spectively and let $a$ be an intersection point of two circles $C_{2}$ and $C_{3}.$ )

It is easy to see that the following assertion holds.
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ASSERTION 2.2. Let $p$ be an arbitrary po’bnt on $C_{2}$ . For any $\theta_{6}$ ,
$\theta_{6}\in(0, \pi)$ , where $\theta_{1}+\theta_{b}+\theta_{6}<\pi$ , we can write the fourth circle $C_{4}$ such that
the dihedral angles between the above two circles $C_{1}$ and $C_{2}$ are $\theta_{b}$ and $\theta_{6}$

respectively and that it passes through $p$ (see Fig. 2.3).

Consider the case as indicated in Fig. 2.4. This is the case when
the dihedral angle between $C_{3}$ and $C_{4}$ is $0$ . Let $b$ be an intersection of
two circles $C_{2}$ and $C_{4}$ in this case.

FIGURE 2.4

Now let us move $p$ with the direction as illustrated in Fig. 2.5.
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FIGURE 2.5

There is a point $p$ between $a$ and $b$ such that the dihedral angle
between $C_{3}$ and $C_{4}$ i8 equal to $\theta_{4}$ , becau8e $\theta_{4}e(0, \pi)$ satisfie8 $\theta_{2}+\theta_{4}+\theta_{6}<\pi$

and $\theta_{3}+\theta_{4}+\theta_{5}<\pi$ (see Fig. 2.6).

FIGURE 2.6

The above configuration of four circles is unique up to conformal trans.
formation.

ASSERTION 2.3. For any configuration of three circles such that
there is a hyperbolic triangle between these three circles, there $ex\dot{j}sts$ a
unique circle whieh intersects the three circles perpendicularly $(8ee$

Fig. 2.7).



HYPERBOLIC 3-MANIFOLDS 359

FIGURE 2.7

PROOF OF ASSERTION 2.3. By a conformal transformation, we can
transfer one of the intersection points to $\infty$ on $ C\cup t\infty$ } (see Fig. 2.8).

Then draw a circle centered at $0$ which passes through the point of
tangency of one of the three circles (see Fig. 2.9).

FIGURE 2.8

FIGURE 2.9

This circle perpendicularly intersect8 the remaining two circles. $\square $
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Now consider the hyperbolic 3-space $H^{3}$ which is bounded by $C\cup\{\infty\}$ .
By applying this Assertion 2.3 to our circles, we can say that in $H^{3}$ there
are four geodesic hemispheres each of which intersects the three geodesic
hemispheres perpendicularly. These geodesic hemispheres are hyper-
surfaces in $H^{3}$ each of which has the above circle as its boundary on
$C\cup t\infty\}$ (observe Fig. 2.10).

FIGURE 2.10

Then consider a polyhedron which is bounded by the above eight geodesic
hemispheres. This is the required hyperbolic truncated tetrahedron. $\square $

\S 3. Hyperbolic 3-manifolds with totally geodesic boundary which
can be obtained by gluing two hyperbolic truncated tetrahedra.

In this section we deal with hyperbolic 3-manifolds constructed by
identifying all hexagonal faces of two hyperbolic truncated tetrahedra
with isometries. Actually we have:

THEOREM 3.1. There are exactly eight mutually non-isometric $com$.
pact oriented hyperbolic 3-manifolds with totally geodesic boundary such
that they can be decomposed into two hyperbolic truncated tetrahedra
and that their boundaries are closed surfaces of genus 2.

We prepare the following two lemmas to prove Theorem 3.1.

LEMMA 3.2. A boundary surface of a hyperbolic 3-manifold whic $h$

can be decomposed into two hyperbolic truncated tetrahedra is a totally
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geodesie closed surface of genus 2.

LEMMA 3.3. Let $M^{3}$ be a complete hyperbolic 3-manifold whie $h$ is
decomposed into two hyperbolic truncated tetrahedra and has a totally
geodesic boundary $\partial M^{3}$ . Then there is a unique minimizing geodesic
which intersects $\partial M^{3}$ perpendicularly at the both ends of it, and it
is the edge whie$h$ is constructed by identifying all edges of the two
hyperbolic truncated tetrahedra.

PROOF OF LEMMA 3.2. First let us consider the hyperbolic truncated
tetrahedron as a purely topological one and let us consider the gluing
diagram as a purely combinatorial one.

Let us remove neighborhoods of all edges of truncated tetrahedra
a8 in Fig. 3.1.

See the stunted hexagon face of these removed truncated tetrahedra
(look at Fig. 3.2).

$\Rightarrow$

FIGURE 3.1

FIGURE 3.2

Then glue these stunted hexagons of truncated tetrahedra according
to some gluing diagram such that the resulting object is connected.
Topologically we obtain a 3-dimensional handlebody of genus 3, and on
this boundary there exist some annuli which are decomposed into the
shaded portion in Fig. 3.1. (They do not have any intersections.) Then
attach back the removed neighborhoods of edges along these annuli
according to the gluing diagram. This means that we attach some
$D^{2}\times[0,1]s$ along these annuli. Let us retract these annuli to simple
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closed curves each of which is a centerline of the annulus. Then top-
ologically we can regard this resulting 3-manifold as a 3-manifold which
is constructed by attaching $D^{2}\times[0,1]s$ to a handlebody of genus 3 along
some simple closed curves. If the number of these closed curves are
greater than or equal to 2, then the boundary of the resulting 3-
manifold is a torus or $S^{2}$ . Now if we try to give a hyperbolic metric
to this resulting 3-manifold, then these boundary surfaces cannot be
totally geodesic. Thus, the number of these closed curves must be 1.
In thi8 case, all edges of hexagons each of which is a boundary edge of
the adjacent two hexagons in one truncated tetrahedron are identified
by the gluing diagram. Now there is one simple closed curve on the
boundary of the handlebody of genus 3. This curve intersects three times
with at least one non trivial homology representative of the boundary of
the above handlebody. (Consider one of the identified stunted hexagons.
The boundary of this hexagon becomes a representative of the boundary
of the above handlebody. Observe Fig. 3.3.)

FIGURE 3.3

Then this simple closed curve is not homologous to zero. Therefore
the boundary of the resulting 3-manifold in this case i8 a closed surface
of genus 2. $\square $

PROOF OF LEMMA 3.3. In the situation indicated in the lemma, all
edges of hyperbolic truncated tetrahedra are identified so that all dihedral
angles are $\pi/6$ (see Fig. 3.4).

FIGURE 3.4. The dihedral angles are $\pi/2$ except where indicated.
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In a hyperbolic truncated tetrahedron, there is a geodesic which
leave8 a boundary triangle and reaches another one and intersects them
perpendicularly at the both ends. It is exactly an edge of adjacent two
right-angled hexagons of a hyperbolic truncated tetrahedron. Also there
exists the minimizing geodesic which leaves a boundary triangle of a
hyperbolic truncated tetrahedron and does not reach another boundary
triangle. It i8 exactly the geodesic which leaves a boundary triangle
perpendicularly and reaches the opposite side right-angled hexagon and
intersects them perpendicularly at the both ends (look at Fig. 3.5 $(a)$).

Let us take $x,$ $y,$ $z,$ $w$ as indicated in Fig. 3.5 (b).

Now we claim
$y>x$ . $(*)$

If we can show this, then the proof of Lemma 3.3 is complete.
Proof of $(*)$ . We calculate the geodesic arc lengths $x,$ $y,$ $z,$ $w$ by

using the formulae in Proposition 1.1. Fig. 3.6 (a) is a picture of one
of the boundary triangles, so

cosh $z=\frac{\cos\pi/6\cos\pi/6+\cos\pi/6}{\sin\pi/6\sin\pi/6}$

$=3+2\sqrt{3}$ .
See Fig. 3.6 (b). This is a picture of one of the boundary right-angled
hexagons, so

cosh $x=\frac{\cosh z\cosh z+\cosh z}{8inhz\sinh z}$

$=\frac{3+\sqrt{3}}{4}$ .
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(a) (b)

(c) (d)

FIGURE 3.6

The geodesic arc corresponding to $w$ in Fig. 3.6 (c) is a middle line of
this triangle, so

cosh $w=\frac{\cos\pi/6}{\cos\pi/12}$

$=\sqrt{6+3\sqrt{3}}$

Then by the formula for a right-angled pentagon, we get

cosh $y=\sinh x$ sinh $w$

$=\sqrt{}\overline{\frac{17+9\sqrt{3}}{8}}$ (look at Fig. 3.6 $(d)$).

Thus

cosh $y>\cosh x$ .
Therefore

$y>x$ . $\square $
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Now we give the proof of Theorem 3.1. The proof is divided into
nine steps (1), $\cdots,$ (9).

(1) We mark all faces and all edges of hyperbolic truncated tetra-
hedra as indicated in Fig. 3.7. From now on, an edge of hyperbolic

$p$

FIGURE 3.7. Numbers 1, $\cdots,$ $24$ are the labels of the corresponding edges of
the boundary triangles of the tetrahedra.

FIGURE 3.8. In the right picture, one vertex has been removed so that the
polyhedron can be flattened out in the plane.
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truncated tetrahedron is assumed not to be an edge of a boundary triangle
unless otherwise indicated and we indicate hyperbolic truncated tetrahedra
as purely Euclidean tetrahedra including all vertices.

Now we are considering connected 3-manifolds, hence there is at
least one glued pair of faces between the two tetrahedra. So, we may
consider that face $D$ and face $H$ are always glued (see Fig. 3.8).

(2) There are two cases of glued face pairs of tetrahedra:

case $(\alpha)$ $(A-E, B-G, C-F)$ ,

case $(\beta)$ $(A-E, B-C, F-G)$ .
(i.e., the resulting 3-manifolds by other identifications are i8ometric to
some resulting 3-manifolds in the above two cases.)

Proof of (2). There are

$\frac{624222}{\S P_{3}}=15$

cases of glued face pairings of tetrahedra.
They are indicated below:

$(A-E, B-G, C-F)$ , $(A-E, B-F, C-G)$ ,
$(A-E, B-C, F-G)$ ,
$(A-G, B-F, C-E)$ ,
$(A-G, B-C, E-F)$ ,

$(A-F, B-E, C-G)$ ,
$(A-F, B-C, E-G)$ ,

$(A-G, B-E, C-F)$ ,

$(A-F, B-G, C-E)$ ,

$(A-B, C-E, F-G)$ , $(A-B, C-F, E-G)$ ,
$(A-B, C-G, E-F)$ ,
$(A-C, B-E, F-G)$ ,
$(A-C, B-G, E-F)$ .

$(A-C, B-F, E-G)$ ,

Apparently we can reduce them to five cases below:

$(A-E, B-G, C-F)$ ,
$(A-E, B-F, C-G)$ ,
$(A-E, B-C, F-G)$ ,

$(A-F, B-E, C-G)$ ,
$(A-F, B-C, E-G)$ .
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(i) Case $(A-E, B-F, C-G)$ . In this case, we cannot construct a gluing
diagram such that all edges are identified. Therefore we take off
this $ca8e$ .

(ii) Case $(A-F, B-E, C-G)$ .
$(ii_{1})$ Case (1-18, 2-17, 3-16). See Fig. 3.9 (a). In this case, this

3-manifold is a mirror image to some 3-manifold which is
realized in the case $(A-E, B-G, C-F)$ .

$(ii_{2})$ Case (1-17, 2-16, 3-18). We cannot construct a gluing diagram
such that all edges are identified.

$(ii_{3})$ Case (1-16, 2-18, 3-17). See Fig. 3.9 (b). In this case, this
3-manifold is the same as some 3-manifold which is realized in
the case $(A-E, B-G, C-F)$ .

$\leftrightarrow$

(a)

$<\rightarrow$

(b)

FIGURE 3.9

By $(ii_{1}),$ $(ii_{2}),$ $(ii_{3})$ , the case (ii) are all reduced to the case $(A-E,$ $B-G$ ,
$C-F)$ .
(iii) Case $(A-F, B-C, E-G)$ .

In the 8ame way as the case (ii), the case (iii) are all reduced to
the case $(A-E, B-C, F-G)$ .

Then, by (I), (ii), (Iii), all cases are reduced to the two cases $(\alpha)$ and
$(\beta)$ . $\square $

(3) In the case $(\alpha)$ , there are sixteen gluing diagrams such that all
edges are identified. Though, up to isometry, there are three case8 at the
most and they are $(a),$ $(b),$ $(j)$ . (See Table 3.10. For example, let $(a)$
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TABLE 3.10

mirror image

$(a)$

$\leftrightarrow$

same

$\uparrow$ mirror image

FIGURE 3.11
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be the resulting 3-manifold by gluing the faces of two truncated tetrahedra
according to the gluing diagram of type $(a).)$

Proof of (3). Immediately we can see that

$(b)\cong(c)\cong(g)$ ,
$(d)\cong(i)\cong(h)$ ,
$(e)\cong(h)\cong(m)$ ,
$(f)\cong(l)\cong(0)$ ,

where $\cong$ means that both sides are isometric. So, up to isometry, there
are at most six cases (i.e., $(a),$ $(b),$ $(d),$ $(e),$ $(f),$ $(j)$).

Next, we shall say that

$(a)\cong(f)$ ,
$(d)\cong(e)\cong(h)$ ,

but these are apparent by Fig. 3.11.
Thus, we have reached the conclusion. $\square $

(4) In the case $(\beta)$ , there are eight gluing diagrams such that all
edges are identified. But, up to isometry, there are five cases at the
most and they are $(q),$ $(r),$ $(u),$ $(v),$ $(x)$ . (See Table 3.12.)

TABLE 3.12

Proof of (4). In the same way as Step (3), it is shown that $(r)\cong(s)$ ,
$(v)\cong(m)$ and $(q)\cong(t)$ . Thus, we have reached the conclusion. $\square $

(5) By Lemma 8.3, if there are any isometries between $(a),$ $(b),$ $(j)$ ,
$(q),$ $(\gamma),$ $(u),$ $(v),$ $(x)$ , then there are correspondences between the edges
of the two truncated tetrahedra which are isometric to each other.
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(6) Mark the both end8 of an $edge\uparrow with,$ $\otimes$ . (See Fig. 3.13.)
Now, we distingui8h $(a),$ $(b),$ $(j),$ $(q),$ $(r),$ $(u),$ $(v),$ $(x)$ combinatorially.

FIGURE 3.13

If there is an isometric pair of 3-manifolds, then there is a corre-
spondence

$\left\{\begin{array}{l}-\\\\\otimes-\otimes\end{array}\right.$ $\left\{\begin{array}{l}-\otimes\\\otimes-\end{array}\right.$

Observe Fig. 3.14. On their boundaries, let us count the number of the
edges of boundary triangles which connect $ $ and $\otimes$ . In the case $(a)$

and $(j)$ , there are 6. In the case $(b)$ , there are 4. In the case $(q),$ $(r)$ ,

$(u),$ $(v)$ , and $(x)$ , there are 8.
Then we have to distinguish

$(a)$ and $(j)$ ,

and

$(q),$ $(r),$ $(u),$ $(v)$ and $(x)$ .
(7) Watching the ordering of $ $ and $\otimes with$ as the center, we

can distinguish $(q),$ $(r),$ $(u),$ $(v),$ $(x)$ without the differences among $(q)$ ,
$(r),$ $(u)$ .

(8) We can conclude that $(a)\not\cong(i)$ .
Proof of (8). Assume $(a)\cong(j)$ . This isometry $maps\uparrow of(a)$ to $(or\downarrow)$

of $(j)$ . Then by the symmetry of these two truncated tetrahedra, we



HYPERBOLIC 8-MANIFOLDS 371

$(j)$

(v) $(x)$

FIGURE 3.14

may assume that this isometry maps the glued face pair $C-F$ of $(a)$ to
$G-B$ of $(j)$ . (See Fig. 3.15.)

In this case, this isometry maps

$B-G$ of $(a)\rightarrow F-C$ of $(j)$ ,
$A-E$ of $(a)\rightarrow H-D$ of $(j)$ .



372 MICHIHIKO FUJII

$(\alpha)$
$(j)$

FIGURE 3.15

Now note that the center of $(a)$ corresponds to the center of $(j)$ . Draw
perpendicular lines from the centers of $(a)$ and $(j)$ , to $C-F$ and $G-B$

respectively. (See Fig. 3.16.)

$(a)$ $(j)$

FIGURE 3.16

See the broken lines in $(a)$ and $(j)$ . By our isometry, they must be
correspondent to each other, which is a contradiction. $\square $

(9) We can conclude that

$(q)\not\cong(r)$ , $(r)\not\cong(u)$ , $(u)\not\cong(q)$ .
Proof of (9). Assume that $(q)\cong(r)$ . Look at Fig. 3.17.

$(q)$ $(r)$

FIGURE 3.17
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By the above isometry, $\uparrow of(q)$ corresponds $to\uparrow(or\downarrow)$ of $(r)$ . Say
$\uparrow\leftrightarrow\uparrow$ . Combinatorially considering, tetrahedron ABCD of $(q)$ must
correspond to tetrahedron ABCD of $(r)$ , and there are two cases of cor-
respondences between the faces of tetrahedra:

$\{$

$B$ of $(q)-B$ of $(r)$

$A$ of $(q)-A$ of $(r)$

or $\{$

$C$ of $(q)-C$ of $(r)$

$D$ of $(q)-D$ of $(r)$ ,

$A$ of $(q)-D$ of $(r)$

$B$ of $(q)-C$ of $(r)$

$C$ of $(q)-B$ of $(r)$

$D$ of $(q)-A$ of $(r)$ .
In this case, tetrahedron EFGH of $(q)$ must correspond to tetrahedron
EFGH of $(r)$ , which is impossible and is a contradiction.

In the case $when\uparrow of(q)$ corresponds $to\downarrow of(r)$ , by combinatorial
reason, we also have a contradiction.

$(q)\not\cong(u)$ is shown similarly to the case $(a)\not\cong(j)$ .
$(r)\not\cong(u)$ is shown similarly to the case $(q)\not\cong(r)$ . $\square $

By (1), $\cdots,$ (9), Theorem 3.1 has been proved completely. $\square $
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