Surfaces with Constant Kaehler Angle All of Whose Geodesics Are Circles in a Complex Space Form

Sadahiro MAEDA and Seiichi UDAGAWA

Kumamoto Institute of Technology and Nihon University
(Communicated by K. Ogiue)
Dedicated to Professor Tadashi Nagano on his sixtieth birthday

§ 0. Introduction.

Let $f: M \rightarrow \widetilde{M}$ be an isometric immersion of a connected complete Riemannian manifold M into a Riemannian manifold \tilde{M}. We call $M a$ circular geodesic submanifold of \widetilde{M} provided that for every geodesic γ of M the curve $f \circ \gamma$ is a circle in \widetilde{M}. The following problem is still open: Classify circular geodesic submanifolds M in a complex space form (for details, see [7]).

The purpose of this paper is to consider this problem in the case of $\operatorname{dim} M=2$.

§ 1. Preliminaries.

A Riemannian manifold of constant curvature is called a real space form. Let M be an n-dimensional submanifold of \widetilde{M}^{n+p} with the metric g. We denote by ∇ and $\widetilde{\nabla}$ the covariant differentiations on M and \widetilde{M}, respectively. Then, the second fundamental form σ of the immersion is defined by $\sigma(X, Y)=\widetilde{\nabla}_{X} Y-\nabla_{X} Y$, where X and Y are the vector fields tangent to M. We call $\mu=(1 / n)($ trace σ) the mean curvature vector of M in \widetilde{M}. The mean curvature H of M in \widetilde{M} is the length of μ. If μ is identically zero, the submanifold is said to be minimal. The submanifold M is totally umbilic provided that $\sigma(X, Y)=g(X, Y) \mu$ for all vector fields X and Y on M. In particular, if σ vanishes identically, then M is said to be a totally geodesic submanifold of \tilde{M}. For a vector field ξ normal to M, we write $\tilde{\nabla}_{x} \xi=-A_{\xi} X+D_{x} \xi$, where $-A_{\xi} X$ (resp. $D_{x} \xi$) denotes the tangential (resp. the normal) component of $\tilde{\nabla}_{x} \xi$. We call D

[^0]the normal connection on the normal bundle $T^{\perp} M$ of M. A normal vector field ξ is said to be parallel if $D_{x} \xi=0$ for each vector field X tangent to M. We define the covariant differentiation $\bar{\nabla}$ of the second fundamental form σ with respect to the connections in the tangent bundle and normal bundle as:
$$
\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=D_{X}(\sigma(Y, Z))-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right) .
$$

The second fundamental form σ is said to be parallel if $\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=0$ for all tangent vector fields X, Y and Z on M. The manifold M is said to be a (λ-)isotropic submanifold of \tilde{M} provided that $\|\sigma(X, X)\|$ is equal to a constant ($=\lambda$) for all unit tangent vectors X at each point. In particular, if the function λ is constant on M then the immersion is said to be (λ-)constant isotropic. A planar geodesic immersion is an isometric immersion such that every geodesic of M is locally contained in a 2 -dimensional totally geodesic submanifold in \widetilde{M}. We here explain the Frenet formula for a curve $x: I \rightarrow M$ parametrized by arc length t. Let $V_{1}=\dot{x}$ be the unit tangent vector and put $\lambda_{1}=\left\|\tilde{\nabla}_{\dot{x}} V_{1}\right\|$. If λ_{1} vanishes on I, then x is said to be of order 1. If λ_{1} is not identically zero, then we define V_{2} by $\widetilde{\nabla}_{\dot{x}} V_{1}=\lambda_{1} V_{2}$ on the set $I_{1}=\left\{t \in I: \lambda_{1}(t) \neq 0\right\}$. Put $\lambda_{2}=\left\|\widetilde{\nabla}_{\dot{x}} V_{2}+\lambda_{1} V_{1}\right\|$. If $\lambda_{2}=0$ on I_{1}, then x is said to be of order 2 on I_{1}. If λ_{2} is not identically zero on I_{1}, then we define V_{3} by $\tilde{\nabla}_{\dot{x}} V_{2}=-\lambda_{1} V_{1}+\lambda_{2} V_{3}$ on the set $I_{2}=\left\{t \in I_{1}: \lambda_{2}(t) \neq 0\right\}$. Inductively, we put $\lambda_{d}=\left\|\widetilde{\nabla}_{\dot{i}} V_{d}+\lambda_{d-1} V_{d-1}\right\|$ and if $\lambda_{d}=0$ on $I_{d-1}=\left\{t \in I_{d-2}: \lambda_{d-1}(t) \neq 0\right\}$, then x is said to be of order d on I_{d-1}. It follows that if the curve x is of order d, then we have a matrix equation on I_{d-1}

$$
\begin{equation*}
\tilde{\nabla}_{\dot{x}}\left(V_{1}, V_{2}, \cdots, V_{d}\right)=\left(V_{1}, V_{2}, \cdots, V_{d}\right) \Lambda \tag{1.1}
\end{equation*}
$$

where Λ is a (d, d)-matrix defined by

$$
\Lambda=\left(\begin{array}{cccccc}
0 & -\lambda_{1} & & & \tag{1.2}\\
\lambda_{1} & 0 & \cdot & & & \\
& \cdot & \cdot & & & \\
& \cdot & \cdot & & & 0 \\
& \cdot & \cdot & & & \\
0 & & & & 0 & \\
& & & & & -\lambda_{d-1} \\
& & & & \lambda_{d-1} & 0
\end{array}\right)
$$

Equation (1.1) is known as the Frenet formula. When each $\lambda_{i}(1 \leqq i \leqq d-1)$ is constant, the curve x is called a helix of order d. In particular, when $d=2$, the curve x is called a circle.

Now, let M be an oriented surface in a Kaehler manifold \tilde{M} with the complex structure J. We define $\cos \theta=g\left(e_{1}, J e_{2}\right)$, where $\left\{e_{1}, e_{2}\right\}$ is a local field of orthonormal frames on M. We call θ the Kaehler angle of M in \tilde{M}. Let M be a Riemannian submanifold of a Kaehler manifold \tilde{M} with the complex structure J. The submanifold M is called a Kaehler submanifold (resp. a totally real submanifold) of \widetilde{M} if each tangent space of M is mapped into the tangent space of M (resp. the normal space of M) by the complex structure J. A Kaehler manifold of constant holomorphic sectional curvature is called a complex space form. Let $\widetilde{M}^{N}(c)$ be an N-dimensional complex space form (with complex structure J) of constant holomorphic sectional curvature c. Let M be an n-dimensional submanifold of $\widetilde{M}^{N}(c)$. For later use, we write the following fundamental equations which are called the equations of Gauss and Codazzi, respectively:

$$
\begin{align*}
& g(R(X, Y) Z, W) \tag{1.3}\\
& =(c / 4)\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W) \\
& \quad+g(J Y, Z) g(J X, W)-g(J X, Z) g(J Y, W)+2 g(X, J Y) g(J Z, W)\} \\
& +g(\sigma(Y, Z), \sigma(X, W))-g(\sigma(X, Z), \sigma(Y, W)) \\
& \quad(c / 4)\{g(J Y, Z) J X-g(J X, Z) J Y+2 g(X, J Y) J Z\}^{\perp} \\
& \quad=\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)-\left(\bar{\nabla}_{Y} \sigma\right)(X, Z),
\end{align*}
$$

where R is the curvature tensor of M and $\{*\}^{\perp}$ means the normal component of $\{*\}$.

Finally, we prepare the following without proof in order to prove our theorems:

Proposition 1 ([5]). Let M be a submanifold in a Riemannian manifold \tilde{M}. Then, the following two conditions are equivalent:
(i) The submanifold M is nonzero constant (λ-)isotropic and the second fundamental form σ of M in \tilde{M} satisfies $\left(\bar{\nabla}_{X} \sigma\right)(X, X)=0$ for all vector fields X tangent to M.
(ii) M is a circular geodesic submanifold of \tilde{M}.

Proposition 2 ([5]). Let M be a submanifold in a complex space form $\tilde{M}(c)$ of constant holomorphic sectional curvature c with the complex structure J. Then, the following are equivalent:
(i) $\left(\bar{\nabla}_{X} \sigma\right)(X, X)=0$ for all vector fields X tangent to M.
(ii) $\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=(c / 4)\{g(X, J Y) J Z+g(X, J Z) J Y\}^{\perp}$ for all vector fields X, Y and Z tangent to M.

§2. Results.

First of all, we prove the following:
Theorem 1. Let M be a circular geodesic surface in a complex space form $\tilde{M}(c)$ with $c \neq 0$. If the Kaehler angle θ of M (in $\widetilde{M}(c)$) is constant, then the second fundamental form of M is parallel.

Proof. We choose a local field of orthonormal frames e_{1}, e_{2} around an arbitrary fixed point $p \in M$ in such a way that $\nabla e_{1}=\nabla e_{2}=0$ at p. Here and in the following we suppose that M is not a totally real surface in $\tilde{M}(c)$, that is, $g\left(e_{1}, J e_{2}\right) \neq 0$. Our aim here is to prove that the surface M must be Kaehler: From Proposition 1, we see that

$$
g(\sigma(X, X), \sigma(X, X))=\lambda^{2} g(X, X) g(X, X) \quad \text { for any } \quad X \in T M
$$

which is equivalent to

$$
\begin{gathered}
g(\sigma(X, Y), \sigma(Z, W))+g(\sigma(X, Z), \sigma(Y, W))+g(\sigma(X, W), \sigma(Y, Z)) \\
=\lambda^{2}(g(X, Y) g(Z, W)+g(X, Z) g(Y, W)+g(X, W) g(Y, Z))
\end{gathered}
$$

for any $X, Y, Z, W \in T M$. Therefore, in particular, we have

$$
g\left(\sigma\left(e_{1}, e_{1}\right), \sigma\left(e_{2}, e_{2}\right)\right)+2 g\left(\sigma\left(e_{1}, e_{2}\right), \sigma\left(e_{1}, e_{2}\right)\right)=\lambda^{2}
$$

Since λ is constant, the following holds:

$$
e_{1}\left(g\left(\sigma\left(e_{1}, e_{1}\right), \sigma\left(e_{2}, e_{2}\right)\right)\right)+2 e_{1}\left(g\left(\sigma\left(e_{1}, e_{2}\right), \sigma\left(e_{1}, e_{2}\right)\right)\right)=0
$$

which, together with Proposition 2, yields

$$
(c / 2) g\left(e_{1}, J e_{2}\right) g\left(\sigma\left(e_{1}, e_{1}\right), J e_{2}\right)+c \cdot g\left(e_{1}, J e_{2}\right) g\left(J e_{1}, \sigma\left(e_{1}, e_{2}\right)\right)=0
$$

so that

$$
\begin{equation*}
g\left(\sigma\left(e_{1}, e_{1}\right), J e_{2}\right)+2 g\left(\sigma\left(e_{1}, e_{2}\right), J e_{1}\right)=0 \quad \text { at } \quad p \tag{2.1}
\end{equation*}
$$

On the other hand, from the hypothesis that the Kaehler angle θ is constant, we get

$$
0=e_{1}\left(g\left(e_{1}, J e_{2}\right)\right)=g\left(\sigma\left(e_{1}, e_{1}\right), J e_{2}\right)+g\left(e_{1}, J \sigma\left(e_{1}, e_{2}\right)\right) \quad \text { at } \quad p,
$$

that is,

$$
\begin{equation*}
g\left(\sigma\left(e_{1}, e_{1}\right), J e_{2}\right)-g\left(\sigma\left(e_{1}, e_{2}\right), J e_{1}\right)=0 \quad \text { at } \quad p \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), we find

$$
\begin{equation*}
g\left(\sigma\left(e_{1}, e_{1}\right), J e_{2}\right)=g\left(\sigma\left(e_{1}, e_{2}\right), J e_{1}\right)=0 \quad \text { at } \quad p \tag{2.3}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
g\left(\sigma\left(e_{2}, e_{2}\right), J e_{1}\right)=g\left(\sigma\left(e_{1}, e_{2}\right), J e_{2}\right)=0 \quad \text { at } \quad p \tag{2.4}
\end{equation*}
$$

Moreover, we have

$$
\begin{aligned}
0=e_{2} \lambda^{2} & =e_{2}\left(g\left(\sigma\left(e_{1}, e_{1}\right), \sigma\left(e_{1}, e_{1}\right)\right)\right) \\
& =2 g\left(\left(\bar{\nabla}_{e_{2}} \sigma\right)\left(e_{1}, e_{1}\right), \sigma\left(e_{1}, e_{1}\right)\right) \\
& =\operatorname{cg}\left(e_{2}, J e_{1}\right) g\left(J e_{1}, \sigma\left(e_{1}, e_{1}\right)\right) \quad \text { at } \quad p,
\end{aligned}
$$

that is

$$
\begin{equation*}
g\left(\sigma\left(e_{1}, e_{1}\right), J e_{1}\right)=0 \quad \text { at } \quad p \tag{2.5}
\end{equation*}
$$

Similarly, we see that

$$
\begin{equation*}
g\left(\sigma\left(e_{2}, e_{2}\right), J e_{2}\right)=0 \quad \text { at } \quad p \tag{2.6}
\end{equation*}
$$

Hence the equations (2.3) $\sim(2.6)$ yield the following

$$
\begin{equation*}
g(\sigma(X, Y), J Z)=0 \quad \text { for any } \quad X, Y, Z \in T M \tag{2.7}
\end{equation*}
$$

For simplicity, in the following we put $\sigma_{i j}=\sigma\left(e_{i}, e_{j}\right)(1 \leqq i, j \leqq 2)$ and $a=g\left(e_{1}, J e_{2}\right)$. Differentiating (2.7) with respect to $W \in T M$, we see that

$$
\begin{aligned}
0 & =g\left(\tilde{\nabla}_{W}(\sigma(X, Y)), J Z\right)+g\left(\sigma(X, Y), J \widetilde{\nabla}_{W} Z\right) \\
& =g\left(-A_{\sigma(X, Y)} W+D_{W}(\sigma(X, Y)), J Z\right)+g\left(\sigma(X, Y), J\left(\nabla_{W} Z+\sigma(W, Z)\right)\right)
\end{aligned}
$$

Here, again by (2.7) we find

$$
\begin{equation*}
-g\left(A_{\sigma(X, Y)} W, J Z\right)+g\left(\left(\bar{\nabla}_{W} \sigma\right)(X, Y), J Z\right)+g(\sigma(X, Y), J \sigma(Z, W))=0 \tag{2.8}
\end{equation*}
$$

for any $X, Y, Z, W \in T M$. Now, Setting $X=Y=Z=e_{1}$ and $W=e_{2}$ in (2.8), from Propositions 1 and 2 we have

$$
\begin{equation*}
g\left(\sigma_{11}, \sigma_{22}\right) a+(c / 2)\left(-a+a^{3}\right)+g\left(\sigma_{11}, J \sigma_{12}\right)=0 \tag{2.9}
\end{equation*}
$$

Similarly, from (2.8) we get the following:

$$
\begin{align*}
& g\left(\sigma_{11}, J \sigma_{22}\right)=0 \tag{2.10}\\
& \lambda^{2} a+g\left(\sigma_{22}, J \sigma_{12}\right)=0 \tag{2.11}\\
& -\lambda^{2} a+g\left(\sigma_{11}, J \sigma_{12}\right)=0 \tag{2.12}\\
& g\left(\sigma_{12}, \sigma_{12}\right) a+(c / 4)\left(a-a^{3}\right)-g\left(\sigma_{11}, J \sigma_{12}\right)=0 \tag{2.13}
\end{align*}
$$

Thus, from (2.9) $\sim(2.13)$ we obtain the following:

$$
\left\{\begin{array}{l}
g\left(\sigma_{12}, \sigma_{12}\right)=\lambda^{2}-(c / 4)\left(1-a^{2}\right), \tag{2.14}\\
g\left(\sigma_{11}, \sigma_{22}\right)=(c / 2)\left(1-a^{2}\right)-\lambda^{2}, \\
g\left(\sigma_{11}, J \sigma_{22}\right)=0, \\
g\left(\sigma_{11}, J \sigma_{12}\right)=\lambda^{2} a \\
g\left(\sigma_{22}, J \sigma_{12}\right)=-\lambda^{2} a
\end{array}\right.
$$

Now, we denote by K the Gaussian curvature of the surface M. It follows from (2.14) and the Gauss equation (1.3) that

$$
\begin{equation*}
K=c-2 \lambda^{2}, \tag{2.15}
\end{equation*}
$$

which implies that K is constant. Next, we shall compute $\widetilde{R}\left(e_{1}, e_{2}\right) \sigma_{11}$ and $\widetilde{R}\left(e_{1}, e_{2}\right) \sigma_{12}$, where \widetilde{R} is the curvature tensor of $\tilde{M}(c)$. From Propositions 1, 2 and (2.14) we have

$$
\begin{aligned}
\tilde{\nabla}_{e_{1}} \sigma_{11} & =-A_{\sigma_{11}} e_{1}+D_{e_{1}} \sigma_{11} \\
& =-\lambda^{2} e_{1}+\left(\bar{\nabla}_{e_{1}} \sigma\right)\left(e_{1}, e_{1}\right)+2 \sigma\left(\nabla_{e_{1}} e_{1}, e_{1}\right) \\
& =-\lambda^{2} e_{1}+2 \sigma\left(\nabla_{e_{1}} e_{1}, e_{1}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\tilde{\nabla}_{e_{2}}\left(\tilde{\nabla}_{e_{1}} \sigma_{11}\right)=-\lambda^{2} \sigma_{12}+2 \sigma\left(\nabla_{e_{2}}\left(\nabla_{e_{1}} e_{1}\right), e_{1}\right) \quad \text { at } \quad p . \tag{2.16}
\end{equation*}
$$

Similarly, from Propositions 1, 2 and (2.14) we obtain

$$
\begin{align*}
& \tilde{\nabla}_{e_{1}}\left(\tilde{\nabla}_{e_{2}} \sigma_{11}\right) \tag{2.17}\\
& \quad=\left(\lambda^{2}-(c / 2)\right) \sigma_{12}-(c / 2) a J \sigma_{11}+2 \sigma\left(\nabla_{e_{1}}\left(\nabla_{e_{2}} e_{1}\right), e_{1}\right) \quad \text { at } \quad p .
\end{align*}
$$

Hence, from (2.16) and (2.17), we find

$$
\begin{equation*}
\widetilde{R}\left(e_{1}, e_{2}\right) \sigma_{11}=\left(6 \lambda^{2}-(5 c / 2)\right) \sigma_{12}-(c / 2) a J \sigma_{11} . \tag{2.18}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\widetilde{R}\left(e_{1}, e_{2}\right) \sigma_{12}=\left(5 c / 4-3 \lambda^{2}\right)\left(\sigma_{11}-\sigma_{22}\right)-(c / 2) a J \sigma_{12} \tag{2.19}
\end{equation*}
$$

On the other hand, since the curvature tensor \tilde{R} of $\tilde{M}(c)$ has a nice form, we get the following:

$$
\begin{align*}
& \widetilde{R}\left(e_{1}, e_{2}\right) \sigma_{11}=(c / 2) a J \sigma_{11}, \tag{2.20}\\
& \widetilde{R}\left(e_{1}, e_{2}\right) \sigma_{12}=(c / 2) a J \sigma_{12} \tag{2.21}
\end{align*}
$$

Therefore, the equations (2.18) and (2.20) yield

$$
c a J \sigma_{11}=\left(6 \lambda^{2}-(5 / 2) c\right) \sigma_{12}
$$

so that

$$
\begin{equation*}
\operatorname{cag}\left(J \sigma_{11}, J \sigma_{11}\right)=\left(6 \lambda^{2}-(5 / 2) c\right) g\left(\sigma_{12}, J \sigma_{11}\right) \tag{2.22}
\end{equation*}
$$

which, combined with (2.14) and $a \neq 0$, implies that

$$
\begin{equation*}
c=4 \lambda^{2} \tag{2.23}
\end{equation*}
$$

On the other hand, the equations (2.19) and (2.21) give

$$
\begin{equation*}
c a J \sigma_{12}=\left((5 / 4) c-3 \lambda^{2}\right)\left(\sigma_{11}-\sigma_{22}\right) \tag{2.24}
\end{equation*}
$$

so that

$$
\begin{equation*}
\operatorname{cag}\left(J \sigma_{12}, J \sigma_{12}\right)=\left((5 / 4) c-3 \lambda^{2}\right) g\left(\sigma_{11}-\sigma_{22}, J \sigma_{12}\right) \tag{2.25}
\end{equation*}
$$

which, together with (2.14) and $a \neq 0$, yields

$$
\begin{equation*}
24 \lambda^{4}-6 c \lambda^{2}-c^{2}\left(1-a^{2}\right)=0 . \tag{2.26}
\end{equation*}
$$

As an immediate consequence of (2.23), (2.26) and $c \neq 0$, we see that $a^{2}=1$, that is, the surface M is Kaehler. Namely, the surface M which satisfies the hypothesis of Theorem 1 must be Kaehler or totally real. Therefore, by virtue of the Codazzi equation (1.4) and Propositions 1, 2 we conclude that the second fundamental form of M is parallel. Q.E.D.

Remark 1. Sakamoto ([12]) classified planar geodesic submanifolds in a real space form. Due to his work, we find that a planar geodesic submanifold M in a Euclidean sphere $S^{n}(k)$ of constant curvature k is locally congruent to one of compact symmetric spaces of rank one and the immersion is locally equivalent to the second or the first standard immersion according as M is a sphere or not (see also [13]). For later use, we give the examples of full planar geodesic surface M in a real hyperbolic space $\boldsymbol{R} H^{n}(c)$ of constant curvature $c(<0)$: We denote by $M^{n}(k)$ an n-dimensional space form of constant curvature k.

EXAMPLE 1. $\quad f_{1}: M=M^{2}(k) \xrightarrow[\text { totally umbilic }]{ } \boldsymbol{R} H^{3}(c), \quad k>c$.
Example 2. $f_{2}: M=S^{2}(k / 3) \xrightarrow[\text { minimal }]{ } S^{4}(k) \xrightarrow[\text { totally umbilic }]{ } \boldsymbol{R} H^{5}(c)$.
Remark 2. Naitoh ([8]) and Nomizu ([10]) classified circular geodesic submanifolds with parallel second fundamental form in a complex projective space $C P^{n}(c)$ of constant holomorphic sectional curvature c. Due
to their works, we find that the surface M (in $C P^{n}(c)$) which satisfies the hypothesis of Theorem 1 is locally congruent to one of the following examples (a) $\sim(\mathrm{e})$:

We denote by $\boldsymbol{R} P^{n}(k)$ an n-dimensional real projective space of constant curvature k.
(a) $\quad M=S^{2}(k) \xrightarrow[\text { totally umbilic }]{ } \boldsymbol{R} P^{3}(c / 4) \xrightarrow[\text { totally geodesic }]{ } \boldsymbol{C P} P^{3}(c)$.
M is a totally real surface with constant mean curvature $H=\sqrt{k-(c / 4)}$ $(\neq 0)$ in $\boldsymbol{C P}{ }^{3}(c)$.
(b) $\quad M=S^{2}(k / 3) \xrightarrow[\text { minimal }]{ } S^{4}(k) \xrightarrow[\text { totally umbilic }]{ } R P^{s}(c / 4)$

$$
\xrightarrow[\text { totally geodesic }]{ } C P^{\mathrm{s}}(\mathrm{c}) .
$$

M is a totally real surface with constant mean curvature $H=\sqrt{k-(c / 4)}$ $(\neq 0)$ in $C P^{5}(c)$.
(c) $\quad M=S^{2}(c / 12) \xrightarrow[\text { minimal }]{ } S^{4}(c / 4) \xrightarrow[\text { covering map }]{\longrightarrow} \underset{\text { totally geodesic }}{ } \boldsymbol{C P} P^{4}(c / 4)$.
M is a totally real minimal surface in $C P^{4}(c)$.
(d)

where π is the Hopf fibration and $S^{1}(2 / \sqrt{3 c})$ is a circle with radius $2 / \sqrt{3 c} . \quad M$ is a totally real minimal surface in $C P^{2}(c)$. Note that M is a flat torus.
(e) $\quad M=\underset{\omega}{S^{2}(c / 2)}\left(=C P^{1}(c / 2)\right) \underset{f}{\boldsymbol{\omega}} \underset{\boldsymbol{\omega}}{\boldsymbol{C}}{ }^{2}(c)$

$$
f:\left(Z_{0}, Z_{1}\right) \longrightarrow\left(Z_{0}^{2}, \sqrt{2} Z_{0} Z_{1}, Z_{1}^{2}\right)
$$

Of course, the immersion f is Kaehler so that M is a minimal surface in $C P^{2}(c)$.

When the ambient space is a complex hyperbolic space $C H^{n}(c)$ of constant holomorphic sectional curvature $c(<0)$, it follows from [9] that a surface M with parallel second fundamental form in $\boldsymbol{C H}^{n}(c)$ is either of the following (i)~(iii):
(i) M is a totally real surface with parallel second fundamental form in $\boldsymbol{C H} H^{2}(c)$.
(ii) $M \underset{f}{\longrightarrow} \boldsymbol{R} \boldsymbol{H}^{s}(c / 4) \xrightarrow[\text { totally geodesic }]{ } \boldsymbol{C H}^{n}(\boldsymbol{c})$,
where f is a full immersion with parallel second fundamental form.
(iii) M is a complex curve in $C H^{n}(c)$.

Assume that M is a circular geodesic surface with parallel second fundamental form in $C H^{n}(c)$. In the case (i), M is minimal by Ejiri's result ([3]), which states that (λ-)isotropic totally real surface in $\boldsymbol{C H} H^{2}(c)$ is minimal. Then, by Ejiri's result ([4]), we see that M is totally geodesic in $C H^{2}(c)$. In the case (ii), M is a planar geodesic surface with parallel second fundamental form in $R H^{s}(c / 4)$ for some $s \in N$. Then, we have the following two examples:
(f) $\quad M=M^{2}(k) \xrightarrow[f_{1}]{ } \boldsymbol{R} H^{3}(c / 4) \xrightarrow[\text { totally geodesic }]{ } \boldsymbol{C} H^{3}(c)$,
where $k>c / 4$ and f_{1} is given in Example 1.
(g) $\quad M=S^{2}(k / 3) \xrightarrow[f_{2}]{\longrightarrow} \boldsymbol{R} H^{3}(c / 4) \xrightarrow[\text { totally geodesic }]{\longrightarrow} \boldsymbol{C H} H^{5}(c)$,
where f_{2} is given in Example 2.
In the case (iii), it is known that M is totally geodesic.
Therefore, we see that circular geodesic surface with constant Kaehler angle in a non-flat complex space form must be of constant curvature. Then, motivated by Remark 2, we now prove the following:

Theorem 2. Let M be a surface of constant curvature. Assume that M is a circular geodesic surface fully and isometrically immersed in a non-flat complex space form. Then, M is locally congruent to one of the examples (a), (b), (c), (d), (e), (f) and (g).

Proof. We denote by K the constant Gaussian curvature of M. It follows from the Gauss equation (1.3) that

$$
\begin{equation*}
K=(c / 4)\left\{1+3\left(g\left(e_{1}, J e_{2}\right)\right)^{2}\right\}-g\left(\sigma_{12}, \sigma_{12}\right)+g\left(\sigma_{11}, \sigma_{22}\right) . \tag{2.27}
\end{equation*}
$$

Differentiating (2.27) with respect to e_{1}, from Propositions 1 and 2, we get

$$
\begin{aligned}
e_{1} K= & (3 c / 4) 2 g\left(e_{1}, J e_{2}\right)\left\{g\left(\sigma_{11}, J e_{2}\right)+g\left(e_{1}, J \sigma_{12}\right)\right\} \\
& -2 g\left(\left(\bar{\nabla}_{e_{1}} \sigma\right)\left(e_{1}, e_{2}\right), \sigma_{12}\right)+g\left(\sigma_{11},\left(\bar{\nabla}_{e_{1}} \sigma\right)\left(e_{2}, e_{2}\right)\right) \\
= & (3 c / 2) g\left(e_{1}, J e_{2}\right)\left\{g\left(\sigma_{11}, J e_{2}\right)+g\left(e_{1}, J \sigma_{12}\right)\right\} \\
& -(c / 2) g\left(e_{1}, J e_{2}\right) g\left(J e_{1}, \sigma_{12}\right)+(c / 2) g\left(e_{1}, J e_{2}\right) g\left(\sigma_{11}, J e_{2}\right) \\
= & 2 c g\left(e_{1}, J e_{2}\right)\left\{g\left(\sigma_{11}, J e_{2}\right)+g\left(e_{1}, J \sigma_{12}\right)\right\} \\
= & c\left\{e_{1}\left(\left(g\left(e_{1}, J e_{2}\right)\right)^{2}\right)\right\} .
\end{aligned}
$$

Similarly, we have

$$
e_{2} K=c\left\{e_{2}\left(\left(g\left(e_{1}, J e_{2}\right)\right)^{2}\right)\right\}
$$

Hence, the Kaehler angle θ of M is constant. Therefore, from Theorem 1 and Remark 2, we get our conclusion.
Q.E.D.

Remark 3. In the case where the ambient manifold M is a real space form, "circular geodesic" always implies "planar geodesic". However, in general this is not true. In fact, the example (d) is not planar geodesic (for details see [8]).

Remark 4. The following examples are worth mentioning.
(A) For any non-negative integers n and k with $0 \leqq k \leqq n$, there exists an $S U(2)$-equivariant minimal immersion $\psi_{n, k}: S^{2}(K) \rightarrow C P^{n}(c)$ such that $K=c /(2 k(n-k)+n)$ and $\cos \theta=K(n-2 k) / c$, where θ is the Kaehler angle of $S^{2}(K)$ (for details, see [1], [2] and [11]). We here note that $\psi_{n, k}$ is neither a Kaehler immersion nor a totally real immersion in the case where n is odd or n is even but $k \neq n / 2$ with $0<k<n$ (so that $n \geqq 3$). Moreover, for any nonnegative integers n and k with $0 \leqq k \leqq n$, for every geodesic γ of $S^{2}(K)$ the curve $\psi_{n, k} \circ \gamma$ is a helix of order n (see, Proposition 3.1 in [6]).
(B) For any nonnegative integers p and q, there exists an $S U(2)$ equivariant immersion (with constant mean curvature $H=\sqrt{p q c} /(p+q)$) $f_{p, q}^{1}: S^{2}(K) \rightarrow C P^{N}(c)$ with $N=p q+p+q$ such that $K=c /(p+q)$ and $\cos \theta=$ $(p-q) /(p+q)$, where θ is the Kaehler angle of $S^{2}(K)$ (for details, see [6]). We here note that $f_{p, q}^{1}$ is neither a Kaehler immersion nor a totally real immersion in the case where $p q \neq 0$ and $p \neq q$. Moreover, for any nonnegative integers p and q and for every geodesic γ of $S^{2}(K)$, the curve $f_{p, q}^{1} \circ \gamma$ is a helix of order ($p+q$) (see, Theorem 3.1 in [6]).

References

[1] S. Bando and Y. Ohnita, Minimal 2-spheres with constant curvature in $P_{n}(\boldsymbol{C})$, J. Math. Soc. Japan, 39 (1987), 477-487.
[2] J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward, On conformal minimal immersion of S^{2} into $C P^{n}$, Math. Ann., 279 (1988), 599-620.
[3] N. EJIRI, Totally real isotropic submanifolds in a complex projective space, preprint (unpublished).
[4] N. EJIRI, Totally real minimal immersions of n-dimensional real space forms into n dimensional complex space forms, Proc. Amer. Math. Soc., 84 (1982), 243-246.
[5] S. Maeda and N. Sato, On submanifolds all of whose geodesics are circles in a complex space form, Kodai Math. J., 6 (1983), 157-166.
[6] S. Maeda and Y. Ohnita, Helical geodesic immersions into complex space forms, Geom. Dedicata, 30 (1989), 93-114.
[7] S. Maeda, Differential geometry of constant mean curvature submanifolds, Mem. Fac. Gen. Ed. Kumamoto Univ. Nat. Sci., 24 (1989), 7-39.
[8] H. Naitoh, Isotropic submanifolds with parallel second fundamental form in $P^{n}(C)$, Osaka J. Math., 18 (1981), 427-464.
[9] H. Naitoh, Parallel submanifolds of complex space forms I, Nagoya Math. J., 90 (1983), 85-117.
[10] K. Nomizu, A characterization of the Veronese varieties, Nagoya Math. J., 60 (1976), 181-188.
[11] Y. Ohnita, Minimal surfaces with constant curvature and Kaehler angle in complex space forms, Tsukuba J. Math., 13 (1989), 191-207.
[12] K. Sakamoto, Planar geodesic immersions, Tôhoku Math. J., 29 (1977), 25-56.
[13] M. Takeuchi, Parallel submanifolds of space forms, Manifolds and Lie Groups, in Honor of Yozô Matsushima, ed. by J. Hano et al., Birkhäuser, 1981, 429-447.

Present Address:
Sadahiro Maeda
Department of Mathematics, Kumamoto Institute of Technology
Ikeda 4-22-1, Kumamoto 860, Japan
Seitchi Udagawa
Department of Mathematics, School of Medicine, Nihon University
Itabashi, Tokyo 173, Japan

[^0]: Received October 21, 1989

