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\S 0. Introduction.

Let $f:M\rightarrow\tilde{M}$ be an isometric immersion of a connected complete
Riemannian manifold $M$ into a Riemannian manifold $\tilde{M}$. We call $M$ $a$

circular geodesic submanifold of $\tilde{M}$ provided that for every geodesic $\gamma$

of $M$ the curve $ f\circ\gamma$ is a circle in $\tilde{M}$. The following problem is still
open: Classify circular geodesic submanifolds $M$ in a complex space form
(for details, see [7]).

The purpose of this paper is to consider this problem in the case of
dim $M=2$ .

\S 1. Preliminaries.

A Riemannian manifold of constant curvature is called a real space
form. Let $M$ be an n-dimensional submanifold of $\tilde{M}^{n+p}$ with the metric
$g$ . We denote by $\nabla$ and V the covariant differentiations on $M$ and $\tilde{M}$,
respectively. Then, the second fundamental form $\sigma$ of the immersion is
defined by $\sigma(X, Y)=\tilde{\nabla}_{X}Y-\nabla_{X}Y$, where $X$ and $Y$ are the vector fields
tangent to $M$. We call $\mu=(1/n)(trace\sigma)$ the mean curvature vector of
$M$ in $\tilde{M}$. The mean curvature $H$ of $M$ in $\tilde{M}$ is the length of $\mu$ . If $\mu$

is identically zero, the submanifold is said to be minimal. The sub.
manifold $M$ is totally umbilic provided that $\sigma(X, Y)=g(X, Y)\mu$ for all
vector fields $X$ and $Y$ on $M$. In particular, if $\sigma$ vanishes identically,
then $M$ is said to be a totally geodesic submanifold of $\tilde{M}$. For a vector
field $\xi$ normal to $M$, we write $\tilde{\nabla}_{X}\xi=-A_{\epsilon}X+D_{X}\xi$ , where $-A_{\epsilon}X$ (resp. $ D_{X}\xi$)
denotes the tangential (resp. the normal) component of $\tilde{\nabla}_{X}\xi$ We call $D$
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the normal connection on the normal bundle $T^{\perp}M$ of $M$. A normal vector
field $\xi$ is said to be parallel if $D_{X}\xi=0$ for each vector field $X$ tangent to
$M$. We define the covariant differentiation V of the second fundamental
form $\sigma$ with respect to the connections in the tangent bundle and normal
bundle as:

$(\overline{\nabla}_{X}\sigma)(Y, Z)=D_{X}(\sigma(Y, Z))-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$ .
The 8econd fundamental form $\sigma$ is said to be parauel if $(\overline{\nabla}_{X}\sigma)(Y, Z)=0$

for all tangent vector field8 $X,$ $Y$ and $Z$ on $M$. The manifoId $M$ is said
to be a $(x-)isotrop\dot{w}$ submanifold of $\tilde{M}$ provided that $||\sigma(X, X)||$ is equal
to a constant $(=x)$ for all unit tangent vector8 $X$ at each point. In
particular, if the function $\lambda$ is constant on $M$ then the immersion is
said to be $(x-)cons$tant isotropd. A planar geodesic immer8ion is an
isometric immersion such that every geode8ic of $M$ is locally contained
in a 2-dimensional totally geodesic submanifold in $\tilde{M}$. We here explain
the Frenet formula for a curve $x:I\rightarrow M$ parametrized by arc length $t$ .
Let $V_{1}=\dot{x}$ be the unit tangent vector and put $x_{1}=||\tilde{\nabla}_{\dot{x}}V_{1}||$ . If $\lambda_{1}$ vanishes
on $I$, then $x$ is said to be of order 1. If $\lambda_{1}$ i8 not identically zero, then we
define $V$ by $\tilde{\nabla}_{i}V_{1}=x_{1}V_{l}$ on the set $I_{1}=\{teI:x_{1}(t)\neq 0\}$ . Put $*=||\tilde{\nabla}_{i}V_{2}+\lambda_{1}V_{1}||$ .
If $x_{2}=0$ on $I_{1}$ , then $x$ is said to be of order 2 on $I_{1}$ . If $\lambda_{2}$ is not identi-
cally zero on $I_{1}$ , then we define $V_{8}$ by $\tilde{\nabla}_{\dot{x}}V_{2}=-x_{1}V_{1}+x_{2}V_{\epsilon}$ on the set
$I_{2}=\{teI_{1}:*(t)\neq 0\}$ . Inductively, we put $x_{d}=||\tilde{\nabla}_{i}V_{d}+x_{d-1}V_{d-1}||$ and if $x_{d}=0$

on $I_{d-1}=\{teI_{d-2}:x_{d-1}(t)\neq 0\}$ , then $x$ i8 said to be of order $d$ on $I_{d-1}$ . It
follows that if the curve $x$ is of order $d$ , then we have a matrix equation
on $I_{d-1}$

(1.1) $\tilde{\nabla}_{\dot{x}}(V_{1}, V_{2}, \cdots, V_{4})=(V_{1}, V_{2}, \cdots, V_{d})\Lambda$ ,

where $\Lambda$ is a $(d, d)$-matrix defined by

(1.2) $\Lambda=\left(\begin{array}{llll}0 & -x_{1} & & 0\\\lambda_{1} & o0 & -0x_{\delta-} & \\ & & 0x_{d-1} & \end{array}\right)$ .

Equation (1.1) is known as the Frenet formula. When each $\lambda(1\leqq i\leqq d-1)$

is constant, the curve $x$ is called a helix of order $d$ . In particular, when
$d=2$ , the curve $x$ is called a circle.
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Now, let $M$ be an oriented surface in a Kaehler manifold $\tilde{M}$ with
the complex structure $J$. We define cos $\theta=g(e_{1}, Je_{2})$ , where $\{e_{1}, e_{2}\}$ is a
local field of orthonormal frames on $M$. We call $\theta$ the Kaehler angle of
$M$ in $\tilde{M}$. Let $M$ be a Riemannian submanifold of a Kaehler manifold $\tilde{M}$

with the complex structure $J$. The submanifold $M$ is called a Kaehler
submanifold (resp. a totally real submanifold) of $\tilde{M}$ if each tangent space
of $M$ is mapped into the tangent space of $M$ (resp. the normal space of
$M)$ by the complex 8tructure $J$. A Kaehler manifold of constant holo-
morphic sectional curvature is called a complex space form. Let $\tilde{M}^{N}(c)$

be an N-dimensional complex space form (with complex structure $J$) of
constant holomorphic sectional curvature $c$ . Let $M$ be an n-dimensional
submanifold of $\tilde{M}^{N}(c)$ . For later use, we write the following funda-
mental equations which are called the equations of Gauss and Codazzi,
respectively:

(1.3) $g(R(X, Y)Z,$ $W$)

$=(c/4)\{g(Y, Z)g(X, W)-g(X, Z)g(Y, W)$

$+g(JY, Z)g(JX, W)-g(JX, Z)g(JY, W)+2g(X, JY)g(JZ, W)\}$
$+g(\sigma(Y, Z),$ $\sigma(X, W))-g(\sigma(X, Z),$ $\sigma(Y, W))$

(1.4) $(c/4)\{g(JY, Z)JX-g(JX, Z)JY+2g(X, JY)JZ\}^{\perp}$

$=(\overline{\nabla}_{X}\sigma)(Y, Z)-(\overline{\nabla}_{Y}\sigma)(X, Z)$ ,

where $R$ is the curvature tensor of $M$ and $t*\}^{\perp}$ means the normal com-
ponent of $t*$ }.

Finally, we prepare the following without proof in order to prove
our theorems:

PROPOSITION 1 ([5]). Let $M$ be a submanifold in a Riemannian
manifold $\tilde{M}$. Then, the following two conditions are equivalent:

(i) The submanifold $M$ is nonzero constant $(\lambda-)isotropic$ and the
second fundamental form $\sigma$ of $M$ in $\tilde{M}$ satisfies $(\overline{\nabla}_{X}\sigma)(X, X)=0$ for all
vector fields $X$ tangent to $M$.

(ii) $M$ is a circular geodesic submanifold of $\tilde{M}$.
PROPOSITION 2 ([5]). Let $M$ be a submanifold in a complex spaee

form $\tilde{M}(c)$ of constant holomorphic sectional curvature $c$ with the complex
structure J. Then, the following are equivalent:

(i) $(\overline{\nabla}_{X}\sigma)(X, X)=0$ for all vector fields $X$ tangent to $M$.
(ii) $(\overline{\nabla}_{X}\sigma)(Y, Z)=(c/4)\{g(X, JY)JZ+g(X, JZ)JY\}^{\perp}for$ all vector fields

$X,$ $Y$ and $Z$ tangent to $M$.
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\S 2. Results.

First of all, we prove the following:

THEOREM 1. Let $M$ be a circular geodesic surface $in$ a complex
space form $\tilde{M}(c)$ with $c\neq 0$ . If the Kaehler angle $\theta$ of $M$ (in $\tilde{M}(c)$ ) is
constant, then the second fundamental form of $M\dot{r}s$ parallel.

PROOF. We choose a local field of orthonormal frames $e_{1},$ $e_{2}$ around
an arbitrary fixed point peM in such a way that $\nabla e_{1}=\nabla e_{2}=0$ at $p$ .
Here and in the following we suppose that $M$ is not a totally real
surface in $\tilde{M}(c)$ , that is, $g(e_{1}, Je_{2})\neq 0$ . Our aim here is to prove that the
surface $M$ must be Kaehler: From Proposition 1, we see that

$g(\sigma(X, X),$ $\sigma(X, X))=x^{2}g(X, X)g(X, X)$ for any $X\in TM$ ,

which is equivalent to

$g(\sigma(X, Y),$ $\sigma(Z, W))+g(\sigma(X, Z),$ $\sigma(Y, W))+g(\sigma(X, W),$ $\sigma(Y, Z))$

$=x^{2}(g(X, Y)g(Z, W)+g(X, Z)g(Y, W)+g(X, W)g(Y, Z))$

for any $X,$ $Y,$ $Z,$ $W\in TM$. Therefore, in particular, we have

$g(\sigma(e_{1}, e_{1}),$ $\sigma(e_{2}, e_{2}))+2g(\sigma(e_{1}, e_{2}),$ $\sigma(e_{1}, e_{2}))=x^{2}$ .
Since $\lambda$ is constant, the following holds:

$e_{1}(g(\sigma(e_{1}, e_{1}),$ $\sigma(e_{2}, e_{2})))+2e_{1}(g(\sigma(e_{1}, e_{2}),$ $\sigma(e_{1}, e_{2})))=0$ ,

which, together with Proposition 2, yields

$(c/2)g(e_{1}, Je_{2})g(\sigma(e_{1}, e_{1}),$ $Je_{2}$) $+c\cdot g(e_{1}, Je_{2})g(Je_{1}, \sigma(e_{1}, e_{2}))=0$

so that

(2.1) $g(\sigma(e_{1}, e_{1}),$ $Je_{2}$) $+2g(\sigma(e_{1}, e_{2}),$ $Je_{1}$) $=0$ at $p$ .
On the other hand, from the hypothesis that the Kaehler angle $\theta$ is
constant, we get

$0=e_{1}(g(e_{1}, Je_{2}))=g(\sigma(e_{1}, e_{1}),$ $Je_{2}$) $+g(e_{1}, J\sigma(e_{1}, e_{2}))$ at $p$ ,

that is,

(2.2) $g(\sigma(e_{1}, e_{1}),$ $Je_{2}$) $-g(\sigma(e_{1}, e_{2}),$ $Je_{1}$) $=0$ at $p$ .
From (2.1) and (2.2), we find
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(2.3) $g(\sigma(e_{1}, e_{1}),$ $Je_{2}$) $=g(\sigma(e_{1}, e_{2}),$ $Je_{1}$) $=0$ at $p$ .
Similarly, we obtain

(2.4) $g(\sigma(e_{2}, e_{2}),$ $Je_{1}$) $=g(\sigma(e_{1}, e_{2}),$ $Je_{2}$) $=0$ at $p$ .
Moreover, we have

$0=e_{2}x^{2}=e_{2}(g(\sigma(e_{1}, e_{1}),$ $\sigma(e_{1}, e_{1})))$

$=2g((\overline{\nabla}_{e_{2}}\sigma)(e_{1}, e_{1}),$ $\sigma(e_{1}, e_{1}))$

$=cg(e_{2}, Je_{1})g(Je_{1}, \sigma(e_{1}, e_{1}))$ at $p$ ,

that is

(2.5) $g(\sigma(e_{1}, e_{1}),$ $Je_{1}$) $=0$ at $p$ .
Similarly, we see that

(2.6) $g(\sigma(e_{2}, e_{2}),$ $Je_{2}$) $=0$ at $p$ .
Hence the equations $(2.3)\sim(2.6)$ yield the following

(2.7) $g(\sigma(X, Y),$ $JZ$) $=0$ for any $X,$ $Y,$ $z\in TM$ .
For simplicity, in the following we put $\sigma_{ij}=\sigma(e_{i}, e_{j})(1\leqq i, j\leqq 2)$ and
$a=g(e_{1}, Je_{2})$ . Differentiating (2.7) with respect to We $TM$, we see that

$0=g(\tilde{\nabla}_{W}(\sigma(X, Y)),$ $JZ$) $+g(\sigma(X, Y),$ $J\tilde{\nabla}_{W}Z$)
$=g(-A_{\sigma(X,Y)}W+D_{W}(\sigma(X, Y)),$ $JZ$) $+g(\sigma(X, Y),$ $J(\nabla_{W}Z+\sigma(W, Z)))$ .

Here, again by (2.7) we find

(2.8) $-g(A_{\sigma\langle X,Y)}W, JZ)+g((\overline{\nabla}_{W}\sigma)(X, Y),$ $JZ$) $+g(\sigma(X, Y),$ $J\sigma(Z, W))=0$

for any $X,$ $Y,$ $Z$, We $TM$. Now, Setting $X=Y=Z=e_{1}$ and $W=e_{2}$ in (2.8),
from Propositions 1 and 2 we have
(2.9) $g(\sigma_{11}, \sigma_{22})a+(c/2)(-a+a^{3})+g(\sigma_{11}, J\sigma_{12})=0$ .
Similarly, from (2.8) we get the following:

(2.10) $g(\sigma_{11}, J\sigma_{22})=0$ ,

(2.11) $\lambda^{2}a+g(\sigma_{22}, J\sigma_{12})=0$ ,

(2.12) $-\lambda^{2}a+g(\sigma_{11}, J\sigma_{12})=0$ ,

(2.13) $g(\sigma_{12}, \sigma_{12})a+(c/4)(a-a^{8})-g(\sigma_{11}, J\sigma_{12})=0$ .
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Thu8, from $(2.9)\sim(2.13)$ we obtain the following:

(2.14) $\left\{\begin{array}{l}g(\sigma_{12}, \sigma_{12})=\lambda^{2}-(c/4)(1-a^{2})\\g(\sigma_{11}, \sigma_{22})=(c/2)(1-a^{2})-x^{2}\\g(\sigma_{11}, J\sigma_{22})=0\\g(\sigma_{11}, J\sigma_{12})=\lambda^{2}a\\g(\sigma_{22}, J\sigma_{12})=-\lambda^{2}a\end{array}\right.$

Now, we denote by $K$ the Gau8sian curvature of the surface $M$. It
follows from (2.14) and the Gauss equation (1.3) that

(2.15) $K=c-2x^{2}$ ,

which implies that $K$ is constant. Next, we shall compute $\tilde{R}(e_{1}, e_{2})\sigma_{11}$ and
$\tilde{R}(e_{1}, e_{2})\sigma_{12}$ , where $\tilde{R}$ is the curvature tensor of $\tilde{M}(c)$ . From Propositions
1, 2 and (2.14) we have

$\tilde{\nabla}_{1}\sigma_{11}=-A_{\sigma_{11}}e_{1}+D_{1}\sigma_{11}$

$=-x^{2}e_{1}+(\overline{\nabla}_{1}\sigma)(e_{1}, e_{1})+2\sigma(\nabla_{1}e_{1}, e_{1})$

$=-x^{2}e_{1}+2\sigma(\nabla_{1}e_{1}, e_{1})$

so that

(2.16) $\tilde{\nabla}_{2}(\tilde{\nabla}_{1}\sigma_{11})=-x^{2}\sigma_{12}+2\sigma(\nabla_{a}(\nabla_{1}e_{1}), e_{1})$ at $p$ .
Similarly, from Proposition8 1, 2 and (2.14) we obtain

(2.17) $\tilde{\nabla}_{e_{1}}(\tilde{\nabla}_{*}2\sigma_{11})$

$=(x^{2}-(c/2))\sigma_{12}-(c/2)aJ\sigma_{11}+2\sigma(\nabla_{1}(\nabla_{2}e_{1}), e_{1})$ at $p$ .
Hence, from (2.16) and (2.17), we find

(2.18) $\tilde{R}(e_{1}, e_{2})\sigma_{11}=(6\lambda^{2}-(5c/2))\sigma_{12}-(c/2)aJ\sigma_{11}$ .
Similarly, we have

(2.19) $\tilde{R}(e_{1}, e_{2})\sigma_{12}=(5c/4-3x^{2})(\sigma_{11}-\sigma_{22})-(c/2)aJ\sigma_{12}$ .
On the other hand, since the curvature tensor $\tilde{R}$ of $\tilde{M}(c)$ has a nice
form, we get the following:

(2.20) $\tilde{R}(e_{1}, e_{2})\sigma_{11}=(c/2)aJ\sigma_{11}$ ,

(2.21) $\tilde{R}(e_{1}, e_{2})\sigma_{12}=(c/2)aJ\sigma_{12}$ .
Therefore, the equations (2.18) and (2.20) yield
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$caJ\sigma_{11}=(6x^{2}-(5/2)c)\sigma_{12}$

so that

(2.22) $cag(J\sigma_{11}, J\sigma_{11})=(6x^{2}-(5/2)c)g(\sigma_{12}, J\sigma_{11})$

which, combined with (2.14) and $a\neq 0$ , implies that

(2.23) $c=4\lambda^{2}$

On the other hand, the equations (2.19) and (2.21) give

(2.24) $caJ\sigma_{12}=((5/4)c-3x^{2})(\sigma_{11}-\sigma_{22})$

so that

(2.25) $cag(J\sigma_{12}, J\sigma_{12})=((5/4)c-3x^{2})g(\sigma_{11}-\sigma_{22}, J\sigma_{12})$

which, together with (2.14) and $a\neq 0$ , yields

(2.26) $24x^{4}-6cx^{2}-c^{2}(1-a^{2})=0$ .
As an immediate consequence of (2.23), (2.26) and $c\neq 0$ , we see that
$a^{2}=1$ , that is, the surface $M$ is Kaehler. Namely, the surface $M$ which
satisfies the hypothesis of Theorem 1 must be Kaehler or totally real.
Therefore, by virtue of the Codazzi equation (1.4) and Propositions 1, 2
we conclude that the second fundamental form of $M$ is parallel. Q.E.D.

REMARK 1. Sakamoto ([12]) classified planar geodesic submanifolds
in a real space form. Due to his work, we find that a planar geodesic
submanifold $M$ in a Euclidean sphere $S^{n}(k)$ of constant curvature $k$ is
locally congruent to one of compact symmetric spaces of rank one and
the immersion is locally equivalent to the second or the first standard
immersion according as $M$ is a sphere or not (see also [13]). For later
use, we give the examples of full planar geodesic surface $M$ in a real
hyperbolic space $RH^{n}(c)$ of constant curvature $c(<0)$ : We denote by
$M^{n}(k)$ an n-dimensional space form of constant curvature $k$ .

EXAMPLE 1. $f_{1}$ : $M=M^{2}(k)-\rightarrow RH^{3}(c)$ , $k>c$ .
totally umbilic

EXAMPLE 2. $f_{2}$ : $M=S^{2}(k/3)\rightarrow S^{4}(k)\overline{\min im}a1\rightarrow RH^{b}(c)totallyumbilic$

REMARK 2. Naitoh ([8]) and Nomizu ([10]) classified circular geodesic
submanifolds with parallel second fundamental form in a complex pro-
jective space $CP^{n}(c)$ of constant holomorphic sectional curvature $c$ . Due
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to their works, we find that the surface $M$ (in $CP^{n}(c)$) which $satisfie8$

the hypothesis of Theorem 1 is locally congruent to one of the following

examples $(a)\sim(e)$ :
We denote by $RP^{n}(k)$ an n-dimensional real projective space of con-

stant curvature $k$ .
(a) $M=S^{2}(k)\rightarrow RP^{3}(c/4)\rightarrow CP^{3}(c)\overline{totallyumbil}ic\overline{totallygeodes}ic$

$M$ is a totally real surface with constant mean curvature $H=\sqrt{k-(c/4)}$

$(\neq 0)$ in $CP^{3}(c)$ .
(b) $M=S^{2}(k/3)\rightarrow S^{4}(k)\rightarrow RP^{f}(c/4)\overline{\min im}a1\overline{totallyumbil}ic$

$-\rightarrow CP^{f}(c)$ .
totally geodesic

$M$ is a totally real surface with constant mean curvature $H=\sqrt{k-(c/4)}$

$(\neq 0)$ in $CP^{b}(c)$ .
(c) $M=S^{2}(c/12)\rightarrow S^{4}(c/4)\rightarrow RP^{4}(c/4)\overline{\min im}a1\overline{coveringma}p$

$-\rightarrow CP^{4}(c)$ .
totally $gmde8ic$

$M$ is a totally real minimal $8urface$ in $CP^{4}(c)$ .
(d) $S^{1}(2/\sqrt{3c})\times S^{1}(2/\sqrt{3c})\times S^{1}(2/\sqrt{3c})\rightarrow S^{f}(c/4)\overline{\min im}a1$

$ M=\pi(S^{1}(2/\sqrt{3c})\times S^{1}(2/\sqrt{3c})\times S^{1}(2/\sqrt{3c}))\downarrow\pi\rightarrow CP^{2}(c)\downarrow\pi$

,

where $\pi$ is the Hopf fibration and $S^{1}(2/\sqrt{3c})$ is a circle with radius
$2/\sqrt{3c}$ . $M$ is a totally real minimal surface in $CP^{2}(c)$ . Note that $M$ is

a flat torus.

(e) $M=S^{2}(c/2)(=CP^{1}(c/2))\rightarrow CP^{2}(c)f$

$t[)$
$(D$

$f$ : $(Z_{0}, Z_{1})$
$\rightarrow(Z_{0}^{2}, \sqrt{2}Z_{0}Z_{1}, Z_{1}^{2})$ .

Of course, the immersion $f$ is Kaehler so that $M$ is a minimal surface

in $CP^{2}(c)$ .
When the ambient space is a complex hyperbolic space $CH^{n}(c)$ of

constant holomorphic sectional curvature $c(<0)$ , it follows from [9] that

a surface $M$ with parallel second fundamental form in $CH^{n}(c)$ is either

of the following $(i)\sim(iii)$ :
(i) $M$ is a totally real surface with parallel second fundamental

form in $CH^{2}(c)$ .
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(ii)
$M\rightarrow RH^{\epsilon}(c/4)\rightarrow CH^{n}(c)f\overline{totallygeodesi}c$ ’

where $f$ is a full immersion with parallel second fundamental form.
(iii) $M$ is a complex curve in $CH^{n}(c)$ .
Assume that $M$ is a circular geodesic surface with parallel second

fundamental form in $CH^{n}(c)$ . In the case (i), $M$ is minimal by Ejiri’s
result ([8]), which states that $(x-)isotropic$ totally real surface in $CH^{2}(c)$

is minimal. Then, by Ejiri’s result ([4]), we see that $M$ is totally
geodesic in $CH^{2}(c)$ . In the case (ii), $M$ is a planar geodesic surface
with parallel second fundamental form in $RH^{S}(c/4)$ for some $s\in N$. Then,
we have the following two example8:

(f)
$M=M^{2}(k)\rightarrow RH^{3}(c/4)\rightarrow CH^{3}(c)f_{1}\overline{totallygeodes}ic$ ’

where $k>c/4$ and $f_{1}$ is given in Example 1.

(g)
$M=S^{2}(k/3)\rightarrow RH^{b}(c/4)\rightarrow CH^{\mathfrak{g}}(c)f_{2}\overline{totallygeodes}ic$ ’

where $f_{2}$ is given in Example 2.
In the case (iii), it is known that $M$ is totally geodesic.
Therefore, we see that circular geodesic surface with constant Kaehler

angle in a non-flat complex space form must be of constant curvature.
Then, motivated by Remark 2, we now prove the following:

THEOREM 2. Let $M$ be a surface of constant curvature. Assume
that $M$ is a circular geodesic surface fully and isometrically immersed
in a non-flat complex space form. Then, $M$ is locally congruent to one
of the examples (a), (b), (c), (d), (e), (f) and (g).

PROOF. We denote by $K$ the constant Gaussian curvature of $M$. It
follows from the Gauss equation (1.3) that

(2.27) $K=(c/4)\{1+3(g(e_{1}, Je_{2}))^{2}\}-g(\sigma_{12}, \sigma_{12})+g(\sigma_{11}, \sigma_{22})$ .
Differentiating (2.27) with respect to $e_{1}$ , from Propositions 1 and 2, we get

$e_{1}K=(3c/4)2g(e_{1}, Je_{2})\{g(\sigma_{11}, Je_{2})+g(e_{1}, J\sigma_{12})\}$

$-2g((\overline{\nabla}_{e_{1}}\sigma)(e_{1}, e_{2}),$
$\sigma_{12}$) $+g(\sigma_{11}, (\overline{\nabla}_{e_{1}}\sigma)(e_{2}, e_{2}))$

$=(3c/2)g(e_{1}, Je_{2})\{g(\sigma_{11}, Je_{2})+g(e_{1}, J\sigma_{12})\}$

$-(c/2)g(e_{1}, Je_{2})g(Je_{1}, \sigma_{12})+(c/2)g(e_{1}, Je_{2})g(\sigma_{11}, Je_{l})$

$=2cg(e_{1}, Je_{2})\{g(\sigma_{11}, Je_{2})+g(e_{1}, J\sigma_{12})\}$

$=c\{e_{1}((g(e_{1}, Je_{2}))^{2})\}$ .



350 SADAHIRO MAEDA AND SEIICHI UDAGAWA

Similarly, we have
$e_{2}K=c\{e_{2}((g(e_{1}, Je_{2}))^{2})\}$ .

Hence, the Kaehler angle $\theta$ of $M$ is constant. Therefore, from Theorem
1 and Remark 2, we get our $conclu8ion$ . Q.E.D.

REMARK 3. In the case where the ambient manifold $M$ is a real space
form, “circular geodesic” always implies “planar geodesic”. However, in
general this is not true. In fact, the example (d) is not planar geodesic
(for $detail8$ see [8]).

REMARK 4. The following examples are worth mentioning.
(A) For any non-negative integers $n$ and $k$ with $0\leqq k\leqq n$ , there

$exi8t8$ an $SU(2)$-equivariant minimal $immer8ion\psi_{n,k}$ : $S^{2}(K)\rightarrow CP^{n}(c)$ such
that $K=c/(2k(n-k)+n)$ and cos $\theta=K(n-2k)/c$ , where $\theta$ is the Kaehler
angle of $S^{2}(K)$ (for details, see [1], [2] and [11]). We here note that
$\psi_{n,k}$ is neither a Kaehler $immer8ion$ nor a totally real immersion in the
case where $n$ is odd or $ni8$ even but $k\neq n/2$ with $0<k<n$ (so that
$n\geqq 3)$ . Moreover, for any nonnegative integers $n$ and $k$ with $0\leqq k\leqq n$ ,

for every geodesic $\gamma$ of $S^{2}(K)$ the curve $\psi_{n,k}\circ\gamma$ is a helix of order $n$

(see, Proposition 3.1 in [6]).
(B) For any nonnegative integers $p$ and $q$ , there exists an $SU(2)-$

equivariant immersion (with constant mean curvature $H=\sqrt{pqc}/(p+q)$)

$f_{p,q}^{1}$ : $S^{2}(K)\rightarrow CP^{N}(c)$ with $N=pq+p+q8uch$ that $K=c/(p+q)$ and cos $\theta=$

$(p-q)/(p+q)$ , where $\theta$ is the Kaehler angle of $S^{2}(K)$ (for $detail8$ , see [6]).

We here note that $f_{p.q}^{1}$ is neither a Kaehler immersion nor a totally real
immersion in the case where $pq\neq 0$ and $p\neq q$ . Moreover, for any non-
negative integers $p$ and $q$ and for every geodesic $\gamma$ of $S^{2}(K)$ , the curve
$ f_{p,q}^{1}\circ\gamma$ is a helix of order $(p+q)$ (see, Theorem 3.1 in [6]).
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