The Left Cells and Their \boldsymbol{W}-Graphs of Weyl Group of Type \boldsymbol{F}_{4}

Kazuhisa TAKAHASHI
Sophia University
(Communicated by N. Iwahori)

§ 1. Introduction.

Let (W, S) be a finite Coxeter system. In [5], Kazhdan and Lusztig constructed W-graphs. They are obtained from the left cells of W and give the representations of Hecke algebra \mathscr{H} corresponding to W. In this paper, we assume (W, S) has type F_{4}. The Kazhdan-Lusztig polynomials $P_{y, w}$ for (W, S) of type F_{4} are already calculated (see [13]). In Section 2, we recall the definition of $P_{y, w}$ and several relations on W. The main results of this paper appear in Section 3. Using some data of $P_{y, w}$, we determine the left cells and two-sided cells. The left and two-sided cells are explicitly constructed from certain easily described subsets of W (Theorem 3.1), and we describe the natural W-graph corresponding to each left cell (Theorem 3.2). After describing each W graph, we discuss some relations between the Duflo involutions and the conjugate classes in W by examining each case (Proposition 3.6).

The author is deeply grateful to Professor Ken-ichi Shinoda for his valuable advices, guidances and encouragements.

§ 2. Preliminaries.

Let (W, S) be an arbitrary Coxeter system, with the Bruhat order " \leqq " and the length function $l: W \rightarrow N$. Let $\mathscr{A}=Z\left[q^{1 / 2}, q^{-1 / 2}\right]$ be the ring of Laurent polynomials in $q^{1 / 2}$ where $q^{1 / 2}$ is an indeterminate and let \mathscr{H} be the Hecke algebra of (W, S) over \mathscr{A} with standard basis $\left\{T_{w} \mid w \in W\right\}$. In [5], Kazhdan and Lusztig defined the special basis $\left\{C_{w} \mid w \in W\right\}$ for \mathscr{H}, given by

$$
C_{w}=\sum_{y \leq w}(-1)^{l(w)-l(y)} q^{l(w) / 2-l(y)} P_{y, w}\left(q^{-1}\right) T_{y},
$$

where $P_{y, w} \in Z[q]$ is a polynomial in q of degree $\leqq(l(w)-l(y)-1) / 2$ for
$y \leqq w$, and $P_{w, w}=1$.
In the same paper, Kazhdan and Lusztig defined several relations on W. For any $w \in W$, set $\mathscr{L}(w)=\{s \in S \mid s w<w\}$ and $\mathscr{R}(w)=\{s \in S \mid w s<w\}$.

For $y, w \in W$,
$y<w \quad$ if $y<w, l(w)-l(y)$ is odd and $P_{y, w}=\mu(y, w) q^{(l(w)-l(y)-1) / 2}+$ lower powers of q where $\mu(y, w)$ is a non-zero integer,
$y-w \quad$ if $y<w$ or $w<y$,
$y \leqq{ }_{\mathrm{L}} w \quad$ if there exists a sequence $y=x_{0}, x_{1}, x_{2}, \cdots, x_{n}=w$ such that for each $i(1 \leqq i \leqq n), x_{i-1}-x_{i}$ and $\mathscr{L}\left(x_{i-1}\right) \nsubseteq \mathscr{L}\left(x_{i}\right)$,
$y \leqq{ }_{\mathrm{LR}} w \quad$ if there exists a sequence $y=x_{0}, x_{1}, x_{2}, \cdots, x_{n}=w$ such that for each $i(1 \leqq i \leqq n)$, we have either $x_{i-1} \leqq{ }_{L} x_{i}$ or $x_{i-1}^{-1} \leqq{ }_{L} x_{i}^{-1}$.
Let \sim_{L} be the equivalence relation associated with the preorder \leqq_{L}; thus $y \sim_{\mathrm{L}} w$ means $y \leqq_{\mathrm{L}} w \leqq_{\mathrm{L}} y$. The corresponding equivalence classes are called the left cells of W. A right cell of W is a set of form $\left\{w \in W \mid w^{-1} \in \Gamma\right\}$ where Γ is a left cell. Let $\sim_{L R}$ be the equivalence relation associated with the preorder \leqq_{LR}; thus $y \sim_{\mathrm{LR}} w$ means $y \leqq_{\mathrm{LR}} w \leqq_{\mathrm{LR}} y$. The corresponding equivalence classes are called the two-sided cells of W.

We can calculate the Kazhdan-Lusztig polynomials $P_{y, w}$ which are defined by the following formula (see [4, 2.2c]);

For any $w \in W$, if $s w<w$, then

$$
P_{y, w}=q^{1-c} P_{s y, s w}+q^{c} P_{y, s w}-\sum_{\substack{y \leq z<z<w \\ z<z}} \mu(z, s w) q^{(l(w)-l(z)) / 2} P_{y, z}
$$

where $c=1$ if $s \in \mathscr{L}(y), c=0$ if $s \notin \mathscr{L}(y)$.
Also we have an algorithm for the calculation of $P_{y, w}$ (see [4], and also [12]). The calculation of $P_{v, w}$ for (W, S) of type F_{4} was carried out on a computer (see [13]).

§ 3. Main results.

Hereafter we assume that (W, S) is of type F_{4} whose generators are given by the set of $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ satisfying the following relations;

$$
\begin{aligned}
& 1^{2}=2^{2}=3^{2}=4^{2}=e, \\
& (12)^{3}=(34)^{3}=(23)^{4}=e, \\
& 13=31,14=41,24=42,
\end{aligned}
$$

where we write i instead of s_{i}.
For $J \subseteq S$, let $R_{J}=\{w \in W \mid \mathscr{R}(w)=J\}$. For $X \subseteq W$, define $X^{*}=X w_{0}$ where w_{0} is the maximal length element in W ($w_{0}=432312343231234323123121$).

It is clear that $R_{J}^{*}=R_{s-J}$ and we write $X+Y+\cdots$, to indicate the union of disjoint subsets X, Y, \cdots, of W.

We shall now construct certain subsets of W from the subsets R_{J}, $J \subseteq S$.

First, define

$$
\begin{aligned}
& A_{1}=R_{12} \cdot 12132 \cap R_{34}, A_{2}=A_{1} \cdot 2, A_{3}=A_{2} \cdot 3, A_{4}=A_{2} \cdot 1, \\
& A_{5}=A_{3} \cdot 1, A_{6}=A_{5} \cdot 2, \quad A_{7}=A_{6} \cdot 3, A_{8}=A_{7} \cdot 4 .
\end{aligned}
$$

Put $A=\cup A_{i}$.
Next define

$$
\begin{aligned}
& B_{1}=R_{34} \cdot 34323 \cap R_{12}, \quad B_{2}=B_{1} \cdot 3, \quad B_{3}=B_{2} \cdot 2, \quad B_{4}=B_{2} \cdot 4, \\
& B_{5}=B_{4} \cdot 2, \quad B_{6}=B_{5} \cdot 3, \quad B_{7}=B_{8} \cdot 2, \quad B_{8}=B_{7} \cdot 1 .
\end{aligned}
$$

Set $B=\cup B_{i}$.
Define

$$
\begin{aligned}
& C_{1}=R_{12} \cdot 213234 \cap R_{123}=A_{8}^{*}, C_{2}=C_{1} \cdot 4=A_{7}^{*}, C_{3}=C_{2} \cdot 3=A_{8}^{*}, \\
& C_{4}=C_{3} \cdot 2=A_{5}^{*}, C_{5}=C_{4} \cdot 3=A_{4}^{*}, C_{8}=C_{4} \cdot 1=A_{3}^{*}, \\
& C_{7}=C_{5} \cdot 1=A_{2}^{*}, C_{8}=C_{7} \cdot 2=A_{1}^{*} .
\end{aligned}
$$

Set $C=\cup C_{i}=\cup A_{i}^{*}=A^{*}$.
Define

$$
\begin{aligned}
& D_{1}=R_{34} \cdot 324321 \cap R_{234}=B_{8}^{*}, D_{2}=D_{1} \cdot 1=B_{7}^{*}, D_{3}=D_{2} \cdot 2=B_{6}^{*}, \\
& D_{4}=D_{3} \cdot 3=B_{5}^{*}, D_{5}=D_{4} \cdot 2=B_{4}^{*}, D_{6}=D_{4} \cdot 4=B_{3}^{*}, \\
& D_{7}=D_{6} \cdot 2=B_{2}^{*}, D_{8}=D_{7} \cdot 3=B_{1}^{*} .
\end{aligned}
$$

Set $D=\cup D_{i}=\cup B_{i}^{*}=B^{*}$.

Define

$$
\begin{aligned}
& E_{1}=\left(R_{4} \cdot 432-A_{8} \cdot 432\right) \cap R_{13}, E_{2}=\left(R_{1} \cdot 123-B_{8} \cdot 123\right) \cap R_{24}, \\
& E_{3}=E_{2} \cdot 3, \quad E_{4}=E_{1} \cdot 2, E_{5}=E_{4} \cdot 3, \quad E_{6}=E_{3} \cdot 2, \quad E_{7}=E_{5} \cdot 4, \\
& E_{8}=E_{8} \cdot 1, \quad E_{9}=\left(E_{2} \cdot 1 \cup R_{1} \cdot 1232\right) \cap\left(R_{14}-B_{4}\right) .
\end{aligned}
$$

Set $E=\cup E_{i}$.

Define

$$
\begin{aligned}
& F_{1}=R_{13} \cdot 321-D_{1}=E_{8}^{*}, \quad F_{2}=E_{7}^{*}, F_{3}=\left(R_{24} \cdot 23-D_{7} \cdot 23\right) \cap R_{124}=E_{8}^{*}, \\
& F_{4}=F_{1} \cdot 1=E_{8}^{*}, \quad F_{5}=F_{3} \cdot 3=E_{4}^{*}, \quad F_{6}=F_{5} \cdot 2=E_{1}^{*}, F_{7}=F_{4} \cdot 2=E_{3}^{*}, \\
& F_{8}=E_{9}^{*}, \quad F_{9}=F_{7} \cdot 3=E_{2}^{*} .
\end{aligned}
$$

Set $F=\cup F_{i}=\cup E_{i}^{*}=E^{*}$.

Define

$$
G_{1}=R_{3} \cdot 32 \cap R_{14}, G_{2}=G_{1} \cdot 2, G_{8}=G_{2} \cdot 3
$$

Set $G=U G_{i}$.
Define

$$
H_{1}=R_{2} \cdot 23 \cap R_{124}=G_{3}^{*}, \quad H_{2}=H_{1} \cdot 3=G_{2}^{*}, H_{3}=H_{2} \cdot 2=G_{1}^{*} .
$$

Set $H=\cup H_{i}=\cup G_{i}^{*}=G^{*}$.
The subset I, J are defined by the following equations;

$$
\begin{aligned}
& R_{12}=B_{1}+C_{8}+I \\
& R_{34}=A_{1}+D_{8}+J
\end{aligned}
$$

We have $J=I^{*}$.
The subset $K_{i}(i=1,2,3,4)$ are defined by the following equations;

$$
\begin{aligned}
& R_{23}=C_{5}+D_{5}+F_{8}+K_{1}, \\
& R_{24}=A_{2}+B_{5}+C_{4}+D_{7}+E_{8}+F_{6}+G_{2}+K_{2} \\
& R_{18}=A_{5}+B_{2}+C_{7}+D_{4}+E_{2}+F_{9}+H_{2}+K_{3}, \\
& R_{14}=A_{4}+B_{4}+E_{1}+K_{4} .
\end{aligned}
$$

We have $K_{3}=K_{2}^{*}$ and $K_{4}=K_{1}^{*}$. Set $K=\cup K_{i}$.
The subset L_{i}, M_{i}, N_{i} and O_{i} are given by

$$
\begin{aligned}
& R_{1}=B_{8}+E_{9}+L_{1}, \\
& R_{2}=A_{6}+B_{8}+B_{7}+E_{5}+E_{7}+H_{8}+L_{2}, \\
& R_{4}=A_{8}+E_{8}+M_{1}, \\
& R_{8}=A_{3}+A_{7}+B_{6}+E_{4}+E_{8}+G_{8}+M_{2} \\
& R_{128}=C_{1}+F_{2}+N_{1}, \\
& R_{124}=C_{2}+C_{8}+D_{3}+F_{8}+F_{7}+H_{1}+N_{2}, \\
& R_{24}=D_{1}+F_{1}+O_{1}, \\
& R_{184}=C_{8}+D_{2}+D_{6}+F_{4}+F_{5}+G_{1}+O_{2}
\end{aligned}
$$

We have $N_{i}=M_{i}^{*}$ and $O_{i}=L_{i}^{*}(i=1,2)$. We set $L=\cup L_{i}, M=\cup M_{i}, N=$ $\cup N_{i}=M^{*}$ and $O=\cup O_{i}=L^{*}$.

Finally, define

$$
P=P_{1}=R_{\varnothing}=\{e\}, \quad \text { and } \quad Q=Q_{1}=R_{s}=\left\{w_{0}\right\}=P^{*}
$$

After the polynomials $P_{\nu, \boldsymbol{v}}$ were calculated, a computer was used to
determine the relation \leqq_{L} and \leqq_{LR} on W, and we obtain the following result.

Theorem 3.1. (1) The left cells of W are the subsets $A_{i}, B_{i}, C_{i}, D_{i}$, $E_{i}, F_{i}, G_{i}, H_{i}, I, J, K_{i}, L_{i}, M_{i}, N_{i}, O_{i}, P$ and Q. There are 72 left cells.
(2) The two-sided cells of W are the subsets $A \cup B, C \cup D, E, F$, $G \cup H \cup I \cup J \cup K, L \cup M, N \cup O, P$ and Q. There are 9 two-sided cells.

Now we recall the definition of a W-graph. A W-graph is a combinatorial object which defines a representation of $\mathscr{\mathscr { C }}$. It consists of a graph with a set of vertices X and a subset Y of $X \times X$ consisting of edges, together with two additional data: for each vertex $x \in X$, there is associated a subset $I_{x} \subseteq S$, and for each edge $(y, x) \in Y$, there is assigned an integer $\mu(y, x) \neq 0$. Let $E(X)$ be the free \mathscr{A}-module with basis X. For each $s \in S$, let τ_{s} be the endomorphism of $E(X)$ defined by

$$
\tau_{s}(x)= \begin{cases}-x & \text { if } s \in I_{x} \\ q x+q^{1 / 2} \sum_{\substack{y \in X \\ x \in y \\ s \in I_{y}}} \mu(y, x) y & \text { if } s \notin I_{x}\end{cases}
$$

The preceding data defines a W-graph provided that for any $s \neq t$ such that st has finite order m,

$$
\underbrace{\tau_{s} \tau_{t} \tau_{s} \cdots \cdots \cdots}_{m \text { factors }}=\underbrace{\tau_{t} \tau_{s} \tau_{t} \cdots \cdots \cdots}_{m \text { factors }}
$$

We define a representation $\varphi: \mathscr{H} \rightarrow \operatorname{End}_{A}(E)$ setting by $\varphi\left(T_{s}\right)=\tau_{s}$, and it is a representation of W by setting $q=1$. We say that the W graph is irreducible if the representation corresponding to the W-graph is irreducible.

Let Γ be a left cell in W and W_{Γ} be the W-graph defined as follows: the set of vertices of W_{Γ} be the set Γ, the set of edges are the set $\{(y, x) \in \Gamma \times \Gamma \mid \mu(y, x) \neq 0\}$, where $\mu(y, x)$ is the integer defined in $\S 2$, and $I_{x}=\mathscr{L}(x)$, for each $x \in \Gamma$. We shall call the W-graph obtained in this way the natural W-graph.

Let $\varphi_{r, q}$ be the matrix representation of \mathscr{H}, which have entries in \mathscr{A}, afforded by the natural W-graph W_{Γ}. So $\varphi_{\Gamma, 1}$ is a matrix representation of W.

Since we determined the left cells, we can describe a natural W-graph W_{Γ} corresponding to each left cell Γ (up to equivalence) and construct the matrix representation of W afforded by each natural W-graph. The character table of W was determined by Kondo [6]. There are 25
irreducible characters, which we denote by $\chi_{i, j}$ the j-th character of degree i as encountered in his character table, except for the "isolated" character of degree 4,12 and 16 , which we denote by χ_{4}, χ_{12} and χ_{18}, respectively, as Shoji did in [11]. After constructing these matrix representations, we decompose the characters of each matrix representation of W into the irreducible characters. So, we obtain the following theorem. On the other hand, these representations and their decompositions were already obtained by Lusztig by making use of another method, and he called them cells (see [7]).

Theorem 3.2. The natural W-graph W_{Γ} corresponding to the left cell Γ is given in Figures 1~6. Each character afforded by the natural W-graph W_{r} is decomposed as follows.

$$
\begin{aligned}
& |P|=1: \chi_{1,1} \\
& |Q|=1: \chi_{1,4} \\
& \left|L_{i}\right|=6(1 \leqq i \leqq 2): \chi_{2,3}+\chi_{4,1} \\
& \left|M_{i}\right|=6(1 \leqq i \leqq 2): \chi_{2,1}+\chi_{4,1} \\
& \left|N_{i}\right|=6(1 \leqq i \leqq 2): \chi_{2,2}+\chi_{4,4} \\
& \left|O_{i}\right|=6(1 \leqq i \leqq 2): \chi_{2,4}+\chi_{4,4} \\
& \left|A_{i}\right|=8(1 \leqq i \leqq 8): \chi_{8,1} \\
& \left|B_{i}\right|=8(1 \leqq i \leqq 8): \chi_{8,3} \\
& \left|C_{i}\right|=8(1 \leqq i \leqq 8): \chi_{8,2} \\
& \left|D_{i}\right|=8(1 \leqq i \leqq 8): \chi_{8,4} \\
& \left|E_{i}\right|=9(1 \leqq i \leqq 9): \chi_{9,1} \\
& \left|F_{i}\right|=9(1 \leqq i \leqq 9): \chi_{\theta, 4} \\
& \left|G_{i}\right|=47(1 \leqq i \leqq 3): \chi_{4,2}+\chi_{6,1}+\chi_{\theta, 2}+\chi_{12}+\chi_{18} \\
& \left|H_{i}\right|=47(1 \leqq i \leqq 3): \chi_{4,3}+\chi_{\beta, 1}+\chi_{\theta, 3}+\chi_{12}+\chi_{18} \\
& |I|=57: \chi_{1,3}+\chi_{4,3}+\chi_{\beta, 2}+2 \chi_{\theta, 3}+\chi_{12}+\chi_{18} \\
& |J|=57: \chi_{1,2}+\chi_{4,2}+\chi_{8,2}+2 \chi_{\theta, 2}+\chi_{12}+\chi_{18} \\
& \left|K_{i}\right|=72(1 \leqq i \leqq 4): \chi_{4}+\chi_{8,2}+\chi_{\theta, 2}+\chi_{\theta, 3}+\chi_{12}+2 \chi_{18}
\end{aligned}
$$

Let $a: W \rightarrow \boldsymbol{N} \cup\{\infty\}$ be a special function which is called " a-function" (see [9]), and let $\delta(w)$ be the degree of $P_{1, w}$. Let $\mathscr{D}=\left\{w \in W \mid w^{2}=e\right.$, $a(w)=l(w)-2 \delta(w)\}$. The element of \mathscr{D} is called the Duflo involution (see [3], [10]). We know that there is a unique Duflo involution in each left cell (see [10, 1.10]).

Let $w \in W$. We say w is a quasi-involution if $w \in \Gamma \cap \Gamma^{-1}$ for some left cell Γ in W. Clearly involutions are quasi-involutions.

In the present case, we obtain the following corollaries by examining each case. We also notice that the following corollary 3.3 has been proved for classical Weyl groups by Lusztig (see [8, 12.17]).

Corollary 3.3. If Γ is a left cell in W, then the number of irreducible components of the character afforded by the natural W-graph W_{Γ} is equal to the number of involutions in Γ.

Corollary 3.4. For irreducible natural W-graph, let Γ and Γ^{\prime} be different left cells which are in the same equivalence classes. Let x be the Duflo involution in Γ and let x^{\prime} be the Duflo involution in Γ^{\prime}. Then x and x^{\prime} appear at the different position of the vertices of the natural W-graph (see Figure 1, type A, B, C, D, E and F).

Corollary 3.5. When Γ is of type I, J or $K, \Gamma \cap \Gamma^{-1}$ contains exactly two quasi-involutions which are not involutions. These elements have order 12 and length 12, and they are conjugate in W.

We consider the relation between Duflo involutions \mathscr{O} and conjugate classes in W. We obtain the following results by examining each case.

Proposition 3.6. Let Γ and Γ^{\prime} be two left cells which have the same natural W-graph. Let x be the Duflo involution in Γ and let x^{\prime} be the Duflo involution in Γ^{\prime}. Then x and x^{\prime} are conjugate in W.

The figures of the natural W-graph W_{Γ} corresponding to each left cell Γ are as follows (see Theorem 3.2). In Figures 1~6, we use the following notation.

For a left cell Γ, a position of vertex $x \in \Gamma$ is indicated by I_{x} and we denote $\underline{I}_{\infty}-I_{y}$, if $x \sim_{L} y$, for $x, y \in \Gamma$. If Γ is of type X_{i} by the notation in Theorem 3.1 and $d \in \Gamma$ is the Duflo involution, then we write (xi) at the nearest position to I_{d} (see Corollary 3.4).

Figure 2. The W-graph for type G

Figure 3. The W-graph for type H

Figure 4. The W-graph for type I

References

[1] D. Alvis and G. Lusztig, The representations and generic degrees of the Hecke algebra of type H_{4}, J. Reine Angew. Math., 336 (1982), 201-212.
[2] D. Alvis, The left cells of the Coxeter group of type H_{4}, J. Algebra, 107 (1987), 160-168.
[3] C. W. Curtis, Representations of Hecke algebras, preprint.
[4] S. Gelfand and R. MacPherson, Verma modules and Schubert cells, Lecture Notes in Math., 924 (1982), Springer-Verlag, 1-50.
[5] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165-184.
[6] T. Kondo, Characters of the Weyl group of type F_{4}, J. Fac. Sci. Univ. Tokyo, 11 (1965), 145-153.
[7] G. Lusztig, A class of irreducible representation of a Weyl group. II, Proc. Kon. Nederl. Akad., Ser. A, 85 (1982), 219-226.
[8] G. Lusztig, Characters of Reductive Groups over a Finite Field, Ann. of Math. Studies, 107 (1984), Princeton Univ.
[9] G. Lusztig, Cells in affine Weyl groups, Advanced Studies in Pure Math., 6 (1985), Algebraic Groups and Related Topics, Kinokuniya and North-Holland, 255-287.
[10] G. Luszrig, Cells in affine Weyl groups. II, J. Algebra, 109 (1987), 536-548.
[11] T. Shoji, On the Springer representations of Chevalley groups of type F_{4}, Comm. Algebra, 8 (1980), 409-440.
[12] K. Takahashi, Determination of the Kazhdan and Lusztig polynomials of Weyl group of type F_{4}, Master's thesis (In Japanese), Sophia Univ. (1986).
[13] K. Takahashi, The tables of Kazhdan-Lusztig polynomials of type \boldsymbol{F}_{4}, (1987), (unpublished).

Present Address:
Department of Mathematics, Sophia University
Kioicho, Chiyoda-ku, Tokyo 102, Japan

