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\S 1. Introduction.

Let $(W, S)$ be a finite Coxeter $8ystem$ . In [5], Kazhdan and $Lu8ztig$

constructed W-graphs. They are obtained from the left cells of $W$ and
give the representations of Hecke algebra $\mathscr{G}$ corresponding to $W$. In
thi8 paper, we $a8sume(W, S)$ has type $F_{4}$ . The Kazhdan-Lusztig poly-
nomials $P_{y,,\sigma}$ for $(W, S)$ of type $F_{4}$ are already calculated (see [13]). In
Section 2, we recall the definition of $P_{y,w}$ and several relations on $W$.
The main result8 of this paper appear in Section 3. $U8ing$ some data
of $P_{yw,:}$, we determine the left cells and two-sided cells. The left and
two-sided cells are explicitly constructed from certain easily $de8cribed$

subsets of $W$ (Theorem 3.1), and we $de8cribe$ the natural W-graph cor-
responding to each left cell (Theorem 3.2). After describing each W-
graph, we discuss some relations between the Duflo involutions and the
conjugate classes in $W$ by examining each case (Proposition 3.6).

The author is deeply grateful to $Profes8or$ Ken-ichi Shinoda for his
valuable advices, guidances and encouragements.

\S 2. Preliminaries.

Let $(W, S)$ be an arbitrary Coxeter $8ystem$ , with the Bruhat order
$‘‘\leqq$ and the length function $l:W\rightarrow N$. Let $\ovalbox{\tt\small REJECT}=Z[q^{1/2}, q^{-1/2}]$ be the ring
of Laurent polynomials in $q^{1/2}$ where $q^{1/2}$ is an indeterminate and let $\ovalbox{\tt\small REJECT}$

be the Hecke algebra of $(W, S)$ over $\mathscr{A}$ with standard ba8is $\{T_{w}|weW\}$ .
In [5], Kazhdan and Lu8ztig defined the 8pecial basis $\{C_{w}|weW\}$ for $\ovalbox{\tt\small REJECT}$

given by

$C_{w}=\sum_{\nu\leqq w}(-1)^{ltw)-lt)}q^{\iota\{w)/2-l(i)}P,,w(q^{-1})T,$ ,

where $P,,weZ[q]$ is a polynomial in $q$ of $degree\leqq(l(w)-l(y)-1)/2$ for
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$y\leqq w$ , and $P_{w.w}=1$ .
In the same paper, Kazhdan and Lusztig defined several relations on

$W$. For any $weW$, set $\mathscr{L}(w)=\{seS|sw<w\}$ and $\mathscr{G}(w)=\{s\in S|ws<w\}$ .
For $y,$ $weW$,

$y\prec w$ if $y<w,$ $l(w)-l(y)$ is odd and $P,,w=\mu(y, w)q^{(t(w)-\iota(y)-1)/2}+lower$

powers of $q$ where $\mu(y, w)$ is a non-zero integer,
$y-w$ if $y\prec w$ or $w\prec y$ ,
$y\leqq Lw$ if there exists a sequence $y=x_{0},$ $x_{1},$ $x_{2},$ $\cdots,$ $x_{n}=w$ such that for

each $i(1\leqq i\leqq n),$ $x_{i-1}-x$ and $\mathscr{L}(x_{i-1})\not\leqq-\mathscr{G}(x_{i})$ ,
$y\leqq LRw$ if there exi8ts a sequence $y=x_{0},$ $x_{1},$ $x_{2},$ $\cdots,$ $x.=w$ such that for

each $i(1\leqq i\leqq n)$ , we have either $x_{i-1}\leqq Lx_{i}$ or $x_{-1}^{-1}\leqq Lx_{i}^{-1}$ .
Let $\sim_{L}$ be the equivalence relation associated with the preorder

$\leqq_{L}$ ; thus $y\sim_{L}w$ means $y\leqq Lw\leqq Ly$ . The corresponding equivalence classes
are called the left cells of $W$. A right cell of $W$ is a set of form
$\{weW|w^{-1}e\Gamma\}$ where $\Gamma$ is a left cell. Let $\sim_{LR}$ be the equivalence re-
lation a8sociated with the preorder $\leqq_{LR}$ ; thus $y\sim_{LR}w$ means $y\leqq LRw\leqq LRy$ .
The corresponding equivalence classes are called the two-8ided cells of
$W$.

We can calculate the Kazhdan-Lusztig polynomials $P_{y,w}$ which are
defined by the following formula (see [4, 2. $2c]$);

For any $weW$, if $sw<w$ , then

$P_{y,w}=q^{1-c}P_{y,.w}+q^{c}P_{y,.w}-\sum_{i^{w}\nu\leqq*\prec e<}\mu(z, sw)q^{(\iota(w)-\iota(\epsilon))/2}P,.z$

where $c=1$ if $\epsilon e\mathscr{L}(y),$ $c=0$ if $s\not\in Z(y)$ .
Also we have an algorithm for the calculation of $P,,w$ (see [4], and

also [12]). The calculation of $P_{y.\tau a}$ for $(W, S)$ of type $F_{4}$ was carried out
on a computer (see [13]).

\S 3. Main results.

Hereafter we assume that $(W, S)$ i8 of type $F_{4}$ whose generators are
given by the set of $S=\{s_{1}, s_{2}, s_{s}, s_{4}\}$ satisfying the following relations;

$1^{2}=2^{2}=3^{2}=4^{2}=e$ ,
(12) $=(34)^{8}=(23)^{4}=e$ ,
$13=31,14=41,24=42$ ,

where we write $i$ instead of $\epsilon$ .
For $J\subseteqq S$, let $R_{\Gamma}--\{weW|\mathscr{G}(w)=J\}$ . For $X\subseteqq W$, define $X^{*}=Xw_{0}$ where

$w_{0}$ is the maximal length element in $W(w_{0}=432312343231234323123121)$ .
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It is clear that $R_{J}^{*}=R_{S-J}$ and we write $ X+Y+\cdots$ , to indicate the union
of disjoint subsets $X,$ $Y,$ $\cdots$ , of $W$.

We shall now construct certain subsets of $W$ from the subsets $R_{J}$ ,
$J\subseteqq S$.

First, define

$A_{1}=R_{12}\cdot 12132\cap R_{34},$ $A_{2}=A_{1}\cdot 2,$ $A_{3}=A_{2}\cdot 3,$ $A_{4}=A_{2}\cdot 1$ ,
$A_{b}=A_{3}\cdot 1,$ $A_{6}=A_{b}\cdot 2,$ $A_{7}=A_{6}\cdot 3,$ $A_{8}=A_{7}\cdot 4$ .

Put $A=\cup A_{i}$ .
Next define

$B_{1}=R_{34}\cdot 34323\cap R_{12},$ $B_{2}=B_{1}\cdot 3,$ $B_{3}=B_{2}\cdot 2,$ $B_{4}=B_{2}\cdot 4$ ,
$B_{b}=B_{4}\cdot 2,$ $B_{6}=B_{b}\cdot 3,$ $B_{7}=B_{6}\cdot 2,$ $B_{8}=B_{7}\cdot 1$ .

Set $B=\cup B_{i}$ .
Define

$C_{1}=R_{12}\cdot 213234\cap R_{123}=A_{8}^{*},$ $C_{2}=C_{1}\cdot 4=A_{7}^{*},$ $C_{3}=C_{2}\cdot 3=A_{6}^{*}$ ,
$C_{4}=C_{3}\cdot 2=A_{b}^{*},$ $C_{b}=C_{4}\cdot 3=A_{4}^{*},$ $C_{6}=C_{4}\cdot 1=A_{3}^{*}$ ,
$C_{7}=C_{b}\cdot 1=A_{2}^{*},$ $C_{8}=C_{7}\cdot 2=A_{1}^{*}$

Set $C=\cup C_{i}=UA_{i}^{*}=A^{*}$ .
Define

$D_{1}=R_{34}\cdot 324321\cap R_{234}=B_{8}^{*},$ $D_{2}=D_{1}\cdot 1=B_{7}^{*},$ $D_{3}=D_{2}\cdot 2=B_{6}^{*}$ ,
$D_{4}=D_{3}\cdot 3=B_{f}^{*},$ $D_{5}=D_{4}\cdot 2=B_{4}^{*},$ $D_{6}=D_{4}\cdot 4=B_{3}^{*}$ ,
$D_{7}=D_{6}\cdot 2=B_{2}^{*},$ $D_{8}=D_{7}\cdot 3=B_{1}^{*}$ .

Set $D=\cup D_{i}=\cup B_{t}^{*}=B^{*}$ .
Define

$E_{1}=(R_{4}\cdot 432-A_{8}\cdot 432)\cap R_{13},$ $E_{2}=(R_{1}\cdot 123-B_{8}\cdot 123)\cap R_{24}$ ,
$E_{3}=E_{2}\cdot 3,$ $E_{4}=E_{1}\cdot 2,$ $E_{b}=E_{4}\cdot 3,$ $E_{6}=E_{3}\cdot 2,$ $E_{7}=E_{b}\cdot 4$ ,
$E_{8}=E_{6}\cdot 1,$ $E_{\mathfrak{g}}=(E_{2}\cdot 1\cup R_{1}\cdot 1232)\cap(R_{14}-B_{4})$ .

Set $E=\cup E_{i}$ .
Define

$F_{1}=R_{13}\cdot 321-D_{1}=E_{8}^{*},$ $F_{2}=E_{7}^{*},$ $F_{3}=(R_{24}\cdot 23-D_{7}\cdot 23)\cap R_{1u}=E_{b}^{*}$ ,
$F_{4}=F_{1}\cdot 1=E_{6}^{*},$ $F_{f}=F_{8}\cdot 3=E_{4}^{*},$ $F_{6}=F_{b}\cdot 2=E_{1}^{*},$ $F_{7}=F_{4}\cdot 2=E_{a}^{*}$ ,
$F_{8}=E_{9}^{*},$ $F_{9}=F_{\tau}\cdot 3=E_{2}^{*}$ .

Set $F=\cup F_{i}=\cup E_{i}^{*}=E^{*}$ .
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Deflne

$G_{1}=R_{\epsilon}\cdot 32\cap R_{1u},$ $G_{2}=G_{1}\cdot 2,$ $G_{6}=G_{2}\cdot 3$ .
Set $G=\cup G_{i}$ .

Define

$H_{1}=R_{2}\cdot 23\cap R_{124}=G_{3}^{*},$ $H_{2}=H_{1}\cdot 3=G_{2}^{*},$ $H_{8}=H_{2}\cdot 2=G_{1}^{*}$ .
Set $H=\cup H_{i}=\cup G^{*}=G^{*}$ .

The sub8et $I,$ $J$ are defined by the following equations;

$R_{1},=B_{1}+C_{8}+I$ ,
$R_{u}=A_{1}+D_{6}+J$ .

We have $J=I^{*}$ .
The 8ubset $K_{i}(i=1,2,3,4)$ are deflned by the following equations;

$R_{2S}=C_{f}+D_{f}+F_{8}+K_{1}$ ,
$R_{u}=A_{t}+B_{f}+C_{4}+D_{7}+E_{\epsilon}+F_{t}+G_{2}+K_{2}$ ,
$R_{1},=A_{b}+B_{2}+C_{\tau}+D_{4}+E_{2}+F_{l}+H_{2}+K_{\epsilon}$ ,
$R_{1}=A+B_{4}+E_{1}+K$ .

We have $K_{8}=K_{2}^{*}$ and $K=K_{1}^{*}$ . Set $K=\cup K$ .
The subset $L,$ $M_{i},$ $N_{i}$ and $O$ are given by

$R_{1}=B_{8}+E_{9}+L_{1}$ ,
$R_{t}=A_{0}+B,+B_{7}+E_{t}+E_{7}+H,+L_{2}$ ,
$R_{4}=A_{8}+E_{8}+M_{1}$ ,
$R_{\epsilon}=A_{s}+A_{\tau}+B_{t}+E_{4}+E_{6}+G_{\epsilon}+M_{2}$ ,
$R_{128}=C_{1}+F_{2}+N_{1}$ ,
$R_{1u}=C_{2}+C_{0}+D_{\theta}+F_{8}+F_{7}+H_{1}+N_{2}$ ,
$R_{284}=D_{1}+F_{1}+O_{1}$ ,
$R_{1u}=C_{8}+D_{2}+D_{6}+F+F_{f}+G_{1}+O_{2}$ .

We have $N=M^{*}$ and $O=L^{*}(i=1,2)$ . We set $L=\cup L_{i},$ $M=\cup M,$ $N=$

$\cup N=M^{*}$ and $O=\cup O=L^{*}$ .
Finally, define

$P=P_{1}=R_{\emptyset}=\{e\}$ , and $Q=Q_{1}=R_{s}=\dagger w_{0}$} $=P^{*}$ .
After the polynomials $P_{y,w}$ were calculated, a computer was used to
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determine the relation $\leqq_{L}$ and $\leqq_{LR}$ on $W$, and we obtain the following
result.

THEOREM 3.1. (1) The left cells of $W$ are the subsets $A_{i},$ $B_{i},$ $C_{i},$ $D_{i}$ ,
$E_{i},$ $F,$ $G_{i},$ $H_{i},$ $I,$ $J,$ $K_{t},$ $L_{i},$ $M_{i},$ $N_{i},$ $O_{i},$ $P$ and Q. There are 72 left cells.

(2) The two-sided cells of $W$ are the subsets $A\cup B,$ $C\cup D,$ $E,$ $F$,
$G\cup H\cup I\cup J\cup K,$ $LUM,$ $N\cup O,$ $P$ and Q. There are 9 two-sided cells.

Now we recall the definition of a W-graph. A W-graph is a com-
binatorial object which defines a representation of or It consists of a
graph with a 8et of vertices $X$ and a subset $Y$ of $X\times X$ consisting of
edges, together with two additional data: for each vertex $x\in X$, there

$\backslash ^{\backslash }is$ a8sociated a subset $I_{x}\subseteqq S$, and for each edge $(y, x)\in Y$, there is assigned
an integer $\mu(y, x)\neq 0$ . Let $E(X)$ be the free $\ovalbox{\tt\small REJECT}$-module with basis $X$.
For each $s\in S$, let $\tau_{*}$ be the endomorphism of $E(X)$ defined by

$\tau.(x)=\left\{\begin{array}{ll}-x & if s\in I_{x},\\qx+q^{1/2}\sum_{yeX}\mu(y, x)y & if s\not\in I_{x}.\\x-y & \\. eI_{y} & \end{array}\right.$

The preceding data defines a W-graph provided that for any $s\neq t$

such that $st$ has finite order $m$ ,

$\tau_{\iota}\tau_{t}\tau_{e}\cdots\cdots=\tau_{t}\tau_{\iota}\tau_{t}\cdots\cdots$

$\overline{mfactor8}$ $\overline{mfa}\overline{ctor8}$

We define a representation $\varphi:\ovalbox{\tt\small REJECT}\rightarrow End_{A}(E)$ setting by $\varphi(T.)=\tau.$ ,
and it is a representation of $W$ by setting $q=1$ . We say that the W-
graph is irreducible if the representation corresponding to the W-graph
is irreducible.

Let $\Gamma$ be a left cell in $W$ and $W_{\Gamma}$ be the W-graph defined as follows:
the set of vertices of $W_{\Gamma}$ be the set $\Gamma$ , the set of edges are the set
$\{(y, x)e\Gamma\times\Gamma|\mu(y, x)\neq 0\}$ , where $\mu(y, x)$ is the integer defined in \S 2, and
$I_{x}=\mathscr{L}(x)$ , for each $ xe\Gamma$ . We shall call the W-graph obtained in this
way the natural W-graph.

Let $\varphi_{\Gamma,q}$ be the matrix representation of $\mathscr{P}$ which have entries in
$\ovalbox{\tt\small REJECT}$, afforded by the natural W-graph $W_{\Gamma}$ . So $\varphi_{r_{1}}$, is a matrix represen-
tation of $W$.

Since we determined the left cells, we can describe a natural W-graph
$W_{\Gamma}$ corresponding to each left cell $\Gamma$ (up to equivalence) and con8truct
the matrix representation of $W$ afforded by each natural W-graph. The
character table of $W$ was determined by Kondo [6]. There are 25
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irreducible characters, which we denote by $\chi_{l,j}$ the j-th character of
degree $i$ as encountered in his character table, except for the ”isolated”
character of degree 4, 12 and 16, which we denote by $\chi_{4},$ $\chi_{12}$ and $\chi_{16}$ ,
respectively, as Shoji did in [11]. After constructing these matrix rep-
resentations, we decompose the characters of each matrix representation
of $W$ into the irreducible characters. So, we obtain the following theorem.
On the other hand, these representations and their decompositions were
already obtained by Lusztig by making use of another method, and he
called them cells (see [7]).

THEOREM 3.2. The natural W-graph $W_{\Gamma}$ corresponding to the left
cell $\Gamma$ is given in Figures 1\sim 6. Each character afforded by the natural
W-graph $W_{\Gamma}\dot{r}s$ decomposed as follows.

$|P|=1:\chi_{1,1}$

$|Q|=1:\chi_{1,4}$

$|L_{i}|=6(1\leqq i\leqq 2):x_{2,3}+x_{4,1}$

$|M_{t}|=6(1\leqq i\leqq 2):x_{2,1}+x_{4,1}$

$|N_{i}|=6(1\leqq i\leqq 2):x_{2,2}+x_{4,4}$

$|O_{i}|=6(1\leqq i\leqq 2):\chi_{2,4}+\chi_{4,4}$

$|A_{i}|=8(1\leqq i\leqq 8):\chi_{8.1}$

$|B_{t}|=8(1\leqq i\leqq 8):\chi_{8.3}$

$|C_{i}|=8(1\leqq i\leqq 8):\chi_{8.2}$

$|D_{i}|=8(1\leqq i\leqq 8):\chi_{8,4}$

$|E_{l}|=9(1\leqq i\leqq 9):\chi_{9,1}$

$|F_{i}|=9(1\leqq i\leqq 9):\chi_{9.4}$

$|G_{i}|=47(1\leqq i\leqq 3):x_{4,2}+x_{6,1}+x_{9,2}+x_{12}+x_{16}$

$|H_{i}|=47(1\leqq i\leqq 3):\chi_{4,3}+\chi_{6.1}+\chi_{9,3}+\chi_{12}+\chi_{16}$

$|I|=57:x_{1,3}+\chi_{4,3}+\chi_{6,2}+2\chi_{9,3}+x_{12}+\chi_{16}$

$|J|=57:x_{1,2}+\chi_{4,2}+\chi_{6,2}+2\chi_{9,2}+\chi_{12}+\chi_{16}$

$|K_{i}|=72(1\leqq i\leqq 4):x_{4}+\chi_{6,2}+\chi_{9,2}+\chi_{9,3}+x_{12}+2\chi_{16}$

Let $ a:W\rightarrow N\cup t\infty$ } be a special function which is called “a-function”
(see [9]), and let $\delta(w)$ be the degree of $P_{1,w}$ . Let $\mathcal{D}=\{w\in W|w^{2}=e$ ,
$a(w)=l(w)-2\delta(w)\}$ . The element of $\mathcal{D}$ is called the Duflo involution (see

[3], [10]). We know that there is a unique Duflo involution in each left
cell (see [10, 1.10]).

Let $w\in W$. We say $w$ is a quasi-involution if we $\Gamma\cap\Gamma^{-1}$ for some
left cell $\Gamma$ in $W$. Clearly involutions are quasi-involutions.

In the present case, we obtain the following corollaries by examining
each case. We also notice that the following corollary 3.3 has been
proved for classical Weyl groups by Lusztig (see [8, 12.17]).
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COROLLARY 3.3. If $\Gamma$ is a left cell in $W$, then the number of ir-
reducible components of the character afforded by the natural W-graph
$W_{\Gamma}$ is equal to the number of involutions in $\Gamma$ .

COROLLARY 3.4. For irreducible natural W-graph, let $\Gamma$ and $\Gamma^{\prime}$ be
different left cells which are in the same equivalence classes. Let $x$ be
the Duflo involution in $\Gamma$ and let $x^{\prime}$ be the Duflo involution in $\Gamma$ . Then
$x$ and $x^{\prime}$ appear at the different position of the vertices of the natural
W-graph (see Figure 1, type $A,$ $B,$ $C,$ $D,$ $E$ and F).

COROLLARY 3.5. When $\Gamma$ is of type $I,$ $J$ or $K,$ $\Gamma\cap\Gamma^{-1}$ contains
exactly two quasi-involutions which are not involutions. These elements
have order 12 and length 12, and they are conjugate in $W$.

We consider the relation between Duflo involutions $\mathcal{D}$ and conjugate
classes in $W$. We obtain the following results by examining each case.

PROPOSITION 3.6. Let $\Gamma$ and $\Gamma$
’ be two left cells which have the same

natural W-graph. Let $x$ be the Duflo involution in $\Gamma$ and let $x^{\prime}$ be the
Duflo involution in $\Gamma’$ . Then $x$ and $x^{\prime}$ are conjugate in $W$.

The figures of the natural W-graph $W_{\Gamma}$ corresponding to each left
cell $\Gamma$ are as follows (see Theorem 3.2). In Figures $1\sim 6$ , we use the
following notation.

For a left cell $\Gamma$ , a position of vertex $ x\in\Gamma$ is indicated by $I_{x}$ and
we denote $E-$ , if $x\sim_{L}y$ , for $x,$ $ y\in\Gamma$ . If $\Gamma$ is of type $X_{i}$ by the
notation in Theorem 3.1 and $ d\in\Gamma$ is the Duflo involution, then we write
$OXi$ at the nearest position to $I_{d}$ (see Corollary 3.4).
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$\frac{\triangleleft}{e^{\bigwedge_{I}}q)a}$ $\Leftrightarrow m\S$

$0$ $0$

$\hat{\Leftrightarrow}g$ $HSQ$

)
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$n$

$\Phi S$

*\={o}

$r_{0)}s_{4}^{1}\dot{\epsilon}^{E}E\dot{a}aa$

$6\dot{D}$

$\frac{\zeta gw}{h}$
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