Deficient and Ramified Small Functions for Admissible Solutions of Some Differential Equations II

Katsuya ISHIZAKI and Kenji FUJITA

Tokyo National College of Technology
(Communicated by T. Nagano)

Abstract

Let $\alpha_{j}(z), j=1,2, a_{i}(z), i=1,2, \cdots, 6$ be meromorphic functions. Suppose the differential equation (*) $w^{\prime 3}+\alpha_{2}(z) w^{\prime 2}+\alpha_{1}(z) w^{\prime}=a_{6}(z) w^{6}+\cdots+a_{1}(z) w+a_{0}(z)$ possesses an admissible solution $w(z)$. If $\eta(z)$ is a solution of $(*)$ and small with respect to $w(z)$ and if $(*)$ is irreducible, then $\eta(z)$ is a deficient or a ramified function for $w(z)$.

1. Introduction.

We use here standard notations in Nevanlinna theory [2][6][8]. Let $f(z)$ be a meromorphic function. In this paper the term "meromorphic" will mean meromorphic in $|z|<\infty$. As usual, $m(r, f), N(r, f)$, and $T(r, f)$ denote the proximity function, the counting function, and the characteristic function of $f(z)$, respectively. Let $\bar{N}(r, f)$ be the counting function for distinct poles of $f(z)$. Put $N_{1}(r, f)=N(r, f)-\bar{N}(r, f)$. For $\alpha \in \mathbb{C}$, the following quantities are defined

$$
\delta(\alpha, f)=\liminf _{r \rightarrow \infty} \frac{m(r, 1 /(f-\alpha))}{T(r, f)} \quad(\text { deficiency })
$$

and

$$
\theta(\alpha, f)=\liminf _{r \rightarrow \infty} \frac{N_{1}(r, 1 /(f-\alpha))}{T(r, f)} \quad \text { (ramification index) }
$$

A function $\varphi(r), 0 \leq r \leq \infty$, is said to be $S(r, f)$ if there is a set $E \subset \mathbb{R}^{+}$of finite linear measure such that $\varphi(r)=o(T(r, f))$ as $r \rightarrow \infty, r \notin E$. A meromorphic function $a(z)$ is said to be small with respect to $f(z)$ if $T(r, a)=S(r, f)$. We consider here the deficiency and the ramification for a small function $a(z)$ instead of complex number $\alpha \in \mathbb{C}$. We put, for a meromorphic function $a(z), m(r, a ; f)=m(r, 1 /(f-a)), N(r, a ; f)=N(r, 1 /(f-a))$, and $\bar{N}(r, a ; f), N_{1}(r, a ; f), \delta(a, f), \theta(a, f)$, etc., are defined in the same way as for a complex number $\alpha \in \mathbb{C}$, respectively. If $\delta(a, f)>0$ or $\theta(a, f)>0$, then $a(z)$ is said to be a

[^0]Revised April 23, 1991
deficient or ramified function for $f(z)$, respectively.
Let \mathscr{M} be a finite collection of meromorphic functions. A transcendental meromorphic function $w(z)$ is admissible with respect to \mathscr{M}, if $T(r, a)=S(r, w)$ for any $a(z) \in$ \mathscr{M}. Suppose a transcendental meromorphic function $w(z)$ is admissible with respect to \mathscr{M}. For $c \in \mathbb{C} \cup\{\infty\}, z_{0}$ is admissible c-point with respect to \mathscr{M}, if z_{0} is c-point of $w(z)$ and neither zero nor pole of $a(z)$ which belongs to \mathscr{M}. Suppose $N(r, c ; f) \neq S(r, f)$, $c \in \mathbb{C} \cup\{\infty\}$. We denote by $n_{\mathbf{C} 1}^{*}(r, c ; f)$, the number of c-point z_{0} of $f(z)$ in $|z| \leqq r$ so that z_{0} satisfies some condition $\mathrm{C} 1 . N_{C_{1}}^{*}(r, c ; f)$ is defined in the usual way. We use the word "almost all" c-point satisfy the condition C 1 , if

$$
N(r, c ; f)-N_{\mathbf{C}_{1}}^{*}(r, c ; f)=S(r, f)
$$

Remark 1. Let \mathscr{M} be a finite collection of meromorphic functions. Suppose a transcendental meromorphic function $w(z)$ is admissible with respect to \mathscr{M}. Let $\eta(z)$ be rational of members of \mathscr{M} and their derivatives. Then we have $T(r, \eta) \leq$ $K \sum_{a_{v} \in \mathcal{M}} T\left(r, a_{v}\right)+S(r, w)$, for some $K>0$. Thus $\eta(z)$ is a small function with respect to $w(z)$. Assume that $N(r, w) \neq S(r, w)$, then there exists an admissible pole of $w(z)$ with respect to \mathscr{M}. If $\eta(z)$ vanishes at almost all poles of $w(z)$, then $\eta(z) \equiv 0$.

Let $\Omega\left(z, w, w^{\prime}, \cdots, w^{(n)}\right)$ be a differential polynomial of w with meromorphic coefficients and let \mathscr{M} be the collection of coefficients of Ω. We call $w(z)$ an admissible solution of the equation

$$
\begin{equation*}
\Omega\left(z, w, w^{\prime}, \cdots, w^{(n)}\right)=0, \tag{1.1}
\end{equation*}
$$

if $w(z)$ satisfies the above equation and $w(z)$ is admissible with respect to \mathscr{M}.
Let \boldsymbol{M} be the field of meromorphic functions and let $\Omega\left(z, w, w^{\prime}\right)$ be a polynomial of w and w^{\prime} with meromorphic (possibly transcendental) coefficients. We call the differential polynomial $\Omega\left(z, w, w^{\prime}\right)$ irreducible, if $\Omega\left(z, w, w^{\prime}\right)$ is irreducible over the field M.

We know the following theorem due to Mokhonko [7]:
Theorem A. Suppose the differential equation (1.1) possesses an admissible solution $w(z)$. If $\eta(z)$ is a deficient or ramified small function for $w(z)$, then $\eta(z)$ is a small solution of (1.1), i.e.

$$
\Omega\left(z, \eta, \eta^{\prime}, \cdots, \eta^{(n)}\right)=0 .
$$

Our aim in this note is to get a converse of this result for the special case of (1.1), that is, for the equation of the form

$$
\begin{equation*}
P\left(z, w^{\prime}\right)=Q(z, w) \tag{1.2}
\end{equation*}
$$

where $P\left(z, w^{\prime}\right)$ and $Q(z, w)$ are polynomials of w^{\prime} and w with meromorphic coefficients, respectively. In [3], we obtained the following theorem for the case $p=\operatorname{deg}_{w^{\prime}} \cdot\left[P\left(z, w^{\prime}\right)\right]=$ 2.

Theorem B. Suppose the differential equation

$$
\begin{equation*}
w^{\prime 2}+\alpha_{1}(z) w^{\prime}=a_{4}(z) w^{4}+\cdots+a_{1}(z) w+a_{0}(z) \tag{1.3}
\end{equation*}
$$

possesses an admissible solution $w(z)$, where the coefficients are meromorphic and $\left|a_{4}\right|+\left|a_{3}\right|+\left|a_{2}\right| \not \equiv 0$. If $\eta(z)$ is a small solution of (1.3), then $\eta(z)$ is a deficient or ramified function of w, unless (1.3) is reducible.

In this note, we treat the case $p=3$ in (1.2), and prove the following theorem.
Theorem 1. Suppose the differential equation

$$
\begin{equation*}
w^{\prime 3}+\alpha_{2}(z) w^{\prime 2}+\alpha_{1}(z) w^{\prime}=a_{6}(z) w^{6}+\cdots+a_{1}(z) w+a_{0}(z) \tag{1.4}
\end{equation*}
$$

possesses an admissible solution $w(z)$, where the coefficients are meromorphic and $\left|a_{6}\right|+\left|a_{5}\right|+\left|a_{4}\right|+\left|a_{3}\right| \not \equiv 0$. If $\eta(z)$ is a small solution of (1.4), then $\eta(z)$ is a deficient or. ramified function of w, unless (1.4) is reducible.

2. Preliminary lemmas.

Lemma 1 ([5]). Suppose (1.4) possesses an admissible solution $w(z)$. If $w(z)$ satisfies the Riccati equation or the differential equation

$$
\begin{equation*}
w^{\prime 2}+B(z, w) w^{\prime}+A(z, w)=0 \tag{2.1}
\end{equation*}
$$

where $B(z, w)$ and $A(z, w)$ are polynomials of w with small (w.r.t. $w(z))$ coefficients and $\operatorname{deg}_{w}[B(z, w)] \leq 2, \operatorname{deg}_{w}[A(z, w)] \leq 4$, then (1.4) is reducible.

Remark 2. Put $y=[a(z) w+b(z)] /[c(z) w+d(z)], a d-b c \neq 0$ in (2.1), where $a(z)$, $b(z), c(z)$ and $d(z)$ are smali (w.r.t. $w(z))$ functions. Then $y(z)$ satisfies the Riccati equation or the differential equation of the form

$$
y^{\prime 2}+\tilde{B}(z, y) y^{\prime}+\tilde{A}(z, y)=0
$$

where $\tilde{B}(z, y)$ and $\tilde{A}(z, y)$ are polynomials of y with small (w.r.t. $y(z))$ coefficients and $\operatorname{deg}_{y}[\widetilde{B}(z, y)] \leq 2, \operatorname{deg}_{y}[\widetilde{A}(z, y)] \leq 4$.

The equation (2.1) was treated by Steinmetz in [9] and by Eremenko in [1]. To state Lemma 2, we define some notations (see [4]).

Let $f(z)$ be a transcendental meromorphic function and let $\alpha_{1}(z), \cdots, \alpha_{4}(z), \beta_{1}(z)$, $\cdots, \beta_{4}(z), \gamma_{1}(z), \cdots, \gamma_{4}(z), \delta_{1}(z), \cdots, \delta_{4}(z), \lambda_{1}(z)$ and $\lambda_{0}(z)$ be small functions with respect to $f(z)$, where $\lambda_{1}(z)^{2}-4 \lambda_{0}(z) \not \equiv 0, \quad \alpha_{4}(z)^{2}-\lambda_{1}(z) \alpha_{3}(z) \alpha_{4}(z)+\lambda_{0}(z) \alpha_{3}(z)^{2} \not \equiv 0, \quad \beta_{4}(z)^{2}-$ $\lambda_{1}(z) \beta_{3}(z) \beta_{4}(z)+\lambda_{0}(z) \beta_{3}(z)^{2} \not \equiv 0, \quad \gamma_{4}(z)^{2}-\lambda_{1}(z) \gamma_{3}(z) \gamma_{4}(z)+\lambda_{0}(z) \gamma_{3}(z)^{2} \not \equiv 0, \quad \delta_{4}(z)^{2}-$ $\lambda_{1}(z) \delta_{3}(z) \delta_{4}(z)+\lambda_{0}(z) \delta_{3}(z)^{2} \not \equiv 0$.

Let z_{0} be a simple pole of $f(z)$. We call z_{0} strongly representable in the second kind sense by $\alpha_{1}(z), \cdots, \alpha_{4}(z), \beta_{1}(z), \cdots, \beta_{4}(z), \gamma_{1}(z), \cdots, \gamma_{4}(z), \delta_{1}(z), \cdots, \delta_{4}(z), \lambda_{1}(z)$ and $\lambda_{0}(z)$, if $f(z)$ is written in the neighbourhood of z_{0} as:

$$
\begin{equation*}
f(z)=\frac{R}{z-z_{0}}+\alpha+\beta\left(z-z_{0}\right)+\gamma\left(z-z_{0}\right)^{2}+\delta\left(z-z_{0}\right)^{3}+O\left(z-z_{0}\right)^{4} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{array}{cc}
R^{2}+\lambda_{1}\left(z_{0}\right) R+\lambda_{0}\left(z_{0}\right)=0, \\
\alpha=\frac{\alpha_{1}\left(z_{0}\right) R+\alpha_{2}\left(z_{0}\right)}{\alpha_{3}\left(z_{0}\right) R+\alpha_{4}\left(z_{0}\right)}, & \beta=\frac{\beta_{1}\left(z_{0}\right) R+\beta_{2}\left(z_{0}\right)}{\beta_{3}\left(z_{0}\right) R+\beta_{4}\left(z_{0}\right)}, \tag{2.4}\\
\gamma=\frac{\gamma_{1}\left(z_{0}\right) R+\gamma_{2}\left(z_{0}\right)}{\gamma_{3}\left(z_{0}\right) R+\gamma_{4}\left(z_{0}\right)}, & \delta=\frac{\delta_{1}\left(z_{0}\right) R+\delta_{2}\left(z_{0}\right)}{\delta_{3}\left(z_{0}\right) R+\delta_{4}\left(z_{0}\right)} .
\end{array}
$$

For the sake of brevity, we call such simple pole, SS2-kind pole.
Lemma 2. Let $w(z)$ be a transcendental meromorphic function and let $\alpha_{1}(z), \cdots$, $\alpha_{4}(z), \beta_{1}(z), \cdots, \beta_{4}(z), \gamma_{1}(z), \cdots, \gamma_{4}(z), \delta_{1}(z), \cdots, \delta_{4}(z), \lambda_{1}(z)$ and $\lambda_{0}(z)$ be small functions with respect to $w(z)$. We denote by $n_{\langle s s 2\rangle}(r, w)$ the number of the SS2-kind poles in $|z| \leqq r$. $N_{\langle\mathrm{ss} 2\rangle}(r, w)$ is defined in terms of $n_{\langle\mathrm{ss} 2\rangle}(r, w)$ in the usual way. If

$$
\begin{equation*}
m(r, w)+\left(N(r, w)-N_{\langle\mathrm{ss} 2\rangle}(r, w)\right)=S(r, w), \tag{2.5}
\end{equation*}
$$

then $w(z)$ satisfies a first order differential equation of the form (2.1).
The proof of Lemma 2 is given in [4].

Lemma 3. Suppose the differential equation

$$
\begin{equation*}
u^{\prime}\left(u^{\prime}+\eta(z) u^{2}\right)^{2}=b_{1}(z) u^{5}+\cdots+b_{5}(z) u+b_{6}(z) \tag{2.6}
\end{equation*}
$$

possesses an admissible solution $u(z)$. If $u(z)$ satisfies

$$
\begin{equation*}
N_{1}(r, u)+m(r, u)=S(r, u), \tag{2.7}
\end{equation*}
$$

then $u(z)$ satisfies the Riccati equation or an equation of the form (2.1).
Proof. We write (2.6),

$$
\begin{equation*}
U\left(z, u, u^{\prime}\right)^{2}=V\left(z, u, u^{\prime}\right) \tag{2.8}
\end{equation*}
$$

where

$$
U\left(z, u, u^{\prime}\right)=u^{\prime}+\eta(z) u^{2}, \quad V\left(z, u, u^{\prime}\right)=\left[b_{1}(z) u^{5}+\cdots+b_{5}(z) u+b_{6}(z)\right] / u^{\prime}
$$

Let \mathscr{M} be the collection of coefficients of $U\left(z, u, u^{\prime}\right)$ and $V\left(z, u, u^{\prime}\right)$. Let z_{0} be an admissible (w.r.t. \mathscr{M}) simple pole of u, and write in the neighbourhood of z_{0},

$$
\begin{equation*}
u(z)=\frac{R}{z-z_{0}}+\alpha+O\left(z-z_{0}\right) . \tag{2.9}
\end{equation*}
$$

Since the order of pole of $V(z)=V\left(z, u(z), u^{\prime}(z)\right)$ at z_{0} is at most three, by (2.8), the order
of pole of $U(z)=U\left(z, u(z), u^{\prime}(z)\right)$ at z_{0} is at most one. Thus we have $-R+\eta\left(z_{0}\right) R^{2}=0$. Hence R is written by small function, that is, $R=1 / \eta\left(z_{0}\right)$. For the sake of brevity, we put $R(z)=1 / \eta(z)$ in this proof.

First we treat the case $N(r, U)=S(r, u)$. From (2.7), we have

$$
\begin{aligned}
m(r, U) & \leq m\left(r, u^{\prime} / u\right)+m(r, u)+m\left(r, u^{2}\right)+S(r, u) \\
& \leq 3 m(r, u)+S(r, u) \leq S(r, u)
\end{aligned}
$$

Hence $U(z)$ is a small function with respect to $u(z)$. Therefore $u(z)$ satisfies the Riccati equation in this case.

Secondly we treat the case $N(r, U) \neq S(r, u)$. We show that almost all admissible poles of $u(z)$ are simple poles of $U(z)$. By (2.7), we have to consider merely simple poles of $u(z)$.

We denote by $n^{*}(r, u)$ the number of admissible simple poles of $u(z)$ in $|z| \leqq r$ which are regular point of $U(z) . N^{*}(r, u)$ is defined in the usual way. Suppose $N^{*}(r, u) \neq S(r, u)$. There exists an admissible simple pole z_{1} of $u(z)$, which is a regular point of $U(z)$. The order of pole of left-hand side of (2.6) at z_{1} is at most two. If $\left|b_{1}\right|+\left|b_{2}\right|+\left|b_{3}\right| \not \equiv 0$, then by the definition of admissible pole, the order of pole of right-hand side of (2.6) at z_{1} is at least three, which is a contradiction. Thus $b_{1}(z)=b_{2}(z)=b_{3}(z) \equiv 0$ in (2.6). Hence, by (2.6) $N(r, U)=S(r, u)$, which is a contradiction. Therefore, $N^{*}(r, u)=S(r, u)$ which implies that almost all admissible simple poles of $u(z)$ are simple poles of $U(z)$.

Let z_{0} be an admissible simple pole of $u(z)$ and simple pole of $U(z)$. The order of pole of left-hand side of (2.6) at z_{0} is four. If $b_{1}(z) \not \equiv 0$, then by the definition of admissible pole, the order of pole of right-hand side of (2.6) at z_{0} is five, which is a contradiction. Thus $b_{1}(z) \equiv 0$, and from the above estimation, we have $b_{2}(z) \not \equiv 0$. By simple calculation in the neighbourhood of z_{0},

$$
\begin{aligned}
& V(z)=\frac{q\left(z_{0}\right)}{\left(z-z_{0}\right)^{2}}+\frac{p_{1}\left(z_{0}\right)+p_{2}\left(z_{0}\right) \alpha}{z-z_{0}}+O(1) \\
& \frac{q(z)}{R(z)} u^{\prime}(z)=-\frac{q\left(z_{0}\right)}{\left(z-z_{0}\right)^{2}}+\frac{p_{3}\left(z_{0}\right)}{z-z_{0}}+O(1)
\end{aligned}
$$

where $q(z)=-b_{2}(z) R(z)^{3}, \quad p_{1}(z)=-b_{2}^{\prime}(z) R(z)^{3}-b_{3}(z) R(z)^{2}, \quad p_{2}(z)=-4 b_{2}(z) R(z)^{2}$ and $p_{3}(z)=-\left(q^{\prime}(z) R(z)-q(z) R^{\prime}(z)\right) / R(z)$.

Hence near z_{0}

$$
\begin{equation*}
V(z)+\frac{q(z)}{R(z)} u^{\prime}-\frac{p_{1}(z)+p_{3}(z)}{R(z)} u=\frac{p_{2}\left(z_{0}\right) \alpha}{z-z_{0}}+O(1) . \tag{2.10}
\end{equation*}
$$

We have

$$
\begin{equation*}
U(z)+\frac{R^{\prime}(z)}{R(z)} u=\frac{2 \alpha}{z-z_{0}}+O(1) \tag{2.11}
\end{equation*}
$$

From (2.10) and (2.11), put

$$
\begin{align*}
\varphi(z)= & {\left[V\left(z, u, u^{\prime}\right)+\frac{q(z)}{R(z)} u^{\prime}-\frac{p_{1}(z)+p_{3}(z)}{R(z)} u\right] } \tag{2.12}\\
& -p_{2}(z)\left[U\left(z, u, u^{\prime}\right)+\frac{R^{\prime}(z)}{R(z)} u\right]
\end{align*}
$$

then $\varphi(z)$ is regular at z_{0}.
By (2.8), $V(z)$ is regular at zero of $u^{\prime}(z)$. Thus, we have $N(r, \varphi)=S(r, u)$. From (2.7) and (2.8),

$$
\begin{aligned}
m(r, \varphi) & \leq m(r, V)+m(r, U)+4 m(r, u)+S(r, u) \\
& \leq 3 m(r, U)+4 m(r, u)+S(r, u) \leq S(r, u)
\end{aligned}
$$

Hence $\varphi(z)$ is a small function with respect to $u(z)$. From (2.8) and (2.12), $u(z)$ satisfies an equation of the form (2.1).
Q.E.D.

3. Proof of Theorem 1.

Put $u=1 /(w-\eta(z))$ in (1.4). Then by simple calculation (see [3])

$$
\begin{align*}
& \beta_{1}(z) u^{\prime} u^{4}+\beta_{2}(z) u^{\prime 2} u^{2}+\beta_{3}(z) u^{\prime 3} \tag{3.1}\\
& \quad=\Phi(z) u^{6}+b_{1}(z) u^{5}+\cdots+b_{5}(z) u+b_{6}(z)
\end{align*}
$$

where

$$
\begin{gathered}
\beta_{k}(z)=(-1)^{k} \sum_{j=k}^{3}\binom{j}{k} \alpha_{j}(z) \eta^{\prime}(z)^{j-k}, \quad \alpha_{3}(z) \equiv 1, \quad k=0,1,2,3, \\
b_{i}(z)=\sum_{j=i}^{6}\binom{j}{i} a_{j}(z) \eta(z)^{j-i}, \quad i=0,1, \cdots, 6 \\
\Phi(z)=b_{0}(z)-\beta_{0}(z)=\sum_{j=0}^{6} a_{j}(z) \eta(z)^{j}-\sum_{j=0}^{3} \alpha_{j}(z) \eta^{\prime}(z)^{j} .
\end{gathered}
$$

We assume that $\eta(z)$ is a small solution of (1.4). Thus we have $\Phi(z) \equiv 0$ in (3.1). For the proof of Theorem 1, we show that $w(z)$ satisfies (2.1) under the condition that $\eta(z)$ is neither deficient nor ramified small function w.r.t. $w(z)$, that is

$$
\begin{equation*}
m(r, u)+N_{1}(r, u)=S(r, u) \tag{3.2}
\end{equation*}
$$

Let z_{0} be an admissible simple pole of $u(z)$. Write $u(z)$ near z_{0} as:

$$
\begin{equation*}
u(z)=\frac{R}{z-z_{0}}+\alpha+\beta\left(z-z_{0}\right)+\gamma\left(z-z_{0}\right)^{2}+\delta\left(z-z_{0}\right)^{3}+O\left(z-z_{0}\right)^{4} \tag{3.3}
\end{equation*}
$$

From (3.1) and (3.3), since $\Phi(z) \equiv 0$,

$$
\begin{gather*}
\beta_{1}\left(z_{0}\right) R^{2}-\beta_{2}\left(z_{0}\right) R+\beta_{3}\left(z_{0}\right)=0, \tag{3.4}\\
{\left[4 \beta_{1}\left(z_{0}\right) R-2 \beta_{2}\left(z_{0}\right)\right] \alpha=P_{1}\left(R ; z_{0}\right),} \tag{3.5}\\
{\left[3 \beta_{1}\left(z_{0}\right) R^{2}-3 \beta_{3}\left(z_{0}\right)\right] \beta=P_{2}\left(R, \alpha ; z_{0}\right),} \tag{3.6}\\
{\left[2 \beta_{1}\left(z_{0}\right) R^{2}+2 \beta_{2}\left(z_{0}\right) R-6 \beta_{3}\left(z_{0}\right)\right] \gamma=P_{3}\left(R, \alpha, \beta ; z_{0}\right),} \tag{3.7}\\
{\left[-\beta_{1}\left(z_{0}\right) R^{4}-4 \beta_{2}\left(z_{0}\right) R^{3}+9 \beta_{3}\left(z_{0}\right) R^{2}\right] \delta=P_{4}\left(R, \alpha, \beta, \gamma ; z_{0}\right),} \tag{3.8}
\end{gather*}
$$

where $P_{j}\left(\cdot ; z_{0}\right)(j=1,2,3,4)$ are polynomials of corresponding arguments with small coefficients.

Since $\left|a_{6}\right|+\left|a_{5}\right|+\left|a_{4}\right|+\left|a_{3}\right| \not \equiv 0$, the right-hand side of (3.1) does not vanish. Thus we have

$$
\begin{equation*}
\left|\beta_{1}\right|+\left|\beta_{2}\right|+\left|\beta_{3}\right| \not \equiv 0 \tag{3.9}
\end{equation*}
$$

First we treat the case $\beta_{1}(z) \equiv 0$ or $\beta_{3}(z) \equiv 0$.
If $\beta_{1}(z) \equiv 0$, then we have $\beta_{2}(z) \not \equiv 0$ and $\beta_{3}(z) \not \equiv 0$. For, if $\beta_{2}(z) \equiv 0\left(\beta_{3}(z) \equiv 0\right)$, then by (3.4) $\beta_{3}\left(z_{0}\right)=0\left(\beta_{2}\left(z_{0}\right)=0\right)$. By Remark 1, we have $\beta_{3}(z) \equiv 0\left(\beta_{2}(z) \equiv 0\right)$, which contradicts (3.9). Hence by (3.4) and (3.5), R and α are written by small functions, which implies that $u(z)$ satisfies the Riccati equation (see [9], pp. 47-48).

Similarly to the case $\beta_{1}(z) \equiv 0$, if $\beta_{3}(z) \equiv 0$, then $\beta_{1}(z) \not \equiv 0$ and $\beta_{2}(z) \not \equiv 0$, and we obtain that $u(z)$ satisfies the Riccati equation.

Secondly we treat the case $\beta_{1}(z) \not \equiv 0$ and $\beta_{3}(z) \not \equiv 0$.
If $\left(-\beta_{2}(z) / \beta_{1}(z)\right)^{2}-4\left(\beta_{3}(z) / \beta_{1}(z)\right) \equiv 0$, that is, $\beta_{2}(z)^{2}-4 \beta_{1}(z) \beta_{3}(z) \equiv 0$, then the form of (3.1) is of the form (2.6). Thus by Lemma 3, u(z) satisfies the Riccati equation or an equation of the form (2.1).

Hence, in the below, we assume that $\beta_{2}(z)^{2}-4 \beta_{1}(z) \beta_{3}(z) \neq 0$.
If any one of α, β, γ and δ is not written by the linear transformations of R with small (w.r.t. $u(z)$) coefficients, that is, if $4 \beta_{1}\left(z_{0}\right) R-2 \beta_{2}\left(z_{0}\right)=0,3 \beta_{1}\left(z_{0}\right) R^{2}-3 \beta_{3}\left(z_{0}\right)=0$, $2 \beta_{1}\left(z_{0}\right) R^{2}+2 \beta_{2}\left(z_{0}\right) R-6 \beta_{3}\left(z_{0}\right)=0 \quad$ or $\quad-\beta_{1}\left(z_{0}\right) R^{4}-4 \beta_{2}\left(z_{0}\right) R^{3}+9 \beta_{3}\left(z_{0}\right) R^{2}$ in (3.5)(3.8), then by (3.4), $\beta_{2}\left(z_{0}\right)^{2}-4 \beta_{1}\left(z_{0}\right) \beta_{3}\left(z_{0}\right)=0$ for each case. Hence by Remark 1 , $\beta_{2}(z)^{2}-4 \beta_{1}(z) \beta_{3}(z) \equiv 0$, which contradicts our assumption.

Here we have that for any admissible simple poles $z_{0}, \alpha, \beta, \gamma$ and δ are written by linear transformations of R with coefficients of small (w.r.t. $u(z)$) functions. Thus, almost all admissible poles are SS2-kind poles. Hence by (3.2) and Lemma 2, $u(z)$ satisfies the Riccati equation or a differential equation of the form (2.1). Thus by Remark 2, $w(z)$ satisfies a differential equation of the form (2.1). Therefore by Lemma 1, (1.4) is reducible, which implies that Theorem 1 is proved.

We would like to thank the refree for many comments and suggestions.

References

[1] A. E. Eremenko, Meromorphic solutions of algebraic differential equations, Russian Math. Surveys, 37-4 (1982), 61-95.
[2] W. K. Hayman, Meromorphic Functions, Oxford Univ. Press, 1964.
[3] K. Ishizaki, Deficient and ramified small functions for admissible meromorphic solutions of some differential equations, Complex Variables Theory Appl., 13 (1989), 173-183.
[4] K. Ishizaki, Admissible solutions of some second order differential equations, Tech. Rep. Math. Sci. Chiba Univ., 6 (1990).
[5] K. Ishizaki and K. Funta, Admissible solutions of some algebraic differential equations $P\left(z, w^{\prime}\right)=Q(\mathrm{z}, w)$, Res. Rep. of T.N.C.T., 21 (1989), 19-28.
[6] G. Jank and L. Volkmann, Meromorphe Functionen und Differentialgleichungen, Birkhäuser, 1985.
[7] A. Z. MoкноŃкo and V. D. MoкноŃKo, Estimates for the Nevanlinna characteristic of some classes of meromorphic functions and their applications to differential equations, Sib. Math., J., 15 (1974), 921-934.
[8] R. Nevanlinna, Analytic Functions, Springer, 1970.
[9] N. Steinmetz, Ein Malmquistscher Satz für algebraische Differentialgleichungen erster Ordnung, J. Reine Angew. Math., 316 (1981), 44-53.

Present Address:
Department of Mathematics, Tokyo National College of Technology
Kunugida-cho, Hachioji-shi, Tokyo 193, Japan

[^0]: Received April 16, 1990

