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Introduction.

Let A be a commutative Banach algebra. An (resp. linear) operator D on A is
called a ring (resp. linear) derivation on A if equations D(f+g)=D(f)+D(g) and
D(fg)=fD(g)+ D(f)g are satisfied for every fand g in A. The image of linear derivation
was studied by Singer and Wermer [5] under the hypothesis of continuity of the operator,
and Thomas [6] has proved that every linear derivation on a commutative Banach
algebra maps into the radical of the algebra. On the other hand there are ring derivations
which do not map into the radical (cf. [1]). In this paper we characterize ring derivations
on semi-simple commutative Banach algebras. A function algebra is semi-simple and
so the results generalize our previous results in [3]. As a consequence of the results it
is shown that only the zero operator is a ring derivation on a semi-simple commutative
Banach algebra with the carrier space without an isolated point, which is a generaliza-
tion of a theorem of Nandakumar [4].

1. Lemmata.

LEMMA 1. Let A be a commutative Banach algebra with the carrier space
M ,. Suppose that D is a ring derivation on A. Then (D(af))"=a(D(f))" for every f in
A and for every rational number o in the complex number field C, where * denotes the
Gel’fand representation.

ProOOF. If « is a rational real number, then D(af)=aD(f) by standard argument.
So we only show that (D(if))" = i(D(f))", where i is the imaginary unit. For every fin 4,

2fD(f)=D(f*)= —D((if )*)= —2ifD(f) ,

so we have (D(f))'(x)= — i(D(if))"(x) for every x in M, with f(x)#0. When f(x)=0,
choose g in 4 with §(x)#0. In the same way we have (D(g))"(x)= —i(D(ig))"(x) and
(D(f+9))"(x)= — i(D(f+9))) () since (f+g) (x) =] (x) +4(x) #0, so

(D)) (x)+ (D) (x) = —i(DGf)) (x) — {(D(g)) (%) -
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‘We conclude that (D()))(x) = —i(D(if))"(x) even if f(x)=0. It follows that i(D(f))"

=(D(if))" on M.

REMARK. If 4 contains the unit, then D(af)=aD(f) for every fin A and rational
complex number «. But it is not the case when 4 is not unital. Let C be the complex
number field. Then C is a radical Banach algebra under the usual scalar multiplication
and the usual summation and the multiplication x defined by a x b=0 with the norm
l-ll=|"|. Define D by D(a)=a, then D is a ring derivation and D(ia) #iD(a) if a#0.

"LEMMA 2. Let A be a commutative Banach algebra with the carrier space M ,.
Suppose that x and y are different points in M ,. Then there is f in A with Ff(x)=0 and

=1

Proof is trivial.

LEMMA 3. Let A be a commutative Banach algebra with the carrier space M ,. Let
{x,} be a sequence of distinct points in M ,. Suppose that D is a ring derivation on A.
There is f, in A which satisfy that || fi | 4<1/2, | D(f)l4=1/2 and f,(x;)#0 for every
positive integer i. For every positive integer n greater than 1 there is f, in A which satisfies
that || £, 14S1/2, | DU 14 £1/2, fu(x) =0 for 1 <i<n and f,(x)#0 for n<i.

We can prove Lemma 3 by the same way as in the proof of Lemma 2 in [2]. |

LEMMA 4. Let A be a commutative Banach algebra with the carrier space M ,. If
the (not necessarily linear) functional ¢.(f)=(D(f)) (x) defined on A is not continuous,
then for every pair of positive numbers ¢ and K there exists f in A such that | f|| 4, <€ and

(D)) (x) > K.

Proor. Suppose that there are positive number ¢, and K, which satisfy that for
every f in A with || f|| , <&, we have | (D(f))"(x) | = K,. We will show that ¢, is continuous.
Let 6 be a positive number. Put e =3'¢,/K’, where §’ and K’ are rational positive numbers
such that '’ <é and K, <K'. If || fll 4 <é, then || (K'/0")f || 4<&o sO | (D((K'[6))) (%) |=
K,. Since D is linear over rational real number field, which is proven by the standard
argument, we have D((K’/8")f)=(K'/6")D(f) and so | (D(f)) (x)| <, which means that
¢, is continuous at 0. Thus we see that ¢, is continuous since D(f—g)=D(f)— D(g)
for every fand g in A.

The following lemma is a version of Theorem 1 in [2] in the case of ring derivations
on Banach algebras.

LEMMA 5. Let A be a commutative Banach algebra with the carrier space M ,. Let
D be a ring derivation on A. Then the functional ¢.(f)=(D(f)) (x) on A is continuous
for every x in M , but a finite exceptions.

PROOF. Suppose that there are infinite number of points x in M, at which ¢, is
not continuous. Choose a sequence {x,} of distinct points at which ¢, is discontinuous.
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For the sequence {x,}, choose a sequence {f,} in 4 which satisfies the conditions in
Lemma 3. Define inductively a sequence {F,} in 4 as follows. Put F; =0.If F, - - -, F;_4
is defined, then put F; in A4 satisfying the conditions:

D IFll<L, - |

2) [(DE) ) > G+ OE AT, HEN DT, FRE.
We see that || D(l—[;= S 14=1/2 for every i by induction on i. If i=1, then

I DU N a= 112D 14
20 AN DUD A
<1/2.
We will show that || D[]’ £?) || , < 1/2 under the hypothesis that || D(Hj.= SHNa=172.

i+1 i i
“D([Iﬁ) f:ﬁlD<l=_Ilf}2)+(Blﬁ2)2ﬁ+1D(ﬁ+1)

) )
<t (12)| 42121 iws hah DGl
<1/2.

Put

a-£ (117)m
and ]

G,= i (ﬁ sz)F,-.

i=p+1\j=1,j#¥p+1

Then G and G, converge in A4 since || f;[| ,<1/2 and || F;|| ,<1. We see that

G= .f“l (ﬂlﬁ)Fi+f,,2+1G,, .
i= Jj=
We will show that
(D@ (xp)|zp—1

for every positive integer p. This is trivial for p=1, so we will prove it for p=2. Since
F»+1(x,)=0 for every p we have

(D(fp2+ 1 Gp))A(xp) =fp + l(xp)(D(.fp + le))A(xp) +fp + l(xp)ép(xp)(D(fp + 1))A(xp)
=0. ‘
Thus |
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o5 ()
o(fi) e o5 (1)

2(x )) (D(F)) ()| —| Eyoxy) (D( ﬁ1 2)) (x,)

o(f17)].

We conclude that |(D(G))(x,)|=p—1, which is a contradiction since (D(G))" is a
bounded function on M ,.

[ (D(G)) (xp) | =

IV

1\
/‘\/\/"\

Then by 2) we have

|(D(G)) (x,) | Zp— I F, .4

zp—1.

2. Main results.

In this section we consider the problem on the image of a ring derivation on a
commutative Banach algebra. In the case of a radical algebra the image is of course
contained in the radical, so we consider the case of the algebra with a non-zero complex
homomorphism. Suppose that 4 is a semi-simple commutative Banach algebra with
the carrier space M, and x,, - - -, x, areisolated points in M ,. Then there are idempotents
e, ", e, in A such that é(x)=1 for x=x; and for otherwise é,(x)=0 for each i. (This
is a direct consequence of the Silov idempotent theorem.) Suppose also that D,, ..., D,
are ring derivations on C. Then an operator D defined by DU)=Z:= . D{(f(x))e; is a
ring derivation on 4. We consider the converse of the fact. As a consequence of the
following theorem the converse is also true for semi-simple commutative Banach
algebras, that is, a ring derivation on a semi-simple commutative Banach algebra has
such a representation as above.

THEOREM. Let A be a commutative Banach algebra with the carrier space M 4. Let
D be a ring derivation on A. We assume the following :

*) : D(rad(A4)) crad(4),

where rad(A) is the (Jacobson) radical of A. Then there are at most finite number of
isolated points in M ,, say y,, - * -, ¥, and the same number of ring derivations D, - - -, D,
on the complex number field which satisfy



RING DERIVATIONS 227

D(e 3. DiFOe+radd),

where e; is an idempotent such that é(x)=1 for x=y; and é(x)=0 for x#y; for every i.

PrROOF. Let {y,, ", ,} be a set of points x in M, at which the functional ¢, is
discontinuous, then the set is finite by Lemma 5. First we show that (D(f))” vanishes
off {y,, - , ya} for every fin 4 and each y; is an isolated point in M 4. Put A={f: fe 4}.
Then A is a semi-simple Banach algebra, with respect to the quotient norm induced by
A/rad(A), of which the carrier space is M,. Put K=the closure of M,—{y:, ", Vn}
in M ,. Then A4 |K is a Banach algebra with respect to the quotient norm. We define an
operator D on A|K by D(¢)=(D(f))"| K, where ¢ = |K for some fin 4. Then D is well
defined and is a ring derivation on fi]K. We will show that D is well defined. Suppose
that {¥y1) * * *» Vi) = M4 — K. Then {y;1), = * *, Y} is a subset of {¥1> " *, ya} and each
¥i; is an isolated point in M, and so for every j there is an idempotent ¢;;, in 4 such that
é,;)(x)=0 for x 3y, and é,;(y;;)=1. Suppose that f|K=4|K. Then we see that

!
f—g= '§1 Foip) —d0ien +7

where r is in rad(A4). So we have

1

D(f—g)= Z D((i(yi(j)) - é(yi(j)))ei(j)) + D(r)

j=1

) D((f (}’i( n) - Q(}’i(j)))e 22( j)) +D(r)

=

.
- u[\q.~

J

since e,;=e%; and D(e;;)=0. (If e is an idempotent in A4, then D(e)=0 since
2eD(e) = D(e®) = D(e) and 2eD(e) =2e2D(e)=eD(e*)=eD(e).) It follows by *) that

] D((f(»y i) — 90 eigen + D(r)

!
D(f—g) = '§1 (D((f i) — Avip)e j)))néi( )

and so we have (D(f))"| K= (D(g))"| K, that is, D is well defined. The fact that Dis aring
derivation is easy to prove. If we can prove that D is linear, then since 4| K is semi-simple
we have D=0 by the fact that there are no nonzero continuous linear derivations on
semi-simple commutative Banach algebras (cf. [5, Theorem 1], [2, Theorem 2], [6]).
It follows that (D(f ))”[K =0 for every fin 4. We then see that ¢,=0, that is, ¢, is
continuous for every x in K. We also conclude that

Do sy =iy s Ve -
Therefore each y; is an isolated point in M, and (D(f))" vanishes off {y,, - - -, y,} for
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every fin A.

We will prove that D is linear. Let x be a point in M,—{y,, -, y,}. We show
that ¢, is linear, that is, ¢, (af) =a¢.(f) for every complex number « and fin 4. Choose
a sequence {a,} of rational complex numbers such that a,—«. Then ¢, ((x—a,)f)—0
since ¢, is continuous. On the other hand

¢x((x—a,)f) =(D((a—2,) 1)) (x)
=(D(2/))" (%) — (D(,.))"(x)
=(D(2f)) (x) — 4 (D(f))"(x)
=¢.(af)—a,0.(f)

by Lemma 1. Since a,¢,(f)—>ad,(f) we conclude that ¢, (af)=a¢. (f). Thus we have
(D)) (x)=a(D(f))(x) on M —{y,, - -, ¥,}, and so on K. It follows that D is a linear
derivation.

For 1 <i<n define the ring derivation D; on the complex number field by

Dy(a)=(D(xe))" (v:) ,

where ¢; is an idempotent in A4 such that é(y;)=1 and é(x)=0 for x#y,. Note that D,
is well defined since (D(ae;))” = (D(ae;))” holds for idempotents e; and e/ in 4 with é;=¢/
by the condition *). Since D(e)=0 for an idempotent e we see that D(/‘"—Z'i'= Je) is
in rad(4) for every fin A. For (D(f-).7_, fe)))" vanishes off {y,, - -, y,} and

(o(7- £ 70) Jon=@rron- 5, oo

=)~ X (DU 040
=0

for 1<j<n, we have that (D(f—) _, fe))" vanishes on M,. We have D(fe;,—f(y)e,)
is in rad(4) since fe;—f(y;)e; is in rad(4) and the condition *) holds. We also see that

D (f()’i)e D) — (D(f()’i)e D) (e;
is in the radical of A4. It follows that

p()=0(s- 3 )+ 3 Ge—ioien)
+ 3 (DUF0)e)—(DF0)e) Ghed + 3. DGIe) 0de,
is in

zn: (D(fUi)ei))A(Vi)ei +rad(4)= _Zn:l Di(f (r))e;+rad(4) .

i=1
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COROLLARY 1. Let A be a semi-simple commutative Banach algebra. Let D be a
ring derivation on A. Then there exist at most finite number of isolated points y,, - " -, y,
in the carrier space M 4 and the same number of ring derivations D, - - -, D, on the complex
number field which satisfy that D( f)=2:.'= . D(f(»))e; for every f in A, where e; is the
idempotent in A such that é(y;)=1 and é,(x)=0 for x#y,.

Since a function algebra is a semi-simple commutative Banach algebra we see that

every ring derivation on a function algebra is represented as in the same way as in
Corollary 1 (cf. [3], [4]).

COROLLARY 2. Let A be a semi-simple commutative Banach algebra with the carrier
space without isolated points. Then only the zero operator is the ring derivation on A.
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