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Introduction.

Let $A$ be a commutative Banach algebra. An (resp. linear) operator $D$ on $A$ is
called a ring (resp. linear) derivation on $A$ if equations $D(f+g)=D(f)+D(g)$ and
$D(fg)=fD(g)+D(f)g$ are satisfied for every $f$ and $g$ in $A$ . The image of linear derivation
was studied by Singer and Wermer [5] under the hypothesis ofcontinuity ofthe operator,
and Thomas [6] has proved that every linear derivation on a commutative Banach
algebra maps into the radical of the algebra. On the other hand there are ring derivations
which do not map into the radical (cf. [1]). In this paper we characterize ring derivations
on semi-simple commutative Banach algebras. A function algebra is semi-simple and
so the results generalize our previous results in [3]. As a consequence of the results it
is shown that only the zero operator is a ring derivation on a semi-simple commutative
Banach algebra with the carrier space without an isolated point, which is a generaliza-
tion of a theorem of Nandakumar [4].

1. Lemmata.

LEMMA 1. Let $A$ be a commutative Banach algebra with the carrier space
$M_{A}$ . Suppose that $D$ is a ring derivation on A. Then $(D(\alpha f))^{\wedge}=\alpha(D(f))^{\wedge}for$ every $f$ in
$A$ and for every rational number $\alpha$ in the complex number field $C$, where

$\wedge$ denotes the
Gel’fand representation.

PROOF. If $\alpha$ is a rational real number, then $D(\alpha f)=\alpha D(f)$ by standard argument.
So we only show that $(D(if))^{\wedge}=i(D(f))^{\wedge}$ , where $i$ is the imaginary unit. For every $f$ in $A$ ,

$2fD(f)=D(f^{2})=-D((if)^{2})=-2\iota fD(lf)$ ,

so we have $(D(f))^{\wedge}(x)=-i(D(if))(x)$ for every $x$ in $M_{A}$ with $\hat{f}(x)\neq 0$ . When $\hat{f}(x)=0$ ,

choose $g$ in $A$ with $\hat{g}(x)\neq 0$ . In the same way we have $(D(g))^{\wedge}(x)=-i(D(ig))^{\wedge}(x)$ and
$(D(f+g))^{\wedge}(x)=-i(D(i(f+g)))^{\wedge}(x)$ since $(f+g)^{\wedge}(x)=f(x)+\hat{g}(x)\neq 0$ , so

$(D(f))^{\wedge}(x)+(D(g))^{\wedge}(x)=-i(D(if))^{\wedge}(x)-i(D(ig))^{\wedge}(x)$ .
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We conclude that $(D(f))^{\wedge}(x)=-i(D(ifl)^{\wedge}(x)$ even if $;(x)=0$ . It follows that $i(D(f))$

$=(D(ifl)$ on $M_{A}$ .
REMARK. If $A$ contains the unit, then $ D(\alpha f)=\alpha D\omega$ for every $f$ in $A$ and rational

complex number $\alpha$ . But it is not the case when $A$ is not unital. Let $C$ be the complex
number field. Then $C$ is a radical Banach algebra under the usual scalar multiplication
and the usual summation and the multiplication $x$ defined by $a\times b=0$ with the norm
$\Vert\cdot\Vert=|\cdot|$ . Define $D$ by $\alpha a$) $=\overline{a}$, then $D$ is a ring derivation and $D(ia)\neq iD(a)$ if $a\neq 0$ .

LEMMA 2. Let $\Lambda$ be a commutative Banach algebra with the carrier space $M_{A}$ .
Suppose that $x$ and $y$ are different points in $M_{A}$ . Then there is $f$ in $A$ with $f(x)=0$ and
$;(y)=1$ .

Proof is trivial.

LEMMA 3. Let $A$ be a commutative Banach algebra with the carrier space $M_{A}$ . Let
$\{x_{n}\}$ be a sequence of distinct points in $M_{A}$ . Suppose that $D$ is a ring derivation on $A$ .
There is $f_{1}$ in A which satisfy that $\Vert f_{1}\Vert_{4}4\leqq 1/2,$ $\Vert D(f_{1})\Vert_{A}\leqq 1/2$ and $f_{1}(x_{i})\neq 0$ for every
positive integer $i$. For every positive integer $n$ greater than 1 there is $f_{n}$ in A which satisfies
that $\Vert f_{n}\Vert_{A}\leqq 1/2,$ $\Vert D(f_{n})\Vert_{A}\leqq 1/2,f_{n}(x_{i})=0$ for $1\leqq i<n$ and $f_{n}(x_{i})\neq 0$ for $n\leqq i$.

We can prove Lemma 3 by the same way as in the proof of Lemma 2 in [2].

LEMMA 4. Let $A$ be a commutative Banach algebra with the carrier space $M_{A}$ . If
the (not necessarily linear) functional $\phi_{x}(f)=(D\omega)(x)$ defined on $A$ is not continuous,
then for every pair ofpositive numbers $\epsilon$ and $K$ there exists $f$ in $A$ such that $\Vert f\Vert_{4}4<\epsilon$ and
$|(D(f))^{\wedge}(x)|>K$.

PROOF. Suppose that there are positive number $\epsilon_{O}$ and $K_{0}$ which satisfy that for
every $f$ in $A$ with $\Vert f\Vert_{4}<\epsilon_{0}$ we have $|(D(f))(x)|\leqq K_{0}$ . We will show that $\phi_{x}$ is continuous.
Let $\delta$ be a positive number. Put $\epsilon=\delta^{\prime}\epsilon_{0}/K^{\prime}$ , where $\delta^{\prime}$ and $K^{\prime}$ are rational positive numbers
such that $\delta^{\prime}<\delta$ and $K_{0}<K^{\prime}$ . If $\Vert f\Vert_{l}\lrcorner<\epsilon$, then $\Vert(K^{\prime}/\delta^{\prime})f\Vert_{A}<\epsilon_{0}$ so $|(D((K^{\prime}/\delta^{\prime})f))^{\wedge}(x)|\leqq$

$K_{0}$ . Since $D$ is linear over rational real number field, which is proven by the standard
argument, we have $ D((K^{\prime}/\delta^{\prime})f)=(K^{\prime}/\delta^{\prime})D\omega$ and so $|(D(f))^{\wedge}(x)|<\delta$ , which means that
$\phi_{x}$ is continuous at $0$ . Thus we see that $\phi_{x}$ is continuous since $D(f-g)=D(f)-D(g)$

for every $f$ and $g$ in $A$ .
The following lemma is a version ofTheorem 1 in [2] in the case of ring derivations

on Banach algebras.

LEMMA 5. Let $A$ be a commutative Banach algebra with the carrier space $M_{14}$ . Let
$D$ be a ring derivation on A. Then the functional $\emptyset_{x}\omega=(D(f))^{\wedge}(x)$ on $A$ is continuous

for every $x$ in $M_{A}$ but a finite exceptions.

PROOF. Suppose that there are infinite number of points $x$ in $M_{4A}$ at which $\phi_{x}$ is
not continuous. Choose a sequence $\{x_{n}\}$ of distinct points at which $\phi_{x}$ is discontinuous.
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For the sequence $\{x_{n}\}$ , choose a sequence $\{f_{n}\}$ in $A$ which satisfies the conditions in
Lemma 3. Define inductively a sequence $\{F_{n}\}$ in $A$ as follows. Put $F_{1}=0$ . If $F_{1},$ $\cdots,$ $F_{i-1}$

is defined, then put $F_{i}$ in $A$ satisfying the conditions:
1) $\Vert F_{i}\Vert_{A}<1$ ,
2) $|(D(F_{i}))^{\wedge}(x_{i})|>(i+|(D(\sum;_{=}^{-}: (\prod_{=1}^{j}f_{l}^{2})F_{j}))^{\wedge}(x_{i})|)/|\prod]_{=1}(f_{J^{2}}(x_{i}))|$ .

We see that $\Vert D(\prod:_{=1}f_{j}^{2})\Vert_{A}\leqq 1/2$ for every $i$ by induction on $i$. If $i=1$ , then

$\Vert D(f_{1}^{2})\Vert_{A}=\Vert 2f_{1}D(f_{1})\Vert_{A}$

$\leqq 2\Vert f_{1}\Vert_{A}\Vert D(f_{1})\Vert_{A}$

$\leqq 1/2$ .

We will show that $\Vert D(\prod:_{=}^{+}:f_{j}^{2})\Vert_{A}\leqq 1/2$ under the hypothesis that $\Vert D(\prod:_{=1}f_{j}^{2})\Vert_{A}\leqq 1/2$ .

$\Vert D(\prod_{j=1}^{i+1}f_{j}^{2})\Vert_{A}=\Vert f_{i+1}^{2}D(\prod_{j=1}^{i}f_{j}^{2})+(\prod_{j=1}^{i}f_{j}^{2})2f_{i+1}D(f_{i+1})\Vert_{A}$

$\leqq||f_{i+1}\Vert_{A^{2}}\Vert D(\prod_{j=1}^{i}f_{j}^{2})\Vert_{A}+2(\prod_{j=1}^{i}\Vert f_{j}\Vert_{A}^{2})\Vert f_{i+1}\Vert_{A}\Vert D(f_{i+1})\Vert_{A}$

$\leqq 1/2$ .

Put

$G=\sum_{i=1}^{\infty}(\prod_{j=1}^{i}f_{j}^{2})F_{i}$

and

$G_{p}=\sum_{t=p+1}^{\infty}(\prod_{j=1.j\neq p+1}^{i}f_{j}^{2})F_{i}$ .

Then $G$ and $G_{p}$ converge in $A$ since $\Vert f_{j}\Vert_{A}\leqq$ ] $/2$ and $\Vert F_{i}\Vert_{A}<1$ . We see that

$G=\sum_{i=1}^{p}(\prod_{j=1}^{i}f_{j}^{2})F_{i}+f_{p+1}^{2}G_{p}$ .

We will show that

$|(D(G))^{\wedge}(x_{p})|\geqq p-1$

for every positive integer $p$ . This is trivial for $p=1$ , so we will prove it for $p\geqq 2$ . Since
$f_{p+1}(x_{p})=0$ for every $p$ we have

$(D(f_{p+1}^{2}G_{p}))^{\wedge}(x_{p})=f_{p+1}(x_{p})(D(f_{p+1}G_{p}))^{\wedge}(x_{p})+f_{p+1}(x_{p})\hat{G}_{p}(x_{p})(D(f_{p+1}))^{\wedge}(x_{p})$

$=0$ .
Thus
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$|(D(G))^{\wedge}(x_{p})|=|(D(\sum_{i=1}^{p}(\prod_{j=1}^{i}f_{j}^{2})F_{i}))^{\wedge}(x_{p})|$

$\geqq|(D((\prod_{j=1}^{p}f_{j}^{2})F_{p}))(x_{p})|-|(D(\sum_{i=1}^{p-1}(\prod_{j=1}^{i}f_{j}^{2})F_{i}))^{\wedge}(x_{p})|$

$\geqq|(\prod_{j=1}^{p}f_{j}^{2}(x_{p}))(D(F_{p}))(x_{p})|-|\hat{F}_{p}(x_{p})(D(\prod_{j=1}^{p}f_{j}^{2}))(x_{p})|$

$-|(D(\sum_{i=1}^{p-1}(\prod_{j=1}^{i}f_{j}^{2})F_{i}))^{\wedge}(x_{p})|$ .

Then by 2) we have

$|(D(G))^{\wedge}(x_{p})|\geqq p-\Vert F_{p}\Vert_{A}\Vert D(\prod_{j=1}^{p}f_{j}^{2})\Vert_{A}$

$\geqq p-1$ .
We conclude that $|(D(G))^{\wedge}(x_{p})|\geqq p-1$ , which is a contradiction since $(D(G))^{\wedge}$ is a
bounded function on $M_{A}$ .

2. Main results.

In this section we consider the problem on the image of a ring derivation on a
commutative Banach algebra. In the case of a radical algebra the image is of course
contained in the radical, so we consider the case of the algebra with a non-zero complex
homomorphism. Suppose that $A$ is a semi-simple commutative Banach algebra with
the carrier space $M_{A}$ and $x_{1},$ $\cdots,$ $x_{n}$ are isolated points in $M_{A}$ . Then there are idempotents
$e_{1},$ $\cdots,$ $e_{n}$ in $A$ such that $\hat{e}_{i}(x)=1$ for $x=x_{i}$ and for otherwise $\hat{e}_{i}(x)=0$ for each $i$ . (This
is a direct consequence of the Silov idempotent theorem.) Suppose also that $D_{1},$

$\ldots,$
$D_{n}$

are ring derivations on $C$. Then an operator $D$ defined by $D(f)=\sum_{i=1}^{n}D_{i}(f(x_{i}))e_{i}$ is a
ring derivation on $A$ . We consider the converse of the fact. As a consequence of the
following theorem the converse is also true for semi-simple commutative Banach
algebras, that is, a ring derivation on a semi-simple commutative Banach algebra has
such a representation as above.

THEOREM. Let $A$ be a commutative Banach algebra with the carrier space $M_{A}$ . Let
$D$ be a ring derivation on A. We assume the following:

$*)$ $D(rad(A))\subset rad(A)$ ,

where rad$(A)$ is the (Jacobson) radical of A. Then there are at most finite number of
isolatedpoints in $M_{4\tau}$ , say $y_{1},$ $\cdots,$ $y_{n}$, and the same number ofring derivations $D_{1},$ $\cdots,$ $D_{n}$

on the complex number field which satisfy:
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$D(f)\in\sum_{i=1}^{n}D_{i}(;(y_{i}))e_{i}+rad(A)$ ,

where $e_{i}$ is an idempotent such that $\hat{e}_{i}(x)=1$ for $x=y_{i}$ and $\hat{e}_{i}(x)=0$ for $x\neq y_{i}$ for every $i$.

PROOF. Let $\{y_{1}, \cdots, y_{n}\}$ be a set of points $x$ in $M_{A}$ at which the functional $\phi_{x}$ is
discontinuous, then the set is finite by Lemma 5. First we show that $(D(f))^{\wedge}$ vanishes
off $\{y_{1}, \cdots, y_{n}\}$ for every $f$in $A$ and each $y_{i}$ is an isolated point in $M_{A}$ . Put $\hat{A}=\{f:f\in A\}$ .
Then $\hat{A}$ is a semi-simple Banach algebra, with respect to the quotient norm induced by
$A/rad(A)$ , of which the carrier space is $M_{A}$ . Put $K=the$ closure of $M_{A}-\{y_{1}, \cdots, y_{n}\}$

in $M_{A}$ . Then $\hat{A}|K$ is a Banach algebra with respect to the quotient norm. We define an
operator $\tilde{D}$ on $\hat{A}|K$ by $\tilde{D}(\varphi)=(D(f))|K$, where $\varphi=f|K$ for some $f$ in $A$ . Then $\tilde{D}$ is well
defined and is a ring derivation on $\hat{A}|K$. We will show that $\tilde{D}$ is well defined. Suppose
that $\{y_{i\langle 1)}, \cdots, y_{i\langle l)}\}=M_{A}-K$. Then $\{y_{i\langle 1)}, \cdots, y_{i\langle 1)}\}$ is asubset of $\{y_{1}, \cdots, y_{n}\}$ and each
$y_{i\langle j)}$ is an isolated point in $M_{A}$ and so for every $j$ there is an idempotent $e_{i\langle j)}$ in $A$ such that
$\hat{e}_{\iota_{1J)}}(x)=0$ for $x\neq y_{i\langle j)}$ and $\hat{e}_{i(J)}(y_{i\langle j)})=1$ . Suppose that $f|K=9|K$. Then we see that

$f-g=\sum_{j=1}^{l}(;(\gamma_{i\{j)})-\hat{g}(\gamma_{i(j)}))e_{i\langle j)}+r$ ,

where $r$ is in rad$(A)$ . So we have

$D(f-g)=\sum_{j=1}^{l}D((f(y_{\iota_{07}})-\phi(y_{i(j)}))e_{i\{j)})+D(r)$

$=\sum_{j=1}^{l}D((f(y_{i(J)})-9(y_{t\langle j)}))e_{i(j)}^{2})+D(r)$

$=\sum_{j=1}^{\iota}D((f(y_{tU)})-9(y_{i(j)}))e_{i(j)})e_{i(j)}+D(r)$ ,

since $e_{i(j)}=e_{i(j)}^{2}$ and $D(e_{i\{j)})=0$ . (If $e$ is an idempotent in $A$ , then $D(e)=0$ since
$2eD(e)=D(e^{2})=D(e)$ and $2eD(e)=2e^{2}D(e)=eD(e^{2})=eD(e).)$ It follows $by*$) that

$(D(f-g))^{\wedge}=\sum_{j=1}^{\iota}(D((f(\gamma_{tU)})-9(y_{i\langle j)}))e_{i(j)}))^{\wedge}\hat{e}_{i\langle j)}$

and so we have $(D(f))|K=(D(g))^{\wedge}|K$, that is, $\tilde{D}$ is well defined. The fact that $\tilde{D}$ is a ring
derivation is easy to prove. Ifwe can prove that $\tilde{D}$ is linear, then since $\hat{A}|K$ is semi-simple
we have $\tilde{D}=0$ by the fact that there are no nonzero continuous linear derivations on
semi-simple commutative Banach algebras (cf. [5, Theorem 1], [2, Theorem 2], [6]).

It follows that $(D(f))^{\wedge}|K=0$ for every $f$ in $A$ . We then see that $\phi_{x}=0$ , that is, $\phi_{x}$ is
continuous for every $x$ in $K$. We also conclude that

$\{y_{1}, \cdots, y_{n}\}=\{y_{i\langle 1)}, \cdots, y_{i(l)}\}$ .

Therefore each $y_{i}$ is an isolated point in $M_{A}$ and $(D(f))^{\wedge}$ vanishes off $\{y_{1}, \cdots, y_{n}\}$ for
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every $f$ in $A$ .
We will prove that $\tilde{D}$ is linear. Let $x$ be a point in $M_{A}-\{y_{1}, \cdots, y_{n}\}$ . We show

that $\phi_{x}$ is linear, that is, $\phi_{x}(\alpha f)=\alpha\phi_{x}(f)$ for every complex number $\alpha$ and $f$ in $A$ . Choose
a sequence $\{\alpha_{n}\}$ of rational complex numbers such that $\alpha_{n}\rightarrow\alpha$ . Then $\phi_{x}((\alpha-\alpha_{n})f)\rightarrow 0$

since $\phi_{x}$ is continuous. On the other hand

$\phi_{x}((\alpha-\alpha_{n})f)=(D((\alpha-\alpha_{n})f))(x)$

$=(D(\alpha f))(x)-(D(\alpha_{n}f))^{\wedge}(x)$

$=(D(\alpha f))(x)-\alpha_{n}(D(f))(x)$

$=\phi_{x}(\alpha f)-\alpha_{n}\phi_{x}(f)$

by Lemma 1. Since $\alpha_{n}\phi_{x}(f)\rightarrow\alpha\phi_{x}(f)$ we conclude that $\phi_{x}(\alpha f)=\alpha\emptyset_{x}\omega$ . Thus we have
$(D(\alpha f))^{\wedge}(x)=\alpha(D(f))(x)$ on $M_{A}-\{y_{1}, \cdots, y_{n}\}$ , and so on $K$. It follows that $\tilde{D}$ is alinear
derivation.

For $1\leqq i\leqq n$ define the ring derivation $D_{i}$ on the complex number field by

$D_{i}(\alpha)=(D(\alpha e_{i}))(y_{i})$ ,

where $e_{i}$ is an idempotent in $A$ such that $\hat{e}_{i}(y_{i})=1$ and $\hat{e}_{i}(x)=0$ for $x\neq y_{i}$ . Note that $D_{i}$

is well defined since $(D(\alpha e_{i}))^{\wedge}=(D(\alpha e_{i}^{\prime}))^{\wedge}$ holds for idempotents $e_{i}$ and $e_{i}^{\prime}$ in $A$ with $\hat{e}_{i}=\hat{e}_{i}^{\prime}$

by the $condition*$). Since $D(e)=0$ for an idempotent $e$ we see that $D(f-\sum_{i=1}^{n}fe_{i})$ is
in rad$(A)$ for every $f$ in $A$ . For $(D(f-\sum_{i=1}^{n}fe_{i}))^{\wedge}$ vanishes off $\{y_{1}, \cdots, y_{n}\}$ and

$(D(f-\sum_{i=1}^{n}fe_{i}))^{\wedge}(y_{j})=(D(f))(y_{j})-\sum_{i=1}^{n}(D(fe_{i}))^{\wedge}(y_{j})$

$=(D(f))(y_{j})-\sum_{i=1}^{n}(D(f))^{\wedge}(y_{j})\hat{e}_{i}(y_{j})$

$=0$

for $1\leqq j\leqq n$ , we have that $(D(f-\sum_{i=1}^{n}fe_{i}))$ vanishes on $M_{A}$ . We have $D(fe_{i}-;(\gamma_{i})e_{i})$

is in rad$(A)$ since $fe_{i}-;(y_{i})e_{i}$ is in rad$(A)$ and the $condition*$) holds. We also see that
$D(f(y_{i})e_{i})-(D(f(\gamma_{i})e_{i}))(y_{i})e_{i}$

is in the radical of $A$ . It follows that

$D(f)=D(f-\sum_{i=1}^{n}fe_{i})+D(\sum_{i=1}^{n}(fe_{i}-f(y_{i})e_{j}))$

$+\sum_{\iota=1}^{n}\{D(f(y_{i})e_{i})-(D(f(\gamma_{i})e_{i}))^{\wedge}(y_{i})e_{i}\}+\sum_{i=1}^{n}(D(f(\gamma_{i})e_{i}))(y_{i})e_{i}$

is in

$\sum_{i=1}^{n}(D(f(\gamma_{i})e_{i}))^{\wedge}(y_{i})e_{i}+rad(A)=\sum_{i=1}^{n}D_{i}(f(y_{i}))e_{i}+rad(A)$ .
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COROLLARY 1. Let $A$ be a semi-simple commutative Banach algebra. Let $D$ be a
ring derivation on A. Then there exist at most finite number of isolated points $y_{1},$ $\cdots,$ $y_{n}$

in the carrier space $M_{A}$ and the same number ofring derivations $D_{1},$ $\cdots,$ $D_{n}$ on the complex
number field which satisfy that $D(f)=\sum_{i=1}^{n}D_{i}(f(y_{i}))e_{i}$ for every $f$ in $A$ , where $e_{i}$ is the
idempotent in $A$ such that $\hat{e}_{i}(y_{i})=1$ and $\hat{e}_{t}(x)=0$ for $x\neq y_{i}$ .

Since a function algebra is a semi-simple commutative Banach algebra we see that
every ring derivation on a function algebra is represented as in the same way as in
Corollary 1 (cf. [3], [4]).

COROLLARY 2. Let $A$ be a semi-simple commutative Banach algebra with the carrier
space without isolated points. Then only the zero operator is the ring derivation on $A$ .
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