Токуо Ј. Матн. Vol. 15, No. 1, 1992

Ring Derivations on Semi-Simple Commutative Banach Algebras

Osamu HATORI and Junzo WADA

Tokyo Medical College and Waseda University

Introduction.

Let A be a commutative Banach algebra. An (resp. linear) operator D on A is called a ring (resp. linear) derivation on A if equations D(f+g)=D(f)+D(g) and D(fg)=fD(g)+D(f)g are satisfied for every f and g in A. The image of linear derivation was studied by Singer and Wermer [5] under the hypothesis of continuity of the operator, and Thomas [6] has proved that every linear derivation on a commutative Banach algebra maps into the radical of the algebra. On the other hand there are ring derivations which do not map into the radical (cf. [1]). In this paper we characterize ring derivations on semi-simple commutative Banach algebras. A function algebra is semi-simple and so the results generalize our previous results in [3]. As a consequence of the results it is shown that only the zero operator is a ring derivation on a semi-simple commutative Banach algebra with the carrier space without an isolated point, which is a generalization of a theorem of Nandakumar [4].

1. Lemmata.

LEMMA 1. Let A be a commutative Banach algebra with the carrier space M_A . Suppose that D is a ring derivation on A. Then $(D(\alpha f))^{\hat{}} = \alpha(D(f))^{\hat{}}$ for every f in A and for every rational number α in the complex number field C, where $\hat{}$ denotes the Gel'fand representation.

PROOF. If α is a rational real number, then $D(\alpha f) = \alpha D(f)$ by standard argument. So we only show that $(D(if))^{2} = i(D(f))^{2}$, where *i* is the imaginary unit. For every *f* in *A*,

$$2fD(f) = D(f^2) = -D((if)^2) = -2ifD(if),$$

so we have $(D(f))^{(x)} = -i(D(if))^{(x)}$ for every x in M_A with $\hat{f}(x) \neq 0$. When $\hat{f}(x) = 0$, choose g in A with $\hat{g}(x) \neq 0$. In the same way we have $(D(g))^{(x)} = -i(D(ig))^{(x)}$ and $(D(f+g))^{(x)} = -i(D(i(f+g)))^{(x)}$ since $(f+g)^{(x)} = \hat{f}(x) + \hat{g}(x) \neq 0$, so

$$(D(f))^{(x)} + (D(g))^{(x)} = -i(D(if))^{(x)} - i(D(ig))^{(x)}.$$

Received May 8, 1991

OSAMU HATORI AND JUNZO WADA

We conclude that $(D(f))^{(x)} = -i(D(if))^{(x)}$ even if $\hat{f}(x) = 0$. It follows that $i(D(f))^{(x)} = (D(if))^{(x)}$ on M_A .

REMARK. If A contains the unit, then $D(\alpha f) = \alpha D(f)$ for every f in A and rational complex number α . But it is not the case when A is not unital. Let C be the complex number field. Then C is a radical Banach algebra under the usual scalar multiplication and the usual summation and the multiplication \times defined by $a \times b = 0$ with the norm $\|\cdot\| = |\cdot|$. Define D by $D(a) = \bar{a}$, then D is a ring derivation and $D(ia) \neq iD(a)$ if $a \neq 0$.

LEMMA 2. Let A be a commutative Banach algebra with the carrier space M_A . Suppose that x and y are different points in M_A . Then there is f in A with $\hat{f}(x)=0$ and $\hat{f}(y)=1$.

Proof is trivial.

LEMMA 3. Let A be a commutative Banach algebra with the carrier space M_A . Let $\{x_n\}$ be a sequence of distinct points in M_A . Suppose that D is a ring derivation on A. There is f_1 in A which satisfy that $||f_1||_A \leq 1/2$, $||D(f_1)||_A \leq 1/2$ and $\hat{f}_1(x_i) \neq 0$ for every positive integer i. For every positive integer n greater than 1 there is f_n in A which satisfies that $||f_n||_A \leq 1/2$, $||D(f_n)||_A \leq 1/2$, $||D(f_n)||_A \leq 1/2$, $||f_n||_A \leq 1/2$, $||D(f_n)||_A \leq 1/2$, $\hat{f}_n(x_i) = 0$ for $1 \leq i < n$ and $\hat{f}_n(x_i) \neq 0$ for $n \leq i$.

We can prove Lemma 3 by the same way as in the proof of Lemma 2 in [2].

LEMMA 4. Let A be a commutative Banach algebra with the carrier space M_A . If the (not necessarily linear) functional $\phi_x(f) = (D(f))^{\circ}(x)$ defined on A is not continuous, then for every pair of positive numbers ε and K there exists f in A such that $||f||_A < \varepsilon$ and $|(D(f))^{\circ}(x)| > K$.

PROOF. Suppose that there are positive number ε_0 and K_0 which satisfy that for every f in A with $||f||_A < \varepsilon_0$ we have $|(D(f))^{\circ}(x)| \leq K_0$. We will show that ϕ_x is continuous. Let δ be a positive number. Put $\varepsilon = \delta' \varepsilon_0 / K'$, where δ' and K' are rational positive numbers such that $\delta' < \delta$ and $K_0 < K'$. If $||f||_A < \varepsilon$, then $||(K'/\delta')f||_A < \varepsilon_0$ so $|(D((K'/\delta')f))^{\circ}(x)| \leq K_0$. Since D is linear over rational real number field, which is proven by the standard argument, we have $D((K'/\delta')f) = (K'/\delta')D(f)$ and so $|(D(f))^{\circ}(x)| < \delta$, which means that ϕ_x is continuous at 0. Thus we see that ϕ_x is continuous since D(f-g) = D(f) - D(g)for every f and g in A.

The following lemma is a version of Theorem 1 in [2] in the case of ring derivations on Banach algebras.

LEMMA 5. Let A be a commutative Banach algebra with the carrier space M_A . Let D be a ring derivation on A. Then the functional $\phi_x(f) = (D(f))^{(x)}$ on A is continuous for every x in M_A but a finite exceptions.

PROOF. Suppose that there are infinite number of points x in M_A at which ϕ_x is not continuous. Choose a sequence $\{x_n\}$ of distinct points at which ϕ_x is discontinuous.

224

For the sequence $\{x_n\}$, choose a sequence $\{f_n\}$ in A which satisfies the conditions in Lemma 3. Define inductively a sequence $\{F_n\}$ in A as follows. Put $F_1 = 0$. If F_1, \dots, F_{i-1} is defined, then put F_i in A satisfying the conditions:

1) $||F_i||_A < 1$,

2) $|(D(F_i))^{\hat{}}(x_i)| > (i + |(D(\sum_{j=1}^{i-1} (\prod_{i=1}^{j} f_i^2)F_j))^{\hat{}}(x_i)|) / |\prod_{j=1}^{i} (\hat{f}_j^2(x_i))|.$ We see that $||D(\prod_{j=1}^{i} f_j^2)||_A \le 1/2$ for every *i* by induction on *i*. If *i*=1, then

$$\|D(f_1^2)\|_A = \|2f_1D(f_1)\|_A$$

$$\leq 2 \|f_1\|_A \|D(f_1)\|_A$$

$$\leq 1/2.$$

We will show that $\|D(\prod_{j=1}^{i+1} f_j^2)\|_A \leq 1/2$ under the hypothesis that $\|D(\prod_{j=1}^{i} f_j^2)\|_A \leq 1/2$.

$$\left\| D\left(\prod_{j=1}^{i+1} f_j^2\right) \right\|_A = \left\| f_{i+1}^2 D\left(\prod_{j=1}^{i} f_j^2\right) + \left(\prod_{j=1}^{i} f_j^2\right) 2f_{i+1} D(f_{i+1}) \right\|_A$$

$$\leq \|f_{i+1}\|_A^2 \left\| D\left(\prod_{j=1}^{i} f_j^2\right) \right\|_A + 2\left(\prod_{j=1}^{i} \|f_j\|_A^2\right) \|f_{i+1}\|_A \|D(f_{i+1})\|_A$$

$$\leq 1/2 .$$

Put

 $G = \sum_{i=1}^{\infty} \left(\prod_{j=1}^{i} f_j^2 \right) F_i$

and

$$G_p = \sum_{i=p+1}^{\infty} \left(\prod_{j=1, j \neq p+1}^{i} f_j^2 \right) F_i.$$

Then G and G_p converge in A since $||f_j||_A \leq 1/2$ and $||F_i||_A < 1$. We see that

$$G = \sum_{i=1}^{p} \left(\prod_{j=1}^{i} f_{j}^{2} \right) F_{i} + f_{p+1}^{2} G_{p}.$$

We will show that

 $|(D(G))^{(x_p)}| \ge p-1$

for every positive integer p. This is trivial for p=1, so we will prove it for $p \ge 2$. Since $\hat{f}_{p+1}(x_p) = 0$ for every p we have

$$(D(f_{p+1}^2G_p))^{(x_p)} = \hat{f}_{p+1}(x_p)(D(f_{p+1}G_p))^{(x_p)} + \hat{f}_{p+1}(x_p)\hat{G}_p(x_p)(D(f_{p+1}))^{(x_p)} = 0.$$

Thus

$$\begin{split} |(D(G))^{\hat{}}(x_{p})| &= \left| \left(D\left(\sum_{i=1}^{p} \left(\prod_{j=1}^{i} f_{j}^{2} \right) F_{i} \right) \right)^{\hat{}}(x_{p}) \right| \\ &\geq \left| \left(D\left(\left(\prod_{j=1}^{p} f_{j}^{2} \right) F_{p} \right) \right)^{\hat{}}(x_{p}) \left| - \left| \left(D\left(\sum_{i=1}^{p-1} \left(\prod_{j=1}^{i} f_{j}^{2} \right) F_{i} \right) \right)^{\hat{}}(x_{p}) \right| \\ &\geq \left| \left(\prod_{j=1}^{p} \hat{f}_{j}^{2}(x_{p}) \right) (D(F_{p}))^{\hat{}}(x_{p}) \left| - \left| \hat{F}_{p}(x_{p}) \left(D\left(\prod_{j=1}^{p} f_{j}^{2} \right) \right)^{\hat{}}(x_{p}) \right| \\ &- \left| \left(D\left(\sum_{i=1}^{p-1} \left(\prod_{j=1}^{i} f_{j}^{2} \right) F_{i} \right) \right)^{\hat{}}(x_{p}) \right|. \end{split}$$

Then by 2) we have

$$|(D(G))(x_p)| \ge p - ||F_p||_A \left\| D\left(\prod_{j=1}^p f_j^2\right) \right\|_A$$

 $\ge p - 1.$

We conclude that $|(D(G))^{(x_p)}| \ge p-1$, which is a contradiction since $(D(G))^{(x_p)}$ is a bounded function on M_A .

2. Main results.

In this section we consider the problem on the image of a ring derivation on a commutative Banach algebra. In the case of a radical algebra the image is of course contained in the radical, so we consider the case of the algebra with a non-zero complex homomorphism. Suppose that A is a semi-simple commutative Banach algebra with the carrier space M_A and x_1, \dots, x_n are isolated points in M_A . Then there are idempotents e_1, \dots, e_n in A such that $\hat{e}_i(x) = 1$ for $x = x_i$ and for otherwise $\hat{e}_i(x) = 0$ for each i. (This is a direct consequence of the Šilov idempotent theorem.) Suppose also that D_1, \dots, D_n are ring derivations on C. Then an operator D defined by $D(f) = \sum_{i=1}^n D_i(\hat{f}(x_i))e_i$ is a ring derivation on A. We consider the converse of the fact. As a consequence of the following theorem the converse is also true for semi-simple commutative Banach algebra has such a representation as above.

THEOREM. Let A be a commutative Banach algebra with the carrier space M_A . Let D be a ring derivation on A. We assume the following:

*)
$$D(\operatorname{rad}(A)) \subset \operatorname{rad}(A)$$
,

where rad(A) is the (Jacobson) radical of A. Then there are at most finite number of isolated points in M_A , say y_1, \dots, y_n , and the same number of ring derivations D_1, \dots, D_n on the complex number field which satisfy:

$$D(f) \in \sum_{i=1}^{n} D_i(\hat{f}(y_i))e_i + \operatorname{rad}(A) ,$$

where e_i is an idempotent such that $\hat{e}_i(x) = 1$ for $x = y_i$ and $\hat{e}_i(x) = 0$ for $x \neq y_i$ for every *i*.

PROOF. Let $\{y_1, \dots, y_n\}$ be a set of points x in M_A at which the functional ϕ_x is discontinuous, then the set is finite by Lemma 5. First we show that $(D(f))^{\circ}$ vanishes off $\{y_1, \dots, y_n\}$ for every f in A and each y_i is an isolated point in M_A . Put $\hat{A} = \{\hat{f}: f \in A\}$. Then \hat{A} is a semi-simple Banach algebra, with respect to the quotient norm induced by $A/\operatorname{rad}(A)$, of which the carrier space is M_A . Put K = the closure of $M_A - \{y_1, \dots, y_n\}$ in M_A . Then $\hat{A} \mid K$ is a Banach algebra with respect to the quotient norm. We define an operator \tilde{D} on $\hat{A} \mid K$ by $\tilde{D}(\varphi) = (D(f))^{\circ} \mid K$, where $\varphi = \hat{f} \mid K$ for some f in A. Then \tilde{D} is well defined and is a ring derivation on $\hat{A} \mid K$. We will show that \tilde{D} is well defined. Suppose that $\{y_{i(1)}, \dots, y_{i(l)}\} = M_A - K$. Then $\{y_{i(1)}, \dots, y_{i(l)}\}$ is a subset of $\{y_1, \dots, y_n\}$ and each $y_{i(j)}$ is an isolated point in M_A and so for every j there is an idempotent $e_{i(j)}$ in A such that $\hat{e}_{i(j)}(x) = 0$ for $x \neq y_{i(j)}$ and $\hat{e}_{i(j)}(y_{i(j)}) = 1$. Suppose that $\hat{f} \mid K = \hat{g} \mid K$. Then we see that

$$f-g = \sum_{j=1}^{l} (\hat{f}(y_{i(j)}) - \hat{g}(y_{i(j)}))e_{i(j)} + r ,$$

where r is in rad(A). So we have

$$D(f-g) = \sum_{j=1}^{l} D((\hat{f}(y_{i(j)}) - \hat{g}(y_{i(j)}))e_{i(j)}) + D(r)$$

$$= \sum_{j=1}^{l} D((\hat{f}(y_{i(j)}) - \hat{g}(y_{i(j)}))e_{i(j)}^{2}) + D(r)$$

$$= \sum_{j=1}^{l} D((\hat{f}(y_{i(j)}) - \hat{g}(y_{i(j)}))e_{i(j)})e_{i(j)} + D(r)$$

since $e_{i(j)} = e_{i(j)}^2$ and $D(e_{i(j)}) = 0$. (If e is an idempotent in A, then D(e) = 0 since $2eD(e) = D(e^2) = D(e)$ and $2eD(e) = 2e^2D(e) = eD(e^2) = eD(e)$.) It follows by *) that

$$(D(f-g))^{\hat{}} = \sum_{j=1}^{i} (D((\hat{f}(y_{i(j)}) - \hat{g}(y_{i(j)}))e_{i(j)}))^{\hat{}}\hat{e}_{i(j)}$$

and so we have $(D(f))^{\hat{}}|_{K=(D(g))^{\hat{}}|_{K}$, that is, \tilde{D} is well defined. The fact that \tilde{D} is a ring derivation is easy to prove. If we can prove that \tilde{D} is linear, then since $\hat{A}|_{K}$ is semi-simple we have $\tilde{D}=0$ by the fact that there are no nonzero continuous linear derivations on semi-simple commutative Banach algebras (cf. [5, Theorem 1], [2, Theorem 2], [6]). It follows that $(D(f))^{\hat{}}|_{K=0}$ for every f in A. We then see that $\phi_x=0$, that is, ϕ_x is continuous for every x in K. We also conclude that

$$\{y_1, \cdots, y_n\} = \{y_{i(1)}, \cdots, y_{i(l)}\}.$$

Therefore each y_i is an isolated point in M_A and $(D(f))^{\circ}$ vanishes off $\{y_1, \dots, y_n\}$ for

every f in A.

We will prove that \tilde{D} is linear. Let x be a point in $M_A - \{y_1, \dots, y_n\}$. We show that ϕ_x is linear, that is, $\phi_x(\alpha f) = \alpha \phi_x(f)$ for every complex number α and f in A. Choose a sequence $\{\alpha_n\}$ of rational complex numbers such that $\alpha_n \to \alpha$. Then $\phi_x((\alpha - \alpha_n)f) \to 0$ since ϕ_x is continuous. On the other hand

$$\phi_x((\alpha - \alpha_n)f) = (D((\alpha - \alpha_n)f))^{(x)}$$

= $(D(\alpha f))^{(x)} - (D(\alpha_n f))^{(x)}$
= $(D(\alpha f))^{(x)} - \alpha_n (D(f))^{(x)}$
= $\phi_x(\alpha f) - \alpha_n \phi_x(f)$

by Lemma 1. Since $\alpha_n \phi_x(f) \to \alpha \phi_x(f)$ we conclude that $\phi_x(\alpha f) = \alpha \phi_x(f)$. Thus we have $(D(\alpha f))^{\hat{}}(x) = \alpha(D(f))^{\hat{}}(x)$ on $M_A - \{y_1, \dots, y_n\}$, and so on K. It follows that \tilde{D} is a linear derivation.

For $1 \leq i \leq n$ define the ring derivation D_i on the complex number field by

$$D_i(\alpha) = (D(\alpha e_i))^{(\gamma_i)},$$

where e_i is an idempotent in A such that $\hat{e}_i(y_i) = 1$ and $\hat{e}_i(x) = 0$ for $x \neq y_i$. Note that D_i is well defined since $(D(\alpha e_i))^{\hat{}} = (D(\alpha e'_i))^{\hat{}}$ holds for idempotents e_i and e'_i in A with $\hat{e}_i = \hat{e}'_i$ by the condition *). Since D(e) = 0 for an idempotent e we see that $D(f - \sum_{i=1}^{n} fe_i)$ is in rad(A) for every f in A. For $(D(f - \sum_{i=1}^{n} fe_i))^{\hat{}}$ vanishes off $\{y_1, \dots, y_n\}$ and

$$\left(D\left(f - \sum_{i=1}^{n} fe_i\right)\right)^{\hat{}}(y_j) = (D(f))^{\hat{}}(y_j) - \sum_{i=1}^{n} (D(fe_i))^{\hat{}}(y_j)$$
$$= (D(f))^{\hat{}}(y_j) - \sum_{i=1}^{n} (D(f))^{\hat{}}(y_j)\hat{e}_i(y_j)$$
$$= 0$$

for $1 \le j \le n$, we have that $(D(f - \sum_{i=1}^{n} fe_i))^{\hat{}}$ vanishes on M_A . We have $D(fe_i - \hat{f}(y_i)e_i)$ is in rad(A) since $fe_i - \hat{f}(y_i)e_i$ is in rad(A) and the condition *) holds. We also see that

$$D(\hat{f}(y_i)e_i) - (D(\hat{f}(y_i)e_i))^{(y_i)}e_i$$

is in the radical of A. It follows that

$$D(f) = D\left(f - \sum_{i=1}^{n} fe_i\right) + D\left(\sum_{i=1}^{n} (fe_i - \hat{f}(y_i)e_i)\right)$$
$$+ \sum_{i=1}^{n} \left\{ D(\hat{f}(y_i)e_i) - (D(\hat{f}(y_i)e_i))^{(y_i)}e_i \right\} + \sum_{i=1}^{n} (D(\hat{f}(y_i)e_i))^{(y_i)}e_i$$

is in

$$\sum_{i=1}^{n} (D(\hat{f}(y_i)e_i))(y_i)e_i + \operatorname{rad}(A) = \sum_{i=1}^{n} D_i(\hat{f}(y_i))e_i + \operatorname{rad}(A) .$$

RING DERIVATIONS

COROLLARY 1. Let A be a semi-simple commutative Banach algebra. Let D be a ring derivation on A. Then there exist at most finite number of isolated points y_1, \dots, y_n in the carrier space M_A and the same number of ring derivations D_1, \dots, D_n on the complex number field which satisfy that $D(f) = \sum_{i=1}^{n} D_i(\hat{f}(y_i))e_i$ for every f in A, where e_i is the idempotent in A such that $\hat{e}_i(y_i) = 1$ and $\hat{e}_t(x) = 0$ for $x \neq y_i$.

Since a function algebra is a semi-simple commutative Banach algebra we see that every ring derivation on a function algebra is represented as in the same way as in Corollary 1 (cf. [3], [4]).

COROLLARY 2. Let A be a semi-simple commutative Banach algebra with the carrier space without isolated points. Then only the zero operator is the ring derivation on A.

References

- [1] P. CARTIÉR, Derivations dans les corps, Géometrique Algébrique, Séminaire E. N. S., 8 (1955/56).
- [2] B. E. JOHNSON, Continuity of derivations on commutative algebras, Amer. J. Math., 91 (1969), 1-10.
- [3] O. HATORI and J. WADA, A characterization of ring derivations on function algebras, Bull. Tokyo Med. Coll., 17 (1991), 19-22.
- [4] N. R. NANDAKUMAR, Ring derivations on function algebras, Canad. Math. Bull., 33 (1990), 69-72.
- [5] I. M. SINGER and J. WERMER, Derivations on commutative algebras, Math. Ann., 129 (1955), 260–264.
- [6] M. P. THOMAS, Image of a derivation is contained in the radical, Ann. of Math., 128 (1988), 435–460.

Present Address: Osamu Hatori Department of Mathematics, Tokyo Medical College 6–1–1 Shinjuku, Shinjuku-ku, Tokyo 160, Japan *e-mail*: berobero@jpnwas00

JUNZO WADA

Department of Mathematics, School of Education, Waseda University Nishi-Waseda, Shinjuku-ku, Tokyo 169–50, Japan