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Abstract. We study a smooth structure on a non-commutative 3-sphere $S_{\partial}^{3}$ defined as a deformed
$C^{*}$-algebra of $C(S^{3})$ by a continuous function $\Theta$ . We then consider the subalgebra $(S_{9}^{3})^{\infty}$ of all smooth
elements of $S_{O}^{3}$ . It is a non-commutative version of $S^{3}$ as a smooth manifold. We also construct a smooth
linear map from $(S_{g}^{3})^{\infty}$ to the algebra $C^{\infty}(S^{3})$ of all smooth functions on $S^{3}$ so that the Lie algebra su(2)

acts on $(S_{\partial}^{3})^{\infty}$ with a twisted Leibniz’s rule. Finally we find a Haar measure on $S_{O}^{3}$ and show its uniqueness.

1. Introduction.

When we study an ordinary manifold $M$ with a given structure, it suffices to study
an appropriate commutative algebra of functions with the associated property on the
manifold $M$ instead of studying the original manifold $M$. For example, one obtains
topological (resp. smooth) informations on $M$ from the algebras $C(M)$ (resp. $C^{\infty}(M)$)

of all continuous (resp. smooth) functions on $M$ . Hence it is no exaggeration to say
that the huge theory of the ordinary manifolds can be completely described by the
language of the theory of the commutative algebras.

On the other hand, in the category of non-commutative algebras, there exists no
longer any algebra with some visual underlying space. But it seems reasonable with
many works that a certain class of the non-commutative $C^{*}$-algebras represents
”non-commutative topological manifolds”. Next, when we seek non-commutative
objects corresponding to “non-commutative smooth manifolds”, it is one way to regard
them as suitable dense subalgebras of non-commutative $C^{*}$-algebras. The most popular
way in the operator algebraists to catch a non-commutative smooth manifold is the
following (cf. [Col], [Co2], [Bra], . . .): First, take an appropriate non-commutative
$C^{*}$-algebra. Second, endow a suitable continuous action on it of a Lie group. Third,
take the dense $*$-subalgebra of all elements on which the action is smooth. In other
words, it is the domain of all powers of the infinitesimal generators of the action, which
is thought of as a non-commutative object for smooth manifolds.
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In the above setting, one of the most excellent example is the irrational rotatio]

$C^{*}$-algebra $A_{\theta}$ of angle $\theta\in R$ (cf. [Ril]). It is called a non-commutative torus ant

generated by the two unitaries $v$ and $u$ with the commutation relation

(1-1) $vu=e^{2zi\theta}uv$ .
Then the following map

$\gamma_{(t.s)}$ : $u\rightarrow e^{u}u$ , $v\rightarrow e^{is}v$
$t,$ $s\in R$

gives rise to an action of the Lie group $R^{2}/Z^{2}=S^{1}\times S^{1}$ on $A_{\theta}$ . The algebra $A_{\theta}^{\infty}$ of al
smooth elements of $A_{\theta}$ associated with the action $\gamma$ is defined by

$\{\sum_{n,m}a_{n.m}u^{n}v^{m}|(a_{n.m})$ is rapidly $decreasing\}$

where a double sequence $\{a_{n.m}\}$ is said to be rapidly decreasing if it satisfies the condition
$\lim_{n,m\rightarrow\infty}|n^{k}m^{l}a_{n,m}|=0$ for all nonnegative integers $k,$ $l$.

There are many interesting studies on the algebras $A_{9}$ and $A_{\theta}^{\infty}$ (cf. [Col], [CR]

[E1], ...).
However, there is not an established definition of differential structures o)

non-commutative algebras and not decisive idea to pull out smooth structures from
non-commutative $C^{*}$-algebras yet. Hence concerning differential calculus $01$

non-commutative algebras, there seem to be several ways. In fact, there are deforme $($

differential calculi on non-commutative algebras which do not satisfy the ordinar
Leibniz’s rule (cf. [Wol]).

In [Mal], [Ma2] and [MT], Tomiyama and the author have deformed the ordinar
3-sphere $S^{3}$ , real projective space $RP^{3}$ and lens spaces into non-commutativ
$C^{*}$-algebras, constructed examples of non-commutative manifolds and $investigate|$

these structures. In particular, we have represented non-commutative $S^{3}$ as in th
following way (cf. [Ma2]). Let $\mathscr{F}$ be the set of all real valued continuous functions $0$

the closed interval $[0,1]$ . For each function $\Theta\in \mathscr{F}$ , our non-commutative 3-sphere $S$

is the biggest $C^{*}$-algebra generated by two normal operators $M,$ $N$ with relations

(1-2) $\left\{\begin{array}{l}M^{*}M+N^{*}N=1\\MN=e^{2\pi iO\{MM)}NM\end{array}\right.$

where $\Theta(M^{*}M)$ is the self-adjoint operator obtained by the functional calculus of $M^{*}A$

by the function $\Theta$ .
The C’-algebra $S_{\partial}^{3}$ is also identified with a $C^{*}$-algebra of continuous cross section

of the fibered space $\{A_{\partial\langle r)}\}_{r\in[0,1]}$ over the interval $[0,1]$ with non-commutative $tor\iota$

$A_{Q\langle r)}$ as fibers (cf. [Ma2]). Exact construction of $S_{\partial}^{3}$ will be done later in section 3.
In this paper, we will first find the non-commutative “smooth” 3-sphere $(S_{\partial}^{3})^{\infty}$ ’

a $dense*$-subalgebra of $S_{9}^{3}$ for a ”smooth” deformation function $\Theta$ . Although we ca
define the non-commutative 3-sphere $S_{\partial}^{3}$ for all function $\Theta$ in $\mathscr{F}$ , we need a smoothne:
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for $\Theta$ to take the smooth algebra $(S_{O}^{3})^{\infty}$ out of the $C^{*}$-algebra $S_{\partial}^{3}$ . It seems to be
reasonable that we can not catch the smooth algebra $(S_{\partial}^{3})^{\infty}$ unless $S_{g}^{3}$ is “smoothly”
deformed from the original sphere $C(S^{3})$ . Keeping in mind the inclusion of the
commutative algebras $C^{\infty}(S^{3})\subset C(S^{3})$ , we take the smooth cross sections in the fibered
space $\{A_{e()}\}_{re[0,1]}$ and define the non-commutative smooth 3-sphere $(S_{\partial}^{3})^{\infty}$ by the algebra
of all smooth cross sections (Theorem 3.11). When $\Theta=0$ , the algebra $(S_{\partial}^{3})^{\infty}$ coincides
with the commutative algebra $C^{\infty}(S^{3})$ of all smooth functions on $S^{3}$ .

As we know from the operator relation (1-2), our non-commutative 3-sphere $S_{O}^{3}$

can be viewed as a deformation of the Lie group SU(2) along $\Theta$ . The Lie algebra su(2)

of SU(2) naturally acts on SU(2) as vector fields. We will next try to construct an action
of su(2) on $S_{\partial}^{3}$ . As a result, we see that su(2) acts as derivations with a twisted Leibniz’s
rule (Theorem 5.1). The non-commutativity obstracts the direct action of su(2) as
derivations with the ordinary Leibniz’s rule. In construction of the action of su(2) on
$S_{\partial}^{3}$ , we shall build a smooth linear map from a non-commutative torus to the com-
mutative torus $C(T^{2})$ . It is called the bridge map connecting the non-commutative
world with the ordinary commutative world.

Finally, the existence and the uniqueness of the Haar measure on $S_{O}^{3}$ will be shown
in non-commutative sense, as viewing $S_{\partial}^{3}$ to be a non-commutative SU(2) (Theorem

6.2). Then it is represented to be a natural tracial state of $S_{O}^{3}$ when one identifies
$S_{\partial}^{3}$ with a $C^{*}$-algebra of continuous cross sections of non-commutative torus bundle
over $[0,1]$ .

We can also show that $S_{O}^{3}$ becomes a deformation quantization $C^{*}$-algebra in the
sense of Rieffel ([Ri2], [Ri3]). This fact will be appeared somewhere with classifications
of $S_{O}^{3}$ and non-commutative lens spaces $L_{O}(p, q)$ with respect to $\Theta$ .

The author would like to express his thanks to J. Tomiyama for his helpful
suggestions, especially in the proof of Theorem 6.2 and for the referee for his useful
advice on the first draft of this paper.

2. The smooth functions on the ordinary 3-sphere.

Before treating the algebra $C^{\infty}(S^{3})$ of all smooth functions on $S^{3}$ , we first study

the algebra $C^{\infty}(D^{2})$ of all complex valued smooth functions on the unit disk
$D^{2}=\{z\in C||z|\leq 1\}$ in the complex plane. We write as $(x, y)=z\in D^{2}$ the ordinary

coordinate of $z$ in $C=R\times R$ . Then the smoothness of a function $a$ on $D^{2}$ means in the
usual sense. Namely, the function $a$ is said to be smooth if it is infinite times differentiable
by the derivatives $\partial/\partial x$ and $\partial/\partial y$ , where the differentiability on the boundary $\partial D^{2}$ means
the one from the interior of $D^{2}$ in the natural sense. Let $S^{r},$ $0\leq r\leq 1$ , be the circle in
the complex plane of a radius $r$ round the origin, where $S^{0}$ denotes the origin. For a
smooth function $a$ on $D^{2}$ , we denote by $a(r),$ $0\leq r\leq 1$ , the restriction of $a$ to the circle
$S^{r}$ . As the k-th partial derivative $\partial_{r}^{k}a(r, \xi)$ of $a$ by the derivative $\partial/\partial r$ at $re^{i\xi}\in D^{2}$ ,

$0<r,$ $\xi\leq 1$ , and the function $\partial_{r}^{k}a(0, \xi)=\lim_{r\downarrow 0}\partial^{k}a(r, \xi)$ are smooth with repect to $\xi$ , the
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function $a$ belongs to the algebra $C^{\infty}([0,1], C^{\infty}(S^{1}))$ of all $C^{\infty}(S^{1})$-valued smoot
function on $[0,1]$ . The above algebra $C^{\infty}(S^{1})$ denotes the set of all smooth function
on $S^{1}$ with the family of the following seminorms

$\Vert f\Vert_{k}=\sup_{n\in Z}|n^{k}f_{n}|$
$k\in N\cup\{0\}$ , $f\in C^{\infty}(S^{1})$

where $f_{n}$ denotes the n-th Fourier coefficient of $f$ . The differentiability at the boundar
points $\{0\},$ $\{1\}$ makes sense from one side. Namely, one regards the algebra $C^{\infty}(D^{\acute{A}}$

$tobeasubalgebraofC^{\infty}([0,1], C^{\infty}(S^{1}))$ with some property at the end point $\{0\}$ .
Let $\ovalbox{\tt\small REJECT}$ be the smooth function on $S^{1}$ defined by $\ovalbox{\tt\small REJECT}(e^{i\xi})=e^{\ddagger\xi},$ $0\leq\xi\leq 1$ . Hence eac

function $a(r)$ can be expanded as Fourier series:

(2-1) $a(r)=\sum_{-\infty}^{\infty}a_{n}(r)_{i\prime}^{n}$

where $a(O)$ means $a_{0}(0)$ . It is well known that the above series converges absolutely an
uniformly. Hence we have a sequence $\{a_{n}(\cdot)\}_{n\in Z}$ of functions on $[0,1]$ .

The following characterization of $a=\sum_{-\infty}^{\infty}a_{n^{ii^{n}}}$ in $C^{\infty}(D^{2})$ by $\{a_{n}\}$ is basic in ou
discussions. We can elementarily prove it and hence we omit the proof.

LEMMA 2.1. Any smoothfunction $a$ on $D^{2}$ can be expandedas in thefollowing way

(2-1) $a(r)=\sum_{-\infty}^{\infty}a_{n}(r)_{\ell l}^{n}$ $0\leq r\leq 1$

where $\{a_{n}\}_{n\cdot Z}$ is a sequence offunctions on $[0,1]$ such that
(i) $a_{n}\in C^{\infty}([0,1])$ for each $n\in Z$.
(ii) The sequence $\{a_{n}(r)\}_{n\cdot Z}$ for each $0<r\leq 1$ is rapidly decreasing, i.e.

$\lim_{|n|\rightarrow\infty}|n^{l}a_{n}(r)|=0$ for all $l\in N$ ,

and

$a_{n}(0)=\left\{\begin{array}{ll}a(0) & (n=0)\\0 & (n\neq 0).\end{array}\right.$

(iii) For any non-negative integer $k$, the sequence of the k-th differential coefficien $i$

$\{a_{n}^{(k)}(r)\}_{n\in Z}$ at $0<r\leq 1$ is also rapidly decreasing and

$a_{n}^{(t)}(0)=0$ for $n\neq\left\{\begin{array}{l}\pm 1,\pm 3,\pm 5,\cdots,\pm kifkisodd\\0,\pm 2,\pm 4,\cdots,\pm kifkiseven\end{array}\right.$

(iv) The following function
$r\in[0,1]\rightarrow\sup_{n\in Z}|n^{j}a_{n}^{\langle k)}(r)|(=\Vert\partial_{r}^{k}a(r)\Vert_{j})$



NON-COMMUTATIVE THREE DIMENSIONAL SPHERES 203

is conlinuous for each non-negalive integers $j,$ $k$ .
Conversely, for the sequence $\{a_{n}\}_{n\in Z}$ offunctions on $[0,1]$ satisfying the above four

conditions, thefunction definedby the series (2-1) gives rise to a smoothfunction on $D^{2}$ .

Now we remark the structure of the commutative $C^{*}$-algebra $C(S^{3})$ of all complex
valued continuous functions on $S^{3}$ . Let $S_{i}^{1}(i=0,1)$ be the unit circle $S^{1}$ in the complex
plane $C$. By the special case of [MT, Theorem $C$], $C(S^{3})$ can be represented as a
$C^{*}$-subalgebra of $C(S_{0}^{1}\times S_{1}^{1})$-valued continuous functions on the closed interval
$[0,1]=I$ as in the following way

(2-2) $C(S^{3})=\{f\in C([0,1], C(S_{0}^{1}\times S_{1}^{1}))|f(0)\in C(S_{0}^{1}), f(1)\in C(S_{1}^{1})\}$ .
Represent $S^{3}$ to be the unit sphere in the complex plane $C^{2}$ . Since the differential

structure on $S^{3}$ is unique, the algebra $C^{\infty}(S^{3})$ of all complex valued smooth functions
on $S^{3}$ is uniquely determined.

From (2-2), the algebra $C(S^{3})$ is obtained by attaching two copies of the algebra
$C(D^{2}\times S^{1})$ of all continuous functions on the solid torus $D^{2}\times S^{1}$ . Similarly, one
combines two copies of the algebra $C^{\infty}(D^{2}\times S^{1})$ of all smooth functions on $D^{2}\times S^{1}$

into the algebra $C^{\infty}(S^{3})$ . Now it is easy to study the structure of the algebra $C^{\infty}(D^{2}\times S^{1})$

by Lemma 2.1. Let a and $\nu$ be the smooth functions on $S_{0}^{1}$ and $S_{1}^{1}$ written as $\ell z$ in the
preceding context respectively. By restricting a smooth function $a$ on $D^{2}\times S^{1}$ to $S^{r}\times S^{1}$ ,
$0\leq r\leq 1$ , one sees that the function yields a continuous family of smooth functions on
the torus $S_{0}^{1}\times S_{1}^{1}$ . Namely, the function $a$ can be written as

(2-3) $a(r)=\sum_{-\infty}^{\infty}a_{n.m}(r)\ovalbox{\tt\small REJECT}^{n}v^{m}$ $r\in[0,1]$ .

Therefore we can easily describe the condition for a function $a$ of the form (2-3)

to be smooth by using the property of the associated double sequence $\{a_{n,m}\}$ of functions
on $[0,1]$ . Sinoe the algebra $C^{\infty}(S^{3})$ is obtained by gluing two copies of the algebra
$C^{\infty}(D^{2}\times S^{1})$ , the following proposition is immediate.

PROPOSITION 2.2. The set of all smooth functions on $S^{3}$ can be identified with the
set of all double sequences $\{a_{n,m}(\cdot)\}_{n,m}$ offunctions on $[0,1]$ satisfying the following four
conditions through the expression

$a(r)=\sum_{-\infty}^{\infty}a_{n,m}(r)a^{n}v^{m}$ $r\in[0,1]$ .

(i) For each $n,$ $m\in Z$, the function $a_{n,m}$ is smooth on $[0,1]$ .
(ii) The double sequence $\{a_{n.m}(r)\}_{n,m\in Z}$ for each $0\leq r\leq 1$ is rapidly decreasing and

at $r=0,1$

$a_{n.m}(0)=0$ for $n\neq 0$ , $a_{n,m}(1)=0$ for $m\neq 0$ .
(iii) For any non-negative integer $k$ , the double sequence of k-th differential
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coefficients $\{a_{n,m}^{(k)}(r)\}_{n,m}$ at $0\leq r\leq 1$ is also rapidly decreasing and at $r=0,1$

$a_{n,m}^{\langle k)}(0)=0$ for $n\neq\left\{\begin{array}{l}\pm 1,\pm 3,\pm 5,\cdots,\pm k\iota fkisodd\\0,\pm 2,\pm 4,\cdots,\pm kifkiseven\end{array}\right.$

$a_{n,m}^{\langle k)}(1)=0$ for $m\neq\left\{\begin{array}{ll}\pm], \pm 3, \pm 5, \cdots, \pm k & if k is odd\\0, \pm 2, \pm 4, \cdots, \pm k & if k iseven.\end{array}\right.$

(iv) The following function

$r\in[0,1]\rightarrow\sup_{n,m\in Z}|n^{k}m^{l}a_{n,m}^{01}(r)|$

is continuous for each non-negative integers $k,$ $1$ andj.

Such a double sequence $\{a_{n,m}\}$ in Proposition 2.2 is said to be smooth.

3. The smooth elements of nontommutative 3-spheres.

Before considering non-commutative version of the algebra $C^{\infty}(S^{3})$ of all smoot
functions on $S^{3}$ , let us remind constructions of our non-commutative $S^{3}$ (cf. $[Ma1_{-}^{-}$

[Ma2]). Let $\mathscr{F}$ be the set of all real valued continuous functions on the closed interv,
$[0,1]=I$. For any fixed function $\Theta$ in $\mathscr{F}$ , our non-commutative 3-sphere $S_{g}^{3}$ is th
biggest $C^{*}$-algebra generated by two normal operators with relation (1-2). Its concret
construction is the following. We first consider the homeomorphism $\alpha_{O}$ on the annulu
$I\times S^{1}$ defined by

$\alpha_{\partial}(r, e^{2\pi i\xi})=(r, e^{2\pi i\langle O(r)+\xi)})$
$r,$ $\xi\in I$ .

It induces an automorphism on the C’-algebra $C(I\times S^{1})$ of all continuous function
on $I\times S^{1}$ , which is simply denoted by $\Theta$ . It consists of a family of $\Theta(r)- rotatio\$ $

automorphisms on $C(S^{1})$ . The restriction of a function on the annulus $I\times S^{1}$ to th
circle $\{r\}\times S^{1}$ at level $r\in[0,1]$ yeilds a surjective homomorphism $\pi_{r}$ between crosse $($

products

$\pi_{r}$ : $C(I\times S^{1})X_{Q}Z\rightarrow C(S^{1})X_{O(r)}Z$ .
The crossed product C’-algebra $C(S^{1})\times\partial(r)Z$ is known as the non-commutative 2-toru
of angle $\Theta(r)$ , which is denoted by $A_{\partial\langle r)}$ . Let $U(r)$ and $V(r)$ be the pair of unitar
generators of $A_{\partial(r)}$ coming from the canonical generator of $C(S^{1})$ and the positiv
generator of the group $Z$, satisfying the relation

(3-1) $V(r)\cdot U(r)=e^{2\pi i9\langle r)}U(r)\cdot V(r)$ $r\in[0,1]$ .
Now take the homomorphism $\pi_{0}$ and $\pi_{1}$ on the boundaries of the annulus. $W$

define our non-commutative 3-sphere as in the following way ([Ma2]).
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DEFINITION (Non-commutative $S^{3}$).

$S_{\partial}^{3}=\{a\in C(I\times S^{1})\times_{e}Z|\pi_{0}(a)\in C^{*}(U(0)), \pi_{1}(a)\in C^{*}(V(1))\}$

where $C^{*}(U(O))$ and $C^{*}(V(1))$ mean the $C^{*}$-subalgebras of $A_{\partial\{0)}$ and $A_{O\langle 1)}$ generated by
$U(O)$ and $V(1)$ respectively.

When the function $\Theta$ is constantly zero, one sees that the $C^{*}$-algebra $S_{\partial}^{3}$ is
isomorphic to the algebra $C(S^{3})$ of all continuous functions on $S^{3}$ from the equality
(2-2). By the above construction, one knows that $S_{O}^{3}$ is a $C^{*}$-algebra of continuous
cross sections of the fibered space $\{A_{\partial\langle r)}\}_{r\in I}$ , that is a non-commutative torus-bundle
over $I$ ([Ma2, Proposition 2]). In fact, the family of surjections $\{\pi_{r}\}_{r\in I}$ gives the
isomorphism between $S_{\partial}^{3}$ and a $C^{*}$-algebra of continuous cross sections of the fibered
space $\{A_{\theta\{1)}\}_{r\in I}$ . In viewing $S_{O}^{3}$ as the algebra ofcross sections of the fibered space, put

(3-2) $M(r)=\sqrt{r}\cdot V(r)$ , $N(r)=\sqrt{1-r}\cdot U(r)$ $r\in[0,1]$ .
We then know the $C^{*}$-algebra $S_{\partial}^{3}$ is generated by these sections $M$ and $N$, which satisfy
the relation (1-2).

Now we shall try to catch smooth elements of our non-commutative 3-spheres $S_{O}^{3}$

parametrized by $\Theta\in \mathscr{F}$ viewing the commutative case discussed in the previous section.
We can define the non-commutative 3-sphere $S_{O}^{3}$ for all $\Theta$ in $\mathscr{F}$ . But we need some
smoothness for $\Theta$ in taking a smooth structure out of the $C^{*}$-algebra $S_{\partial}^{3}$ . A function
$\Theta$ in $\mathscr{F}$ is said to be smooth if it is infinitely differentiable on $[0,1]$ and both k-th
differentiable coefficients of $\Theta$ at the end points $\{0\},$ $\{1\}$ are zero for each $k\in N$. We
denote by $\mathscr{F}^{\infty}$ the set of all smooth functions in $\mathscr{F}$ .

Henceforth we fix the non-commutative 3-sphere $S_{O}^{3}$ deformed by a function $\Theta$ in
$\mathscr{F}^{\infty}$ .

Let us define the smooth elements of $S_{g}^{3}$ . We first represent $S_{O}^{3}$ to be a C’-algebra
of continuous cross sections over the fibered space $\{A_{e(r)}\}_{reI}$ . Hence any element $a$ of
$S_{\partial}^{3}$ can be uniquely expressed in the form

$a=\sum_{n,m}a_{n,m}V^{n}U^{m}$

where the double sequence $\{a_{nm}\}$ consists of continuous functions on thp closed interval:
$[0,1]$ and $V,$ $U$ are cross sectlons over $I$ with the relation (3-1). Then the element $a$ is
said to be smooth if the double sequence $\{a_{n,m}\}$ is smooth, that is to say, it satisfies the
four conditions of Proposition 2.2.

DEFINITION (Smooth elements of $S_{O}^{3}$).

$(S_{O}^{3})^{\infty}=\{\sum_{n,m}a_{n,m}V^{n}U^{m}\in S_{\Theta}^{3}|\{a_{n,m}\}$ is $smooth\}$ .

We know that the smoothness of an element $a$ of $S_{O}^{3}$ is equivalent to that of the
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corresponding sequence of coefficients $\{a_{n,m}\}$ from the next proposition.

PROPOSITiON 3.1. For a double sequence $\{a_{n.m}\}$ of functions satisfying the $fou$

conditions of Proposition 2.2 (namely, smooth), put

$a=\sum_{n.m}a_{n.m}V^{n}U^{m}$

Then a defines an element of $S_{g}^{3}$ and hence of $(S_{Q}^{3})^{\infty}$ .
To prove this proposition, we need some lemmas.

LEMMA 3.2. $Ifa$ double sequence $\{b_{n.m}\}$ ofcontinuousfunctions on the interval $[0,1$

satisfies the condition

$b_{n.m}(0)=0$ for $n\neq 0$ , $b_{n.m}(1)=0$ for $m\neq 0$ ,

then each operator $b_{n,m}V^{n}U^{m}$ defines an element of the algebra $S_{\partial}^{3}$ .
$PR\infty F$ . It is clear that each operator $b_{n,m}V^{n}U^{m}$ yields an element of the crosse $($

product $C(I\times S^{1})\times eZ$ and furthermore of $S_{O}^{3}$ . $($

We note that the algebra $A_{\theta}^{\infty}$ of all smooth elements of non-commutative torus $\Lambda$

of angle $\theta$ is a Frechet space with the family of seminorms $\{\Vert\cdot\Vert_{k.l}|k, l\in N\cup\{0\}\}$ defineI
by

$\Vert\sum f_{n,m}u^{n}v^{m}||_{k.l}=\sup_{n.m}|n^{k}m^{l}f_{n,m}|$

where the sequence $\{f_{n.m}\}$ is rapidly decreasing.

LEMMA 3.3. For a smooth element $f=\sum_{-\infty}^{\infty}f_{n.m}u^{n}v^{m}$ in $A_{\theta}$, we have

$\Vert f\Vert\leq|f_{0.0}|+\frac{\pi^{4}}{9}\Vert f\Vert_{2.2}+\frac{\pi^{2}}{3}\Vert f\Vert_{0,2}+\frac{\pi^{2}}{3}\Vert f\Vert_{2.0}$ .

$PR\infty F$ . By noticing the fact $\sum_{n=1}^{\infty}1/n^{2}=\pi^{2}/6$ , it follows that

$\Vert\sum f_{n,m}u^{n}v^{m}\Vert\leq|f_{0,0}|+\Vert$
$\sum_{n\neq 0,m\neq 0}\frac{1}{(nm)^{2}}\cdot(nm)^{2}f_{n.m}u^{n}v^{m}\Vert$

$+\Vert\sum_{m\neq 0}\frac{1}{m^{2}}\cdot m^{2}f_{0,m}v^{m}\Vert+\Vert\sum_{n\neq 0}\frac{1}{n^{2}}\cdot n^{2}f_{n,0}u^{n}\Vert$

$\leq|f_{0.0}|+($$\sum_{n\neq 0,m\neq 0}\frac{1}{(nm)^{2}})\cdot\sup_{n.m}|(nm)^{2}f_{n.m}|$

$+(\sum_{m\neq 0}\frac{1}{m^{2}})\cdot\sup_{m}|m^{2}f_{0,m}|+(\sum_{n\neq 0}\frac{1}{n^{2}})$ . $sup|n^{2}f_{n.0}|$
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$\pi^{4}$ $\pi^{2}$ $\pi^{2}$

$\leq|f_{0,0}|+\Vert f\Vert_{2,2}+\Vert f\Vert_{0,2}+\Vert f\Vert_{2,0}\overline{9}\overline{3}\overline{3}$
$\square $

$PR\infty F$ OF PROPOSITION 3.1. By Lemma 3.2, one knows that, for each $n,$ $m\in Z$,

the operator $a_{n.m}V^{n}U^{m}$ defines an element of $S_{\partial}^{3}$ . Hence for $j\in N$, the operator
$a_{j}=\sum_{|n|,|m|\leq j}a_{n,m}V^{n}U^{m}$ belongs to $S_{\partial}^{3}$ . Now we have

$\Vert a(t)-a_{j}(t)\Vert\leq\Vert\sum_{m\in Z}a_{n,m}(t)V^{n}(t)U^{m}(t)\Vert+\Vert$ $\sum_{n\in Z,|m|>j}a_{n,m}(t)V^{n}(t)U^{m}(t)\Vert$ .

By Lemma 3.3, it follows that

$\Vert\sum_{m\in Z}a_{n,m}(t)V^{n}(t)U^{m}(t)\Vert$

$\leq\frac{\pi^{4}}{9}\cdot\sup_{1n|>j}|(nm)^{2}a_{n,m}(t)|$

$+\frac{\pi^{2}}{3}\cdot\sup_{m\in Z}|m^{2}a_{n.m}(t)|+\frac{\pi^{2}}{3}\cdot\sup_{1|n|>jn|>j}|n^{2}a_{n,m}(t)|$

$\leq-\underline{\pi^{4}}.1$

. $\cdot$ $sup|n^{3}m^{2}a_{n,m}(t)|$

9 $J$
$|n|>jm\in Z$

$\pi^{2}$ 1 $\pi^{2}$ 1
$+\overline{3}.-\cdot\sup_{1n|>j}|nm^{2}a_{n,m}(t)|+j\overline{3}$

.
$-\cdot\sup_{m\in Z}|n^{3}a_{n,m}(t)|j|n|>j$

By hypothesis for the sequence $\{a_{n,m}\}_{n,m}$ , the following values

$\sup_{m}|n^{3}m^{2}a_{n,m}(t)|$ , $\sup_{m}|nm^{2}a_{n,m}(t)|$ , $\sup_{m}|n^{3}a_{n,m}(t)|$

are continuous as functions of $t\in[0,1]$ so that they are bounded by some large number
$L$ . Therefore we have

$\Vert\sum_{m\in Z}a_{n,m}(t)V^{n}(t)U^{m}(t)\Vert\leq\frac{1}{j}\cdot L\cdot(\frac{\pi^{4}}{9}+\frac{2\pi^{2}}{3})$ .

Similarly, we see

$\Vert\sum_{n\in Z}a_{n,m}(t)V^{n}(t)U^{m}(t)\Vert\leq\frac{1}{j}\cdot K\cdot(\frac{\pi^{4}}{9}+\frac{2\pi^{2}}{3})$

$|m|>j$
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for some large number $K$. Hence the value $\Vert a(t)-a_{j}(t)\Vert$ goes to zero as $j$ tends to infinit!
Thus we conclude that the operator $a$ belongs to $S_{9}^{3}$ . $[$

Therefore we can identify the set $(S_{\partial}^{3})^{\infty}$ of all smooth elements of $S_{9}^{3}withthes($

of all smooth sequences of Proposition 2.2.

LEMMA 3.4. If a double sequence $\{a_{n.m}\}$ is smooth, so is $\{a_{n.m}e^{nmniO}\}$ .
$PR\infty F$ . We shall check the condition (iv) of Proposition 2.2 for the sequenc

$\{a_{n,m}e^{nm\pi iO}\}$ . Since the N-th derivative $(a_{n.m}e^{nm\pi il})^{(N)}$ for each $n,$ $m$ is equal to

$\sum_{j=0}^{N}\left(\begin{array}{l}N\\j\end{array}\right)\cdot a_{n,m}^{0)}\cdot(e^{nm\pi i\partial)})^{(N-j)}$

it suffices to show that each sequence $\{a_{n,m}^{(\lrcorner)}\cdot(e^{nm\pi iO})^{\langle N-j)}\}$ satisfies the condition (it

because the sum of smooth sequences is also smooth. Note that the function $(e^{nm\pi i\partial})^{(N-}$

isasum of the functions of the form
$(nm\pi i)^{\mu}\cdot\Theta^{\langle\mu)}\cdot e^{nm\pi iO}$

But it is clear that the sequence $\{n^{\mu}m^{\mu}\cdot\Theta^{(\mu)}\cdot e^{nm\pi i\partial}\cdot b_{n.m}\}$ for a smooth sequence $\{b_{n,n}$

satisfies the condition (iv). It is also easy to show that the sequence $\{a_{n.m}e^{nm\pi iO}\}$ satisfit
another conditions of Proposition 2.2. $[$

COROLLARY 3.5. If an operator $a$ is a smooth element of $S_{l}^{3}$, so is $a$ .

Next, we shall show that the set of all smooth elements are closed under the produI
operation in the algebra $S_{\partial}^{3}$ . We note that, by Lemma 3.4, any smooth elements $a$,

can be expressed as

$a=\sum_{k,l}a_{k.l}e^{-kl\pi iO}V^{k}U^{l}$ , $b=\sum_{n,m}b_{n.m}e^{-nm\pi i\partial}V^{n}U^{m}$

for smooth sequences $\{a_{k.l}\},$ $\{b_{n,m}\}$ of functions. Then we have

$(\sum_{k,l}a_{k,l}e^{-kl\pi te_{V^{k}U^{l)\cdot()}}}\sum_{n.m}b_{n,m}e^{-nmniO}V^{n}U^{m}$

$=\sum_{n,m}(\sum_{k,l}a_{k,l}b_{n-k,m-l}e^{\langle ln-km)ni9})e^{-nm\pi tO}V^{n}U^{m}$

LEMMA 3.6. For each integers $n,$ $m$, the double series

$\sum_{k.l}a_{k.l}(r)b_{n-k.m-l}(r)e^{(ln-km)\pi i9(r)}$

converges uniformly on $r\in I$.
$PR\infty F$ . For large numbers $K,$ $L$, one has
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$\sup_{r\in I}|_{1}|k\sum a_{k,l}(r)b_{n-k,m-l}(r)e^{\langle ln-km)ni\partial\langle r)1}|l>K>L$

$\leq\sup_{r\in I}(|k\sum>K|a_{k,l}(r)|)\cdot$$\sup_{r\in I,|\iota}(|k\sum|b_{n-k,m-l}(r)|)>L|l>L>K$

Since one sees

$\sup_{r\in I}(|k\sum>K|a_{k,l}(r)|)\leq(|k\sum>K\frac{1}{(kl)^{2}})$

$\sup_{r\in I,|l>L|l>L}\cdot\sup_{k.l}|(kl)^{2}a_{k,l}(r)|$

and $\sup_{r\in I}\cdot\sup_{k,l}|(kl)^{2}a_{k,l}(r)|$ is bounded by the condition (iv) of Proposition 2.2,
$\sup_{r\in I}(\sum_{|k|>K,|l|>L}|a_{k,l}(r)|)$ goes to zero as $K,$ $L$ tend to infinity. Similarly, we know
$\sup_{r\in I}(\sum_{|k|>K,|l|>L}|b_{n-k,m-l}(r)|)$ converges to zero. $\square $

Furthermore we have

LEMMA 3.7. The double series of the N-th derivedfunctions
$\sum_{k,l}(\frac{\partial}{\partial r})^{N}(a_{k,l}(r)b_{n-k,m-l}(r)e^{\{ln-km)\pi i\partial\langle r)})$

converges uniformly on $r\in I$for all $N\in N$. Hence we have

$(\frac{\partial}{\partial r})^{N}(\sum_{k,l}a_{k.l}(r)b_{n-k,m-l}(r)e^{\langle ln-km)\pi i\partial\langle r))}$

$=\sum_{k,l}(\frac{\partial}{\partial r})^{N}(a_{k.l}(r)b_{n-k,m-l}(r)e^{\langle ln-km)\pi iO\langle r)})$ .

$PR\infty F$ . First, we see that the corresponding series ofeach one ofthe three terms:

$(\frac{\partial}{\partial r})(a_{k,l}(r)b_{n-k,m-l}(r)e^{\langle 1n-km)\pi i\partial\langle r)})$

$=(\frac{\partial}{\partial r}a_{k,l})(r)b_{n-k,m-l}(r)e^{t^{\iota_{n}-km)\pi i\partial\langle r)}}+a_{k,l}(r)(\frac{\partial}{\partial r}b_{n-k,m-l})(r)e^{\langle ln-km)\pi i\partial\langle r)}$

$+(ln-km)\pi i(\frac{\partial}{\partial r}\Theta)(r)a_{k,l}(r)b_{n-k,m-l}(r)e^{(ln-km)\pi iO\langle r)}$

converges uniformly on $r\in I$ in a similar way to the proof of the previous lemma.
Secondly, it is routine to prove the assertion for higher degree derivatives by induction. $\square $

The next lemma is straightforward:

LEMMA 3.8. The double series, for each $\xi,$ $\eta\in[0,1]$ , of $n,$ $m$
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(3-3) $\sum_{n,m}(\sum_{k,l}a_{k,l}(r)b_{n-k,m-l}(r)e^{\langle ln-km)\pi iO\langle r))e^{in\xi}e^{im\xi}}$

converges uniformly on $r\in I$. Moreover the double series of the N-th derivedfunctions

(3-4) $\sum_{n,m}(\frac{\partial}{\partial r})^{N}(\sum_{k,l}a_{k,l}(r)b_{n-k.m-l}(r)e^{\{ln-km)\pi iO\{r))e^{in\xi}e^{im\xi}}$

also converges uniformly on $r\in I$.
Next, we shall check the boundary conditions (Proposition 2.2 (ii) and (iii)) fo

the double sequence of $n,$ $m$

(3-5) $f_{n.m}(r)=\sum_{k.l}a_{k,l}(r)b_{n-k,m-l}(r)e^{\langle ln-km)\pi i\partial\langle r)}$
$r\in I$ .

By Lemma 3.7, the above series converges uniformly on $r\in I$ so that it suffices to $sho\uparrow$

that each sequence of the form $\{a_{k,l}(r)b_{n-k,m-l}(r)e^{(ln-km)\pi iO(r)}\}_{k,l}$ satisfies the condition
(ii) and (iii) of Proposition 2.2. Namely we have

LEMMA 3.9. For anyfixed $k,$ $l\in Z$, put

$c_{n,m}(r)=a_{k,l}(r)b_{n-k.m-l}(r)e^{\langle ln-km)\pi iO\langle r)}$ $r\in I$ .

Then the double sequence $\{c_{n,m}\}_{n,m}$ offunctions satisfies the conditions (ii) and (iii) ‘

Proposition 2.2.
$PR\infty F$ . We shall first check the condition (ii). Assume $n\neq 0$ . Then we see tha

$a_{k,l}(0)=0$ for $k=n$ and $b_{n-k,m-l}(0)=0$ for $k\neq n$ . Hence we obtain $c_{n,m}(0)=0$ for $n\neq($

Similarly we conclude $c_{n,m}(1)=0$ for $m\neq 0$ .
Next, we shall check the condition (iii). By the condition $\Theta^{(j)}(0)=0$, for all $je$ A

one sees that the K-th derivative of $c_{n,m}$ at the end point $0$ becomes

$c_{n,m}^{\langle K)}(0)=\sum_{p=0}^{K}\left(\begin{array}{l}K\\p\end{array}\right)a_{k.l}^{(p)}(0)b_{n-k,m-l}^{\langle K-p)}(0)e^{\langle ln-mk)\pi iO\langle 0)}$ .

Hence it suffices to check the condition for each term of the form $a_{k,l}^{(p)}(0)b_{n-k,m-l}^{(K-p)}(t$

$e^{\langle ln-mk)\pi iO\langle 0)}$ and hence of the form $a_{k,l}^{(p)}(0)b_{n-k,m-1}^{\{K-p)}(0)$ . Put

$d_{n,m}^{\langle p)}=a_{k,l}^{\langle p)}(0)b_{n-k.m-l}^{(K-p)}(0)$ .
Assume that $K$ is odd and $n\neq\pm 1,$ $\pm 3,$ $\cdots,$ $\pm K$. Under this assumption, we sha

show $d_{n,m}^{(p)}=0$ .
Case 1: $p=0$ . We have $b_{n-k,m-l}^{\langle K)}(0)=0$ for $k=0$ and $a_{k.l}(0)=0$ for $k\neq 0$ so tha

$d_{n,m}^{\langle O)}=0$ .
Case 2: $p=K$. It follows that $b_{n-k.m-l}(0)=0$ for $n\neq k$ and $a_{k,l}^{\langle K)}(0)=0$ for $n=$

so that $d_{n,m}^{\langle K)}=0$ .
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Case 3: $0<p<K$. We have two subcases.
Case 3-1: $p$ is odd. For $k\neq\pm 1,$ $\pm 3,$ $\cdots,$ $\pm p$ , one has $a_{k,l}^{\langle p)}(0)=0$ and hence

$d^{\langle p)}=0$ . Next, when $k$ is a number of the set $\{\pm 1, \pm 3, \cdots, \pm p\}$ , one obtains
$n,m$

$n-k\neq 0,$ $\pm 2,$ $\cdots,$ $\pm(K-p)$ because ofthe condition $n\neq\pm 1,$ $\pm 3,$ $\cdots,$ $\pm K$. This implies
$b_{n-k,m-l}^{\langle K-p)}(0)=0$ so that $d_{n.m}^{\langle p)}=0$ .

Case 3-2: $p$ is even. For $k\neq 0,$ $\pm 2,$ $\cdots,$ $\pm p$ , we have $a_{k,l}^{\langle p)}(0)=0$ and hence $d_{n,m}^{\langle p)}=0$ .
When $k$ is an integer of $\{0, \pm 2, \cdots, \pm p\}$ , we see $n-k\neq\pm 1,$ $\pm 3,$ $\cdots,$ $\pm(K-p)$ . Hence

one obtains $b_{n-k,m-l}^{\langle K-p)}(0)=0$ so that we have $d_{n,m}^{\langle p)}=0$ .
Consequently, we conclude that $a_{k,l}^{\langle p)}(0)b_{n-k,m-l}^{\langle K-p)}(0)=0$ for all $p,$ $0\leq p\leq K$, under the

assumption that $K$ is odd and $n\neq\pm 1,$ $\pm 3,$ $\pm K$. Thus we have

$c_{n,m}^{\langle K)}(0)=0$ , $n\neq\pm 1,$ $\pm 3,$ $\cdots,$ $\pm K$ if $K$ is odd.

Similarly, we see that

$c_{n.m}^{\langle K)}(0)=0$ , $n\neq 0,$ $\pm 2,$ $\cdots,$ $\pm K$ if $K$ is even.

Furthermore we conclude similarly

$c_{n,m}^{\langle K)}(1)=0$ for $m\neq\left\{\begin{array}{l}\pm 1,\pm 3,\pm 5,\cdots,\pm kifKisodd\\0,\pm 2,\pm 4,\cdots,\pm kifKiseven\end{array}\right.$

This completes the proof. $\square $

Thus we conclude the following proposition:

PROPOSITION 3.10. The set $(S_{\partial}^{3})^{\infty}$ of all smooth elements of $S_{O}^{3}$ is $a*$-subalgebra

of $S_{\partial}^{3}$ .

PROOF. It is immediate that the double series (3-3) and (3-4) converges uniformly
on $\xi,$ $\eta\in[0,1]$ . Hence it is easily established that the series (3-3) gives rise to a smooth
function on the annulus $I\times S^{1}$ . Moreover, by Lemma 3.9, we have that the series (3-3)

becomes a smooth function on $S^{3}$ . Hence the double sequence $\{f_{n.m}\}_{n,m}$ in (3-5) is
smooth. As we have $ab=\sum_{n,m}f_{n,m}e^{-nm\pi iO}V^{n}U^{m}$ , the product $ab$ is also smooth by Lemma
3.4. $\square $

There are many possibilities to choose generators of the $C^{*}$-algebra $S_{\partial}^{3}$ besides the
original choice $M$ and $N$ defined by (3-2). For instance, we can take the following two

normal operators $Z$ and $W$ given by

(3-6) $Z(t)=\sin\frac{\pi}{2}t\cdot V(t)$ , $W(t)=\cos\frac{\pi}{2}t\cdot U(t)$ $t\in[0,1]$

in continuous cross sections of the fibered space $\{A_{\partial\langle r)}\}_{r\in I}$ . It is easy to verify that the

operators $Z,$ $W$ generate the $C^{*}$-algebra $S_{O}^{3}$ and satisfy the following relation
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(3-7) $\left\{\begin{array}{l}ZZ+W^{*}W=1\\ZW=e^{2\pi t\text{{\it \^{e}}}}WZ\\\hat{\Theta}=\Theta\circ\frac{2}{\pi}\sin^{-1}(Z^{*}Z)\end{array}\right.$

where di is the self-adjoint operator defined by the functional calculus of $ZZ$ by the
function $\Theta\circ(2/\pi)\sin^{-1}$ .

The relation (3-7) is slightly different from the relation (1-2). The above two
generators are more convenient than the operators $M,$ $N$. In fact, one immediately sees
that both $Z,$ $W$ belong to $(S_{l}^{3})^{\infty}$ , although both $M,$ $N$ are not smooth. It is trivial that
$any*$-polynomial of $Z$ and $W$ is smooth.

Consequently, we conclude the following.

THEOREM 3.11. The algebra $(S_{\partial}^{3})^{\infty}$ of all smooth elements of $S_{O}^{3}$ becomes a dense
$*$-subalgebra of $S_{\partial}^{3}$ and it contains the algebra of $all*$-polynomials of $Z$ and $W$.

4. The bridge map $\Phi$ between $A_{\theta}^{\infty}$ and $C^{\infty}(T^{2})$.
In this section, we shall construct a smooth linear map between a non-commutative

2-torus $A_{9}$ and the ordinary 2-torus $T^{2}$ . The map carries some differential objects on
the ordinary torus back to the non-commutative torus. This map connecting $A_{\theta}$ and
the ordinary torus will play a crucial r\^ole in considering an actin of the Lie algebra
su(2) for the lie group SU(2) on our non-commutative 3-sphere.

Throughout this section, we fix an arbitrary real number $\theta$ and the non-commutative
2-torus $A_{\theta}$ of angle $\theta$ . We denote by $u,$ $v$ a pair of unitary generators of $A_{\theta}$ with the
commutation relation (1-1). In the case of $\theta=0$ , we write as $a,$ $v$ the corresponding
unitary generators of the commutative C’-algebra $C(S^{1}\times S^{1})$ .

Let $P_{\theta}$ (resp. $P_{0}$) be the polynomial ’-algebra generated by $v,$ $u$ (resp. $v,$ $\ovalbox{\tt\small REJECT}$). We
consider the following map $\Phi$ from $P_{\theta}$ to $P_{0}$

$\Phi(\sum a_{n,m}v^{n}u^{m})=\sum a_{n,m}e^{nm\pi i\theta}v^{n}\ovalbox{\tt\small REJECT}^{m}$

The next lemma is immediate.

LEMMA 4.1. The above map $\Phi$ is a bijective linear map from $P_{g}$ to $P_{O}$ .

Let $\tau$ be the canonical tracial state on $A_{\theta}$ defined by

$\tau(\sum a_{n.m}v^{n}u^{m})=a_{0.0}$ .
By GNS construction of $A_{\theta}$ with respect to $\tau,$ $A_{\theta}$ acts on the Hilbert spaoe
$L^{2}(A_{e}, \tau)\cong l^{2}(Z^{2})$ . We embed $A_{g}$ into $L^{2}(A_{\theta}, \tau)$ naturally. By the same construction,
or simply taking Fourier series, the commutative algebra $C(S^{1}\times S^{1})$ is also embedded
into the Hilbert space $l^{2}(Z^{2})$ . Then the following lemma is clear:
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LEMMA 4.2. The map $\Phi$ can be extended from $L^{2}(A_{\theta}, \tau)$ onto $l^{2}(Z^{2})$ as a linear
isometry on Hilbert spaces.

Since the both smooth algebras $A_{\theta}^{\infty}$ and $C^{\infty}(T^{2})(=C^{\infty}(S^{1}\times S^{1}))$ are characterized
as the algebra of all elements whose Fourier coefficients are rapidly decreasing, one
obtains $\Phi(A_{\theta}^{\infty})=C^{\infty}(T^{2})$ and $\Phi^{-1}(C^{\infty}(T^{2}))=A_{\theta}^{\infty}$ . It is also immediate that both $\Phi$ and
$\Phi^{-1}$ preserve the seminorms $\Vert\cdot\Vert_{k,l}$ defined by the previous section. Thus they are both
smooth maps. We call the maps $\Phi$ and its inverse $\Phi^{-1}$ the bridge map between $A_{\theta}^{\infty}$

and $C^{\infty}(T^{2})$ .
The bridge map $\Phi$ is not strange. In fact, one can naturally bring some smooth

objects from $C^{\infty}(T^{2})$ to $A_{\theta}^{\infty}$ via the map $\Phi$ . For example, there is a smooth action $\alpha$

of $SL(2, Z)$ on $C^{\infty}(T^{2})$ defined by

$\alpha_{g}(v)=v^{a_{\ell l}c}$ , $\alpha_{g}(\ovalbox{\tt\small REJECT})=v^{b_{\ell l}d}$ for $g=\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}eSL(2, Z)$ .

Let us consider a non-commutative extension of the above action of $SL(2, Z)$ to $A_{\theta}$ .
Although the following automorphisms defined by

$\beta_{g}(v)=v^{a}u^{c}$ , $\beta_{g}(u)=v^{b}u^{d}$ for $g=\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}\in SL(2, Z)$

do not yield an action (homomorphism) of $SL(2, Z)$ , but the next correspondence $\gamma$

defined via $\Phi$

$\gamma_{9}(v)=\Phi^{-1}\circ\alpha_{g}\circ\Phi(v)$ , $\gamma_{g}(u)=\Phi^{-1}\circ\alpha_{g}\circ\Phi(u)$

gives rise to an action of $SL(2, Z)$ on $A_{\theta}$ . Actually, we see that

$\gamma_{g}(v)=e^{-ac\pi i\theta}v^{a}u^{c}$ , $\gamma_{g}(u)=e^{-bd\pi i\theta}v^{b}u^{d}$

for $g=\left\{\begin{array}{ll}a & b\\b & d\end{array}\right\}\in SL(2, Z)$ . The formulation of the above action $\gamma$ of $SL(2, Z)$ has already

seen in [Bre] and [Wa].

Now we have an another interpretation for the bridge map. Let $C_{\theta}$ (resp. $C_{0}$) be
the $universal*$-algebra generated by two normal elements $x$ and $y$ (resp. a and $\ovalbox{\tt\small REJECT}$) with
the commutation relation

$xy=e^{2\pi i\theta}yx$ (resp. $\tau y=yx$).

Then one can define the bridge map: from $C_{\theta}$ onto $C_{0}$ in the analogous way. Namely
we put

$--(\sum c_{j,k,l,m}x^{j}x^{*k}y^{\dot{l}}y^{*m})=\sum c_{l,k,l,m}e^{\langle j-k)\langle l-m)\pi i\theta}x^{j}x^{*k}\ovalbox{\tt\small REJECT}^{l}y^{*m}$

Here we shall define a new commutative product on $C_{\theta}$ by modifying the original
product without using the bridge $map--$ so that we shall interpret the bridge map as
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a connecting map in $C_{\theta}$ between the original non-commutative product and the nev
commutative product. We shall describe how to construct the new commutative produc
in $C_{\theta}$ . Let $x_{1}$ and $x_{2}$ be monomials of $x,$ $x^{*},$ $y,$ $y^{*}$ . It is clear that there exists a uniqu $($

scalar $v_{\theta}(x_{1}, x_{2})$ with modulus one such that

$v_{\theta}(x_{1}, x_{2})\cdot x_{1}x_{2}=x_{2}x_{1}$ .

These elements $x_{1},$ $x_{2}$ are mutually commuting if and only if $v_{\theta}(x_{1}, x_{2})=1$ . Put

$\mu_{\theta}(x_{1}, x_{2})=v_{\theta/2}(x_{1}, x_{2})(=v_{\theta(x_{1},x_{2})^{1/2})}$ .
We sometimes call $\mu_{\theta}(x_{1}, x_{2})$ the commutative coefficient from $x_{1}$ to $x_{2}$ . Then the nev
product $\circ$ for monomials is defined by

$x_{1}\circ x_{2}=\mu_{\theta}(x_{1}, x_{2})\cdot x_{1}x_{2}$ .

Then we have

LEMMA 4.3. For monomials $x_{1},$ $x_{2},$ $x_{3}$ , we have
(i) $x_{1}\circ x_{2}=x_{2}\circ x_{1}$ .
(ii) $(x_{1}\circ x_{2})\circ x_{3}=x_{1}\circ(x_{2}\circ x_{3})$ .
(iii) $(x_{1}\circ x_{2})^{*}=x_{1}^{*}\circ x_{2}^{*}=x_{2}^{*}\circ x_{1}^{*}$ .
$PR\infty F$ . (i) is trivial.
(ii) Since the commutative coefficient $\mu_{\theta}$ is multiplicative in both variables, $i$

satisfies the 2-cocycle condition;

$\mu_{\theta}(x_{1}, x_{2})\cdot\mu_{\theta}(x_{1}x_{2}, x_{3})=\mu_{\theta}(x_{2}, x_{3})\cdot\mu_{\theta}(x_{1}, x_{2}x_{3})$ .

One easily sees that the 2-cocycle condition is equivalent to the associativity of th
product.

(iii) The following identity

$\mu_{\theta}(x_{1}, x_{2})^{*}=\mu_{\theta}(x_{2}, x_{1})=\mu_{\theta}(x_{2}^{*}, x_{1}^{*})$

implies the assertion. $[$

We second extend the product $\circ$ linearly to all polynomials of $C_{\theta}$ . Therefore $w$

obtain a new commutative product $\circ$ on $C_{\theta}$ . We denote by $C_{\theta}$ the commutative algebr $($

$C_{\theta}$ with the product $\circ$ . $These*$-algebras $C_{\theta}$ and $C_{\theta}are*$-isomorphic each other as linea
spaces $with*$-structure. The linear map connecting $C_{\theta}$ and $C_{\theta}$ is nothing but the bridg
map cited before. Namely, we have the following

PROPOSITION 4.4. (i) The algebra $C_{\theta}$ is $*$-isomorphic to the commutative $algebr|$

$C_{O}$ .
(ii) $Thereexistsa*- preservingbijectivelinearmap^{-}-fromC_{\theta}toC_{\theta}(\cong C_{0})suchthat$
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$--(\sum c_{j,k,l,m}x^{j}x^{*k}y^{l}y^{*m})$

$=\sum c_{j,k,l,m}e^{(j-k)\langle l-m)\pi i\theta}x^{j}\circ x^{*k}\circ y^{l}\circ y^{*m}$

$(=\sum c_{j,k},,e^{\langle j-k)\langle l-m)\pi i\theta}x^{j}x^{*k})$ .

Next, we shall consider an extension of the bridge map $\Phi$ to our non-commutative
3-sphere $S_{\partial}^{3}$ . We denote precisely by $\Phi_{\theta}$ the bridge map from $A_{\theta}^{\infty}$ to $C^{\infty}(T^{2})$ . We fix a
smooth deformation function $\Theta$ and non-commutative 3-sphere $S_{O}^{3}$ . Let $V(r)$ and $U(r)$

be the unitary generators of the non-commutative torus $A_{O\langle r)}$ with the relation (3-1).

As we mentioned in the previous section, any smooth element $a$ of $S_{\partial}^{3}$ can be expressed
by using a smooth sequence $\{a_{n,m}\}_{n,m}$ of functions on $[0,1]$ as follows:

$a(r)=\sum a_{n,m}(r)V^{n}(r)U^{m}(r)$ $r\in[0,1]$ .

We shall define the bridge map $\Psi_{\partial}$ from $(S_{O}^{3})^{\infty}$ to $C^{\infty}(S^{3})$ by

$\Psi_{\partial}(a)(r)=\Phi_{O\langle r)}(a(r))$ $re[0,1]$ .

That is to say
$\Psi_{O}(\sum a_{n,m}V^{n}U^{m})=\sum a_{n,m}e^{nm\pi i\partial}v^{n}\ovalbox{\tt\small REJECT}^{m}$

Since a double sequence $\{a_{n,m}\}$ is smooth if and only if the corresponding one
$\{a_{n.m}e^{-nm\pi iO}\}$ is smooth, one can characterize the algebra $(S_{g}^{3})^{\infty}$ as

$(S_{O}^{3})^{\infty}=$ {$\sum b_{n,m}V^{n}\circ U^{m}|\{b_{n,m}\}$ is smooth}
$=$ {$\sum a_{n,m}e^{-nm\pi i\partial}V^{n}U^{m}|\{a_{n,m}\}$ is smooth}.

We summarize the above discussions as in the following way:

THEOREM 4.5. The algebra $(S_{O}^{3})^{\infty}$ becomes a commutative algebra by the modified
product $\circ$ defined as above. It is isomorphic to the algebra $C^{\infty}(S^{3})$ of all smooth

functions on $S^{3}$ through the bridge map $\Psi_{\partial}$ .

5. Differential representations of the Lie algebra su(2) on non-commutative $S^{3}$ .
In this section, we try to find a differential representation of the Lie algebra su(2)

on non-commutative $S^{3}$ . When the Lie algebra su(2) acts on the Lie group SU(2) as
vector fields, they satisfy the ordinary differential rule called Leibnitz’s rule:

(5-1) $X(fg)=f\cdot X(g)+X(f)\cdot g$ $X\in \mathfrak{s}u(2)$ , $f,$ $g\in C^{\infty}(SU(2))$ .

The relations (1-2) and (3-7) between generators of our non-commutative 3-spheres
say that the $C^{*}$-algebras $S_{\Theta}^{3}$ are thought of deformations of the Lie group SU(2).

Hence it seems to be natural that $S_{O}^{3}$ has a deformed action of the Lie algebra su(2)

(cf. [Wol]). In this case, a deformed action of su(2) means a representation of the Lie
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algebra on $(S_{O}^{3})^{\infty}$ with a deformed Leibnitz’s rule.
Before we consider the non-commutative case, we recall the ordinary representation

of su(2) on $C^{\infty}(S^{3})(=C^{\infty}(SU(2)))$ . Represent the Lie group and its Lie algebra as in
the following way:

$SU(2)=\{[-\beta\alpha$ $\beta\overline{\alpha}]\in M_{2}(C)||\alpha|^{2}+|\beta|^{2}=1\}$

$\mathfrak{s}u(2)=\{\left\{\begin{array}{ll}is & c\\-\overline{c} & -is\end{array}\right\}\in M_{2}(C)|c\in C$ , se $R\}$ .

Let $z$ and $w$ be the smooth functions on SU(2) defined by

$z$($[-\beta\alpha$ $\beta\overline{\alpha}])=\alpha$ , $ w([-\beta\alpha$ $\beta\overline{\alpha}])=\beta$ .

We remark that they satisfy the following relations

$\left\{\begin{array}{l}zz+ww^{*}=1\\zw=wz\end{array}\right.$

We shall identify SU(2) with $S^{3}$ as differentiable manifolds. Hence the $algebr^{r}$

$C^{\infty}(SU(2))$ of all smooth functions on SU(2) is also identified with $C^{\infty}(S^{3})$ . In thit
ordinary case, su(2) acts on $C^{\infty}(SU(2))$ by

(5-2) $(XfXg)=[\frac{d}{dt}f(g\cdot\exp tX)]_{t=0}$

$Xe\mathfrak{s}u(2)$ , $feC^{\infty}(SU(2))$ , $g\in SU(2)$ .

Hence for $X_{(s,c)}=\left\{\begin{array}{ll}\dot{i} & c\\-\overline{c} & -is\end{array}\right\}\in \mathfrak{s}u(2)$ and the smooth functions $z$ and $w$, the $nex$ )

equalities follow from straightforward calculations:

(5-3) $X_{\langle s.c)}(z)=is\cdot z-\overline{c}\cdot w$ , $X_{\{s,c)}(w)=c\cdot z-is\cdot w$ .
Put

$X_{1}=\frac{1}{2}X_{\langle 0,i)}$ , $X_{2}=\frac{1}{2}X_{\langle O.1)}$ , $X_{3}=\frac{1}{2}X_{\{1,0)}$ .

These are basis of su(2) with the following relations:

$[X_{1}, X_{2}]=X_{3}$ , $[X_{2}, X_{3}]=X_{1}$ , $[X_{3}, X_{1}]=X_{2}$ .
We shall consider a non-commutative extension of the above observations. Fix a

smooth function $\Theta\in \mathscr{F}^{\infty}$ and $S_{\partial}^{3}$ . Let $Z$ and $W$ be the normal operators defined
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by (3-6). Keeping the commutative case in mind, put for $\left\{\begin{array}{ll}is & c\\-\overline{c} & -is\end{array}\right\}\in \mathfrak{s}u(2)$

(5-4) $\delta_{\langle s,c)}(Z)=is\cdot Z-\overline{c}\cdot W$ , $\delta_{\langle s,c)}(W)=c\cdot Z-is\cdot W$ .
Unfortunately, we know that the above $\delta_{\{s,c)}$ can not be extended to the algebra

$(S_{O}^{3})^{\infty}$ with keeping the ordinary differential rule:

(5-5) $\delta_{(s,c)}(ab)=\delta_{(s,c)}(a)b+a\delta_{\langle s,c)}(b)$ $a,$
$b\in(S_{\partial}^{3})^{\infty}$

However one has the following:

THEOREM 5.1. The above operator $\delta_{\langle s,c)}$ definedfor the generators $Z$ and $W$ can be
extended to the smooth algebra $(S_{O}^{3})^{\infty}$ with a twisted Leibniz’s rule.

The meaning of the above twisted Leibniz’s rule is made clear in the proof of the
theorem.

$PR\infty F$ . Let $\Psi_{O}$ be the bridge map from $(S_{O}^{3})^{\infty}$ onto $C^{\infty}(S^{3})$ constructed in the

previous section. For an element $X_{\langle s,c)}=\left\{\begin{array}{ll}is & c\\-\overline{c} & -is\end{array}\right\}$ of su(2), we define a derivation

$\delta_{\langle s,c)}$ with a twisted Leibniz’s rule on the full algebra $(S_{\partial}^{3})^{\infty}$ again by

(5-6) $\delta_{(s,c)}(a)=\Psi_{\partial}^{1}(X_{\langle s,c)}(\Psi_{\partial}(a)))$ $a\in(S_{O}^{3})^{\infty}$

where $X_{\langle s,c)}$ acts on $C^{\infty}(S^{3})$ as defined by (5-2). Since we have $\Psi_{9}(Z)=z$ and $\Psi_{\partial}(W)=w$,
$\delta_{(s,c)}$ defined by (5-6) coincides with the original one given by (5-4). Thus we conclude
that $\delta_{\langle s,c)}$ can be extended to $(S_{O}^{3})^{\infty}$ . $\square $

We set

$\delta_{1}=\frac{1}{2}\delta_{\langle 0,i)}$ , $\delta_{2}=\frac{1}{2}\delta_{\langle 0,1)}$ , $\delta_{3}=\frac{1}{2}\delta_{\langle 1.0)}$ .

Hence the following identities come from the corresponding identities for $X_{i},$ $i=1,2,3$

$[\delta_{1}, \delta_{2}]=\delta_{3}$ , $[\delta_{2}, \delta_{3}]=\delta_{1}$ , $[\delta_{3}, \delta_{1}]=\delta_{2}$ .

Though the bridge map does not preserve the original product structures between
$(S_{\delta}^{3})^{\infty}$ and $C^{\infty}(S^{3})$ , it becomes an isomorphism between them if we change the original
product on $(S_{O}^{3})^{\infty}$ into the modified $product\circ as$ we have seen in the previous section.
Hence the derivation $\delta_{\langle s,c)}$ satisfies a certain twisted rule. In fact, one can easily calculate
the following examples:

EXAMPLES.

$\delta_{k}(ZW)=e^{\pi iO}\delta_{k}(Z)W+e^{\pi i\partial}Z\delta_{k}(W)$ , $\delta_{3}(ZW)=\delta_{3}(Z)W+Z\delta_{3}(W)$

$\delta_{k}(Z^{2})=e^{-\pi iO}2Z\delta_{k}(Z)$ , $\delta_{3}(Z^{2})=2Z\delta_{3}(Z)$

$\delta_{k}(W^{2})=e^{\pi iO}2W\delta_{k}(W)$ , $\delta_{3}(W^{2})=2W\delta_{3}(W)$ $k=1,2$ .
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As we know the above examples, it is easy to see that the derivation $\delta_{3}$ only keep
the ordinary Leibniz’s rule.

6. The Haar measure on $S_{\partial}^{3}$.
In identification of $S^{3}$ with the compact Lie group SU(2), $S^{3}$ has the normalize $($

Haar measure, namely, the volume element. There are several ways to describe $th|$

measure. In considering the extension of the measure to our non-commutative versions
it is quite convenient to write it as in the following way: for $f\in C(SU(2))$

(6-1) $\frac{1}{8\pi}\int_{0}^{2\pi}\int_{0}^{2\pi}\int_{0}^{1}f(g)$ sin $\pi tdtd\xi d\eta$

where

sin $\frac{\pi}{2}t\cdot e^{i\xi}$ $\cos\frac{\pi}{2}t\cdot e^{i\eta}$

$g=[-\cos\frac{\pi}{2}t\cdot e^{-i\eta}$ $\sin\frac{\pi}{2}t\cdot e^{-i\xi}]\in SU(2)$
.

We denote by $\tau(f)$ the above integral of the function $f$ .
Here we briefly review the canonical tracial state on non-commutative 2-torus $A_{\theta}$

Let $v$ and $u$ be a pair of unitary generators of $A_{\theta}$ with the commutation relation (1-1)
Let $\gamma_{\langle t,s)}$ be the ergodic action of $R^{2}/Z^{2}=S^{1}\times S^{1}$ on $A_{\theta}$ defined in \S 1. It is well know]

that the integral

$\frac{1}{4\pi^{2}}\int_{0}^{2\pi}\int_{0}^{2\pi}\gamma_{\langle t,s)}(a)dtds$ $aeA_{0}$

defines the faithful tracial state on $A_{\theta}$ and it is written as $\tau_{\theta}(a)$ .
Now let us give a faithful tracial state $\tau_{\theta}$ on the non-commutative 3-sphere $S_{9}^{3}$ . $W|$

first represent $S_{\partial}^{3}$ by the $C^{*}$-algebra of continuous cross sections with fibered spac
$\{A_{O\langle r)}\}_{r\epsilon[O,1]}$ , which is generated by the two sections $Z$ and $W$ defined by (3-6). We the]

define a faithful tracial state $\tau_{\Theta}$ on $S_{O}^{3}$ by

(6-2) $\tau_{\theta}(a)=\frac{\pi}{2}\int_{0}^{1}\tau_{Q\langle t)}(a(t))$ sin $\pi tdt$ $aeS_{\partial}^{3}$ ,

where the element $a(t)$ is in $A_{\partial(t)}$ and $\tau_{\partial(t)}$ means the faithful tracial state on $A_{\partial\langle t)}$ definet
by the above integral. The relationship between the tracial state $\tau_{\partial}$ and the original $on|$

$\tau$ on $C(S^{3})$ is the following.
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LEMMA 6.1. Let $\Psi_{\Theta}$ be the bridge map from $(S_{O}^{3})^{\infty}$ to $C^{\infty}(S^{3})$ for $\Theta e\mathscr{F}^{\infty}$ . Then

we have

$\tau_{O}=\tau\circ\Psi_{\partial}$ on $(S_{\partial}^{3})^{\infty}$

In particular, in the case where $\Theta$ is constantly zero, $\tau_{O}$ is nothing but the original trace $\tau$ .

PROOF. For an element $\sum a_{n,m}V^{n}U^{m}$ in $(S_{O}^{3})^{\infty}$ , one easily obtains the next equation

$\tau\circ\Psi_{\partial}(\sum a_{n,m}V^{n}U^{m})=\frac{\pi}{2}\int_{0}^{1}a_{0,0}(t)$ sin $\pi tdt=\tau_{O}(\sum a_{n,m}V^{n}U^{m})$ .

$\square $

REMARK. The Haar measure $\tau onSU(2)$ can be also written as

(6-1) $\frac{1}{4\pi^{2}}\int_{0}^{2\pi}\int_{0}^{2\pi}\int_{0}^{1}f(g)dtd\xi d\eta$

where

$g=\left\{\begin{array}{ll}\sqrt{t}e^{i\xi} & \sqrt{1-t}e^{i\eta}\\-\sqrt{1-t}e^{-i\eta} & \sqrt{t}e^{-i\xi}\end{array}\right\}\in SU(2)$ .

In this formulation, the corresponding description of the Haar measure $\tau_{9}^{\prime}$ on $S_{\partial}^{3}$ is

(6-2) $\tau_{\acute{g}}(a)=\int_{0}^{1}\tau_{\partial\langle t)}(a(t))dt$ $a\in S_{O}^{3}$ .

This formulation is used in the case where $S_{O}^{3}$ is regarded as the $C^{*}$-algebra generated
by the operators $M,$ $N$ defined by (3-2).

In the ordinary case, the Haar measure $\tau$ is invariant under left and right translations
on SU(2). The vector fields $X_{i}\in \mathfrak{s}u(2),$ $i=1,2,3$ , on $C^{\infty}(S^{3})$ are infinitesimal gnerators.
Hence these compositions $\tau\circ X_{i},$ $i=1,2,3$ , with $\tau$ must be zero. Conversely, a regular
Borel measure $\mu$ on $S^{3}$ , namely a tracial state on $C(S^{3})$ , satisfying the condition $\mu\circ X_{i}=0$ ,

$i=1,2,3$ , becomes a translation invariant measure so that $\mu$ coincides with $\tau$ . The next
theorem is the non-commutative version for this discussion.

THEOREM 6.2. Let $\Theta$ be afunction in $\mathscr{F}^{\infty}$ . Then there exists a uniquefaithful tracial
state $\tau_{9}$ on $S_{\partial}^{3}$ such that $\tau_{O}\circ\delta_{i}=0,$ $i=1,2,3$ .

PROOF. Since the derivations $\delta_{i}$ are defined by $\delta_{i}=\Psi_{O}^{1}\circ X_{i}\circ\Psi_{O}$ , we have $\tau_{\partial}\circ\delta_{i}=0$ ,

$i=1,2,3$ . Let $\varphi$ be a tracial state on $S_{O}^{3}$ such that $\varphi\circ\delta_{i}=0$ . We will show that $\varphi=\tau_{O}$ .
We provide some lemmas. The next one is clear.
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LEMMA 6.3. Any polynomial $a$ of $z,$ $z^{*},$ $w,$
$w^{*}$ in $C^{\infty}(S^{3})$ can be unique

expressed as

$a=\sum_{j\geq 0}c_{j.m.n}(z^{*}z)^{j}\tilde{w}^{m}\tilde{z}^{n}j.m.n\in Z$

where the function $\tilde{x}^{k},$ $keZ$, denotes

$\tilde{x}^{k}=\left\{\begin{array}{l}x^{k}k\geq 0\\x^{*\langle-k)}k\leq 0\end{array}\right.$

for $x=z,$ $w$ .
Put $\mu=\varphi\circ\Psi_{\partial}^{1}$ , which is a tracial state on $C^{\infty}(S^{3})$ and hence on the polynomi

$*$-algebra $P_{0}$ generated by $z,$ $w$ . The hypothesis $\varphi\circ\delta_{i}=0,$ $i=1,2,3$ , means $\mu\circ X_{i}=|$

$i=1,2,3$ . Then we have

LEMMA 6.4.

$\mu((zz)^{j}\tilde{w}^{n}\tilde{z}^{n})=\left\{\begin{array}{ll}1/(j+1) & n=m=0\\0 & otherwise.\end{array}\right.$

Hence we see that $\mu=\tau$ on $P_{0}$ .
$PR\infty F$ . By straightforward calculation, one sees that

$X_{1}(z^{n}w^{m}(zz)^{j})=inz^{n-1}w^{m+1}(zz)^{j}+imz^{n+1}w^{m-1}(z^{*}z)^{j}$

$+jz^{n}w^{m}(zz)^{j-1}i(zw-wz)$

and

$X_{2}(z^{n}w^{m}(z^{*}z)^{j})=-nz^{n-1}w^{m+1}(zz)^{j}+mz^{n+1}w^{m-1}(z^{*}z)^{j}$

$+jz^{n}w^{m}(z^{*}z)^{j-1}(-z^{*}w-w^{*}z)$

so that it follows that

$X_{1}(z^{n}w^{m}(z^{*}z)^{J})-iX_{2}(z^{n}w^{m}(zz)^{J})=2i(n+J)z^{n-1}w^{m+1}(z^{*}z)^{j}$ .
Hence we have $\mu(z^{n}w^{m}(zz)^{j})=0$ for $m\geq 1,$ $n,j\geq 0$ . In the case where $m=0$, by th
identity $X_{3}(z^{n}(z^{*}z)^{J})=inz^{n}(z^{*}z)^{j}$, we obtain that $\mu(z^{n}(zz)^{j})=0$ for $n\geq 1,j\geq 0.$ Similarl\

$ $

we conclude that

$\mu(\tilde{w}^{m}\tilde{z}^{n}(z^{*}z)^{J})=0$ unless $n=m=0$ .
Next, we shall calculate the exact value of $\mu((z^{*}z)^{J})$ only by using the conditio

$\mu\circ X_{i}=0$ . The identity $X_{1}(w^{*}z)=i(w^{*}w-z^{*}z)$ implies $\mu(ww)=\mu(z^{*}z)$ . Hence by th
condition $w^{*}w+z^{*}z=1$ , we have $\mu(w^{*}w)=\mu(z^{*}z)=1/2$ . Suppose that the assertio
$\mu((z^{*}z)^{J})=1/(j+1)$ is valid for allj $\leq k$ . Then, by the identity $(z^{*}z)^{k+1}+(wwKz^{*}z)^{k}=(z^{*}z)$

one obtains
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(6-3) $\mu((z^{*}z)^{k+1})+\mu(w^{*}w\cdot(z^{*}z)^{k})=\frac{1}{k+1}$ .

On the other hand, the equality

$X_{1}(w^{*}z\cdot(z^{*}z)^{k})=i\{(k+1)w^{*}w(z^{*}z)^{k}-(z^{*}z)^{k+1}-k(z^{*}z)^{k-1}w^{*}zw^{*}z\}$

implies that

(6-4) $(k+1)\mu(w^{*}w(z^{*}z)^{k})-\mu((z^{*}z)^{k+1})=0$

because $\mu((z^{*}z)^{k-1}w^{*}zw^{*}z)=0$ by the previous discussions. Hence from the equalities
(6-3) and (6-4), we have $\mu((z^{*}z)^{k+1})=1/(k+2)$ . Therefore by induction we conclude
$\mu((z^{*}z)^{J})=1/Q+1)$ for all $j\geq 0$ .

As the original tracial state $\tau$ on $C(S^{3})$ also satisfies the condition $\tau\circ X_{i}=0,$ $i=1,2,3$ ,

the same argument as above says $\tau=\mu onP_{0}$ . $\square $

Let $P_{O}$ be the linear subspace of $(S_{6}^{3})^{\infty}$ consisting of the elements of the form

$\sum_{finitc}c_{j,k.l,m}e^{-\langle j-k)\langle l-m)\pi i\hat{\Theta}}Z^{j}Z^{*k}W^{l}W^{*m}$ $c_{j,k,l,m}\in C$ .

Namely the subspace $P_{\partial}$ is nothing but the preimage of $P_{0}$ under the bridge map $\Psi_{\partial}$ .
Now we arrive at the final lemma.

LEMMA 6.5. The linear subspace $P_{O}$ is dense in $S_{\theta}^{3}$ .
$PR\infty F$ . Let $C_{O}$ be the unital $*$-algebra of all polynomials of $Z^{*}Z$ (and hence

$W^{*}W)$ . It is clear that $P_{\partial}$ is $C_{\partial}$-bimodule. It suffices to show that any polynomial of
$Z,$ $Z^{*},$ $W,$ $W^{*}$ can be approximated by elements of $P_{\partial}$ . Let $Q_{1}$ be a polynomial of
$Z,$ $Z^{*},$ $W,$ $W^{*}$ . Then $Q_{1}$ can be written as in the following way:

$\sum_{finite}c_{j,k.l,m}e^{n\langle j,k,l,m)\pi i\hat{\Theta}}Z^{j}Z^{*k}W^{l}W^{*m}$ $c_{j,k,l,m}\in C$ , $n(l, k,j, m)eZ$ .

Hence we have
$Q_{1}=\sum c_{j,k,l,m}e^{\{n\langle j,k,l,m)+\langle j-k)\langle l-m)\}\pi i\delta_{e}-(j-k)\langle l-m)\pi i\hat{e}_{Z^{j}Z^{*k}W^{l}W^{*m}}}$

We notice that the operator $\hat{\Theta}$ can be obtained by a $functional\cdot calculus$ of the oper-
ator $Z^{*}Z$ so that it is approximated by elements of $C_{O}$ . As the monomial
$e^{-\langle j-k)\langle t-m)\pi i\hat{\Theta}}Z^{j}Z^{*k}W^{l}W^{*m}$ belongs to $P_{O},$ $Q_{1}$ is approximated by $P_{O}$ . Thus we con-
clude that the subspace $P_{\partial}$ is dense in $S_{\partial}^{3}$ . $\square $

FINAL $PR\infty F$ OF THEOREM 6.2. Since the tracial state $\varphi$ coincides with the original
one $\tau onthedensesubspaceP_{O}ofS_{O}^{3}$ , we have $\varphi=\tau onS_{\partial}^{3}$ . $\square $

By the above observations, one can think of the faithful tracial state $\tau_{\partial}$ on $S_{e}^{3}$ as
a non-commutative version of the Haar measure on $S^{3}$ . Thus we call $\tau_{O}$ the normalized



222 KENGO MATSUMOTO

Haar measure on $S_{\theta}^{3}$ . Then Theorem 6.2 says that normalized Haar measure on $S_{O}^{3}l$

also unique in our non-commutative setting.

References

[Bra] O. BRATTELI, Derivations and dissipations and group actions on C’-algebras, Lecture Notes in Mal
1229 (1986), Springer-Verlag.

[Bre] B. A. BRENKEN, Representations and automorphisms of the irrational rotation algebras, Pacific
Math., 111 (1984), 257-282.

[Col] A. CONNES, A survey of foliations and operator algebras, Operator Algebras and Applications, Pr
Sympos. Pure Math., 38 (1982), Part I, 521-628.

[Co2] A. CONNES, $C^{*}$-alg\‘ebres et g\’eom\’etrie diff\’erentielle, C. R. Acad. Sci. Paris S\’er. I, 290 (1980), 599-6
[Co3] A. CONNES, Non Commutative Differential Geometry, Chapter I: The Chem character in K-homolo

Chapter II: de Rham homology and non commutative algebra. Publ. Math. I.H.E.S., 62 $(19\mathfrak{k}$

257-360.
[CR] A. CONNES and M. A. RWFFEL, Yang-Mills for non-commutative two-tori, Contemp. Math., 62 (19f

237-266, Amer. Math. Soc.
[E1] G. ELLIOTT, The diffeomorphism group of the irrational rotation $C^{*}$-algebra, C. R. Math. Acad. $(\iota$

Canada, 8 (1986), 329-334.
[Mal] K. MATSUMOTO, Non-commutative three dimensional spheres, to apper in Japanese J. Math.
[Ma2] K. MATSUMOTO, Non-commutative three dimensional spheres II, –Non-commutative Hopffibering

to appear in Yokohama Math. J., 38 (1991).

[MT] K. MATSUMOTO and J. TOMIYAMA, Non-commutative lens spaces, J. Math. Soc. Japan, u (1992),

41.
[Pe] G. K. PEDERSEN, C’-Algebras and Their Automorphism Groups, Academic Press, 1979.
[Ril] M. A. RIEFFEL, $C^{*}$-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 4

429.
[Ri2] M. A. RIEFFEL, Deformation quantizations and operator algebras, preprint.
[Ri3] M. A. RIEFFEL, Lie group convolution algebras and deformation quantizations of linear Pois

structures, preprint.
[Ro] J. ROSENBERG, The role of K-theory in non-commutative algebraic topology, Operator Algebras

K-Theory, Contemp. Math., 10 (1982), $15\succ 182$ , Amer. Math. Soc.
[RS] J. ROSENBERG and C. SCHOCHET, The K\"unneth theorem and the universal coefficient theorem

Kasparov’s generalized K-functor, Duke Math. J., 55 (1987), 431A74.
[To2] J. TOMIYAMA, Topological representation of $C^{*}$-algebras, T\^ohoku Math. J., 14 (1962), 187-204.
[Wa] Y. WATATANI, Toral automorphism on irrational rotation algebras, Math. Japonica, 26 (19|

479-484.
[Wol] S. L. WORONOWICZ, Twisted SU(2) group. An example of a non-commutative differential calcu

Publ. RIMS Kyoto Univ., 23 (1987), 117-181.
[Wo2] S. L. WORONOWICZ, Compact matrix pseudogroups, Comm. Math. Phys., 111 (1987), 613-665.

Present Address:
DEPARTMENT OF MATHEMATICS, FACULTY OF ENGINEERING, GUNMA UNIVERSITY
KIRYU, GUNMA 376, JAPAN


