The Ergodic Closing Lemma for C^1 Regular Maps

Kazumine MORIYASU

Tokyo Metropolitan University (Communicated by J. Tomiyama)

In order to solve the C^1 Structural Stability Conjecture by Palis and Smale, Mañé [1] established the ergodic closing lemma for diffeomorphisms. In 1987 he gave in [2] an answer to the conjecture by using original ideas. The ergodic closing lemma is a result that captures the asymptotic behaviour of orbits in the ergodic theory. This result is based on Pugh's closing lemma [3].

Our aim is to prove the ergodic closing lemma for regular maps of closed manifolds. Let M be a closed C^{∞} manifold and $C^{1}(M)$ be the set of C^{1} maps of M with the C^{1} -topology. $f \in C^{1}(M)$ is called to be regular if for every $x \in M$ the derivative $D_{x}f: T_{x}M \to T_{f(x)}M$ is surjective. $R^{1}(M)$ denotes the set of regular maps in $C^{1}(M)$ with the relative topology of $C^{1}(M)$. For $f \in R^{1}(M)$, $\Omega(f)$ denotes the nonwandering set; $\Omega(f) = \{x \in M: \text{ for every neighborhood } U \text{ of } x \text{ there is } n > 0 \text{ such that } f^{n}(U) \cap U \neq \emptyset\}$, and Per(f) denotes the set of periodic points.

Recently, in [4] L. Wen showed the C^1 closing lemma for regular maps as follows.

THEOREM (L. Wen). Let $f: M \to M$ be a regular map and p be a nonwandering point of f. Then for any C^1 neighborhood $\mathfrak U$ of f in $R^1(M)$ and any neighborhood U of p in M there is $g \in \mathfrak U$ such that $Per(g) \cap U \neq \emptyset$.

The idea of the proof is in Proposition 1 below. Let $f \in R^1(M)$ and $q_0 \in M$ be a non periodic point of f. We define an infinite sequence $Q = \{Q_n : n \ge 0\}$ of disjoint non-empty finite sets $Q_n = \{f^{-n}(q_0)\}$ for $n = 0, 1, 2, \cdots$. Then $f : Q' - Q_0 \rightarrow Q'$, where $Q' = \bigcup_{n=0}^{\infty} Q_n$, such that f maps Q_n onto Q_{n-1} for $n \ge 1$. An infinite sequence $q_0, q_1, \dots, q_n, \cdots$ is called a *branch* of (Q, f) if $q_n \in Q_n$ for $n \ge 0$.

PROPOSITION 1 ([4]). Under the above notations, for $\varepsilon_0 > 0$ there are a number $\rho_0 > 2$ and an integer $\mu_0 \ge 1$ such that for any finite ordered set $P = \{p_0, p_1, \dots, p_t\}$ in $T_{q_0}M$, there is $y \in P \cap U(p_t, \rho_0 | p_0 - p_t |)$ such that for any branch $\Sigma = \{q_0, q_1, \dots, q_n, \dots\}$ of (Q, f), there is $w \in P \cap U(p_t, \rho_0 | p_0 - p_t |)$, where w is before y in the order of P, together with $\mu_0 + 1$ points $c_0, c_1, \dots, c_{\mu_0}$ in $U(p_t, \rho_0 | p_0 - p_t |)$, not necessarily distinct, satisfying the following two conditions (a) and (b),

- (a) $c_0 = w$ and $c_{\mu_0} = y$,
- (b) $|T_n^{-1}(c_n)-T_n^{-1}(c_{n+1})| \le \varepsilon_0 d'(T_n^{-1}(c_{n+1}), T_n^{-1}(A))$ for $0 \le n \le \mu_0 1$,

where $|\cdot|$ denotes a Riemannian norm of TM, $U(x,r) = \{z \in T_{q_0}M : |x-z| < r\}$, $T_n = D_{q_n}f^n : T_{q_n}M \to T_{q_0}M \ (n \ge 0), \ A = P(w,y) \cup \partial U(p_t,\rho_0|p_0-p_t|), \ P(w,y) = \{p \in P : p \text{ is after } w \text{ and before } y\}$, and d' is the distance on $T_{q_0}M$ induced by $|\cdot|$.

From Proposition 1 we can derive the following

PROPOSITION 2. Given $f \in R^1(M)$, $p \in M$, $\varepsilon > 0$ and a neighborhood \mathfrak{U} of f there exist r > 0 and $\rho > 2$ such that if $x \in U_{\tilde{r}}(p)$ with $0 < \tilde{r} \le r$ and $f^m(x) \in U_{\tilde{r}}(p)$ for some m > 0 then there exist $0 \le m_1 < m_2 \le m$ and $g \in \mathfrak{U}$ such that

- (i) $f^{m_1}(x) \in U_{\rho \tilde{r}}(p)$ and $f^{m_2}(x) \in U_{\rho \tilde{r}}(p)$,
- (ii) $g^{m_2-m_1}(f^{m_1}(x)) = f^{m_1}(x)$,
- (iii) g = f on $\{M B_{\varepsilon}(f^{-1}, p, m_2 m_1)\} \cup \{M B_{\varepsilon}(f^{-1}, f^{m_1}(x), m_2 m_1)\}$,
- (iv) $d(f^{n}(f^{m_1}(x)), g^{n}(f^{m_1}(x))) \le \varepsilon$ for $0 \le n \le m_2 m_1$,

where
$$U_{\varepsilon}(p) = \{z \in M : d(p, z) < \varepsilon\}, B_{\varepsilon}(f^{-1}, x, m) = \bigcup_{j=0}^{m} \bigcup_{z \in f^{-j}(x)} B_{\varepsilon}(z) \text{ and } B_{\varepsilon}(z) = \overline{U_{\varepsilon}(z)}.$$

This proposition is a result corresponding to Lemma I.2 of Mañé [1] and it will play an essential role to prove Theorem stated below.

Let $f \in R^1(M)$ and $\mathfrak{M}(f)$ be the set of all f-invariant probability measures defined on the Borel sets on M. We define $\Sigma(f)$ as the set of points $x \in M$ such that for every neighborhood \mathfrak{U} of f and every $\varepsilon > 0$ there exist $g \in \mathfrak{U}$ and $y \in M$ such that $y \in \operatorname{Per}(g)$, g = f on $M - B_{\varepsilon}(f^{-1}, x, m)$ and $d(f^n(x), g^n(y)) \le \varepsilon$ for all $0 \le n \le m$, where m is the minimal period of y for g.

If $\mathfrak U$ is a neighborhood of f and $\varepsilon > 0$, we let $\Sigma'(\mathfrak U, \varepsilon)$ be the set of points $x \in M$ such that there exist $g \in \mathfrak U$, $y \in M$ and m > 0 satisfying $g^m(y) = y$, g = f on $M - B_{\varepsilon}(f^{-1}, x, m)$ and $d(f^n(x), g^n(y)) \le \varepsilon$ for all $0 \le n \le m$.

From Proposition 2 it follows that the interior of $\Sigma'(\mathfrak{U}, \varepsilon)$, $\Sigma(\mathfrak{U}, \varepsilon)$, is non-empty. Indeed, let $f^{m_1}(x)$ be as in Proposition 2. Then $f^{m_1}(x) \in \Sigma'(\mathfrak{U}, \varepsilon) \subset \Sigma(\mathfrak{U}, 2\varepsilon)$ if $y = f^{m_1}(x)$ and $m = m_1 - m_2$. Choose a basis $\{\mathfrak{U}_n\}$ of neighborhoods of f and a sequence $\{\varepsilon_n\}$ converging to 0. Then we have

(1)
$$\Sigma(f) = \bigcap_{n \ge 1} \Sigma(\mathfrak{U}_n, \varepsilon_n) .$$

If we establish (1), then $\Sigma(f)$ is a Borel set. (1) is checked as follows.

By the definition it is clear that $\Sigma(f) \supset \bigcap_{n \geq 1} \Sigma(\mathfrak{U}_n, \varepsilon_n)$. Let $x \in \Sigma(f)$ and $n \geq 1$. Then there exist $g \in \mathfrak{U}_n$, $y \in M$ and m > 0 such that $g^m(y) = y$, g = f on $M - B_{\varepsilon_n/2}(f^{-1}, x, m)$ and $d(f^j(x), g^j(y)) \leq \varepsilon_n/2$ for $0 \leq j \leq m$. Take $\delta > 0$ such that if $d(w, z) \leq \delta$ then for $0 \leq j \leq m$ and $\tilde{z} \in f^{-j}(z)$ there exists $\tilde{w} \in f^{-j}(w)$ satisfying $d(\tilde{w}, \tilde{z}) \leq \varepsilon_n/2$ and $d(f^j(w), f^j(z)) \leq \varepsilon_n/2$

 $\varepsilon_n/2$ for $0 \le j \le m$. Then, for $w \in U_{\delta}(x)$ we have

$$B_{\varepsilon_n}(f^{-1}, w, m) \supset B_{\varepsilon_n/2}(f^{-1}, x, m)$$
,

and hence

$$f=g$$
 on $M-B_{\varepsilon_n}(f^{-1}, w, m)$.

Moreover we have

$$d(f^{j}(w), g^{j}(y)) \le d(f^{j}(w), f^{j}(x)) + d(f^{j}(x), g^{j}(y))$$

$$\le \varepsilon_{n} \qquad (0 \le j \le m).$$

Thus $U_{\delta}(x) \subset \Sigma'(\mathfrak{U}_n, \varepsilon_n)$ and so $x \in \Sigma(\mathfrak{U}_n, \varepsilon_n)$. Since n is arbitrary, we have $x \in \bigcap_{n \geq 1} \Sigma(\mathfrak{U}_n, \varepsilon_n)$.

Notice that $\Sigma(f)$ is not necessarily f-invariant. The following proposition is based on the remarkable proof of the ergodic closing lemma for diffeomorphisms by Mañé ([1]).

PROPOSITION 3. For every $f \in R^1(M)$, every neighborhood $\mathfrak U$ of f and every $\varepsilon > 0$ the following holds:

$$\mu(\Sigma(\mathfrak{U},\,\varepsilon))=1$$

for every ergodic $\mu \in \mathfrak{M}(f)$.

It is well known that if a set has total measure for every ergodic measure in $\mathfrak{M}(f)$ then it is total for every measure in $\mathfrak{M}(f)$. Therefore we have the following theorem which is an aim of this paper.

THEOREM. If $f \in R^1(M)$, then $\Sigma(f)$ has total measure for every measure in $\mathfrak{M}(f)$.

To obtain Theorem it remains only to prove Propositions 2 and 3.

First we give the proof of Proposition 2. If $p \in \operatorname{Per}(f)$, then the conclusion of Proposition 2 is clear. Thus we prove the case when $p \notin \operatorname{Per}(f)$. Let $\varepsilon > 0$, \mathfrak{U} be a neighborhood of f and d_1 be a distance of $R^1(M)$. Then there exists $0 < \eta < \varepsilon/2$ such that $d_1(f,g) < 2\eta$ implies $g \in \mathfrak{U}$. Denote $T_x M(\xi) = \{u \in T_x M : |u| \le \xi\}$ for $x \in M$ and take $\xi > 0$ such that $\exp_x : T_x M(\xi) \to M$ is an embedding for $x \in M$. Then we can find $\varepsilon_0 > 0$ such that for $g \in R^1(M)$, $x \in M$ and $c_1, c_2 \in T_x M$ with $B(c_2, |c_1 - c_2|/\varepsilon_0) \subset T_x M(\xi)$ there exists a diffeomorphism $h : M \to M$ satisfying

(2)
$$\begin{cases} (i) & h(\exp_{x}(c_{2})) = \exp_{x}(c_{1}), \\ (ii) & \sup_{x}(h) \subset \exp_{x}(B(c_{2}, |c_{1} - c_{2}|/\epsilon_{0})), \\ (iii) & d_{1}(h \circ g, g) < \eta. \end{cases}$$

Put $q_0 = p$. Let (Q, f), $\rho_0 > 2$ and $\mu_0 \ge 1$ be as in Proposition 1 for $\varepsilon_0 > 0$. Then there exists $0 < r_0 < \varepsilon/4$ such that the following (3) holds. For $0 < r_0' \le r_0$

(a) if W is a connected component of ∪_{n=0}^{μ₀+1} f⁻ⁿ(B_{r₀}(p)), then there is a unique q∈ ∪_{n=0}^{μ₀+1} f⁻ⁿ(p) satisfying q∈ W, and so we write W_{r₀}(q) = W, since W depends on q and r'₀,
(b) fⁿ|W_{r₀}(q): W_{r₀}(q) → B_{r₀}(p) is a diffeomorphism if fⁿ(q) = p for some 0 ≤ n ≤ μ₀ + 1,
(c) W_{r₀}(q) = V_{r₀}(q) fⁿ(q) = 0 **(3)**

 $(q) \subset U_{\varepsilon/4}(q)$ for every $q \in \bigcup_{n=0}^{\mu_0+1} f^{-n}(p)$.

Furthermore, by Lemma 4.2 of [4] there exist $0 < \lambda \le r_0$ and $f_1 \in R^1(M)$ with $d_1(f, f_1) < r_0$ η satisfying

$$\begin{cases} (d) & f_1 = \exp_{f(q)} \circ (D_q f) \circ \exp_q^{-1} \text{ on } W_{\lambda/4}(q) \text{ for } q \in \bigcup_{n=1}^{\mu_0} f^{-n}(p), \\ (e) & f_1 = \exp_{f(q)} \circ (D_{f(q)} f^{\mu_0})^{-1} \circ \exp_p^{-1} \circ f^{\mu_0+1} \text{ on } W_{\lambda/4}(q) \text{ for } q \in f^{-\mu_0-1}(p), \\ (f) & f_1^{\mu_0+1} = f^{\mu_0+1} \text{ on } W_{\lambda}(q) \text{ for } q \in f^{-\mu_0-1}(p), \\ (g) & f_1 = f \text{ on } M - \bigcup \{W_{\lambda}(q) : q \in \bigcup_{n=1}^{\mu_0+1} f^{-n}(p)\}. \end{cases}$$

Define a metric d' of $B_{ro}(p)$ by

$$d'(w,z) = |\exp_p^{-1}(w) - \exp_p^{-1}(z)| \qquad (w,z \in B_{r_0}(p)).$$

Then we can check the existence of r>0 and $\rho>2$ satisfying for $0<\tilde{r}\leq r$ and $w, z \in U_{\tilde{r}}(p)$

$$U(w, \rho_0 d'(w, z); d') \subset U_{\rho \bar{r}}(p) \subset B_{\lambda/4}(p)$$
.

Indeed, put $r = \lambda/(8\rho_0 + 4) < r_0/(2\rho_0 + 1)$. Since d(y, p) = d'(y, p) for $y \in B_{r_0}(p)$, we have $d'(w, z) \leq 2\tilde{r}$ and so

$$U(w, \rho_0 d'(w, z); d') \subset U(w, 2\rho_0 \tilde{r}; d')$$
.

Since $d'(w, p) \leq \tilde{r}$,

$$U(w, \rho_0 d'(w, z); d') \subset U(p, (2\rho_0 + 1)\tilde{r}; d') = U_{(2\rho_0 + 1)\tilde{r}}(p)$$

and so $\rho = 2\rho_0 + 1$ is our requirement.

Let us take $0 < \tilde{r} \le r$, $x \in U_{\tilde{r}}(p)$ and m > 0 with $f^{m}(x) \in U_{\tilde{r}}(p)$, and $P = \{x, f(x), \dots, g(x)\}$ $f^m(x) \cap B_{\lambda/4}(p)$ is represented as $P = \{p_0, p_1, \dots, p_t\}$ where $p_0 = x$ and $p_t = f^m(x)$ (since $U_{\tilde{r}}(p) \subset B_{\lambda/4}$). Then we have

$$U(p_t, \rho_0 d'(p_0, p_t); d') \subset U_{\rho \bar{r}}(p) \subset B_{\lambda/4}(p)$$
.

Letting $P' = \exp_p^{-1}(P)$ and $p'_i = \exp_p^{-1}(p_i)$ for $0 \le i \le t$, we have $P' = \{p'_0, p'_1, \dots, p'_t\}$ and $U(p'_t, \rho_0|p'_0 - p'_t|) \subset \exp_n^{-1}(U_{o\tilde{t}}(p)) \subset \exp_n^{-1}(B_{\lambda/4}(p))$.

By Proposition 1 there is $y' \in P' \cap U(p'_t, \rho_0 | p'_0 - p'_t|)$ such that for any branch $\Sigma =$ $\{\bar{q}_0, \bar{q}_1, \dots\}$ of (\boldsymbol{Q}, f) there is $w'(\Sigma) \in P' \cap U(p'_t, \rho_0 | p'_0 - p'_t|)$. Let $w(\Sigma) = \exp_p(w'(\Sigma))$ and $y = \exp_p(y')$. Then $f^{\psi}(w(\Sigma)) = y$ for some $\psi > 0$. Since $\lambda \le r_0$ and (3) holds, we have $\psi > \mu_0 + 1$. Put $z = f^{\psi - \mu_0 - 1}(w)$, then $f^{\mu_0 + 1}(z) = y$ and $z \in W_{\lambda/4}(q_{\mu_0 + 1})$ for some $q_{\mu_0+1} \in f^{-\mu_0-1}(p)$. Choose and fix a branch $\Gamma = \{\tilde{q}_0, \tilde{q}_1, \dots\}$ of (\boldsymbol{Q}, f) satisfying $\tilde{q}_{\mu_0+1} = q_{\mu_0+1}$, then for Γ there exist $w' \in P' \cap U(p'_t, \rho_0|p'_0-p'_t|)$ and $c'_0, c'_1, \dots, c'_{\mu_0} \in U(p'_t, \rho_0|p'_0-p'_t|)$ satisfying (a) and (b) of Proposition 1. Then $f^{\varphi}(w) = y$ for some $\varphi > \mu_0 + 1$ where $w = \exp_p(w')$. Thus, by Proposition 1 (b) and (2) for $0 \le n \le \mu_0 - 1$ there exists a diffeomorphism $h_n : M \to M$ with $d_1(h_n \circ f_1, f_1) < \eta$ satisfying

$$h_n(\exp_{\tilde{a}_n}((D_{\tilde{a}_n}f^n)^{-1}(c'_{n+1}))) = \exp_{\tilde{a}_n}((D_{\tilde{a}_n}f^n)^{-1}(c'_n)),$$

and so define a map $g \in R^1(M)$ by

$$g = \begin{cases} h_n \circ f_1 & \text{on} \quad W_{\lambda}(\tilde{q}_{n+1}) & (0 \le n \le \mu_0 - 1), \\ f_1 & \text{otherwise}. \end{cases}$$

Since $d_1(g, f) < 2\eta$, we have $g \in \mathcal{U}$, and $g^{\varphi}(w) = w$ by the definition of g. Since $w = f^{m_1}(x)$ and $y = f^{m_2}(x)$ for some $0 \le m_1 < m_2 \le m$ and $w, y \in U(p_t, \rho d'(p_0, p_t); d') \subset U_{\rho \bar{r}}(p)$, (i) is satisfied, and $g^{m_2 - m_1}(f^{m_1}(x)) = g^{\varphi}(w) = f^{m_1}(x)$ ensures that (ii) is satisfied. By the definition of g we have

(5)
$$\{ y \in M : f(y) \neq g(y) \} \subset \bigcup_{i=0}^{\mu_0+1} \bigcup_{q \in f^{-i}(p)} W_{\lambda}(q) \subset B_{\varepsilon}(f^{-1}, p, m_2 - m_1) .$$

Since $f^{m_1}(x) \in B_{\lambda/4}(p)$, for every $q \in \bigcup_{i=0}^{\mu_0+1} f^{-i}(p)$ there exists $x' \in \bigcup_{i=0}^{\mu_0+1} f^{-i}(f^{m_1}(x))$ such that $x' \in W_{\lambda/4}(q)$, and so

$$\bigcup_{i=0}^{\mu_0+1} \bigcup_{q \in f^{-i}(p)} W_{\lambda}(q) \subset \bigcup_{i=0}^{\mu_0+1} \bigcup_{x' \in f^{-i}(f^{m_1}(x))} B_{\varepsilon}(x')$$

$$\subset B_{\varepsilon}(f^{-1}, f^{m_1}, m_2 - m_1)$$

from which we have (iii). It only remains to prove (iv). Let us choose a sequence $0 < n_1 < n_2 < \cdots < n_k < n_{k+1} = m_2 - m_1 - \mu_0 - 1 < m_2 - m_1$ satisfying $f^{n_i}(f^{m_1}(x)) \in W_{\lambda}(q_i)$ for some $q_i \in f^{-\mu_0 - 1}(p)$ and $f^n(f^{m_1}(x)) \notin \bigcup \{W_{\lambda}(q) : q \in f^{-\mu_0 - 1}(p)\}$ if $n \neq n_i$ $(1 \leq i \leq k + 1)$. Since $f^n(f^{m_1}(x)) \notin \bigcup_{0 \leq j \leq \mu_0 + 1} \bigcup_{q \in f^{-j}(p)} W_{\lambda}(q)$ $(0 \leq n \leq n_1 - 1)$, we have

$$f^{n}(f^{m_{1}}(x)) = g^{n}(f^{m_{1}}(x))$$
 for $0 \le n \le n_{1}$.

Since $f^{n_1}(f^{m_1}(x)) = g^{n_1}(f^{m_1}(x)) \in W_{\lambda}(q_1)$, we have $f^n(f^{m_1}(x))$, $g^n(f^{m_1}(x)) \in W_{\lambda}(f^{n-n_1}(q_1))$ for $n_1 + 1 \le n \le n_1 + \mu_0 + 1$, and so by (5)

$$d(f^{n}(f^{m_1}(x)), g^{n}(f^{m_1}(x))) < 2\lambda < \varepsilon$$
 for $n_1 + 1 \le n \le n_1 + \mu_0 + 1$.

From Proposition 1 (b) and (2) we have $g^n(f^{m_1}(x)) = f_1^n(f^{m_1}(x))$ for $n_1 + 1 \le n \le n_1 + \mu_0 + 1$ and so by (4) (f)

$$q^{n_1+\mu_0+1}(f^{m_1}(x))=f^{n_1+\mu_0+1}(f^{m_1}(x)).$$

Repeating this process we obtain (iv). The proof of Proposition 2 is completed.

For the proof of Proposition 3 Mañé [1] prepared a measure theoretical proper-

ty about certain partitions of the s-torus $T^s = S^1 \times S^1 \times \cdots \times S^1$ for the case of diffeomorphisms. Our proof is of course in the framework of Mañé. We repeat the techniques described in [1], though it seems that the description is helpful for us.

We say that a set $A \subset T^s$ is a cube if it can be written as $A = I_1 \times \cdots \times I_s$ where the sets I_i are intervals in S^1 with equal lengths. If p_i is the middle point of I_i we say that the point (p_1, \dots, p_s) is the center of the cube A. The length of the intervals I_i is called the side of the cube. For each $k \in \mathbb{Z}^+$ let $\mathscr{P}_1^{(k)} \leq \mathscr{P}_2^{(k)} \leq \cdots$ be a sequence of partitions of T^s each one containing a finite set of disjoint cubes whose union is T^s . Suppose also that the side of the atoms of $\mathscr{P}_j^{(k)}$ is $2\pi/k^j$. For every atom Q of $\mathscr{P}_j^{(k)}$ we can associate cubes \hat{Q} and \tilde{Q} having the same center as Q and sides $2\pi/k^{j-1}$ and $6\pi/k^{j-1}$ respectively. If $x \in T^s$, we denote by $\mathscr{P}_j^{(k)}(x)$ the atom of $\mathscr{P}_j^{(k)}$ containing x.

For $k \ge 1$, $j \ge 1$, $\delta > 0$ and a Borel probability measure μ of T^s define

$$\widetilde{B}_{\delta}(j,k)_{\mu} = \{ x \in T^s : \mu(\mathscr{P}_j^{(k)}(x)) \ge \delta \mu(\widetilde{\mathscr{P}}_j^{(k)}(x)) \}.$$

LEMMA 1 (Mañé [1]). $\tilde{B}_{\delta}(j,k)_{\mu}$ is a Borel set. If k is odd, then $\mu(\tilde{B}_{\delta}(j,k)_{\mu}) \geq 1 - \delta 3^{s} k^{s}$.

Let $l=k^{sj}$. Then there exists $\{x_1, \dots, x_l\} \subset T^s$ such that for every $Q \in \mathcal{P}_j^{(k)}$ there is a unique point $x \in \{x_1, \dots, x_l\}$ with $x \in Q$. Thus $\tilde{B}_{\delta}(j, k)_{\mu} = \bigcup_{i \neq s} \mathcal{P}_j^{(k)}(x_i)$ where $S = \{1 \leq i \leq l : \mu(\mathcal{P}_j^{(k)}(x_i)) < \delta\mu(\tilde{\mathcal{P}}_j^{(k)}(x_i))\}$, and so $\tilde{B}_{\delta}(j, k)_{\mu}$ is a Borel set. Since k is odd, the sets $\tilde{\mathcal{P}}_j^{(k)}(x_i)$ ($1 \leq i \leq l$) cover each atom of $\mathcal{P}_j^{(k)}$ exactly. Thus we have

$$\mu(\lbrace x \in \mathbf{T}^s : \mu(\mathcal{P}_j^{(k)}(x)) < \delta\mu(\widetilde{\mathcal{P}}_j^{(k)}(x)) \rbrace) = \sum_{i \in S} \mu(\mathcal{P}_j^{(k)}(x_i))$$

$$< \delta \sum_{i \in S} \mu(\widetilde{\mathcal{P}}_j^{(k)}(x_i))$$

$$\leq \delta \sum_{i=1}^l \mu(\widetilde{\mathcal{P}}_j^{(k)}(x_i))$$

$$= \delta \sum_{i=1}^l 3^s k^s \mu(\mathcal{P}_j^{(k)}(x_i))$$

$$= \delta 3^s k^s$$

and so

$$\mu(\widetilde{B}_{\delta}(j,k)_{\mu}) = 1 - \mu(\{x \in T^s : \mu(\mathscr{P}_j^{(k)}(x)) < \delta\mu(\widetilde{\mathscr{P}}_j^{(k)}(x))\})$$

$$\geq 1 - \delta 3^s k^s.$$

The proof of Lemma 1 is completed.

Let us put

$$K = \bigcup \{\partial \hat{A} \cup \partial \tilde{A} : A \in \mathcal{P}_{j}^{(k)}, k \ge 1, j \ge 1\}.$$

Then for every Borel probability measure μ of T^s there is $y \in T^s$ such that $\mu(\tau_y(K)) = 0$ where $\tau_y : M \to M$ is a translation defined by $\tau_y(x) = y + x$ for $x \in T^s$. This is checked as follows: Let us put

$$K_{k,j} = \bigcup \left\{ \partial \hat{A} \cup \partial \tilde{A} : A \in \mathcal{P}_j^{(k)}, k \ge 1, j \ge 1 \right\},$$

$$K_k = \bigcup \left\{ K_{k,j} : j \ge 1 \right\}.$$

Then $K = \bigcup \{K_k : k \ge 1\}$ and so K is a Borel set. For $z = (z_1, \dots, z_s) \in T^s$ and $0 \le t \le 1$ we denote by $z(t) = (tz_1, \dots, tz_s) \in T^s$. Take and fix $z = (z_1, \dots, z_s) \in T^s$ with $z_i \ne 0$, $1 \le i \le s$. We claim that there exists a sequence $\{t_n\}_{n \ge 1}$ with $(1/2)^n \le t_n \le (1/2)^{n-1} - (1/2)^{n+1}$ such that $\mu(\tau_{z(t_i)}(K) \cap \tau_{z(t_n)}(K)) = 0$ if $l \ne n$. Indeed, for every $\varepsilon > 0$ put

$$\begin{split} \varepsilon_{l_1} &= \varepsilon (1/2)^{l_1} \ , \\ \varepsilon_{l_1, i_1} &= \varepsilon_{l_1} (1/2)^{i_1} \ , \\ \varepsilon_{l_1, i_1, l_2} &= \varepsilon_{l_1, i_1} (1/2)^{l_2} \ , \\ \varepsilon_{l_1, i_1, l_2, i_2} &= \varepsilon_{l_1, i_1, l_2} (1/2)^{i_2} \ , \end{split}$$

for l_1 , i_1 , l_2 , $i_2 \ge 1$ and take a set

$$C = \{c_i\} = \{(a(i), b(i)) : a(i) \in N, b(i) \in N\}$$
 with $c_1 = (1, 1)$

such that every pair $(a, b) \in N \times N$ is contained in C and $c_i \neq c_j$ if $i \neq j$. Put $I_1 = [(1/2), 1 - (1/2)^2]$ where [,] denotes a closed interval. Then $t \in I_1$ implies $\mu(K_{c_{a(1)}} \cap \tau_{z(t)}(K_{c_{b(1)}})) = (K_{1,1} \cap \tau_{z(t)}(K_{1,1})) = 0$ since $K_{1,1} = \emptyset$. Since $K_{c_{a(2)}}$ and $K_{c_{b(2)}}$ are finite lattices, there exists a closed interval $I'_1 \subset I_1$ with int $I'_1 \neq \emptyset$ such that for $t, t' \in I'_1$ with $t \neq t'$

$$(K_{c_{a(2)}} \cap \tau_{z(t)}(K_{c_{b(2)}})) \cap (K_{c_{a(2)}} \cap \tau_{z(t')}(K_{c_{b(2)}})) = \emptyset,$$

from which

$$\#\{t \in I_1' : \mu(K_{c_{a(2)}} \cap \tau_{z(t)}(K_{c_{b(2)}})) \ge \varepsilon_{c_{a(2)}, c_{b(2)}}\} \le \frac{1}{\varepsilon_{c_{a(2)}, c_{b(2)}}}.$$

Therefore we have that there is a closed interval $I_2 \subset I_1' \subset I_1$ with int $I_2 \neq \emptyset$ such that for every $t \in I_2$

$$\mu(K_{c_{a(2)}} \cap \tau_{z(t)}(K_{c_{b(2)}})) < \varepsilon_{c_{a(2),b(2)}}$$
.

Repeating this process we have a sequence of closed intervals $I_1 \supset I_2 \supset \cdots \supset I_l \supset \cdots$ such that

$$I_i \subset \{t \in I_{i-1} : \mu(K_{c_{a(i)}} \cap \tau_{z(t)}(K_{c_{b(i)}})) < \varepsilon_{c_{a(i),b(i)}}\}$$

for $i \ge 2$. Take $t \in \bigcap_{i \ge 1} I_i$. Then we have

$$\mu(K \cap \tau_{z(t)}(K)) = \mu\left(\bigcup_{i \geq 1} \left(K_{c_{a(i)}} \cap \tau_{z(t)}(K_{c_{b(i)}})\right)\right)$$

$$\leq \sum_{i \geq 1} \mu(K_{c_{a(i)}} \cap \tau_{z(t)}(K_{c_{b(i)}}))$$

$$\leq \varepsilon$$

From this result, for every $n \ge 1$ there is $t(n) \in [(1/2), 1-(1/2)^2]$ such that $\mu(K \cap \tau_{z(t(n))}(K)) < 1/n$. Assume that $t(n) \to t_1$ as $n \to \infty$, then we have

$$\mu(K \cap \tau_{z(t_1)}(K)) = 0.$$

Repeating this process we obtain the claim. By the claim, for every n>0 there exists $y(n) \in T_s$ such that $\mu(\tau_{y(n)}(K)) < 1/n$. Indeed, if it is false, then there is $\varepsilon > 0$ such that $\mu(\tau_v(K)) > \varepsilon$ for every $y \in T^s$. Let z and $\{t(i)\}$ be as in the claim. Then we have

$$1 = \mu(T^s) \ge \mu\left(\bigcup_{i \ge 1} \tau_{z(t(i))}(K)\right)$$
$$= \sum_{i \ge 1} \mu(\tau_{z(t(i))}(K)) = \infty ,$$

which is a contradiction. Assume that $y(n) \rightarrow y \in T^s$ as $n \rightarrow \infty$, then we have $\tau_v(K) = 0$.

Therefore we may assume that $\mu(K)=0$. Since M is isometrically embedded in T^s for large s, we suppose that $M \subset T^s$ and we consider that an ergodic measure of M is a Borel probability measure on T^s .

To show Proposition 3 Mañé prepared furthermore the following three lemmas. First define $\Sigma(\mathfrak{U}, \varepsilon, r, \rho)$, whose r > 0, $\rho > 2$, as the set of point $x \in M$ such that if $y \in U_{\overline{r}}(x)$ for some $0 < \overline{r} \le r$ and $f^m(y) \in U_{\overline{r}}(x)$ for some m > 0 then there exist $0 \le m_1 < m_2 \le m$ and $g \in \mathfrak{U}$ satisfying (i), (ii), (iii) and (iv) of Proposition 2. We can not check that $\Sigma(\mathfrak{U}, \varepsilon, r, \rho)$ is closed in M. However, if $r_n > 0$ and $\rho_n > 2$ are monotone sequences converging to 0 and $+\infty$ respectively then

(6)
$$M = \bigcup_{n \geq 1} \bigcup_{m \geq 1} \Sigma(\mathfrak{U}, \varepsilon, r_n, \rho_m)$$

for every neighborhood \mathfrak{U} of f and every $\varepsilon > 0$. Remark here that for integers $n \ge 1$ and $m \ge 1$ there exist an odd integer k = k(n, m) > 0 and an integer j(n, m) > 0 such that if $j \ge j(n, m)$ and $x \in T^s$ then there is $0 < r \le r_n$ satisfying

(7)
$$\begin{cases} (i) & \overline{\mathscr{P}_{j}^{(k)}(x)} \subset U_{r}(x), \\ (ii) & \operatorname{int} \hat{\mathscr{P}}_{j}^{(k)}(x) \supset B_{\rho_{mr}}(x). \end{cases}$$

LEMMA 2 (Mañé [1], Lemma 1.6). If $x \in \overline{\Sigma(\mathfrak{U}, \varepsilon, r_n, \rho_m)}$, $j \geq j(n, m)$, k = k(n, m) and $\mu(\mathscr{P}_j^{(k)}(x)) \geq \delta \mu(\hat{\mathscr{P}}_j^{(k)}(x))$ then

$$\mu(\hat{\mathscr{P}}_{j}^{(k)}(x) \cap \Sigma(\mathfrak{U}, 2\varepsilon)) \ge \delta\mu(\hat{\mathscr{P}}_{j}^{(k)}(x))$$
.

Since μ is ergodic, there exists $y \in M$ such that

(8)
$$\begin{cases} \lim_{l \to \infty} \frac{1}{l} \# \{1 \le i \le l : f^{i}(y) \in \Sigma(\mathfrak{U}, 2\varepsilon) \cap \widehat{\mathcal{P}}_{j}^{(k)}(x)\} = \mu(\Sigma(\mathfrak{U}, 2\varepsilon) \cap \widehat{\mathcal{P}}_{j}^{(k)}(x)), \\ \lim_{l \to \infty} \frac{1}{l} \# \{1 \le i \le l : f^{i}(y) \in \mathcal{P}_{j}^{(k)}(x)\} = \mu(\mathcal{P}_{j}^{(k)}(x)). \end{cases}$$

Since $x \in \overline{\Sigma(\mathfrak{U}, \varepsilon, r_n, \rho_m)}$, we have that if $f^{i_1}(y)$ and $f^{i_2}(y)$ belong to $\mathscr{P}_j^{(k)}(x)$ for some $i_1 < i_2$ then there exists $i_1 \le i_3 < i_2$ satisfying

$$f^{i_3}(y) \in \hat{\mathscr{P}}_i^{(k)}(x) \cap \Sigma(\mathfrak{U}, 2\varepsilon)$$
.

Indeed, let $0 < r \le r_n$ be as in (7). Then $f^{i_1}(y), f^{i_2}(y) \in \mathscr{P}_j^{(k)}(x) \subset \overline{\mathscr{P}_j^{(k)}(x)} \subset U_r(x)$. Put $\delta_1 = d(\overline{\mathscr{P}_j^{(k)}(x)}, U_r(x)^c) > 0$ where E^c denotes the complement of E. Since $B_{\rho_m r}(x) \subset \operatorname{int} \widehat{\mathscr{P}_j^{(k)}(x)}$, we have $\delta_2 = d(B_{\rho_m r}(x), (\operatorname{int} \widehat{\mathscr{P}_j^{(k)}(x)})^c) > 0$. Take $z \in \Sigma(\mathfrak{U}, \varepsilon, r_n, \rho_m)$ such that $d(x, z) < \min\{\delta_1, \delta_2\}$. Then

$$d(z, f^{i_j}(y)) \le d(z, x) + d(x, f^{i_j}(x)) < r$$
 $(j = 1, 2)$

and hence by Proposition 2 there exists $i_1 \le i_3 < i_2$ satisfying $f^{i_3}(y) \in B_{\rho_m r}(z)$ and $f^{i_3}(x) \in \Sigma(\mathfrak{U}, 2\varepsilon)$. Since $d(x, f^{i_3}(y)) < \delta_2 + \rho_m r$, we have $f^{i_3}(y) \in \hat{\mathscr{P}}_j^{(k)}(x) \cap \Sigma(\mathfrak{U}, 2\varepsilon)$, from which

$$\#\{1 \le i \le l : f^{i}(y) \in \hat{\mathcal{P}}_{i}^{(k)}(x) \cap \Sigma(\mathfrak{U}, 2\varepsilon)\} \ge \#\{1 \le i \le l : f^{i}(y) \in \mathcal{P}_{i}^{(k)}(x)\} - 1 .$$

From (8)

$$\mu(\hat{\mathcal{P}}_{j}^{(k)}(x) \cap \Sigma(\mathfrak{U}, 2\varepsilon)) = \lim_{l \to \infty} \#\{1 \le i \le l : f^{i}(y) \in \hat{\mathcal{P}}_{j}^{(k)}(x) \cap \Sigma(\mathfrak{U}, 2\varepsilon)\}$$

$$\geq \lim_{l \to \infty} \#\{1 \le i \le l : f^{i}(y) \in \mathcal{P}_{j}^{(k)}(x)\}$$

$$= \mu(\mathcal{P}_{j}^{(k)}(x)) \ge \delta\mu(\hat{\mathcal{P}}_{j}^{(k)}(x)).$$

Now define $\Lambda_{\delta}^{0}(n, m)$, for $\delta > 0$, as the set of point $x \in T^{s}$ such that for k = k(n, m)

$$\mu(\mathscr{P}_{j_i}^{(k)}(x)) \ge \delta \mu(\widetilde{\mathscr{P}}_{j_i}^{(k)}(x))$$

holds for an infinite sequence $v(x) = \{j_i\} \subset \{j \ge j(n, m)\}$. Let us put

$$\Lambda_{\delta}(n, m) = \Lambda_{\delta}^{0}(n, m) \cap \overline{\Sigma(\mathfrak{U}, \varepsilon, r_{n}, \rho_{m})}.$$

LEMMA 3. (a) $\Lambda_{\delta}^{0}(n, m)$ and $\Lambda_{\delta}(n, m)$ are Borel sets,

(b) $\mu(\Lambda_{\delta}^{0}(n, m)) \geq 1 - \delta 3^{s} k^{s}$,

(c)
$$\bigcup_{r\geq 1} \Lambda_{1/r}(n, m) = \overline{\Sigma(\mathfrak{U}, \varepsilon, r_n, \rho_m)}$$
 μ -a.e.

Since $\tilde{B}_{\delta}(k,j)_{\mu} = \{x \in T^s : \mu(\mathscr{P}_j^{(k)}(x)) \ge \delta\mu(\tilde{\mathscr{P}}_j^{(k)}(x))\}$ is a Borel set by Lemma 1, we have that

$$\Lambda_{\delta}^{0}(n, m) = \bigcap_{i \geq j(n, m)} \bigcup_{j \geq i} \widetilde{B}_{\delta}(k, j)_{\mu} = \overline{\lim_{j \to \infty}} \widetilde{B}_{\delta}(k, j)_{\mu}$$

is also a Borel set, and by Lemma 1

$$\mu(\Lambda_{\delta}^{0}(n, m)) = \mu\left(\overline{\lim_{j \to \infty}} \widetilde{B}_{\delta}(k, j)\right) \ge \overline{\lim} \mu(\widetilde{B}_{\delta}(k, j)) \ge 1 - \delta 3^{s} k^{s}.$$

Therefore (a) and (b) are proved. To obtain (c) suppose that there exists a Borel set V with $\mu(V) > 0$ such that

$$V \subset \overline{\Sigma(\mathfrak{U}, \varepsilon, r_n, \rho_m)} - \bigcup_{r \geq 1} \Lambda_{1/r}(n, m)$$
.

Since $V \cap \bigcup_{r>1} \Lambda_{1/r}(n, m) = \emptyset$, we have

$$1 \ge \mu(V) + \mu(\Lambda_{1/r}(n, m)) \ge \mu(V) + \left(1 - \frac{1}{r} 3^s k^s\right)$$

for every $r \ge 1$ and so $1 \ge \mu(V) + 1 > 1$, thus contradicting.

LEMMA 4 (Mañé [1], Lemma I.7). Given an open set U considering $\Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^{c}$ there exist sequences $\{x_{i}\} \subset \Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^{c}$ and $\{j_{i}\}$ with $j_{i} \in v(x_{i})$, not necessarily infinite sequences, such that

(I)
$$\{\widehat{\mathscr{P}}_{j_i}^{(k)}(x_i)\}\$$
are disjoint and $\bigcup_i \widehat{\widehat{\mathscr{P}}_{j_i}^{(k)}(x_i)} \subset U$,

(II)
$$\mu(\{\Lambda_{\delta}(n,m)\cap\Sigma(\mathfrak{U},2\varepsilon)^c\}-\bigcup_{i}\hat{\mathscr{D}}_{j_i}^{(k)}(x_i))=0$$
,

where k = k(n, m).

Denote by \mathscr{F} the family of sets $\mathscr{P}_{j}^{(k)}(x)$ with $x \in \Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, \varepsilon)^{c}$ and $j \in v(x)$. Take $A_{1} \in \mathscr{F}$ satisfying diam $A_{1} = \max\{\operatorname{diam} A : A \in \mathscr{F} \text{ and } \overline{A} \subset U\}$. If $A_{1} = \mathscr{P}_{j_{1}}^{(k)}(x_{1})$ for some x_{1} and $\overline{A} \supset \Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^{c}$, then we have

$$\mu(\Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^{c} - \widehat{\mathscr{P}}_{j_{1}}^{(k)}(x_{1}))$$

$$= \mu(\Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon) - \overline{\widehat{\mathscr{P}}_{j_{1}}^{(k)}(x_{1})}) = 0.$$

For the case when $\bar{A}_1 \neq \Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^c$, $U - \bar{A}_1$ is a nonempty open set such that $(U - \bar{A}_1) \cap \{\Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^c\} \neq \emptyset$ since U is open and $\bar{A} \subset U$. Thus we can find $A_2 \in \mathscr{F}$ satisfying diam $A_2 = \max\{\dim A : A \in \mathscr{F}, \ \bar{A} \subset U \ \text{and} \ \hat{A} \cap \hat{A}_1 = \emptyset\}$. Indeed, let $x \in (U - \bar{A}_1) \cap \{\Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^c\}$. Then $\widehat{\mathscr{P}}_{\underline{i}}^{(k)}(x) \subset U - \bar{A}_1$ for some $j \in v(x)$ since $U - \bar{A}_1$ is open and $v(x) = \infty$. Thus $\{A \in \mathscr{F} : \bar{A} \subset U \ \text{and} \ \hat{A} \cap \hat{A}_1 = \emptyset\} \neq \emptyset$. If $\bar{A}_1 \cup \bar{A}_2 \supset 0$

 $\Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^{c}$, then $\{x_{1}, x_{2}\}$ and $\{j_{1}, j_{2}\}$ are sequences satisfying (I) and (II) where $A_{2} = \mathscr{P}_{j_{2}}^{(k)}(x)$. For the case when $\overline{A}_{1} \cup \overline{A}_{2} \neq \Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^{c}$, inductively we have the following (i) or (ii):

(i) There exist finite sequences $\{x_i\}_{i=1}^l \subset A_\delta(n,m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^c$ and $\{j_i\}_{i=1}^l$ with $j_i \in \nu(x_i)$ such that

$$\bigcup_{i=1}^{l} \bar{\mathscr{P}}_{j_i}^{(k)}(x_i) \supset \Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^{c}.$$

- (ii) There exists an infinite sequence $\{A_i\}_{i\geq 1} \subset \mathcal{F}$ such that
 - (a) $\bar{\hat{A}}_i \subset U$,
 - (b) $\hat{A}_i \cap \hat{A}_l = \emptyset$ if $i \neq l$,
 - (c) diam $A_i = \max\{\text{diam } A : A \in \mathcal{F}, \ \bar{A} \subset U \text{ and } \hat{A} \cap \hat{A}_l = \emptyset \ (1 \le l \le i)\}.$

When (i) holds, the sequences $\{x_i\}_{i=1}^{l}$ and $\{j_i\}_{i=1}^{l}$ satisfy (I) and (II). For the case when we have (ii), it follows that

(9)
$$\lim_{i \to \infty} \operatorname{diam} A_i = 0$$

by (c), and

(10)
$$\sum_{i\geq 1} \mu(A_i) = \mu\left(\bigcup_{i\geq 1} A_i\right) \leq 1$$

by (b). From (ii) it is clear that $\Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^c - \bigcup_{i=1}^N \overline{A}_i \neq \emptyset$ for N > 0. Fix N > 0 and take x from the set, then there exists $A \in \mathscr{F}$ such that $x \in A$ and $\overline{A} \cap \bigcup_{i=1}^N \overline{A}_i = \emptyset$ and $\overline{A} \subset U$. If $\overline{A} \cap \overline{A}_{\widetilde{N}} = \emptyset$ for $\widetilde{N} > N$, then there exists $N_1 > N$ such that diam $A > \operatorname{diam} A_{N_1}$ by (9), which is inconsistent with (c). Therefore we have that there exists $N_1 > N$ such that $\overline{A} \cap \overline{A}_i = \emptyset$ ($1 \le i < N_1$) and $\overline{A} \cap \overline{A}_{N_1} \neq \emptyset$. Since diam $A \le \operatorname{diam} A_{N_1}$ by (c), clearly diam $A \le \operatorname{diam} A_{N_1}$ and hence $\overline{A} \subset \overline{A}_{N_1}$. Therefore we have $x \in A \subset \overline{A}_{N_1} \subset \bigcup_{i \ge N} \overline{A}_i$, which shows that

$$\Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^{c} - \bigcup_{i=1}^{N} \overline{\hat{A}}_{i} \subset \bigcup_{i>N} \overline{\hat{A}}_{i}.$$

From this relation we have

$$\mu\left((\Lambda_{\delta}(n,m)\cap\Sigma(\mathfrak{U},2\varepsilon)^{c})-\bigcup_{i=1}^{N}\widehat{A}_{i}\right)=\mu\left((\Lambda_{\delta}(n,m)\cap\Sigma(\mathfrak{U},2\varepsilon))-\bigcup_{i=1}^{N}\overline{\widehat{A}}_{i}\right)$$

$$\leq\mu\left(\bigcup_{i>N}\overline{\widehat{A}}_{i}\right)$$

$$=\mu\left(\bigcup_{i>N}\widetilde{A}_{i}\right)$$

$$\leq \sum_{i>N} \mu(\tilde{A}_i) \leq \delta^{-1} \sum_{i>N} \mu(A_i)$$
.

Since $\sum_{i>N} \mu(A_i) \to 0$ as $N \to \infty$ by (10), we have the conclusion.

To obtain Proposition 3 given an open set U as in Lemma 4 there exist sequences $\{x_i\}$ and $\{j_i\}$ satisfying (I) and (II). Since $x_i \in \Lambda_\delta(n, m) = \Lambda_\delta(n, m) \cap \overline{\Sigma(\mathfrak{U}, \varepsilon, r_n, \rho_m)}$, we have $j_i \geq j(n, m)$ and $\mu(\mathscr{P}_{i_i}^{(k)}(x_i)) \geq \delta\mu(\widehat{\mathscr{P}}_{i_i}^{(k)}(x_i)) \geq \delta\mu(\widehat{\mathscr{P}}_{i_i}^{(k)}(x_i))$ and so by Lemma 3

$$\mu(\hat{\mathscr{P}}_{i}^{(k)}(x_i) \cap \Sigma(\mathfrak{U}, 2\varepsilon)) \geq \delta \mu(\hat{\mathscr{P}}_{i}^{(k)}(x_i))$$
.

Since $\mu(\hat{\mathscr{P}}_{j_i}^{(k)}(x_i)) = \mu(\mathscr{P}_{j_i}^{(k)}(x_i) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^c) + \mu(\mathscr{P}_{j_i}^{(k)}(x_i) \cap \Sigma(\mathfrak{U}, 2\varepsilon))$, we have

$$\mu(\hat{\mathscr{P}}_{j_i}^{(k)}(x_i)) \geq \frac{1}{1-\delta} \mu(\hat{\mathscr{P}}_{j_i}^{(k)}(x_i) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^c)$$

and so

$$\begin{split} \mu(U) &\geq \sum_{i \geq 1} \mu(\hat{\mathscr{P}}_{j_i}^{(k)}(x_i)) \geq \frac{1}{1 - \delta} \sum_{i \geq 1} \mu(\hat{\mathscr{P}}_{j_i}^{(k)}(x_i) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^c) \\ &= \frac{1}{1 - \delta} \mu\left(\bigcup_{i \geq 1} \hat{\mathscr{P}}_{j_i}^{(k)}(x_i) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^c\right) \\ &= \frac{1}{1 - \delta} \mu(\Lambda_{\delta}(n, m) \cap \Sigma(\mathfrak{U}, 2\varepsilon)^c) \;. \end{split}$$

If $\mu(\Lambda_{\delta}(n,m)\cap\Sigma(\mathfrak{U},2\varepsilon)^c)>0$, then we have $\mu(U)>(1/(1-\delta))\mu(\Lambda_{\delta}(n,m)\cap\Sigma(\mathfrak{U},2\varepsilon)^c)$ for some open set U, thus contradicting. Therefore $\mu(\Lambda_{\delta}(n,m)\cap\Sigma(\mathfrak{U},2\varepsilon)^c)=0$. We claim that for $n\geq 1$ and $m\geq 1$, $\Sigma(\mathfrak{U},2\varepsilon)\supset\overline{\Sigma(\mathfrak{U},\varepsilon,r_n,\rho_m)}$ μ -a.e. Indeed, if $\mu(V)>0$ where $V=\overline{\Sigma(\mathfrak{U},\varepsilon,r_n,\rho_m)}-\Sigma(\mathfrak{U},2\varepsilon)^c$, then $V\subset\bigcup_{r\geq 1}\Lambda_{1/r}(n,m)$ μ -a.e. by Lemma 3(c). Since $\Lambda_{\delta}(n,m)\subset\Lambda_{\delta'}(n,m)$ when $\delta>\delta'$, there exists r>0 such that $V\subset\Lambda_{1/r}(n,m)$ μ -a.e. and so $\mu(\Lambda_{1/r}(n,m)\cap\Sigma(\mathfrak{U},2\varepsilon)^c)\geq\mu(V)>0$, which is a contradiction. Therefore

$$\Sigma(\mathfrak{U}, 2\varepsilon) = \bigcup_{n \ge 1} \bigcup_{m \ge 1} \overline{\Sigma(\mathfrak{U}, \varepsilon, r_n, \rho_m)} = M \qquad \mu\text{-a.e.} \quad \text{(by (6))}$$

and so $\mu(\Sigma(\mathfrak{U}, 2\varepsilon)) = 1$. The proof of Proposition 3 is completed.

References

- [1] R. Mañé, An ergodic closing lemma, Ann. of Math., 116 (1982), 503-540.
- [2] R. Mañé, A proof of the C¹ stability conjecture, Publ. Math. IHES, 66 (1987), 161-210.
- [3] C. Pugh and C. Robinson, The C^1 closing lemma, including Hamiltonian, Erg. Th. Dynam. Sys., 3 (1983), 261-313.
- [4] L. Wen, The C^1 closing lemma for non-singular endomorphisms, Erg. Th. Dynam. Sys., 11 (1991), 393-412.

Present Address:

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY MINAMI-OHSAWA, HACHIOJI-SHI, TOKYO 192–03, JAPAN