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In order to solve the C* Structural Stability Conjecture by Palis and Smale, Mafie
[1] established the ergodic closing lemma for diffeomorphisms. In 1987 he gave in [2]
an answer to the conjecture by using original ideas. The ergodic closing lemma is a
result that captures the asymptotic behaviour of orbits in the ergodic theory. This result
is based on Pugh’s closing lemma [3].

Our aim is to prove the ergodic closing lemma for regular maps of closed manifolds.
Let M be a closed C® manifold and C'(M) be the set of C' maps of M with the
C!-topology. feC!(M) is called to be regular if for every xeM the derivative
D.f: T,M— T, M is surjective. R'(M) denotes the set of regular maps in C Y(M) with
the relative topology of C'(M). For fe RY(M), Q(f) denotes the nonwandering set;
Q(f)={xe M: for every neighborhood U of x there is n>0 such that f(U) N U# a3,
and Per(f) denotes the set of periodic points.

Recently, in [4] L. Wen showed the C! closing lemma for regular maps as follows.

TueorReM (L. Wen). Let f: M—M be a regular map and p be a nonwandering

point of f. Then for any C* neighborhood U of f in R'(M) and any neighborhood U of
p in M there is geU such that Per(g) " U# .

The idea of the proof is in Proposition 1 below. Let f€ R(M) and go€ M be a
non periodic point of f. We define an infinite sequence Q={Q,: n=0} of disjoint
non-empty finite sets Q,={f "(qo)} for n=0,1,2, ---. Then f: Q'—Qo—Q’, where
0'=>,0, such that f maps Q, onto @, , for n>1. An infinite sequence
do>q1s " > qm ° - - is called a branch of (Q, f) if g,€ Q, for n>0.

PROPOSITION 1 ([4]). Under the above notations, for €,>0 there are a number
po>2 and an integer uo>1 such that for any finite ordered set P={po, py, * - -, P} in
T, M, there is y€ P\ U(p,, pol po—p: ) such that for any branch X' = {Go>q1s " "5 G "}
of (Q, f), there is we P~ U(p,, pol po—P: ), where w is before y in the order of P, together

with po+ 1 points co, €1, ***, Cuy in U(Pys Pol Po—P: 1), not necessarily distinct, satisfying
the following two conditions (a) and (b),
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(@) co=w and Cuo=Y >
®) 1T, ) =T, ews )1 <Ed (T News1)s Ty H(A)  for 0<n<po—1,

where |-| denotes a Riemannian norm of TM, U(x,r)={ze T, M:|x—z|<r},
T,=D, f": T,M—>T, M (n20), A= P(w, y) U oU(p,, pol po—p;|)s P(w, y)={peP: pis
after w and before y}, and d’ is the distance on T, M induced by | - |.

From Proposition 1 we can derive the following

PROPOSITION 2. Given feR' (M), pe M, ¢>0 and a neighborhood U of f there
exist r>0 and p>2 such that if xe Uy(p) with 0<F<r and f™(x)e U p) for some m>0
then there exist 0<m, <m,<m and geW such that

(1) f™x)eU,(p) and [f"(x)eU,p),
(ii) gmTm(™(x)="(x),
() g=f on {M—B(f™',p,my~m)} U{M—B(f}, f"(x), my—m,)},
(iv) d((™x), g"(f"“(x)))s:-: Jfor 0<n<m,—m,,
where Udp)={zeM : d(p, z) <&}, B 1 x, m= U;":o Uzef-,(x) Bz) and B,(2)= U(2).

This proposition is a result corresponding to Lemma 1.2 of Maiié [1] and it will
play an essential role to prove Theorem stated below.

Let f'e RY(M) and M) be the set of all f-invariant probability measures defined
on the Borel sets on M. We define Z(f) as the set of points xe M such that for every
neighborhood U of f and every £>0 there exist ge U and ye M such that yePer(g),
g=fon M—B,(f!, x,m) and d(f"(x), g"( y))<s for all 0 <n<m, where m is the mini-
mal period of y for g.

If W is a neighborhood of f and ¢>0, we let Z'(U, ¢) be the set of points xe M
such that there exist ge U, y € M and m > 0 satisfying g™(y)=y,g=f on M — B,(f 1, x,m)
and d(f"(x), g"(y))<e for all 0<n<m.

From Proposition 2 it follows that the interior of Z'(2, &), Z(!, &), is non-empty.
Indeed, let f™!(x) be as in Proposition 2. Then f™(x)e Z'(U, &)< Z(U, 2¢) if y= S™(x)
and m=m; —m,. Choose a basis {U,} of neighborhoods of f and a sequence {eq}
converging to 0. Then we have

1) 2(f)= Dl 22U, &,) .
If we establish (1), then Z(f) is a Borel set. (1) is checked as follows.

By the definition it is clear that Z(f)>(),., U, &,). Let xe Z(f) and n >1. Then
there exist ge U,, ye M and m> 0 such that g™(y)=y, g=f on M — B, ,(f', x, m) and
d(fi(x), g/(y)) <e,/2 for 0<j<m. Take 6>0 such that if d(w,z)<é then for 0<j<m
and Ze f7J(z) there exists we f~I(w) satisfying d(W, ) <e,/2 and d(fi(w), fi(z) <
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g,/2 for 0<j<m. Then, for we Uyx) we have
B (fhw,m)D By u(f "l % m),
and hence
f=g on M—B,(f~',w,m).
Moreover we have
d(fIw), g’ () <d(fiw), fix)+d(f(x), g(»)
<e, O<j<m).

Thus Uyx)cZXZ'(M,,e,) and so xeZ(U,¢,). Since n is arbitrary, we have xe

(Vns1 2y, &) |
Notice that X(f) is not necessarily f-invariant. The following proposition is based
on the remarkable proof of the ergodic closing lemma for diffeomorphisms by Mafié

(RN)X
PROPOSITION 3. For every fe€ RY(M), every neighborhood W of f and every e>0
the following holds:
pE, g)=1
for every ergodic peM(f).

It is well known that if a set has total measure for every ergodic measure in (/)
then it is total for every measure in M(f). Therefore we have the following theorem
which is an aim of this paper.

THEOREM. If f e RY(M), then X(f) has total measure for every measure in MM(f).

To obtain Theorem it remains only to prove Propositions 2 and 3.

First we give the proof of Proposition 2. If pePer(f), then the conclusion of
 Proposition 2 is clear. Thus we prove the case when p¢Per(f). Let é>0, U be a
neighborhood of f and d, be a distance of R*(M). Then there exists 0 <7 <g/2 such
that d,(f, g) <2y implies g€ W. Denote T, M(¢)={ue T, M : |u|<¢&} for xe M and take
&>0 such that exp,: T, M(£)— M is an embedding for xe M. Then we can find ¢,>0
such that for ge R'(M), xe M and ¢y, ¢, € T,M with B(c,, | ¢; —c; |/eo) = T,M() there
exists a diffeomorphism A: M— M satisfying

(1) h(exp(cz))=expylcy),
@ (ii) supp(h) cexp(B(c2, | ¢1—c2l/80)) 5
(i) dy(hog,9)<n. '

Put g,=p. Let (Q, /), po>2 and uo=>1 be as in Proposition 1 for g,>0. Then there
exists 0 <ry<¢/4 such that the following (3) holds. For 0<ro<r,
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((a) if W is a connected component of | J“°*" £ ~"(B,.(p)), then there is
0

n=0
a unique ge€ :,“’;(',1 ~"(p) satisfying ge W, and so we write
3) 4 W,.(q)= W, since W depends on g and rj,
(b) f"|W,(9): W, (q9)—~B,,(p) is a diffecomorphism if f™(g)=p for some
0<n<py+1,
[ (©) W,(@)=U.,.(q) for every ge | )42y £~ "(p).

Furthermore, by Lemma 4.2 of [4] there exist 0 <A <r, and f; € R}(M) with d,(f, f1) <
n satisfying

@ fi=expgye° (qu) °€Xp, ! on W;./4(4) for ge U:?—_l S (p),

€ f =expf(q)°(Df(q)fuo)—l °exPp_1 o f#*1 on W,,4(q) for ge f~*"(p),
4) (f) fheti=sfro*1 on Wy(q) for ge f~""(p),

(8 fi=fon M“’U{Wz(‘l) ‘g€ :0;11 ~"(p)}-

Define a metric d’ of B, (p) by
d'(w, z2)=|exp, '(W)—exp, '(2)|  (W,z€B,(p).

Then we can check the existence of r>0 and p>2 satisfying for 0<7<r and
w, ze U p)

Uw, pod'(W, 2) ; Y= U,Ap)= By 4(p) -

Indeed, put r=21/(8py+4)<ro/(2po+1). Since d(y, p)=d'(y, p) for ye B, (p), we have
d'(w, z) < 2F and so

Uw, pod'(W, 2) ; d)c U(w, 2p,7 ; d') .
Since d'(w, p)<F,
Uw, pod'(w, 2) ; 'Y= U(p, 2po+ 1)F ; d')= U4+ 1)/ P)

and so p=2p,+1 is our requirement.

Let us take 0<7<r, xe U;(p) and m>0 with f™(x)e U«(p), and P={x, f(x), - - -,
S™x)} N B;,4(p) is represented as P={p,, p;, * * *, p,} Where po=x and p,= f™(x) (since
U:(p) < B;,4). Then we have

U(p,, pod'(Po>py) 5 d)=U p?(P) < B,.4(p) -
Letting P’ =exp, (P)and p;=exp, '(p)for0<i<t, wehave P'={pj, p}, - - -, p;} and
U(p:, pol po—pil) =exp, {(U,#p)) =exp, (B a(p)) -

By Proposition 1 there is y’'€ P' n U(p;, polpo—p:|) such that for any branch X =
{@0» @1, -} of (@, f) there is w'(2)e P' N U(p;, pol po—p:]). Let m(X)=exp,(w'(2))
and y=exp,(y’). Then f¥W(Z))=y for some ¥ >0. Since A<r, and (3) holds, we
have Y >puo+1. Put z=f¥#~Y(w), then f“*'(z)=y and ze W;,(q,,+,) for some
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duo+1€ S " 1(p). Choose and fix a branch I'={g,, §;, -} of (Q,f) satisfying
Guo+1=0qu,+1> then for I' there exist w'e P’ n U(p,, pol po—p:!) and co, ¢, "+, ¢, €
U(p., polpo—p:|) satisfying (a) and (b) of Proposition 1. Then f?(w)=y for some
© > o+ 1 where w=exp,(w’). Thus, by Proposition 1 (b) and (2) for 0<n<pu,—1 there
exists a diffeomorphism 4,: M— M with d,(h,° f,, f1) <n satisfying

h(exp (D, /™~ (cns D) =expg,(Dg, fM) ™ (cr) 5
and so define a map ge R'(M) by

{hn°f1 on Wy(Gn+1) O<n=<p,—1),
g= .
f1 otherwise .

Since d,(g, f) <25, we have gell, and g®(w)=w by the definition of g. Since w= f™!(x)
and y= f™¥(x) for some 0<m,<m,<m and w, ye U(p,, pd'(po, p); d)<= U, p), (i)
is satisfied, and g™~ ™ (f™(x)) = g®(w) = f™(x) ensures that (ii) is satisfied. By the defini-
tion of g we have

) eM: fO#gic U U WA)<BLU L, pmy—my).

i=0 qef~i(p)
o+1

Since f"“(x)eB,l/‘,,(p) for every gel {2,
such that x" e W, ,(q), and so

“i(p) there exists x’e(J s fTI(f™(x)

uot+1 pot+1
U U W< U U B
i=0 qe f~Up) i=0 x'efi{fm1(x))

=B(f 1 ™, my—my)

from which we have (iii). It only remains to prove (iv). Let us choose a sequence
0<n,<n,<- " <Mm<N,,=my—m;—po—1<m,—m, satisfying [™(f™(x))e Wy(q,)
for some g;€ £ ~*o~ (p) and (/™ (N ¢\ {Wi@): g€ fH~ (p)} if ntm (1 <i<k+1).
Since f"(f™ N EU 0<jcuor1 U ges-im Wa@) (0<n<n;—1), we have

fSfUmx)=g"("(x))  for 0<n<n,.

Since f™(f™(x))=g"(f/™(x)) € Wi(q,), we have f"(f™(x), g"(f/™(x)) € Wi(f"""(qy)) for
ni+1<n<n;+p,+1, and so by (5)

d(f"(f™x), ™)) <2A<e  for nm+1<n<n;+po+1.

From Proposition 1 (b) and (2) we have g"(f™(x))= f1(f™(x)) forn, + 1 <n<n; +puo+1
and so by (4) (f)

g () = S ().
Repeating this process we obtain (iv). The proof of Proposition 2 is completed.

For the proof of Proposition 3 Maiié [1] prepared a measure theoretical proper-
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ty about certain partitions of the s-torus T*=S!xS!'x---xS! for the case of
diffeomorphisms. Our proof is of course in the framework of Mafié. We repeat the
techniques described in [1], though it seems that the description is helpful for us.

We say that a set A< T* is a cube if it can be written as A=1, x - - - x I, where the
sets /; are intervals in S* with equal lengths. If p, is the middle point of I, we say that
the point (py, - - -, p,) is the center of the cube A. The length of the intervals 7, is called
the side of the cube. For each ke Z* let 2P <P < - - - be a sequence of partitions of
T* each one containing a finite set of disjoint cubes whose union is T*. Suppose also
that the side of the atoms of 2¥ is 2n/k’. For every atom Q of #{ we can associate
cubes Q and § having the same center as Q and sides 2z/k’~ ! and 6n/k’~! respectively.
If xe T*°, we denote by #{(x) the atom of #¥ containing x.

For k>1, j>1, >0 and a Borel probability measure u of T* define

By, k)= {xe T" : WPP())=SuPP(x))} .

LEMMA 1 (Maiié [1]). B,(, k), is a Borel set. If k is odd, then u(B,(j, k)=
1 —083%°.

Let /=k". Then there exists {x;, - - -, x;} = T* such that for every Q e % there is
a unique point xe{x;, ---,x;} with xeQ. Thus By, k),=|/, ¢s PP(x) where
S={1<i<l: W(PM(x)) <5u(P{(x))}, and so By(j, k), is a Borel set. Since k is odd, the
sets #¥)(x,)) (1 <i<!) cover each atom of P exactly. Thus we have

w{xe T : WPPx) <o PP(x)}) = Zs PP x)

<6y, W(PP(x)
ieS
1
<8 Y. uPP(x)

=5__i PR UPH(x)

=03%"*
and so
WByG, ) =1—p({xe T* : WPP(x)) < SuPP(x)})
>1-03%.
The proof of Lemma 1 is completed.
Let us put
K={J{0AUod: Ae PV, k=1, j=>1}.
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Then for every Borel probability measure u of T there is ye T° such that pu(z(K))=0
where t,: M— M is a translation defined by t,(x)=y+x for xe T". This is checked as
follows: Let us put

K, ;=\J{pAdvod: AePP, k=1, j=1},

Kk=U{Kk,j :]Zl} .
Then K={J{K,:k>1} and so K is a Borel set. For z=(z;, -++,z)eT* and 0<1<1
we denote by z(f)=(tzy, * - *, tz)€ T®. Take and fix z=(z,, - -, z,)e T* with z;#0, 1
(1<i<s). We claim that there exists a sequence {t,}ns1 With (1 2y<t,<@/2)" -
(1/2)"** such that u(t,(K) N T.,(K)) =0 if /#n. Indeed, for every ¢>0 put

811=8(1/2)ll s
&0, = 8,(1/2)"
€110, =E1,,1,(1/2)'
811.!’1,12.!'2=8h-iulz(1/2 -,
for 1., i,, I,, i =1 and take a set
C={c}={(a(i), B(i) : a(DeN, B()eN}  with ¢;=(1, 1)

such that every pair (a,b)e NxN is contained in C and c;#c; if i#j. Put
I,=[(1/2),1—(1/2)*] where [ , ] denotes a closed interval. Then tel, implies
WK, O T Koy )= (K11 N T,4(Ky,1))=0 since K, =. Since K., ,, and K., are
finite lattices, there exists a closed interval I = I, with int I’ # ¥ such that for ¢, '€ I

with t# ¢’

(Kca(Z) N tz(t)(KCb(z))) N (Kca(z, N ‘Ez(,:)(ch(z))) = Q s
from which

1

#{t € I’l . ”(Kca(z) M tz(t)(KCb(Z)))Z sca(z)-%(z)} < e

Ca(2)»Cb(2)
Therefore we have that there is a closed interval I, = Iy <, with int [, # & such that
for every tel,
“(Kt‘a(z) N tz(!)(ch(Z))) < sca(l), b(2) *
Repeating this process we have a sequence of closed intervals I; >I,>--->L> -
such that
Ii < {t € Ii— 1 I"(Kc,u) N tz(t)(ch(i))) < eca(i), b(i)}

i» 1 I Then we have

for i>2. Take te()
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MWK N 1,,(K) = N(L}1 (Kca(,., N Tz(t)(ch(u))

< ,Zl 'u(Kcam N T Keyy))

<éE.

From this result, for every n>1 there is t(n)e[(1/2), 1—(1/2)?] such that uw(Kn
Toam)(K)) < 1/n. Assume that #n)—¢, as n— oo, then we have

MK N T,4,(K)=0.

Repeating this process we obtain the claim. By the claim, for every n>0 there exists
MNn)e T; such that u(z,,)(K))<1/n. Indeed, if it is false, then there is £>0 such that
u(t(K))> ¢ for every ye T*. Let z and {#(i)} be as in the claim. Then we have

1=u(T*)= l‘(yl Taein(K ))

= ':L-:l #(Tz(t( i))(K)) =0,

which is a contradiction. Assume that y(n)—ye T as n— oo, then we have 7,(K)=0.

Therefore we may assume that u(K)=0. Since M is isometrically embedded in T*
for large s, we suppose that M c T° and we consider that an ergodic measure of
M is a Borel probability measure on T°.

To show Proposition 3 Maiié prepared furthermore the following three lemmas.
First define Z(U, ¢, r, p), whose r>0, p > 2, as the set of point x € M such that if y e Ux(x)
for some 0 <7<r and f™(y)e Uj(x) for some m>0 then there exist 0 <m, <m, <m and
g € U satisfying (i), (ii), (iii) and (iv) of Proposition 2. We can not check that X(U, ¢, r, p)
is closed in M. However, if r,>0 and p,>2 are monotone sequences converging to 0
and + oo respectively then

(6) M=) U 2, ¢ r, p

nz2im=>1

for every neighborhood U of f and every e>0. Remark here that for integers n>1 and
m=1 there exist an odd integer k=k(n, m)>0 and an integer j(n, m)>0 such that if
j=j(n, m) and x e T*® then there is 0 <r<r, satisfying

o {(i) PP < U,

(i) intPP(x)oB, (x).

LEMMA 2 (Maiié [1], Lemma 1.6). If xe Z(U, ¢, 1,,, p,), j=j(n, m), k=k(n, m) and
HW(PP(x)) = Su(PP(x)) then
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WPP() A U, 26) = Su(PP() .
Since u is ergodic, there exists y € M such that
.1 ) . .
lim —#{1<i<!/: fi(y)e ZU, 2&) N PP(x)} = w(ZQL, 2¢) " PP(x)) ,

1= 0 l

(3)
lim r H{1<i<l: fi(y)e P2P(x)} = U(PP(x)) .

1— o l

Since xe 2, ¢, r,,, p,,), we have that if f"(y) and f%(y) belong to 2{(x) for some i; <i,
then there exists i, <iy <i, satisfying

Fi(y)e PP(x) A ZQU, 28) .

Indeed, let O<r<r, be as in (7). Then fi(y), f*(y)e PP (x)=PP(x)= U,(x). Put
d4 =d(.@§x)(x), U/(x))>0 where E° denotes the complement of E. Since B, .(x)c
int 2¥(x), we have 8,=d(B,, (%), (int PP (x)))>0. Take zeZ(U, ¢, r,, p,) such that
d(x, z)<min{d,, d,}. Then

d(z, fHy)<d(z, x)+d(x, fo)<r  (=1,2)

and hence by Proposition 2 there exists i; <iy<i, satisfying f*(»)eB, [(z) and
fi(x)e Z(U, 2¢). Since d(x, f3(})) <0, + par. We have f2(y)e PP(x) N Z(Y, 2¢), from
which

#{1<i<l: fi(»)ePP(x) N ZU, 2e)} = #{1 <i<!: fi(»)e PP} 1.
From (8)

HPW(x) A 2, 2e)=lim #{1 <i<]: fi(y)e PP(x) N 2, 28)}
1=

>lim #{1<i<!: fi(y)e P2P(x)}

1- oo
= WPPR)) = Su(PP)) .
Now define A3(n, m), for §>0, as the set of point xe T* such that for k= k(n, m)
WPP () = Su(PP(x)
holds for an infinite sequence v(x)= {j;} = {j=j(n, m)}. Let us put
An, m)y= A, m) 0 ZQU, &, 1, ) -

LEMMA 3. (a) AX(n, m) and Ayn, m) are Borel sets,
(b) w(A3(n, m)=1-063%k",

© U, z1414n, m) =3, ¢, 1, py) H-a.e.
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Since By(k, j),= {xe T* : f(P¥(x)) > u(#{(x))} is a Borel set by Lemma 1, we have
that ‘

Afm,my=_ () U Bylk, j),=lim By(k, j),

i2jn,m)jzi j— o

is also a Borel set, and by Lemma 1
w(An, m»=u(ﬁ By(k, f)) >1im p(Byk, )= 1 —83%° .
j—= oo

Therefore (a) and (b) are proved. To obtain (c) suppose that there exists a Borel set V'
with u(¥)>0 such that

VXU, e, r,, pp)— U Ay(n, m).
r>1

Since V|, A1(n, m)= &, we have

12 (V) + Ay, m»zﬂ(V)+(1—}3’ks)

for every r>1 and so 1>u(¥V)+1>1, thus contradicting.

LEMMA 4 (Maiié [1], Lemma 1.7). Given an open set U considering Az n, m)
S, 2e)° there exist sequences {x;} = Asn,m)n (U, 2&)° and {j;} with j,evx;), not
necessarily inﬁm’te sequences, such that

@ {PV(x)} are disjoint and U PP(x)cU,
(AD  p({Agn, m) o 2, 2¢)°} — UW""(xi»=o,

where k= k(n, m).

Denote by # the family of sets 2{(x) with x e A,(n, m) » Z(U, &) and je w(x). Take
A, e satisfying diam 4, =max{diam 4 : Ae F and AcU}. If 4, =2{(x,) for some
x, and 4> Axn, m) n ZQ, 2¢), then we have

#Ay(n, m)  ZQU, 26 — PPxy))
= (A n, m) A ZQU, 26)— PP(x,))=0 .

For the case when A, 3 A,(n, m) n T, 2¢)°, U —Al is a nonempty open set such that
(U—A4,) " {Ag(n, m) n ZU, 26)°} # I since Uis open and 4 = U. Thus wecan find 4, € #
satlsfylng diam 4, =max{diam 4 : Ae #, AcU and AnA,=F}. Indeed, let xe
(U—A,) N {Agn, m)~ T, 2¢)°}. Then 9?’""(x)c U—A4, for some je v(x) since U— A1
is open and #v(x)=oo0. Thus {4eF :AcU and 4 mA,-Q}#Q If A1 qu
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Ag(n, m) nZ(U, 2¢), then {x,, x,} and {/j,, j,} are sequences satisfying (I) and (II) where
A, =2{)(x). For the case when A, U Ay P Ayn, m) n U, 2¢), inductively we have the
following (i) or (ii):

(i) There exist finite sequences {x;};!, A4, m)nZ(Q,26)° and {j;};<, with
Ji€v(x;) such that

r
_U PP (x)> Ag(n, m) " 2, 28)° .

(i) There exists an infinite sequence {A4;};5 1= such that
(@) A,cU,
(b) A,nA,=g if i#l,
‘ (c¢) diam 4, max{dlamA AeF, AcUand An4d,=F (1<i<i)}.
When (i) holds, the sequences {x;};., and {j;};., satisfy (I) and (II). For the case when
we have (ii), it follows that

) lim diam 4;=0

by (c), and

(10) > #(Ai)=u(U Ai)sl
i21 i>1

by (b). From (ii) it is clear that A4n, m) n ZQL, 2e)f — | J_, 4,# & for N>0. Fix N>0
and take x from the set, then there exists 4e€ # such that xe 4 and AnUY 4=0
and A= U.If A n A 3= & for N> N, then there exists N, > Nsuch thatdiam 4 >diam A4y,
by (9), which is inconsistent with (c) Therefore we have that there exists Ny >N such
that 4 N A @ (1<i<N,) and A N AN‘ . Since diam 4 <diam Ay, by (c), clearly
diam 4 <diam A, and hence Ac AN Therefore we have xe A < Ay, = J,. y 4i» which
shows that

Ayn, m) A S, 26)° — U A,c U
i=1 i>N
From this relation we have
N

u((A,,(n, m) 2, 26)— U Ai)=u((A6(n, m) o 201, 26) — U 2)

= i=1
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<Y wA)<s7'Y w4,).

i>N i>N
Since Y .  #(A4)—0 as N—oo by (10), we have the conclusion.

To obtain Proposition 3 given an open set U as in Lemma 4 there exist sequences
{x;} and {j;} satisfying (I) and (II). Since x; € Agn, m)= Ay n, m) n Z(U, ¢, r,, p,,), We have
Ji=j(n, m) and w(PP(x)) = Sp(PP(x;)) = d(P#(x;)) and so by Lemma 3

WPP(x) N 2, 26) = Sp(PP(x) -
Since w(P¥(x,))= WP Y(x;) " Z(U, 2e)f) + w(PP(x;) N Z(U, 2¢)), we have

. 1 N
HPP(x)) = T3 H(PP(x) N Z(U, 2€))
and so

- 1 -
uU)= 3. ﬂ(?}'f’(xi))zl—:g .:Z.l WZPFAx) 0 Z(U, 2¢))

iz1

b #( U 29(x) n Z(, 2a)‘)

i1

=1_1_5 w(Ag(n, m)~ EQU, 2¢)) .

If w(Axn, m)n (U, 2¢)°)>0, then we have u(U)>(1/(1—90))u(Asn, m) n Z(Q, 2¢)°) for
some open set U, thus contradicting. Therefore (A (n, m) N Z(U, 2¢))=0. We claim
that for n>1 and m>1, XU, 2e)>X(U, ¢, r,, p,,) u-a.e. Indeed, if wW(¥)>0 where
V=3I, z¢,r, pm)—Z, 2, then V<l ,,, A,,n,m)p-ae. by Lemma 3(c). Since
Ag(n, myc Az(n, m) when 6> 6, there exists r>0 such that V<A, ,(n, m) y-a.e. and so
WAy n, m) A Z(U, 2e)) > pu(V) >0, which is a contradiction. Therefore

2= U 2, &r, p)=M  p-ae. (by (6))

n>1lmz1

and so u(Z(U, 2¢e))=1. The proof of Proposition 3 is completed.
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