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\S 1. Introduction.

Let $p$ be a prime and $k$ be a field of p-elements. We fix a finite p-group $P$ and
denote by $H^{*}(P)$ the cohomology ring of $P$ with coefficients in $k$ . For a finite group
$G,$ $O^{p}(G)$ means the subgroup of $G$ generated by the p’-elements.

Evens and Priddy [3] introduced the ring of universally stable elements:

$I(P)=\bigcap_{G}{\rm Im}(res;H^{*}(G)\rightarrow H^{*}(P))$ ,

where $G$ runs over all finite groups with $P$ as a Sylow p-subgroup. Then $H^{*}(P)$ is a
finitely generated $I(P)$-module and the above intersection can be taken over a finite
collection of $G’ s$ .

They observed two cases. First $I(P)=H^{*}(P)^{GL\langle P)}$ , if $P$ is an elementary abelian
p-group. Secondly $I(P)=H^{*}(G)$ for some $G$ with $P$ as a Sylow p-subgroup, if $P$ is a
dihedral group, a quaternion group or a semi-dihedral group.

Extending the former result for $p=2$ , we show that $I(P)$ is an invariant subring of
$H^{*}(P)$ , if $P$ is an extension of a cyclic group of order 2 by an elementary abelian
2-group. (If $|P|$ is given and $|P|\geq 8$ , there is only one exception.) The ring
structure of $H^{*}(P)$ was determined by Quillen [6]. An example of $P$ is an extra-special
2-group [5].

THEOREM A. Let $p=2$ . If $P$ is an extension of a cyclic group of order 2 by an
elementary abelian 2-group, then we have

$I(P)=H^{*}(P)^{O^{2}(Out(P))}$ ,

except when $P$ is isomorphic to the direct product of a dihedral group of order 8 and an
elementary abelian 2-group. In this case $I(P)$ is not the subring of invariants of any
subgroup of Out$(P)$ . More precisely, there is an element of $H^{1}(P)^{Out\langle P)}$ which does not
belong to $I(P)$ .
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Let $P$ be an extension of a cyclic group of order 2 by an elementary abelian
2-group. Then it is well-known that $P$ is isomorphic to an elementary abelian 2-group
or the direct product of $D^{n}C(n\geq 0),$ $D^{n}(n\geq 1)$ or $D^{n-1}Q(n\geq 1)$ and an elementary
abelian 2-group. No two of these groups are isomorphic. Here $C$ is a cyclic group of
order 4, $D$ is a dihedral group of order 8 and $Q$ is a quatemion group of order 8. Also
$D^{n}C,$ $D$“ and $D^{n-1}Q$ are central products of these groups. We give this classification in
\S 4 for completeness.

We list $O^{2}(Out(P))$ , when $P$ is an elementary abelian 2-group or $P$ has no direct
factor of an elementary abelian 2-group. In the latter case, Out$(P)$ can be found in
Griess [4] and Huppert [5]. We refer to [1] for classical groups and quadratic forms.
Here $k$ means a field of two elements.

(i) Out$(P)=GL_{n+1}(2)\simeq A_{n}(2)$ , where $P$ is an elementary abelian 2-group of rank
$n+1$ .

$O^{2}(Out(P))\simeq A_{n}(2)$ for $n\geq 2$ ,

$O^{2}(Out(P))\simeq Z/3Z$ for $n=1$ .

(ii) Out$(D^{n}C)\simeq Z/2Z\times Sp_{2n}(2)$ for $n\geq 1$ , where $Sp_{2n}(2)$ is the symplectic group of
dimension $2n$ . We know $Sp_{2n}(2)\simeq B_{n}(2)\simeq C_{n}(2)$ for $n\geq 2,$ $Sp_{2}(2)\simeq S_{3}$ and $Sp_{4}(2)\simeq S_{6}$ .
These groups $Sp_{2}.(2)$ are simple for $n\geq 3$ .

$O^{2}(Out(D^{n}C))\simeq B_{n}(2)\simeq C_{n}(2)$ for $n\geq 3$ ,

$O^{2}(Out(DC))\simeq Z/3Z$ and $O^{2}(Out(D^{2}C))\simeq A_{6}$ .

(iii) Out$(D^{n})$ is isomorphic to the orthogonal group of dimension $2n$ defined over
$k$ stabilizing a non-singular quadratic form with Witt index $n$ . Except for $n=2$ , the
orthogonal group has a commutator subgroup of index 2. We denote this by $\Omega_{2n}^{+}(2)$ .
Then $\Omega_{2n}^{+}(2)$ is simple and isomorphic to $D_{n}(2)$ for $n\geq 3$ .

$O^{2}(Out(D^{n}))\simeq D.(2)$ for $n\geq 3$ ,

$O^{2}(Out(D))=1$ and $O^{2}(Out(D^{2}))\simeq Z/3ZxZ/3Z$ .

(iv) Out$(D^{n-1}Q)$ is isomorphic to the orthogonal group of dimension $2n$ defined
over $k$ stabilizing a non-singular quadratic form with Witt index $n-1$ . The orthogonal
group has a commutator subgroup of index 2. We denote this by $\Omega_{2n}^{-}(2)$ . Then
$\Omega_{2n}^{-}(2)\simeq^{2}D_{n}(2)$ for $n\geq 3,$ $\Omega_{2}^{-}(2)\simeq Z/3Z$ and $\Omega_{4}^{-}(2)\simeq A_{5}$ . These groups $\Omega_{2n}^{-}(2)$ are simple
for $n\geq 1$ .

$O^{2}(Out(D^{n-1}Q))\simeq^{2}D_{n}(2)$ for $n\geq 3$ ,

$O^{2}(Out(Q))\simeq Z/3Z$ and $O^{2}(Out(DQ))\simeq A_{5}$ .
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\S 2. Preliminaries.

In this section we summarize the facts needed for the proof of Theorem A. We
begin by giving a criterion when $I(P)$ is an invariant subring of $H^{*}(P)$ . The proof is
an improvement of an argument by Evens and Priddy [3, Proposition $B$].

THEOREM B. Suppose $H^{*}(G)\simeq H^{*}(N_{G}(P))$ for all finite groups $G$ with $P$ as a
Sylow p-subgroup. Then

$I(P)=H^{*}(P)^{O^{p}\langle Out\langle P))}$ .

PROOF. Let $\mathscr{C}$ be the set of p’-subgroups of Out$(P)$ . It is easy to see that
$ O^{p}(Out(P))=\langle C|C\in \mathscr{C}\rangle$ and that

$H^{*}(P)^{O^{p}\langle Out\langle p))}=\bigcap_{c_{\epsilon}\wp}H^{*}(P)^{C}$

We show that $H^{*}(P)^{C}$ runs over all subrings of $H^{*}(P)$ of the form $resH^{*}(G)$ ,
where $G$ is some finite group with $P$ as a Sylow p-subgroup. Namely, we can lift each
$C$ to a p’-subgroup $A$ of $Aut(P)$ by the Schur-Zassenhaus theorem. Let $G$ be the
semi-direct product of $P$ by $A$ . Then we have $H^{*}(P)^{C}=resH^{*}(G)$ . Conversely, let $G$

be any finite group with $P$ as a Sylow p-subgroup. Put $C=\varphi(N_{G}(P))$ , where
$\varphi:N_{G}(P)\rightarrow Out(P)$ . Then the assumption gives $H^{*}(P)^{C}=resH^{*}(N_{G}(P))=resH^{*}(G)$ ,

as desired.

The hypothesis of Theorem $B$ is satisfied, if $P$ is abelian, which is a theorem of
Swan [8]. As a generalization of this fact, we know the following.

THEOREM C. Supp$oseP/M$ acts trivially on $H^{*}(M)$ for every maximal subgroup
$M$ of P. If $G$ is a finite group with $P$ as a Sylow p-subgroup, then we have
$H^{*}(G)\simeq H^{*}(N_{G}(P))$ .

This is a special case of a result due to Yoshida [10, Lemma 4.4] and Sasaki [7,

Theorem 1]. Under the hypothesis of Theorem $C$ , it is easy to see that $P$ has no proper
singularity for P-functor $H^{*}$ . Hence we can apply their result. For details, see the
above references.

THEOREM $D$ (Quillen [6]). Let $p=2$ . Suppose $P$ is an extension of a cyclic group
$K$ of order 2 by an elementary abelian 2-group V. Let $E$ be an elementary abelian
2-subgroup of $P$ with maximum rank and put $|P:E|=2^{h}$ . Then

$H^{*}(P)\simeq S(V^{*})/J\otimes k[w_{2^{b}}]$ ,

where $J$ is a certain homogeneous ideal of $S(V^{*})$ and $w_{2^{h}}$ is any element of $H^{2^{h}}(P)$ with
$res_{P,K}(w_{2^{h}})\neq 0$ .

Quillen constructed the element $w_{2^{h}}$ topologically, while we give this by using
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Evens’ norm map [2]:

LEMMA $E$ (Quillen [6, Lemma 4.5]).
$z^{2^{h}}\in{\rm Im}(res:H^{*}(P)\rightarrow H^{*}(K))$ .

If $z$ is a non-zero element of $H^{1}(K)$ , then

PROOF. We keep the notation in Theorem D. We know $K\subseteqq E$, and so there is a
projection $pr_{1}$ : $E\rightarrow K$. We define $\inf_{K,E}$ : $H^{*}(K)\rightarrow H^{*}(E)$ by $pr_{1}^{*}$ . Let $u=\inf_{K,E}(z)$

and $w_{2^{h}}=norm_{E,P}(u)$ , where $norm_{E,P}$ : $H^{*}(E)\rightarrow H^{*}(P)$ is Evens’ norm map. Then
$res_{E,K}(u)=z$ . We put $P=\bigcup_{geP/E}gE$ and $E^{g}=gEg^{-1}$ . Under the assumption of Theorem
$D$ , we have $E^{g}=E$. Applying double coset rule, we have the following:

$res_{P,K}(w_{2^{h}})=res_{P.K}(norm_{E.P}(u))$

$=\prod_{g\epsilon P/E}norm_{K\cap E^{g},K}(res_{E^{g},K\cap E^{g}}(u^{g}))$

$=\prod_{g\epsilon P/E}res_{E,K}(u^{g})$

$=\prod_{g\epsilon P/E}(res_{E.K}u)^{g}$

$=\prod_{geP/E}z^{9}$

$=z^{2^{h}}$

This proves the lemma.

\S 3. Proof of Theorem A.

Let $p=2$ and $P$ be a finite 2-group. Before $pro$ving the theorem we recall the
equivalence of the following three conditions.

(i) $P$ has no homomorphism onto the dihedral group of order 8.
(ii) All subgroups of index 4 are normal in $P$ .
(iii) For any maximal subgroup $M$ of $P,$ $P/M$ acts trivially on $ H^{1}(M)\simeq$

$Hom(M, k)$ .
The equivalence of (i) and (ii) was observed by Yoshida [9, \S 3]. To show that of

(ii) and (iii), we note that there is a one-to-one correspondence between the non-zero
elements of $Hom(M, k)$ and the maximal subgroups of $M$. This correspondence is
compatible with the action of $P$ .

$PR\infty F$ OF THEOREM A. Let $P$ be an extension of a cyclic group $K$ of order 2 by
an elementary abelian 2-group. Suppose $P$ is not isomorphic to the direct product of
a dihedral group of order 8 and an elementary abelian 2-group. Let $M$ be any maximal
subgroup of $P$ . We show that $P/M$ acts trivially on $H^{*}(M)$ . We may assume that $P$ is
not an elementary abelian 2-group.
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It is easy to see that $P$ has no homomorphism onto the dihedral group of order
8. Note that $P$ is isomorphic to the direct product of $D^{n}C(n\geq 0),$ $D^{n}(n\geq 2)$ or $D^{n-1}Q$

$(n\geq 1)$ and an elementary abelian 2-group. Therefore, by the preceding remark, $P/M$

acts trivially on $H^{1}(M)$ .
Next, let $E$ be an elementary abelian 2-subgroup of $M$ with maximum rank. Then

we have $P^{\prime}=K\subseteqq E\subseteqq M\subseteqq P$ . Note that $K\subseteqq M$, for otherwise $P$ is an elementary abelian
2-group. $M$ is also an extension of $K$ by an elementary abelian 2-group. For $M$ and $E$,
we define $w_{2^{h}}$ as in the proof of Lemma $E$ :

$w_{2^{h}}=norm_{E,M}(\inf_{K,E}(z))$ ,

where $|M:E|=2^{h}$ and $z$ is a non-zero element of $H^{1}(K)$ . If $g\in P-M$, then $g$

normalizes $E$. Hence we have

$w_{2^{b}}^{g}=norm_{E,M}(\inf_{K,E}(z))^{g}$

$=norm_{E,M}(\inf_{K.E}(z^{g}))$

$=norm_{E,M}(\inf_{K,E}(z))$

$=w_{2^{h}}$ .
Theorem $D$ shows that $H^{*}(M)$ is generated by $H^{1}(M)$ and $w_{2^{h}}$ , and so $P/M$ acts

trivially on $H^{*}(M)$ . Theorem $C$ and Theorem $B$ immediately imply that $I(P)$ is the
subring of invariants of $O^{2}(Out(P))$ .

For the exceptional case, we use the following notation:
$S$: the symmetric group of degree 4,
$D$ : a dihedral Sylow 2-subgroup of $S$ of order 8,
$C$ : a unique cyclic subgroup of $D$ of order 4,
$V$: an elementary abelian 2-group.

Let $P=D\times V$ and $G=S\times V$. Then $P$ is a Sylow 2-subgroup of $G$ . We let
$M=C\times V$ and define $\chi\in H^{1}(P)$ by $\chi:P\rightarrow P/M=k$ . Clearly $\chi\in H^{1}(P)^{Out\langle P)}$ , for $M$ is a
characteristic subgroup of $P$ . If $\theta\in H^{1}(G)=Hom(G, k)$ and $ M\subseteqq Ker\theta$ , then we have
$\theta=0$ by $G^{\prime}=S^{\prime}$ . Hence $\chi$ does not belong to $resH^{1}(G)$ , and so $\chi\in H^{1}(P)^{Out\langle P)}-I(P)$ .
This completes the proof of Theorem A.

\S 4. Appendix.

Let $k$ be a field of two elements. We fix a finite dimensional vector space over $k$

and denote it by $V$. On the lines of [6], we classify groups of the following type:
(4.1) an extension $P$ of an additive group $k$ by an elementary abelian group $V$.
First we give the complete invariants for the equivalence class of quadratic

forms on $V$. Then we show that there is a one-to-one correspondence between the
isomorphism classes of groups of type (4.1) and the equivalence classes of quadratic
forms on $V$. Lastly we prove that every equivalence class of quadratic forms on $V$ is
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realized by a group in \S 1.
A quadratic form is a function $F:V\rightarrow k$ such that

$f(x, y)=F(x+y)+F(x)+F(y)$

is bilinear. We call two quadratic forms are equivalent if one is transformed into the
other by a non-singular linear transformation. Let

$Kerf=$ {$x\in V|f(x,$ $y)=0$ for all $y\in V$},

$KerF=\{x\in Kerf|F(x)=0\}$ .

The nullity and rank of $F$ are the dimension and codimension of $KerF$, respectively.
We say that $F$ is non-singular if $KerF=0$ . A subspace is said to be isotropic for $F$ if
$F$ is identically zero on that subspace. The Witt index of $F$ is the greatest dimension of
any isotropic subspace for F. (In fact, all maximal isotropic subspaces for $F$ are of the
same dimension. This can be shown in an elementary way below.)

We recall non-singular quadratic forms. When $\dim_{k}V=2n+1$ is odd, then $F$ is
uniquely determined up to equivalence; Witt index is $n$ . When $\dim_{k}V=2n$ is even,
then there are two possibilities up to equivalence; Witt index is $n$ or $n-1$ .

Let $F$ be any quadratic form on $V$ with nullity $r$ . Then $F$ is non-singular on a
complement of $KerF$ in $V$. If the rank of $F$ is $2n+1$ , then Witt index is $r+n$ . If the
rank of $F$ is $2n$ , then Witt index is $r+n$ or $r+n-1$ . Therefore the nullity and Witt
index are the complete invariants for the equivalence class of quadratic forms on $V$.

A group $P$ of type (4.1) defines a quadratic form $F$ on $V$ by $F(x)=\overline{x}^{2}$ , where $x\in V$,
$\overline{x}\in P,$ $\pi(\overline{x})=x$ and $\pi$ is the canonical map. This gives the bijection $H^{2}(V, k)\simeq S^{2}(V^{*})$

compatible with the action of $GL(V)$ . Therefore two groups of type (4.1) are
isomorphic, if the associated quadratic forms are equivalent.

Given a group $P$ of type (4.1), we keep the above notation. For a subspace $W$ of
$V,$ $\pi^{-1}(W)$ is an elementary abelian subgroup of $P$ if and only if $W$ is an isotropic
subspace for $F[6]$ . Also we have $\Omega_{1}(Z)=\pi^{-1}(KerF)$ , where $\Omega_{1}(Z)$ is the greatest
elementary abelian subgroup of the center of $P$ . This follows from $Z=\pi^{-1}(Kerf)$ ,
where $f$ is the bilinear form associated with $F$. Hence two groups of type (4.1) are not
isomorphic, if one differs from the other in the equivalence class of the quadratic form.
Note that the nullity and Witt index are the complete invariants for the equivalence
class of quadratic forms on $V$.

It is straightforward to see that every quadratic $fo$rm $F$ on $V$ is up to equivalence
given by the group $P$ which is an elementary abelian group or the direct product of
$D^{n}C(n\geq 0),$ $D^{n}(n\geq 1)$ or $D-1Q(n\geq 1)$ and an elementary abelian group of rank $r$ . In
the latter case, the groups $D^{n}C(n\geq 0),$ $D^{n}(n\geq 1)$ and $D^{n-1}Q(n\geq 1)$ give three
equivalenoe classes of non-singular quadratic forms mentioned above, respectively;
while the rank $r$ gives the nullity of $F$. This completes the classification of groups of
type (4.1).
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