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Abstract. The weights of a two-dimensional weighted homogeneous polynomial $f$ of degree $h$

corresponding to an isolated singularity are arithmetically characterized by Prof. K. Saito and are called a
regular system of weights. Let $m_{0}$ be the dimension of the vector space of the elements of degree $h$ of the
Jacobi ring of$f$. It is shown that $m_{0}$ is determined by weights and is estimated from below by using the genus
of the central curve and the number of branches of a minimal good resolution of the corresponding
singularity.

Introduction.

Let $(a, b, c;h)$ be asystem of four positive integers such that $\max(a, b, c)<h$ . We
call it a system of weights. Moreover $(a, b, c;h)$ is called regular if the rational function

$\chi(T):=\frac{T^{-h}(T^{h}-T^{a})(T^{h}-T^{b})(T^{h}-T^{c})}{(T^{a}-1)(T^{b}-1)(T^{c}-1)}$

is regular on $C-\{0\}$ and is called reduced if g.c.$d.(a, b, c)=1$ . (We give its precise
definitions in Section 1.) This function is expressed as

$\chi(T)=\sum_{n=\epsilon}^{h-\epsilon}a_{n}T^{n}=T^{n_{1}}+\cdots+T^{n_{\mu}}$ ,

where $\epsilon$ denotes $a+b+c-h$ and $\mu$ denotes $\chi(1)$ . We call each $n_{i}$ an exponent. Let $m_{0}$

and $a_{0}$ denote the coefficients of $T^{-\epsilon}$ and $T^{0}$ in $\chi(T)$ respectively. Let $r$ denote
$\sum(N(a, b)-1)+\#\{e\in\{a, b, c\}|e,\{\prime h\}$ , where $N(a, b)$ denotes $\#\{(p, q)\in Z_{+}^{2}|pa+qb=h\}$

and $Z_{+}$ denotes $\{p\in Z|p\geq 0\}$ . The summation is carried out over all pairs $\{a, b\}$ from
among $\{a, b, c\}$ such that g.c.$d.(a, b)>1$ .

In the case of $\epsilon<0$ , Prof. K. Saito has shown in [Sa2] that $m_{0}=r-3$ for the class
corresponding to a minimal elliptic singularity, which is reduced regular systems of
weights with one non-positive exponent (i.e. $a_{i}=0$ for $\epsilon<i\leq 0$). The purpose of this
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paper is to show more generally that $m_{0}\geq r-3+a_{0}$ for all reduced regular systems ot
weights except type $A_{1}$ (Theorem 2). Moreover if it satisfies $a_{O}=0$ then $r=m_{0}+3$ . Ir
[Sal] and [Sa3], $a_{O}$ and $r$ are geometrically characterized. We shall recall them below.

Let $f(x, y, z)$ denote a weighted homogeneous polynomial over $C$ with weights $a$

$b,$ $c$ and degree $h$ , i.e.,

$f(x, y, z)=\sum_{ai+bj+ck=h}a_{ijk}x^{i}y^{j}z^{k}$
$a_{ijk}\in C$ .

For a regular system of weights $(a, b, c;h)$ , there exists a weighted $homogeneou\{$

polynomial $f$ such that the hypersurface $S=\{(x, y, z)\in C^{3}|f(x, y, z)=0\}$ has only an
isolated singular point at the origin (cf. [Sa3] Theorem 3). The dual graph of tht
minimal good resolution of $S$ is star shaped and consists of a central curve with $som($

branches (cf. [OW]). We know that the genus of the central curve is equal to $a_{0}an($

the number of branches is equal to $r$ ([Sa1](5.6)). When we fix such a polynomial $f$

the universal unfolding for $f$ is a polynomial $F(x, y, z, t_{1}, \cdots, t_{\mu})(\mu=\chi(1))$ such tha
$F(x, y, z, 0, \cdots, 0)=f(x, y, z)$ and

$\frac{\partial F}{\partial t_{i}}(x, y, z, 0, \cdots, 0)$ $(i=1, \cdots, \mu)$

form a C-basis of the Jacobi ring off Then $m_{O}$ is equal to the dimension of the vecto
space over $C$which is spanned by monomials ofdegree $h$ in the Jacobi ring ([Sa3](5.7)).

Namely our Theorem 2 asserts that except the type $A_{l},$ $m_{0}$ can be estimatet
from below by the genus of the central curve $a_{0}$ and the number of branches $r$ .

The proof of Theorem 2 consists of two parts. First we consider the normalizatio]

for a regular system of weights (Definition 2). We give some invariants unde
normalization and determine the case with $a_{0}=0$ in Section 2. Secondly in Section 3
we prove arithmetically that $m_{0}\geq r+3-a_{0}$ in the cases of $a_{0}\geq 1$ and the relatio]

$r=m_{0}+3$ in the case of $a_{0}=0$ .
From the view point of singularities, Prof. Tomari pointed out to the author tha

$m_{O}$ can be estimated from above by [Pi] (Theorem 5.1) and [W] (Corollary 2.9)

Moreover he showed that in case of $a_{0}=0$ our estimation can be obtained by usin
deformation of a singularity. But in case of $a_{0}>0$ he says that it seems difficult to ge
the same estimation in this way.

We give some examples in Sections 2 and 3.
The author heartly thanks Prof. M. Ohtsuki for some advice and Prof. M. Toma]

for precise comments.

1. The normalization of regular systems of weights.

Let $(a, b, c;h)$ beasystem of four positive integers. Asystem $(a, b, c;h)$ such tha
$h>\max(a, b, c)$ is called a system of weights. To a system of weights, we associate
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rational function $\chi(T)$ of a variable $T$,

$\chi(T):=\frac{T^{-h}(T^{h}-T^{a})(T^{h}-T^{b})(T^{h}-T^{c})}{(T^{a}-1)(T^{b}-1)(T^{c}-1)}$ .

We call $\chi(T)$ the characteristic function of the system of weights. This function satisfies
the relation

$\chi(T^{-1})=T^{-h}\chi(T)$ . (1)

DEFINITION 1. A system of weights $(a, b, c;h)$ is called regular, if its characteristic
function $\chi(T)$ is regular on $C-\{0\}$ .

Noting the equation (1), the Laurent series expansion at $T=0$ of $\chi(T)$ is
$\chi(T)=a_{\epsilon}T^{\epsilon}+\cdots+a_{h-\epsilon}T^{h-\epsilon}$ ,

where the index $\epsilon$ denotes $a+b+c-h$ . Moreover, by the equation (1) this expression
satisfies

$a_{i}=a_{h-i}$ $(\epsilon\leq i\leq h-\epsilon)$ (especially $a_{\epsilon}=a_{h-\epsilon}=1$). (2)

Let $m_{0}denotea_{-\epsilon}?$ .

THEOREM 1 ([Sa3](1.6)). A system ofweights $(a, b, c;h)$ is regular if and only if it
satisfies the following properties:
i) $a$ , band cdivide at least one of $h-a,$ $h$ -band $h-c$ ,
ii) $(a, b),$ $(b, c)$ and $(c, a)$ divide $h$ , where $(a, b)$ denotes the g.c.d. of $a$ and $b$ .

PROOF. In [Sa3] (Assertion (1.6)), it is shown that a regular system of weights
$(a, b, c;h)$ satisfies the properties i) and ii). Conversely, if a system of weights $(a, b, c;h)$

satisfies the properties i) and ii) then

$T^{-\epsilon}\chi(T)=\frac{(T^{h-a}-1)(T^{h-b}-1)(P^{-c}-1)}{(T^{a}-1)(T^{b}-1)(T^{c}-1)}$

is a polynomial. Therefore, it is regular. (q.e. $d.$)

Since the property ii) gives $(a, b, c)|h$ , we obtain $(a, b, c, h)=(a, b, c)$ . So except
type $A_{l}$ , which satisfies $a|h$ and $h=b+c$ , by definition, we call a regular system of
weights $(a, b, c;h)$ reduced if it satisfies $(a, b, c, h)=(a, b, c)=1$ . In case of type $A_{l}$ , we
call a regular system of weights $(a, b, c;h)$ with $a=1$ reduced. From now on, we treat
only the cases of reduced regular systems of weights.

We define the normalization of regular systems of weights. Let $(a, b, c;h)$ be a
regular system of weights and let $c_{0}=(b, c),$ $c_{1}=(c, a)$ and $c_{2}=(a, b)$ . $a,$

$b$ and $c$ can. be
expressed as follows,

$a=a^{\prime}c_{1}c_{2}$ , $b=b^{\prime}c_{2}c_{0}$ , $c=c^{\prime}c_{0}c_{1}$ .
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Now since $(a, b, c)=1$ , these relations $(a^{\prime}, c_{0})=(b^{\prime}, c_{1})=(c^{\prime}, c_{2})=1,$ $(a^{\prime}, b^{\prime})=(b^{\prime}, c^{\prime})=$

$(c^{\prime}, a^{\prime})=1,$ $(c_{i}, c_{j})=1$ (for $i\neq]$) can be obtained. By Theorem 1, we have $c_{0}|h,$ $c_{1}|h$

and $c_{2}|h$ . So $h$ can be expressed as $h=h^{\prime}c_{0}c_{1}c_{2}$ . In the following, we shall use these
notations.

DEFINITION 2. Let $(a, b, c;h)$ be a regular system of weights and $g$ denote a
divisor of $(a, b)$ . These $a,$

$b$ and $h$ can be expressed as $a=\tilde{a}g,$ $b=5g$ and $h=\tilde{h}g$ . If $g>1$

then we call the system $(\tilde{a}, 5, c;\tilde{h})$ a reduction of $(a, b, c;h)$ . Repeating reductions,
we get the system $(a^{\prime}, b^{\prime}, c^{\prime};h^{\prime})$ which can not be reduced any more. So the system
$(a^{\prime}, b^{\prime}, c^{\prime};h^{\prime})$ is called the normalization of a regular system of weights $(a, b, c;h)$ .

LEMMA 1. Let $(a^{\prime}, b^{\prime}, c^{\prime};h^{\prime})$ be the normalization of a regular system of weights
$(a, b, c;h)$ . Then we have the following properties:
i) $a|h$ if and only if $a^{\prime}|h^{\prime}$ ,
ii) if $a|h-b$ then $a^{\prime}|h^{\prime}-b^{\prime}$ .

$PR\infty F$ . i) By $(a^{\prime}, c_{0})=1$ ,

$a|h$ $\Leftrightarrow$ $a^{\prime}c_{1}c_{2}|h^{\prime}c_{0}c_{1}c_{2}$

$\Leftrightarrow$ $a^{\prime}|h^{\prime}$

ii) By $(a^{\prime}, c_{0})=(c_{1}, c_{0})=1$ ,

$a|(h-b)$ $\Leftrightarrow$ $a^{\prime}c_{1}c_{2}|(h^{\prime}c_{1}-b^{\prime})c_{0}c_{2}$

$\Leftrightarrow$ $a^{\prime}c_{1}|(h^{\prime}c_{1}-b^{\prime})$ .
So we have $c_{1}|b^{\prime}$ . But by $(c_{1}, b^{\prime})=1$ , we have $c_{1}=1$ . (q.e.d,

This Lemma 1 also gives that $a^{\prime},$ $b^{\prime},$ $c^{\prime}\leq h^{\prime}$ .

LEMMA 2. For a regular system of weights $(a, b, c;h)$ , if $a\int h$ then $(a, b)<a$ and $\iota j$

$a|(h-c)$ or $b|(h-c)$ then $(a, b)=1$ .

Now suppose that $\max(a^{\prime}, b^{\prime}, c^{\prime})<h^{\prime}$ . Then every $a^{\prime},$
$b^{\prime}$ and $c^{\prime}$ divides at least ont

of $h^{\prime}-a^{\prime},$ $h^{\prime}-b^{\prime}$ and $h^{\prime}-c^{\prime}$ by Theorem 1 and Lemma 1. Namely, this shows $tha$ )

$(a^{\prime}, b^{\prime}, c^{\prime};h^{\prime})$ isaregular system of weights, too. The other case (i.e. $\max(a^{\prime}, b^{\prime}, c^{\prime})=h^{\prime}$

’

is called non-singular type.

2. Invariants under the normalization.

Next, we describe invariants under the normalization. For a set of three positiv $($

integers $\{a, b, c\}$ , let $N(a, b, c;k)$ denote the number of $\{(p, q, r)\in Z_{+}^{3}|pa+qb+rc=k\}$

where $Z_{+}:$ $=\{p\in Z|p\geq 0\}$ . If there is no ambiguity, we write this number simply as
$N(k)$ for simplicity.
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FORMULA 1 ([Sa3](1.9.1)). Let $a_{k}$ be the coefficient of $T^{k}$ of $\chi(T)$ for a regular
system of weights $(a, b, c;h)$ . Then

$a_{k}=N(k-\epsilon)-N(k-b-c)-N(k-c-a)-N(k-a-b)$ for $k<h+\min(a, b, c)$ .

We note that $N(m)=0$ for $m<0$ . This formula also gives that $a_{0}=N(-\epsilon)$ .
Moreover we obtain the next lemma.

LEMMA 3. Let $(a, b, c;h)$ be a regular system of weights and $(a^{\prime}, b^{\prime}, c^{\prime};h^{\prime})$ be its
normalization. Let $\epsilon$ and $\epsilon^{\prime}$ denote $a+b+c-h$ and $a^{\prime}+b^{\prime}+c^{\prime}-h^{\prime}$ respectively. Then we
have $a_{0}=a_{\acute{O}}$ .

We can easily prove that $N(-\epsilon)=N(-\epsilon^{\prime})$ by an arithmetical method. In the
geometric situation which is explained in Introduction, $a_{0}$ is equal to the genus of the
central curve ([Sal]). So Lemma 3 means that the genus is invariant under the
normalization. Knowing the geometric meaning of $a_{0}$ , we can also prove Lemma 3 by
using the following formula of Orlik-Wagreich ([OW]).

FORMULA 2 (Orlik-Wagreich $[OW](3.5.1)$).

$2a_{O}=\frac{h^{2}}{abc}-\frac{h(a,b)h(b,c)h(c,a)}{ab\overline{bc}ca}+\frac{(h,a)}{a}+\frac{(h,b)}{b}+\frac{(h,c)}{c}1$ .

Now we can classify regular systems of weights into types $(I)\sim(IV)$ :

(I) $a,1^{\prime}h$ $b,I^{\prime}h$ $c,\}^{\prime}h$

(II) $a|h$ $b,1^{J}h$ $c,\{\prime h$

(III) $a|h$ $b|h$ $cfh$

(IV) $a|h$ $b|h$ $c|h$ .
If $a,\}^{\prime}h$ then $a,\{’(h-a)$ , so we have $a|(h-b)$ or $a|(h-c)$ by Theorem 1, i).

Considering permutations of the role of $a,$
$b$ and $c$ , we can obtain the following

classification:

(I) (1) $a|(h-b)$ ,
(2) $a|(h-b)$ ,

(II) (1) $a|(h-a)$ ,
(2) $a|(h-a)$ ,
(3) $a|(h-a)$ ,

(III) $a|(h-a)$ ,
(IV) $a|(h-a)$ ,

$b|(h-c)$ , $c|(h-a)$

$b|(h-a)$ , $c|(h-b)$

$b|(h-a)$ , $c|(h-a)$

$b|(h-a)$ , $c|(h-b)$

$b|(h-c)$ , $c|(h-b)$

$b|(h-b)$ , $c|(h-a)$

$b|(h-b)$ , $c|(h-c)$ .
Noting Lemma 1, this classification is also invariant under the normalization. By

the way, the following classification of regular systems of weights with $\epsilon\geq 0$ is known
(cf. $[Sa3](2.2)$).
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(i) The case $\epsilon>0$

$A_{l}$ $(l\geq 1):(a, b, c;h)$ , $h=b+c,$ $a|h$ , $l=h/a-1$ (II), (III), (IV)
$D_{l}$ $(l\geq 4):(2,1-2,1-1;2(1-1))$ (IV) $(l=4)$ , (III) $(1>4)$

$E_{6}$ : (3, 4, 6; 12) (IV)
$E_{7}$ : (4, 6, 9; 18) (III)
$E_{8}$ : (6, 10, 15; 30) (IV)

(ii) The case $\epsilon=0$

$\tilde{E}_{6}$ : (1, 1, 1; 3) (IV)
$\tilde{E}_{7}$ : (1, 1, 2; 4) (IV)
$\tilde{E}_{8}$ : (1, 2, 3; 6) (IV)

From the view point of singularities, the sign of $\epsilon$ is important. For we $cal$

associate the case $\epsilon>0$ with a simple singularity and the case $\epsilon=0$ with a simple ellipti $($

singularity. The names of types (i.e. $A_{l}$ or $D_{l}$ etc.) show the associated singularities
Now we consider the relation between the sign of $\epsilon^{\prime}$ , which is obtained by normaliza
tion, and $a_{0}$ . Also we show the possible types of $(a, b, c;h)$ .

PROPOSITION 1. We have the following table:

In the case of $\epsilon^{\prime}>0$ , the type of its normalization is $A_{l}$ or non-singular.

$PR\infty F$ . We note $a_{0}=a_{\acute{0}}$ by Lemma 3. First, we consider the case $\epsilon^{\prime}\geq 0$ . If $\epsilon^{\prime}>1$

then $a_{\acute{O}}=0$ by $a_{\acute{O}}=N(-\epsilon^{\prime})$ . If $\epsilon^{\prime}=0$ then $a_{\acute{O}}=a_{\epsilon^{\prime}}^{\prime}=1$ by the equation (2). Now when $th|$

normalization $(a^{\prime}, b^{\prime}, c^{\prime};h^{\prime})$ is also a regular system of weights, its type is easily seen tt
be one of the following (we only notice $(a^{\prime},$ $b^{\prime})=(b^{\prime},$ $c^{\prime})=(a^{\prime},$ $c^{\prime})=1$ ):

$\epsilon^{\prime}>0$
$A_{l}$

$\epsilon^{\prime}=0$ $\tilde{E}_{6},\tilde{E}_{7},\tilde{E}_{8}$ . (We have examples for these three types. See Example 1.)
Thus we have found that if $\epsilon^{\prime}>0$ then the type of the normalization is type $A_{l}o$

non-singular type and these types are classified into $(II)\sim(IV)$ , because there are $som|$

weights which divide $h$ . Also we have found that if $\epsilon^{\prime}=0$ then the type of $th|$

normalization is one of $\tilde{E}_{6},\tilde{E}_{7},\tilde{E}_{8}$ and these belong to (IV). So we have proved th $($

case of $\epsilon^{\prime}\geq 0$ because the normalization does not change the type by Lemma 1
Moreover if the type of the normalization is non-singular, we have $\epsilon^{\prime}=a^{\prime}+b^{\prime}>0$

because there exists $c^{\prime}$ such that $c^{\prime}=h^{\prime}$ . So if $\epsilon^{\prime}<0$ then it is not non-singular type.
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Now assume $\epsilon^{\prime}<0$ . Therefore in the cases except $(I)-(1)$ , we will prove $a_{O}\geq 1$ for
a regular system of weights which satisfies that $\epsilon<0$ and $(a, b)=(b, c)=(a, c)=1$ .
Furthermore we may suppose that $a,$

$b$ and $c>1$ . For if $a=1$ then we have $a_{0}\geq 1$

noting $a_{0}=N(-\epsilon)$ .
First, we shall study $a_{0}$ in the case $(I)-(2)$ . Since $a|(h-b)$ and $b|(h-a)$ , we have

$(a, c)=(b, c)=1$ by Lemma 1. From the assumpsion that $a,|\prime h$ and $b,\}^{\prime}h$ , we have
$(a, b)<\min(a, b)$ by Lemma 2 (i.e. $1\leq(a,$ $b)=g<\min(a,$ $b)$). Since $a|(h-b),$ $c|(h-b)$

and $(a, c)=1$ , we have $h=b+acm(m\in N)$ . If $m\geq 2$ then $a_{0}\geq 1$ . So we may assume
that $h=b+ac$ . The condition $b|(h-a)$ gives $h=a+bk$ .

$h=b+ac=a+bk$ .

$b(k-1)=a(c-1)$ .

By $(a, b)<\min(a, b),$ $a$ and $b$ can be expressed as follows:

$a=a^{\prime}g,$ $b=b^{\prime}g$ $(a^{\prime}, b^{\prime}>1, (a^{\prime}, b^{\prime})=1)$ .
So we obtain $a^{\prime}|(k-1)$ and $b^{\prime}|(c-1)$ and we have $k-1=a^{\prime}m$ and $c-1=b^{\prime}m,$ $m\geq 1$

noting $c>1$ .
$h=a+b(a^{\prime}m+1)=b+ac$ .

By $(a^{\prime}, b^{\prime})=1$ and $(a, c)=(b, c)=1$ , we have $(a^{\prime}, c)=(b^{\prime}, c)=1$ and $c$ can be expressed
as $c=pa^{\prime}+qb^{\prime}(0<q<a^{\prime}, p\neq 0)$ .

In the case of $p<0$ , using $h=a^{\prime}bm+a+b$ and $gc=pa+qb$ we have

$-\epsilon=(a^{\prime}m-q)b-pa+(g-1)c$ .

Noting $0<q<a^{\prime}$ , we have $a^{\prime}m\geq a^{\prime}>q$ . As $-p>0$ and $g\geq 1$ , we obtain $a_{0}\geq 1$ .
In the case of $p>0$ , using $h=b+ac$ , we have

$-\epsilon=\{(a^{\prime}-1)g-1\}c+(p-1)a+qb$ .
By $a^{\prime}>1$ and $g\geq 1$ , we have $(a^{\prime}-1)g-1\geq 0$ . As $p\geq 1$ and $q>0$ , we obtain $a_{O}\geq 1$ . Thus
we have $a_{0}\geq 1$ in the case (1)$-(2)$ with $(a, b)=(b, c)=(a, c)=1$ . In case of $(I)-(1)$ , we
remark that $a_{0}\geq 0$ because there is an example with $a_{0}=0$ .

Similarly, we can show that $a_{O}\geq 1$ in the other cases (II), (III) and (IV) and we
$canalsoshowa_{0}\geq 2inthecase$ (IV). (q.e. $d.$)

REMARK 1. Let $(a, b, c;h)$ be a regular system of weights with $\epsilon<0$ . If it has
$a_{0}=0$ , it belongs to $(I)-(1)$ or the cases such that the type of its normalization is $A_{l}$

or non-singular.

We give some examples of a regular system of weights with $\epsilon^{\prime}=0$ or $\epsilon^{\prime}<0$ . We
put a regular system of weights on the left hand side and its normalization on the
right hand side.
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EXAMPLE 1 $(\epsilon^{\prime}=0)$ .
$(1, 5, 5; 15)\rightarrow(1,1,1;3)$ $\tilde{E}_{6}$ .
$(2, 3, 3; 12)\rightarrow(2,1,1;4)$ $\tilde{E}_{7}$ .

$(1, 8, 12; 24)\rightarrow(1,2,3;6)$ $\tilde{E}_{8}$ .
EXAMPLE 2 $(\epsilon^{\prime}<0)$ .

$(2, 3, 10; 22)\rightarrow(1,3,5;11)$ $a_{0}=1$ .
$(1, 3, 4; 18)\rightarrow(1,1,2;5)$ $a_{0}=2$ .
$(2, 3, 4; 18)\rightarrow(1,3,2;9)$ $a_{0}=3$ .

3. The main result.

Our purpose in this section is to give the inequation $m_{0}\geq r-3+a_{0}$ . We have defined
$m_{0}$ in Section 1 and $r$ is determined by weights $a,$ $b,$ $c$ and degree $h$ as follows:

$r=\sum_{\{(e_{1},e_{2})>1|\{e_{1}e_{2}\}\subset\{a.b,c\}\}},(N(e_{1}, e_{2})-1)+\#\{e\in\{a, b, c\}|e,\ell h\}$ .

Here $N(e_{1}, e_{2})$ denotes $\#\{(p, q)\in Z_{+}^{2}|pe_{1}+qe_{2}=h\}$ . But we also write $N(e_{1}, e_{2})$ as
$N(e_{1}, e_{2};h)$ in representing explicitly $h$ . The summation is carried out over all pairs
$\{a, b\}$ from among $\{a, b, c\}$ such that g.c.$d.(a, b)>1$ .

FORMULA 3. Let $(a, b, c;h)$ be a regular system of weights other than type $A_{l}$ .
Then we have the following formula

$r=m_{0}+3-a_{0}-\sum_{\{(e_{1},e_{2})=1|\{e_{1}e_{2}\}\subset\{a,b,c\}\}},(N(e_{1}, e_{2})-N(e_{3}))$ ,

where $e_{3}$ is the element such that $\{e_{1}, e_{2}, e_{3}\}=\{a, b, c\}$ .
$PR\infty F$ . It is known that $\epsilon\leq 1$ for a regular system of weights (cf. [Sa2], [Sa4]).

Moreover we find $h+\epsilon<h+\min(a, b, c)$ except the type $A_{l}$ in Section 1. So applying
Formula 1, we have

$a_{h+\epsilon}=N(h+\epsilon-\epsilon)-N(h+\epsilon-b-c)-N(h+\epsilon-c-a)-N(h+\epsilon-a-b)$

$=N(h)-N(a)-N(b)-N(c)$ ,

$N(h)=\#\{(p, q, r)\in Z_{+}^{3}|pa+qb+rc=h\}$

$=\#\{(p, q, r)\in N^{3}|pa+qb+rc=h\}+\#\{(0, q, r)\in Z_{+}^{3}|qb+rc=h\}$

$+\#\{(p, 0, r)\in Z_{+}^{3}|pa+rc=h\}+\#\{(p, q, 0)\in Z_{+}^{3}|pa+qb=h\}$

$-\#\{(p, 0,0)\in Z_{+}^{3}|pa=h\}-\#\{(0, q, 0)\in Z_{+}^{3}|qb=h\}$

$-\#\{(0,0, r)\in Z_{+}^{3}|rc=h\}$

$=a_{0}+N(b, c)+N(a, c)+N(a, b)-\#\{e\in\{a, b, c\}|e|h\}$ .
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Next we notice $m_{0}=a_{-\epsilon}=a_{h+\epsilon}$ from the equation (2). So

$m_{0}=a_{0}+N(b, c)+N(a, c)+N(a, b)-\#\{e\in\{a, b, c\} e|h\}-N(a)-N(b)-N(c)$ .

Since $\#\{e\in\{a, b, c\}|e|h\}+\#\{e\in\{a, b, c\}|e\int h\}=3$ ,

$m_{0}+3=a_{0}+N(b, c)+N(a, c)+N(a, b)+\#\{e\in\{a, b, c\}|e,\{\prime h\}-N(a)-N(b)-N(c)$

$=a_{0}+N(a, b)-N(c)+N(b, c)-N(a)+N(a, c)-N(b)+\#\{e\in\{a, b, c\}|e\downarrow h\}$ .
If $(a, b)>1$ then $c$ can not be expressed as $c=pa+qb$ by $(a, b, c)=1$ . So we ob-
tain $N(c)=1$ . Noting the definition of $r$ , we obtain Formula 3. (q.e. $d.$ )

Next Theorem 2 is our main result.

THEOREM 2. Let $(a, b, c;h)$ be a regular system ofweights other than type $A_{l}$ . Then
it holds that $m_{0}\geq r-3+a_{0}$ . Moreover, if $a_{0}=0$ then we have $r=m_{0}+3$ .

$PR\infty F$ . First, we prove $r=m_{0}+3$ in the case $a_{0}=0$ . Secondly, we show
$m_{O}\geq r-3+a_{0}$ in the case $a_{0}\geq 1$ .

(A) The case of $a_{0}=0$ .
We apply Formula 3 to a regular system of weights with $a_{0}=0$ other than type

$A_{l}$ and we show

$\sum_{\{\langle e_{1}.e_{2})=1|\{e_{1}e_{2}\}\subset\{a,b,c\}\}}.(N(e_{1}, e_{2})-N(e_{3}))=0$ . (3)

In the $following’$ , we shall show the equation (3) in every case listed in Remark 1.
(a) The case (1)$-(1)$ .

We have noticed $(a, b)=(b, c)=(a, c)=1$ in Section 2. So we shall show

$N(b, c)+N(a, c)+N(a, b)=N(a)+N(b)+N(c)$ . (4)

By $c|(h-a)$ , we have $h-a=ck(k>1)$ . Suppose that $c$ can be expressed as $c=pa+qb$

(-p, $q>0$). Then we have

$h=a+c+(k-1)c$

$=\{(k-1)p+1\}a+(k-1)qb+c$ .

But this contradicts the assumption $a_{0}=0$ . So we have $N(c)=1$ noting $(a, c)=(b, c)=1$ .
Similarly we obtain $N(a)=N(b)=1$ .

We may suppose that $a<c$ and $b<c$ . Then we have

$h=a+ck$

$=(c-b+1)a+ab+(k-a)c$ .
If $k>a$ then we have $a_{0}\geq 1$ noting $c>b$ . This contradicts $a_{0}=0$ . If $k=a$ then
$h=(1+c)a$ . This contradicts $\dot{a},\{\prime h$ . Therefore we have $k<a$ . Noting $(a, c)=1$ and $k<a$ ,
we obtain $N(a, c)=1$ by $h=a+kc$ . Similarly, by $b|(h-c)$ we can express $h$ as
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$h=c+bl$ $(l>1)$

$=ba+(l-a)b+c$ .

If $l>a$ then $a_{0}\geq 1$ , so we have $l\leq a$ . By the assumption $a<c$, we have $l\leq a<c$ . Notin
$(b, c)=1$ and $l<c$ , we have $N(b, c)=1$ .

Next we express $h$ as $h=b+am(m>])$ . Expressing $a$ as $a=l+\alpha(\alpha\geq 0)$ , we have

$h=b+am$

$=(a+1)b+(m-b)a$

$=bl+(\alpha+1)b+(m-b)a$

$=bl+c$ .

Namely we have $c=(\alpha+1)b+(m-b)a$ . If $m>b$ then $a_{0}\geq 1$ by $\alpha+1>0$ . This is
contradiction. If $m=b$ then $h=(1+a)b$ . This contradicts $b\int h$ . So we have $m<b$ . $W$

obtain $N(a, b)=1$ noting $(a, b)=1$ and $m<b$ .
Thus we have obtained in this case that $N(a)=N(b)=N(c)=1$ and $N(a, b)--$

$N(b, c)=N(a, c)=1$ , and the equation (4) hold.
(b) The case in which the type of the normalization is $A_{l}$ or non-singular.

First we prepare a proposition and a lemma to prove the equation (3) in these case

PROPOSITION 2. Let $(a, b, c;h)$ be a regular system of weights.
(i) $N(a, b)$ is not changed by any reduction. Consequently it is invariant under $t$’
normalization.
(ii) If $(a, b)=1$ then $N(c)$ is not changed by reduction.

$PR\infty F$ . First, we consider $N(a, b)$ . If $(a, b)=c_{2}>1$ then $a$ and $b$ can be expresse
as $a=\tilde{a}c_{2}$ and $b=5c_{2}$ . We have $c_{2}\downarrow c$ by $(a, b, c)=1$ . By Theorem 1, we have $c_{2}|h$ . $S$

$h$ can be expressed as $h=\tilde{h}c_{2}$ . Since $c_{2},|^{\prime}c$ , if $h=pa+qc$ then we have $c_{2}|q$ and we ca
express $q$ as $q=q^{\prime}c_{2}$ for some $q^{\prime}$ . Thus we have

$\exists p,$ $q\in Z_{+}s.t$ . $h=pa+qb$ $\Leftrightarrow$ $\exists p,$ $q\in Z_{+}s.t.\tilde{h}=p\tilde{a}+q\tilde{b}$ ,

$\exists p,$ $q\in Z_{+}s.t$ . $h=pa+qc$ $\Leftrightarrow$ $\exists p,$ $q^{\prime}\in Z_{+}s.t$ . $ff_{=p\tilde{a}+q^{\prime}c}$ .
Therefore we have found that $N(a, b;h)=N(\tilde{a}, 5;F)$ and $N(a, c;h)=N(\tilde{a}, c;\pi)$ and th
proves (i).

Next, we consider $N(c)$ . By $(a, b)=1$ , it is sufficient to consider only the reductic
with respect to $b$ and $c$ . Let $(b, c)=c_{0}>1$ then $b,$ $c$ and $h$ can be expressed as $b=5c$

$c=\tilde{c}c_{0}$ and $h=\tilde{h}c_{0}$ . Since $(a, b)=1$ , we have $(c_{0}, a)=1$ and if we express $c=pa+qb,$ $v$

can express $p$ as $p=p^{\prime}c_{0}$ for some $p^{\prime}$ . So we have

$\exists p,$ $q\in Z_{+}s.t$ . $c=pa+qb$ $\Leftrightarrow$ $\exists p^{\prime},$ $q\in Z_{+}s.t.\tilde{c}=p^{\prime}a+q\tilde{b}$ .

Thus we obtain $N(c)=N(\tilde{c})$ . (q.e. $d$
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So if $(b, c)=(a, c)=1$ and $(a, b)>1$ then we have only to show that
$N(b^{\prime}, c^{\prime})+N(a^{\prime}, c^{\prime})=N(a^{\prime})+N(b^{\prime})$ . Eventually it is enough to show that $N(a^{\prime}, c^{\prime})=N(b^{\prime})$

in case of $(a, c)=1$ .
LEMMA 4. Let $(a^{\prime}, b^{\prime}, c^{\prime};h^{\prime})$ be the normalization of a regular system of weights

$(a, b, c;h)$ whose type is $A_{l}$ (suppose $h^{\prime}=b^{\prime}+c^{\prime}$ and $a^{\prime}|h^{\prime}$) or non-singular (suppose
$a^{\prime}=h^{\prime})$ . Then $b^{\prime}|h^{\prime}$ if and only if $b^{\prime}=1$ .

PROOF. We have only to prove that if $b^{\prime}|h^{\prime}$ then we have $b^{\prime}=1$ . In the case of
non-singular type, we have $b^{\prime}|a^{\prime}$ . In the case of type $A_{l}$ , we have $b^{\prime}|c^{\prime}$ . On the other
hand, we have $(b^{\prime}, c^{\prime})=(a^{\prime}, b^{\prime})---1$ by the definition of the normalization, so we have
$b^{\prime}=1$ in both cases. (q.e. $d.$)

By the previous lemma, we may assume that $b^{\prime}$ and $c^{\prime}$ satisfies one of the
following conditions:

(II) $b^{\prime}>1c^{\prime}>1$ ,
(III) $b^{\prime}=1c^{\prime}>1$ ,
(IV) $b^{\prime}=1c^{\prime}=1$ .
First, we consider type $A_{l}$ .

The case (II) $(b^{\prime}>1, c^{\prime}>1, a^{\prime}|h^{\prime}, h^{\prime}=b^{\prime}+c^{\prime})$ .
Since $a^{\prime}|h^{\prime}$ and $a^{\prime}<h^{\prime}$ , we can express $h^{\prime}$ as $h^{\prime}=a^{\prime}\alpha(\alpha>1)$ .
We have $h^{\prime}=b^{\prime}+c^{\prime}$ , so we have $N(b^{\prime}, c^{\prime})=1$ considering $b^{\prime},$ $c^{\prime}>1,$ $(b^{\prime}, c^{\prime})=1$ . $a^{\prime}$ can

not be expressed as $a^{\prime}=pb^{\prime}+qc^{\prime}(p, q>0)$ by $b^{\prime}+c^{\prime}=a^{\prime}\alpha>a^{\prime}$ . Since $b^{\prime},$ $c^{\prime}>1$ and
$(b^{\prime},a^{\prime})=(c^{\prime}, a^{\prime})=1,$ $a^{\prime}$ can not be expressed as $a^{\prime}=pb^{\prime}+qc^{\prime}$ ($p=0$ or $q=0$). So $N(a^{\prime})=1$ .
Therefore we have $N(b^{\prime}, c^{\prime})=N(a^{\prime})=1$ .

Secondly, we can express $b^{\prime}$ as $b^{\prime}=pc^{\prime}+qa^{\prime}(0\leq p<a^{\prime})$ then

$h^{\prime}=b^{\prime}+c^{\prime}=(p+1)c^{\prime}+qa^{\prime}$ .
Noting $p+1\geq 1$ and $ h^{\prime}=a^{\prime}\alpha$ , we have $N(c^{\prime}, a^{\prime})=N(c^{\prime}, a^{\prime};b^{\prime})+1$ . Note that in general we
have $N(b^{\prime})=N(c^{\prime}, a^{\prime};b^{\prime})+1$ , since $b^{\prime}=b^{\prime}+0c^{\prime}+0a^{\prime}$ . Therefore we have $N(c^{\prime}, a^{\prime})=N(b^{\prime})$ .
Similarly we have $N(b^{\prime}, a^{\prime})=N(d)$ .
The case (III) $(b^{\prime}=1, c^{\prime}>1, a^{\prime}|h^{\prime}, h^{\prime}=b^{\prime}+c^{\prime})$ .

Noting $b^{\prime}=1$ and $a^{\prime}|h^{\prime}$ , we have $h^{\prime}=1+c^{\prime}=a^{\prime}\alpha(\alpha>])$ .
First, since $b^{\prime}=1$ , we have $h^{\prime}=a^{\prime}\alpha=a^{\prime}(\alpha-1)+a^{\prime}b^{\prime}$ . So we have $N(b^{\prime}, a^{\prime})=\alpha+1$ . Also

noting $c^{\prime}=h^{\prime}-1=a^{j}(\alpha-1)+(a^{\prime}-1)b^{\prime}$ , we have $ N(b^{\prime}, a^{\prime};c^{\prime})=\alpha$ . On the other hand, we
have $ N(c^{\prime})=1+N(b^{\prime}, a^{\prime};c^{\prime})=1+\alpha$ . So we have $N(b^{\prime}, a^{\prime})=N(c^{\prime})$ .

Next by $1+c^{\prime}=a^{\prime}\alpha>a^{\prime}$ and $c^{\prime}>1$ we have $c^{\prime}>a^{\prime}$ . Noting $b^{\prime}=1$ , we have
$a^{\prime}=a^{\prime}b^{\prime}+0c^{\prime}$ . So we have $N(b^{\prime}, c^{\prime};a^{\prime})=1$ and $N(a^{\prime})=1+N(b^{\prime}, c^{\prime};a^{\prime})=2$ . Since
$h^{\prime}=b^{\prime}+b^{\prime}c^{\prime}$ , we have $N(b^{\prime}, c^{\prime})=2$ . Therefore we have $N(b^{\prime}, c^{\prime})=N(a^{\prime})=2$ .

Lastly noting $1=b^{\prime}<c^{\prime}$ , if $a^{\prime}>1$ then $N(b^{\prime})=1$ and if $a^{\prime}=1$ then $N(b^{\prime})=2$ . Also
noting $ h^{\prime}=1+c^{\prime}=a^{\prime}\alpha$ as above, if $a^{\prime}>1$ then $N(c^{\prime}, a^{\prime})=1$ and if $a^{\prime}=1$ then $N(c^{\prime}, a^{\prime})=2$ .
So we have $N(c^{\prime}, a^{\prime})=N(b^{\prime})$ .
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The case (IV) $(b^{\prime}=c^{\prime}=1, a^{\prime}|h^{\prime}, h^{\prime}=b^{\prime}+c^{\prime}=\alpha a^{\prime}(\alpha>1))$ .
In this case, we have $b^{\prime}=c^{\prime}=a^{\prime}=1$ and $h^{\prime}=2$ . Therefore we have $N(b^{\prime})$

$N(c^{\prime})=N(a^{\prime})=3$ and $N(b^{\prime}, c^{\prime})=N(c^{\prime}, a^{\prime})=N(b^{\prime}, a^{\prime})=3$ .
Thus we have proved $r=m_{0}+3$ in the case that the type of the normalization is $t$

Finally we study the case of non-singular type. Assuming that $c^{\prime}=h^{\prime},$ $i.t$

$(a, b)>1$ , we notice that if $b^{\prime},|^{\prime}h^{\prime}$ , i.e., $b^{\prime}>1$ , we have $b^{\prime}<c^{\prime}$ .
The case (II) $(a^{\prime}, b^{\prime}>1, c^{\prime}=h^{\prime})$ .

By the above notice, we have $1<a^{\prime}<c^{\prime}$ and $1<b^{\prime}<c^{\prime}$ . We have $N(a^{\prime}, c^{\prime})=1t$

$h^{\prime}=c^{\prime}$ and $a^{\prime},\{\prime h^{\prime}$ . We have $N(b^{\prime})=1$ since $b^{\prime}<c^{\prime},$ $1<a^{\prime}$ and $(a^{\prime}, b^{\prime})=1$ . So we $hal$

$N(a^{\prime}, c^{\prime})=N(b^{\prime})=1$ . Similarly we have $N(b^{\prime}, c^{\prime})=N(a^{\prime})=1$ .
The case (III) $(a^{\prime}=1, b^{\prime}>1, c^{\prime}=h^{\prime})$ .

First, we have $b^{\prime}<c^{\prime}$ . As we can express $b^{\prime}$ as $b^{\prime}=b^{\prime}a^{\prime}+0c^{\prime}$ noting $a^{\prime}=1,$ $v$

have $N(b^{\prime})=1+1$ by $b^{\prime}<c^{\prime}$ . As $h^{\prime}$ can be expressed as $h^{\prime}=c^{\prime}a^{\prime}$ noting $a^{\prime}=1$ , we $hal$

$N(a^{\prime}, c^{\prime})=2$ . So we have $N(a^{\prime}, c^{\prime})=N(b^{\prime})$ .
Secondly, since $a^{\prime}=1,1<b^{\prime}$ and $1<c^{\prime}$ , we have $N(a^{\prime})=1$ . Since $h^{\prime}=c^{\prime}$ and $b^{\prime}4^{\prime}l$

we have $N(b^{\prime}, c^{\prime})=1$ . So we have $N(b^{\prime}, c^{\prime})=N(a^{\prime})$ .
The case (IV) $(d=b^{\prime}=1, c^{\prime}=h^{\prime})$ .
(i) $1<c^{\prime}(b^{\prime}<c^{\prime}, a^{\prime}<c^{\prime})$ . As $h^{\prime}$ can be expressed as $h^{\prime}=c^{\prime}=a^{\prime}c^{\prime}(a^{\prime}=1)$ , we $hal$

$N(a^{\prime}, c^{\prime})=2$ . By $b^{\prime}=a^{\prime}=1$ and $b^{\prime}<c^{\prime}$ , we have $N(b^{\prime})=2$ . So we have $N(a^{\prime}, c^{\prime})=N(b^{\prime}$

Similarly we have $N(b^{\prime}, c^{\prime})=N(a^{\prime})$ .
(ii) $c^{\prime}=1$ . From the assumption, we have $a^{\prime}=b^{\prime}=c^{\prime}=h^{\prime}=1$ . Then we have $(a, b),$ $(b,c$

$(a, c)>1$ .
Consequently we have the following (a) or (b):
(a) $(a, b)>1,$ $N(a^{\prime}, c^{\prime})=N(b^{\prime}),$ $N(b^{\prime}, c^{\prime})=N(a^{\prime})$

(b) $(a, b)>1,$ $(b, c)>1(a, c)>1$ .
Now as it was enough to show that if $(a, b)=1$ then $N(a^{\prime}, b^{\prime})=N(c^{\prime})$ , so we have th
equation (3) in any case. (q.e. $d$

(B) The case of $a_{0}\geq 1$ .
It holds that $\epsilon^{\prime}\leq 0$ by Proposition 1. Using the invariants of reduction (Propositio

2), we have only to show that

$N(a^{\prime}, b^{\prime})-N(c^{\prime})\geq 0$ for $(a, b)=1$ .
In Section 2 we have noticed in the case $\epsilon^{\prime}\leq 0$ that the normalization $(a^{\prime}, b^{\prime}, c^{\prime};h^{\prime})$

also a regular system of weights. So we shall show $N(a, b)-N(c)\geq 0$ for $\epsilon\leq 0$ an
$(a, b)=(b, c)=(a, c)=1$ . Noting that $N(c)=N(a, b;c)+1$ , we shall show th;

$N(a, b;h)\geq N(a, b;c)+1$ in each case of the following:
(a) The case of $N(a, b;c)=0$ .

It clearly holds $N(a, b;h)\geq 1$ in the case that $a$ (or b) divides $h-a$ or $h-b$ . So $v$

show the inequality in the case that both $a$ and $b$ divide $h-c$ . Noting $(a, b)=1$ , we $ha\backslash $

$h-c=dab$ . Soh $>dab\geq ab$ . If we representh $=pa+qb(0\leq p<b)$ then we haveq $>0t$
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$h\geq ab$ . So $N(a, b;h)\geq 1$ .
(b) The case of $N(a, b;c)\geq 1$ .

We shall show that $N(a, b;h)>N(a, b;c)$ in the case that $c$ divides $h-a$ , as we
can similarly show it in the other cases. We have an expression $h-a=cm$ where $m\geq 2$

noting $h\geq a+b+c$ . On the other hand, we have different expressions

$c=\alpha_{i}a+\beta_{i}b$ , $\alpha_{i},$
$\beta_{i}\geq 0$ , $1\leq i\leq k$ , where $k=N(a, b;c)$ .

So we have different expressions of $h$ using these expressions of $c$ :

$h=a+cm$

$=a+m\alpha_{i}a+m\beta_{i}b$

$=a+m_{1}c+m_{2}c$ $(m=m_{1}+m_{2} , m_{1}, m_{2}>0)$

$=a+(m_{1}\alpha_{i}+m_{2}\alpha_{j})a+(m_{1}\beta_{i}+m_{2}\beta_{j})b$ .

If $\alpha_{i}<\alpha_{j}$ then we have $m\alpha_{i}<m_{1}\alpha_{i}+m_{2}\alpha_{j}<m\alpha_{j}$ . Namely it holds that $N(a, b;h)>$

$N(a, b;c)$ . (q.e.d)

The case (B) was pointed out to the author by Prof. M. Tomari.
Finally we give some examples of a regular system of weights with

$a_{0}=0$ or $m_{0}>r-3+a_{0}$ and $a_{0}>0$ . For each example we give the characteristic function
and the dual graph of the resolution associated with an isolated singularity. A number
in a circle means the self-intersection number of the corresponding curve multiplied by
$-1$ and circles without a number represent curves with self-intersection $-2$ .

EXAMPLE 3 (type $I-(1)$). (4, 9, 11; 31).

$\chi(T)=T^{-7}+T^{-3}+T+T^{2}+T^{4}+T^{5}+T^{6}+T^{8}+T^{9}+T^{10}+T^{11}+T^{12}$

$+T^{13}+T^{14}+T^{15}+T^{16}+T^{17}+T^{18}+T^{19}+T^{20}+T^{21}+T^{22}$

$+T^{23}+T^{25}+T^{26}+T^{27}+T^{29}+T^{30}+T^{34}+T^{38}$

$m_{0}=0$ , $r=3$ .

EXAMPLE 4 (the normalization is type $A_{l}$). $(3, 5, 6; 21)\rightarrow(1,5,2;7)$ .
$\chi(T)=T^{-7}+T^{-4}+T^{-2}+2T^{-1}+T+2T^{2}+T^{3}+2T^{4}+3T^{5}+T^{6}+2T^{7}$

$+3T^{8}+T^{9}+3T^{10}+3T^{11}+T^{12}+3T^{13}+2T^{14}+T^{15}+3T^{16}$

$+2T^{17}+T^{18}+2T^{19}+T^{20}+2T^{22}+T^{23}+T^{25}+T^{28}$

$m_{0}=2$ , $r=5$ .
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EXAMPLE 5 (the normalization is non-singular type). $(8, 9, 12; 36)\rightarrow(2,3,1;3)$ .
$\chi(T)=T^{-7}+T+T^{2}+T^{5}+T^{9}+T^{10}+T^{11}+T^{13}+T^{14}+T^{17}+T^{18}$

$+T^{19}+T^{22}+T^{23}+T^{25}+T^{26}+T^{27}+T^{31}+T^{34}+T^{35}+T^{43}$

$m_{0}=0$ , $r=3$ .

EXAMPLE 6. (1, 1, 5; 10).

$\chi(T)=T^{-3}+2T^{-2}+3T^{-1}+4+5T+6T^{2}+7T^{3}+8T^{4}+9T^{5}+8T^{6}+7T^{7}$

+6 $T^{8}+5T^{9}+4T^{10}+3T^{11}+2T^{12}+T^{13}$

$m_{0}=7$ , $r=0$ .

\copyright

EXAMPLE 7. (3, 4, 5; 15).

$\chi(T)=T^{-3}+1+T+T^{2}+T^{3}+T^{4}+2T^{5}+2T^{6}+T^{7}+T^{8}+2T^{9}+2T^{10}$

$+T^{11}+T^{12}+T^{13}+T^{14}+T^{15}+T^{18}$

$m_{0}=1$ , $r=1$ .

References

[Do] I. DOLGACHEV, Weighted projective varieties, Group Actions and Vector Fields; Proc. Vancouv
1981, Lecture Notes in Math., 956 (1982), 34-71, Springer.



REGULAR SYSTEMS OF WEIGHTS 15

[GW] S. GOTO and K. WATANABE, On graded ring I, J. Math. Soc. Japan, 30 (1978), 179-213.
[La] H. B. LAUFER, On minimally elliptic singularities, Amer. J. Math., 99 (1977), 1257-1295.
[Pi] H. PINKHAM, Normal surfaces singularities with $C^{*}$-action, Math. Ann., 227 (1977), 183-193.
[OW] P. ORLIK and P. WAGREICH, Isolated singularities of algebraic surfaces with C’-action, Ann. of

Math., 93 (1971), 205-228.
[OW1] P. ORLIK and P. WAGREICH, Singularities of algebraic surface with $C^{*}$-action, Math. Ann., 193

(1971), 121-135.
[OW2] P. ORLIK and P. WAGREICH, Algebraic surfaces with $C^{*}$-action, Acta Math., 138 (1977), 43-81.
[Sal] K. SAITO, Algebraic surfaces for regular systems of weights, Algebraic Geometry and Commutative

Algebra in Honor of Masayoshi Nagata, 517-614, Kinokuniya, 1987.
[Sa2] K. SAITO, Theory of the general weight systems and related topics I, II, (in Japanese), S\^ugaku, 38

(1986), I 97-115, II 202-217.
[Sa3] K. SAITO, Regular systems of weights and associated singularities, Complex Analytic Singularities,

Adv. Stud. Pure Math., 8 (1987), 479-526, North-Holland.
[Sa4] K. SAITO, On the existence of exponents prime to the Coxeter number, RIMS preprint, 529 (1985).

[Wa] P.WAGREICH, The structure of quasihomogeneous singularities,Proc. Symp. Pure Math., 40 (1983),

593-611.
[Wh] J. WAHL, Deformations of quasi-homogeneous surface singularities, Math. Ann., 280 (1988),

105-128.
[W] K. WATANABE, Some remarks concerning Demazure’s construction of normal graded rings, Nagoya

Math. J., 83 (1981), 203-211.

Present Address:
DEPARTMENT OF MATHEMATICS, TSUDA COLLEGE
TSUDA-MACHI, KODAIRA-SHI, TOKYO 187, JAPAN


