On an Arithmetical Property of the Normalization of Regular Systems of Weights

Yoshika UEDA
Tsuda College
(Communicated by M. Mori)

Abstract

The weights of a two-dimensional weighted homogeneous polynomial f of degree h corresponding to an isolated singularity are arithmetically characterized by Prof. K. Saito and are called a regular system of weights. Let m_{0} be the dimension of the vector space of the elements of degree h of the Jacobi ring of f. It is shown that m_{0} is determined by weights and is estimated from below by using the genus of the central curve and the number of branches of a minimal good resolution of the corresponding singularity.

Introduction.

Let $(a, b, c ; h$) be a system of four positive integers such that $\max (a, b, c)<h$. We call it a system of weights. Moreover $(a, b, c ; h)$ is called regular if the rational function

$$
\chi(T):=\frac{T^{-h}\left(T^{h}-T^{a}\right)\left(T^{h}-T^{b}\right)\left(T^{h}-T^{c}\right)}{\left(T^{a}-1\right)\left(T^{b}-1\right)\left(T^{c}-1\right)}
$$

is regular on $C-\{0\}$ and is called reduced if g.c.d. $(a, b, c)=1$. (We give its precise definitions in Section 1.) This function is expressed as

$$
\chi(T)=\sum_{n=\varepsilon}^{h-\varepsilon} a_{n} T^{n}=T^{n_{1}}+\cdots+T^{n_{\mu}}
$$

where ε denotes $a+b+c-h$ and μ denotes $\chi(1)$. We call each n_{i} an exponent. Let m_{0} and a_{0} denote the coefficients of $T^{-\varepsilon}$ and T^{0} in $\chi(T)$ respectively. Let r denote $\sum(N(a, b)-1)+\#\{e \in\{a, b, c\} \mid e \nmid h\}$, where $N(a, b)$ denotes $\#\left\{(p, q) \in Z_{+}^{2} \mid p a+q b=h\right\}$ and \boldsymbol{Z}_{+}denotes $\{p \in \boldsymbol{Z} \mid p \geq 0\}$. The summation is carried out over all pairs $\{a, b\}$ from among $\{a, b, c\}$ such that g.c.d. $(a, b)>1$.

In the case of $\varepsilon<0$, Prof. K. Saito has shown in [Sa2] that $m_{0}=r-3$ for the class corresponding to a minimal elliptic singularity, which is reduced regular systems of weights with one non-positive exponent (i.e. $a_{i}=0$ for $\varepsilon<i \leq 0$). The purpose of this

[^0]Revised April 27, 1991
paper is to show more generally that $m_{0} \geq r-3+a_{0}$ for all reduced regular systems of weights except type A_{1} (Theorem 2). Moreover if it satisfies $a_{0}=0$ then $r=m_{0}+3$. In [Sa1] and [Sa3], a_{0} and r are geometrically characterized. We shall recall them below.

Let $f(x, y, z)$ denote a weighted homogeneous polynomial over C with weights a, b, c and degree h, i.e.,

$$
f(x, y, z)=\sum_{a i+b j+c k=h} a_{i j k} x^{i} y^{j} z^{k} \quad a_{i j k} \in C .
$$

For a regular system of weights $(a, b, c ; h)$, there exists a weighted homogeneous polynomial f such that the hypersurface $S=\left\{(x, y, z) \in C^{3} \mid f(x, y, z)=0\right\}$ has only an isolated singular point at the origin (cf. [Sa3] Theorem 3). The dual graph of the minimal good resolution of S is star shaped and consists of a central curve with some branches (cf. [OW]). We know that the genus of the central curve is equal to a_{0} and the number of branches is equal to $r([\mathrm{Sa} 1](5.6))$. When we fix such a polynomial f, the universal unfolding for f is a polynomial $F\left(x, y, z, t_{1}, \cdots, t_{\mu}\right)(\mu=\chi(1))$ such that $F(x, y, z, 0, \cdots, 0)=f(x, y, z)$ and

$$
\frac{\partial F}{\partial t_{i}}(x, y, z, 0, \cdots, 0) \quad(i=1, \cdots, \mu)
$$

form a C-basis of the Jacobi ring of f. Then m_{0} is equal to the dimension of the vector space over C which is spanned by monomials of degree h in the Jacobi ring ([Sa3](5.7)).

Namely our Theorem 2 asserts that except the type A_{l}, m_{0} can be estimated from below by the genus of the central curve a_{0} and the number of branches r.

The proof of Theorem 2 consists of two parts. First we consider the normalization for a regular system of weights (Definition 2). We give some invariants under normalization and determine the case with $a_{0}=0$ in Section 2. Secondly in Section 3, we prove arithmetically that $m_{0} \geq r+3-a_{0}$ in the cases of $a_{0} \geq 1$ and the relation $r=m_{0}+3$ in the case of $a_{0}=0$.

From the view point of singularities, Prof. Tomari pointed out to the author that m_{0} can be estimated from above by [Pi] (Theorem 5.1) and [W] (Corollary 2.9). Moreover he showed that in case of $a_{0}=0$ our estimation can be obtained by using deformation of a singularity. But in case of $a_{0}>0$ he says that it seems difficult to get the same estimation in this way.

We give some examples in Sections 2 and 3.
The author heartly thanks Prof. M. Ohtsuki for some advice and Prof. M. Tomari for precise comments.

1. The normalization of regular systems of weights.

Let $(a, b, c ; h)$ be a system of four positive integers. A system ($a, b, c ; h$) such that $h>\max (a, b, c)$ is called a system of weights. To a system of weights, we associate a
rational function $\chi(T)$ of a variable T,

$$
\chi(T):=\frac{T^{-h}\left(T^{h}-T^{a}\right)\left(T^{h}-T^{b}\right)\left(T^{h}-T^{c}\right)}{\left(T^{a}-1\right)\left(T^{b}-1\right)\left(T^{c}-1\right)} .
$$

We call $\chi(T)$ the characteristic function of the system of weights. This function satisfies the relation

$$
\begin{equation*}
\chi\left(T^{-1}\right)=T^{-h} \chi(T) \tag{1}
\end{equation*}
$$

Definition 1. A system of weights $(a, b, c ; h)$ is called regular, if its characteristic function $\chi(T)$ is regular on $C-\{0\}$.

Noting the equation (1), the Laurent series expansion at $T=0$ of $\chi(T)$ is

$$
\chi(T)=a_{\varepsilon} T^{\varepsilon}+\cdots+a_{h-\varepsilon} T^{h-\varepsilon}
$$

where the index ε denotes $a+b+c-h$. Moreover, by the equation (1) this expression satisfies

$$
\begin{equation*}
a_{i}=a_{h-i} \quad(\varepsilon \leq i \leq h-\varepsilon) \quad\left(\text { especially } a_{\varepsilon}=a_{h-\varepsilon}=1\right) . \tag{2}
\end{equation*}
$$

Let m_{0} denote $a_{-\varepsilon}$.
Theorem 1 ([Sa3](1.6)). A system of weights $(a, b, c ; h)$ is regular if and only if it satisfies the following properties:
i) a, b and c divide at least one of $h-a, h-b$ and $h-c$,
ii) $(a, b),(b, c)$ and (c, a) divide h, where (a, b) denotes the g.c.d. of a and b.

Proof. In [Sa3] (Assertion (1.6)), it is shown that a regular system of weights ($a, b, c ; h$) satisfies the properties i) and ii). Conversely, if a system of weights ($a, b, c ; h$) satisfies the properties i) and ii) then

$$
\begin{equation*}
T^{-\varepsilon} \chi(T)=\frac{\left(T^{h-a}-1\right)\left(T^{h-b}-1\right)\left(T^{h-c}-1\right)}{\left(T^{a}-1\right)\left(T^{b}-1\right)\left(T^{c}-1\right)} \tag{q.e.d.}
\end{equation*}
$$

is a polynomial. Therefore, it is regular.
Since the property ii) gives $(a, b, c) \mid h$, we obtain $(a, b, c, h)=(a, b, c)$. So except type A_{l}, which satisfies $a \mid h$ and $h=b+c$, by definition, we call a regular system of weights $(a, b, c ; h)$ reduced if it satisfies $(a, b, c, h)=(a, b, c)=1$. In case of type A_{l}, we call a regular system of weights ($a, b, c ; h$) with $a=1$ reduced. From now on, we treat only the cases of reduced regular systems of weights.

We define the normalization of regular systems of weights. Let $(a, b, c ; h$) be a regular system of weights and let $c_{0}=(b, c), c_{1}=(c, a)$ and $c_{2}=(a, b), a, b$ and c can be expressed as follows,

$$
a=a^{\prime} c_{1} c_{2}, \quad b=b^{\prime} c_{2} c_{0}, \quad c=c^{\prime} c_{0} c_{1} .
$$

Now since $(a, b, c)=1$, these relations $\left(a^{\prime}, c_{0}\right)=\left(b^{\prime}, c_{1}\right)=\left(c^{\prime}, c_{2}\right)=1,\left(a^{\prime}, b^{\prime}\right)=\left(b^{\prime}, c^{\prime}\right)=$ $\left(c^{\prime}, a^{\prime}\right)=1,\left(c_{i}, c_{j}\right)=1$ (for $i \neq j$) can be obtained. By Theorem 1, we have $c_{0}\left|h, c_{1}\right| h$ and $c_{2} \mid h$. So h can be expressed as $h=h^{\prime} c_{0} c_{1} c_{2}$. In the following, we shall use these notations.

Definition 2. Let $(a, b, c ; h)$ be a regular system of weights and g denote a divisor of (a, b). These a, b and h can be expressed as $a=\tilde{a} g, b=\tilde{b} g$ and $h=\tilde{h} g$. If $g>1$ then we call the system ($\tilde{a}, \tilde{b}, c ; \tilde{h}$) a reduction of ($a, b, c ; h$). Repeating reductions, we get the system ($a^{\prime}, b^{\prime}, c^{\prime} ; h^{\prime}$) which can not be reduced any more. So the system ($a^{\prime}, b^{\prime}, c^{\prime} ; h^{\prime}$) is called the normalization of a regular system of weights $(a, b, c ; h)$.

Lemma 1. Let ($a^{\prime}, b^{\prime}, c^{\prime} ; h^{\prime}$) be the normalization of a regular system of weights ($a, b, c ; h$). Then we have the following properties:
i) $a \mid h$ if and only if $a^{\prime} \mid h^{\prime}$,
ii) if $a \mid h-b$ then $a^{\prime} \mid h^{\prime}-b^{\prime}$.

Proof. i) $\operatorname{By}\left(a^{\prime}, c_{0}\right)=1$,

$$
\begin{aligned}
a \mid h & \Leftrightarrow a^{\prime} c_{1} c_{2} \mid h^{\prime} c_{0} c_{1} c_{2} \\
& \Leftrightarrow a^{\prime} \mid h^{\prime} .
\end{aligned}
$$

ii) $\mathrm{By}\left(a^{\prime}, c_{0}\right)=\left(c_{1}, c_{0}\right)=1$,

$$
\begin{align*}
a \mid(h-b) & \Leftrightarrow a^{\prime} c_{1} c_{2} \mid\left(h^{\prime} c_{1}-b^{\prime}\right) c_{0} c_{2} \\
& \Leftrightarrow a^{\prime} c_{1} \mid\left(h^{\prime} c_{1}-b^{\prime}\right) . \tag{q.e.d}
\end{align*}
$$

So we have $c_{1} \mid b^{\prime}$. But by $\left(c_{1}, b^{\prime}\right)=1$, we have $c_{1}=1$.
This Lemma 1 also gives that $a^{\prime}, b^{\prime}, c^{\prime} \leq h^{\prime}$.
Lemma 2. For a regular system of weights $(a, b, c ; h)$, if $a \nmid h$ then $(a, b)<a$ and if $a \mid(h-c)$ or $b \mid(h-c)$ then $(a, b)=1$.

Now suppose that $\max \left(a^{\prime}, b^{\prime}, c^{\prime}\right)<h^{\prime}$. Then every a^{\prime}, b^{\prime} and c^{\prime} divides at least one of $h^{\prime}-a^{\prime}, h^{\prime}-b^{\prime}$ and $h^{\prime}-c^{\prime}$ by Theorem 1 and Lemma 1 . Namely, this shows that ($a^{\prime}, b^{\prime}, c^{\prime} ; h^{\prime}$) is a regular system of weights, too. The other case (i.e. $\left.\max \left(a^{\prime}, b^{\prime}, c^{\prime}\right)=h^{\prime}\right)$ is called non-singular type.

2. Invariants under the normalization.

Next, we describe invariants under the normalization. For a set of three positive integers $\{a, b, c\}$, let $N(a, b, c ; k)$ denote the number of $\left\{(p, q, r) \in \boldsymbol{Z}_{+}^{3} \mid p a+q b+r c=k\right\}$, where $\boldsymbol{Z}_{+}:=\{p \in \boldsymbol{Z} \mid p \geq 0\}$. If there is no ambiguity, we write this number simply as $N(k)$ for simplicity.

Formula 1 ([Sa3](1.9.1)). Let a_{k} be the coefficient of T^{k} of $\chi(T)$ for a regular system of weights $(a, b, c ; h)$. Then

$$
a_{k}=N(k-\varepsilon)-N(k-b-c)-N(k-c-a)-N(k-a-b) \quad \text { for } \quad k<h+\min (a, b, c) .
$$

We note that $N(m)=0$ for $m<0$. This formula also gives that $a_{0}=N(-\varepsilon)$. Moreover we obtain the next lemma.

Lemma 3. Let ($a, b, c ; h$) be a regular system of weights and ($a^{\prime}, b^{\prime}, c^{\prime} ; h^{\prime}$) be its normalization. Let ε and ε^{\prime} denote $a+b+c-h$ and $a^{\prime}+b^{\prime}+c^{\prime}-h^{\prime}$ respectively. Then we have $a_{0}=a_{0}^{\prime}$.

We can easily prove that $N(-\varepsilon)=N\left(-\varepsilon^{\prime}\right)$ by an arithmetical method. In the geometric situation which is explained in Introduction, a_{0} is equal to the genus of the central curve ($[\mathrm{Sa} 1]$). So Lemma 3 means that the genus is invariant under the normalization. Knowing the geometric meaning of a_{0}, we can also prove Lemma 3 by using the following formula of Orlik-Wagreich ([OW]).

Formula 2 (Orlik-Wagreich [OW](3.5.1)).

$$
2 a_{0}=\frac{h^{2}}{a b c}-\frac{h(a, b)}{a b}-\frac{h(b, c)}{b c}-\frac{h(c, a)}{c a}+\frac{(h, a)}{a}+\frac{(h, b)}{b}+\frac{(h, c)}{c}-1 .
$$

Now we can classify regular systems of weights into types (I) $\sim(I V):$

(I)	$a \nmid h$	$b \nmid h$	$c \nmid h$
(II)	$a \mid h$	$b \nmid h$	$c \nmid h$
(III)	$a \mid h$	$b \mid h$	$c \nmid h$
(IV)	$a \mid h$	$b \mid h$	$c \mid h$.

If $a \nmid h$ then $a \nmid(h-a)$, so we have $a \mid(h-b)$ or $a \mid(h-c)$ by Theorem 1 , i). Considering permutations of the role of a, b and c, we can obtain the following classification:
(1) $a|(h-b), \quad b|(h-c), \quad c \mid(h-a)$
(2) $a|(h-b), \quad b|(h-a), \quad c \mid(h-b)$
(1) $a|(h-a), \quad b|(h-a), \quad c \mid(h-a)$
(2) $a|(h-a), \quad b|(h-a), \quad c \mid(h-b)$
(3) $\quad a|(h-a), \quad b|(h-c), \quad c \mid(h-b)$

$$
\begin{array}{lll}
a \mid(h-a), & b \mid(h-b), & c \mid(h-a) \tag{III}\\
a \mid(h-a), & b \mid(h-b), & c \mid(h-c) .
\end{array}
$$

Noting Lemma 1, this classification is also invariant under the normalization. By the way, the following classification of regular systems of weights with $\varepsilon \geq 0$ is known (cf. [Sa3](2.2)).
(i) The case $\varepsilon>0$

A_{l}	$(l \geq 1):(a, b, c ; h), h=b+c, a \mid h, l=h / a-1$	(II), (III), (IV)
D_{l}	$(l \geq 4):(2, l-2, l-1 ; 2(l-1))$	(IV) $(l=4)$, (III) $(l>4)$
E_{6}	$:(3,4,6 ; 12)$	(IV)
E_{7}	$:(4,6,9 ; 18)$	(III)
E_{8}	$:(6,10,15 ; 30)$	(IV)

(ii) The case $\varepsilon=0$

\widetilde{E}_{6}	$:(1,1,1 ; 3)$	(IV)
\widetilde{E}_{7}	$:(1,1,2 ; 4)$	(IV)
\widetilde{E}_{8}	$:(1,2,3 ; 6)$	(IV)

From the view point of singularities, the sign of ε is important. For we can associate the case $\varepsilon>0$ with a simple singularity and the case $\varepsilon=0$ with a simple elliptic singularity. The names of types (i.e. A_{l} or D_{l} etc.) show the associated singularities. Now we consider the relation between the sign of ε^{\prime}, which is obtained by normalization, and a_{0}. Also we show the possible types of ($a, b, c ; h$).

Proposition 1. We have the following table:

ε^{\prime}	a_{0}	type of ($a, b, c ; h$)
$\varepsilon^{\prime}>0$	0	(II), (III), (IV)
$\varepsilon^{\prime}=0$	1	(IV)
$\varepsilon^{\prime}<0$	0	(I)-(1)
	1	(I), (II), (III)
	≥ 2	(I), (II), (III), (IV).

In the case of $\varepsilon^{\prime}>0$, the type of its normalization is A_{l} or non-singular.
Proof. We note $a_{0}=a_{0}^{\prime}$ by Lemma 3. First, we consider the case $\varepsilon^{\prime} \geq 0$. If $\varepsilon^{\prime}>0$ then $a_{0}^{\prime}=0$ by $a_{0}^{\prime}=N\left(-\varepsilon^{\prime}\right)$. If $\varepsilon^{\prime}=0$ then $a_{0}^{\prime}=a_{\varepsilon^{\prime}}^{\prime}=1$ by the equation (2). Now when the normalization ($a^{\prime}, b^{\prime}, c^{\prime} ; h^{\prime}$) is also a regular system of weights, its type is easily seen to be one of the following (we only notice $\left(a^{\prime}, b^{\prime}\right)=\left(b^{\prime}, c^{\prime}\right)=\left(a^{\prime}, c^{\prime}\right)=1$):
$\varepsilon^{\prime}>0 \quad A_{l}$
$\varepsilon^{\prime}=0 \quad \tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8} . \quad$ (We have examples for these three types. See Example 1.)
Thus we have found that if $\varepsilon^{\prime}>0$ then the type of the normalization is type A_{l} or non-singular type and these types are classified into (II) \sim (IV), because there are some weights which divide h. Also we have found that if $\varepsilon^{\prime}=0$ then the type of the normalization is one of $\tilde{E}_{6}, \widetilde{E}_{7}, \tilde{E}_{8}$ and these belong to (IV). So we have proved the case of $\varepsilon^{\prime} \geq 0$ because the normalization does not change the type by Lemma 1 . Moreover if the type of the normalization is non-singular, we have $\varepsilon^{\prime}=a^{\prime}+b^{\prime}>0$, because there exists c^{\prime} such that $c^{\prime}=h^{\prime}$. So if $\varepsilon^{\prime}<0$ then it is not non-singular type.

Now assume $\varepsilon^{\prime}<0$. Therefore in the cases except (I)-(1), we will prove $a_{0} \geq 1$ for a regular system of weights which satisfies that $\varepsilon<0$ and $(a, b)=(b, c)=(a, c)=1$. Furthermore we may suppose that a, b and $c>1$. For if $a=1$ then we have $a_{0} \geq 1$ noting $a_{0}=N(-\varepsilon)$.

First, we shall study a_{0} in the case (I)-(2). Since $a \mid(h-b)$ and $b \mid(h-a)$, we have $(a, c)=(b, c)=1$ by Lemma 1. From the assumpsion that $a \nmid h$ and $b \nmid h$, we have $(a, b)<\min (a, b)$ by Lemma 2 (i.e. $1 \leq(a, b)=g<\min (a, b)$). Since $a|(h-b), c|(h-b)$ and $(a, c)=1$, we have $h=b+a c m(m \in N)$. If $m \geq 2$ then $a_{0} \geq 1$. So we may assume that $h=b+a c$. The condition $b \mid(h-a)$ gives $h=a+b k$.

$$
\begin{aligned}
& h=b+a c=a+b k . \\
& b(k-1)=a(c-1) .
\end{aligned}
$$

By $(a, b)<\min (a, b), a$ and b can be expressed as follows:

$$
a=a^{\prime} g, b=b^{\prime} g \quad\left(a^{\prime}, b^{\prime}>1, \quad\left(a^{\prime}, b^{\prime}\right)=1\right)
$$

So we obtain $\cdot a^{\prime} \mid(k-1)$ and $b^{\prime} \mid(c-1)$ and we have $k-1=a^{\prime} m$ and $c-1=b^{\prime} m, m \geq 1$ noting $c>1$.

$$
h=a+b\left(a^{\prime} m+1\right)=b+a c .
$$

By $\left(a^{\prime}, b^{\prime}\right)=1$ and $(a, c)=(b, c)=1$, we have $\left(a^{\prime}, c\right)=\left(b^{\prime}, c\right)=1$ and c can be expressed as $c=p a^{\prime}+q b^{\prime}\left(0<q<a^{\prime}, p \neq 0\right)$.

In the case of $p<0$, using $h=a^{\prime} b m+a+b$ and $g c=p a+q b$ we have

$$
-\varepsilon=\left(a^{\prime} m-q\right) b-p a+(g-1) c .
$$

Noting $0<q<a^{\prime}$, we have $a^{\prime} m \geq a^{\prime}>q$. As $-p>0$ and $g \geq 1$, we obtain $a_{0} \geq 1$.
In the case of $p>0$, using $h=b+a c$, we have

$$
-\varepsilon=\left\{\left(a^{\prime}-1\right) g-1\right\} c+(p-1) a+q b .
$$

By $a^{\prime}>1$ and $g \geq 1$, we have $\left(a^{\prime}-1\right) g-1 \geq 0$. As $p \geq 1$ and $q>0$, we obtain $a_{0} \geq 1$. Thus we have $a_{0} \geq 1$ in the case (I)-(2) with $(a, b)=(b, c)=(a, c)=1$. In case of (I)-(1), we remark that $a_{0} \geq 0$ because there is an example with $a_{0}=0$.

Similarly, we can show that $a_{0} \geq 1$ in the other cases (II), (III) and (IV) and we can also show $a_{0} \geq 2$ in the case (IV).
(q.e.d.)

Remark 1. Let ($a, b, c ; h$) be a regular system of weights with $\varepsilon<0$. If it has $a_{0}=0$, it belongs to (I)-(1) or the cases such that the type of its normalization is A_{l} or non-singular.

We give some examples of a regular system of weights with $\varepsilon^{\prime}=0$ or $\varepsilon^{\prime}<0$. We put a regular system of weights on the left hand side and its normalization on the right hand side.

Example $1\left(\varepsilon^{\prime}=0\right)$.

$$
\begin{array}{rll}
(1,5,5 ; 15) & \rightarrow(1,1,1 ; 3) & \tilde{E}_{6} . \\
(2,3,3 ; 12) & \rightarrow(2,1,1 ; 4) & \tilde{E}_{7} . \\
(1,8,12 ; 24) & \rightarrow(1,2,3 ; 6) & \tilde{E}_{8} .
\end{array}
$$

Example $2\left(\varepsilon^{\prime}<0\right)$.

$$
\begin{aligned}
&(2,3,10 ; 22) \rightarrow(1,3,5 ; 11) \\
& a_{0}=1 \\
&(1,3,4 ; 18) \rightarrow(1,1,2 ; 5) \\
& a_{0}=2 \\
&(2,3,4 ; 18) \rightarrow(1,3,2 ; 9) \\
& a_{0}=3
\end{aligned}
$$

3. The main result.

Our purpose in this section is to give the inequation $m_{0} \geq r-3+a_{0}$. We have defined m_{0} in Section 1 and r is determined by weights a, b, c and degree h as follows:

$$
r=\sum_{\left\{\left(e_{1}, e_{2}\right)>1 \mid\left\{e_{1}, e_{2}\right\} \subset\{a, b, c\}\right\}}\left(N\left(e_{1}, e_{2}\right)-1\right)+\#\{e \in\{a, b, c\} \mid e \nmid h\} .
$$

Here $N\left(e_{1}, e_{2}\right)$ denotes $\#\left\{(p, q) \in Z_{+}^{2} \mid p e_{1}+q e_{2}=h\right\}$. But we also write $N\left(e_{1}, e_{2}\right)$ as $N\left(e_{1}, e_{2} ; h\right)$ in representing explicitly h. The summation is carried out over all pairs $\{a, b\}$ from among $\{a, b, c\}$ such that g.c.d. $(a, b)>1$.

Formula 3. Let $(a, b, c ; h)$ be a regular system of weights other than type A_{l}. Then we have the following formula

$$
r=m_{0}+3-a_{0}-\sum_{\left\{\left(e_{1}, e_{2}\right)=1 \mid\left\{e_{1}, e_{2}\right\} \subset\{a, b, c\}\right\}}\left(N\left(e_{1}, e_{2}\right)-N\left(e_{3}\right)\right),
$$

where e_{3} is the element such that $\left\{e_{1}, e_{2}, e_{3}\right\}=\{a, b, c\}$.
Proof. It is known that $\varepsilon \leq 1$ for a regular system of weights (cf. [Sa2], [Sa4]). Moreover we find $h+\varepsilon<h+\min (a, b, c)$ except the type A_{l} in Section 1. So applying Formula 1, we have

$$
\begin{aligned}
a_{h+\varepsilon}= & N(h+\varepsilon-\varepsilon)-N(h+\varepsilon-b-c)-N(h+\varepsilon-c-a)-N(h+\varepsilon-a-b) \\
= & N(h)-N(a)-N(b)-N(c), \\
N(h)= & \#\left\{(p, q, r) \in Z_{+}^{3} \mid p a+q b+r c=h\right\} \\
= & \#\left\{(p, q, r) \in N^{3} \mid p a+q b+r c=h\right\}+\#\left\{(0, q, r) \in Z_{+}^{3} \mid q b+r c=h\right\} \\
& +\#\left\{(p, 0, r) \in Z_{+}^{3} \mid p a+r c=h\right\}+\#\left\{(p, q, 0) \in Z_{+}^{3} \mid p a+q b=h\right\} \\
& -\#\left\{(p, 0,0) \in Z_{+}^{3} \mid p a=h\right\}-\#\left\{(0, q, 0) \in Z_{+}^{3} \mid q b=h\right\} \\
& -\#\left\{(0,0, r) \in Z_{+}^{3} \mid r c=h\right\} \\
= & a_{0}+N(b, c)+N(a, c)+N(a, b)-\#\{e \in\{a, b, c\}|e| h\} .
\end{aligned}
$$

Next we notice $m_{0}=a_{-\varepsilon}=a_{h+\varepsilon}$ from the equation (2). So

$$
m_{0}=a_{0}+N(b, c)+N(a, c)+N(a, b)-\#\{e \in\{a, b, c\}|e| h\}-N(a)-N(b)-N(c)
$$

Since $\#\{e \in\{a, b, c\}|e| h\}+\#\{e \in\{a, b, c\} \mid e \nmid h\}=3$,

$$
\begin{aligned}
m_{0}+3 & =a_{0}+N(b, c)+N(a, c)+N(a, b)+\#\{e \in\{a, b, c\} \mid e \nmid h\}-N(a)-N(b)-N(c) \\
& =a_{0}+N(a, b)-N(c)+N(b, c)-N(a)+N(a, c)-N(b)+\#\{e \in\{a, b, c\} \mid e \nmid h\} .
\end{aligned}
$$

If $(a, b)>1$ then c can not be expressed as $c=p a+q b$ by $(a, b, c)=1$. So we obtain $N(c)=1$. Noting the definition of r, we obtain Formula 3.

Next Theorem 2 is our main result.
Theorem 2. Let $(a, b, c ; h)$ be a regular system of weights other than type A_{l}. Then it holds that $m_{0} \geq r-3+a_{0}$. Moreover, if $a_{0}=0$ then we have $r=m_{0}+3$.

Proof. First, we prove $r=m_{0}+3$ in the case $a_{0}=0$. Secondly, we show $m_{0} \geq r-3+a_{0}$ in the case $a_{0} \geq 1$.
(A) The case of $a_{0}=0$.

We apply Formula 3 to a regular system of weights with $a_{0}=0$ other than type A_{l} and we show

$$
\begin{equation*}
\left\{\left(e_{1}, e_{2}\right)=1 \mid\left\{e_{1}, e_{2}\right\} \subset\{a, b, c\}\right\} \tag{3}
\end{equation*}
$$

In the following, we shall show the equation (3) in every case listed in Remark 1.
(a) The case (I)-(1).

We have noticed $(a, b)=(b, c)=(a, c)=1$ in Section 2. So we shall show

$$
\begin{equation*}
N(b, c)+N(a, c)+N(a, b)=N(a)+N(b)+N(c) \tag{4}
\end{equation*}
$$

By $c \mid(h-a)$, we have $h-a=c k(k>1)$. Suppose that c can be expressed as $c=p a+q b$ ($p, q>0$). Then we have

$$
\begin{aligned}
h & =a+c+(k-1) c \\
& =\{(k-1) p+1\} a+(k-1) q b+c .
\end{aligned}
$$

But this contradicts the assumption $a_{0}=0$. So we have $N(c)=1$ noting $(a, c)=(b, c)=1$. Similarly we obtain $N(a)=N(b)=1$.

We may suppose that $a<c$ and $b<c$. Then we have

$$
\begin{aligned}
h & =a+c k \\
& =(c-b+1) a+a b+(k-a) c .
\end{aligned}
$$

If $k>a$ then we have $a_{0} \geq 1$ noting $c>b$. This contradicts $a_{0}=0$. If $k=a$ then $h=(1+c) a$. This contradicts $a \nmid h$. Therefore we have $k<a$. Noting $(a, c)=1$ and $k<a$, we obtain $N(a, c)=1$ by $h=a+k c$. Similarly, by $b \mid(h-c)$ we can express h as

$$
\begin{aligned}
h & =c+b l \quad(l>1) \\
& =b a+(l-a) b+c .
\end{aligned}
$$

If $l>a$ then $a_{0} \geq 1$, so we have $l \leq a$. By the assumption $a<c$, we have $l \leq a<c$. Noting ($b, c)=1$ and $l<c$, we have $N(b, c)=1$.

Next we express h as $h=b+a m(m>1)$. Expressing a as $a=l+\alpha(\alpha \geq 0)$, we have

$$
\begin{aligned}
h & =b+a m \\
& =(a+1) b+(m-b) a \\
& =b l+(\alpha+1) b+(m-b) a \\
& =b l+c .
\end{aligned}
$$

Namely we have $c=(\alpha+1) b+(m-b) a$. If $m>b$ then $a_{0} \geq 1$ by $\alpha+1>0$. This is a contradiction. If $m=b$ then $h=(1+a) b$. This contradicts $b \nmid h$. So we have $m<b$. We obtain $N(a, b)=1$ noting $(a, b)=1$ and $m<b$.

Thus we have obtained in this case that $N(a)=N(b)=N(c)=1$ and $N(a, b)=$ $N(b, c)=N(a, c)=1$, and the equation (4) hold.
(b) The case in which the type of the normalization is A_{l} or non-singular.

First we prepare a proposition and a lemma to prove the equation (3) in these cases.
Proposition 2. Let $(a, b, c ; h)$ be a regular system of weights.
(i) $N(a, b)$ is not changed by any reduction. Consequently it is invariant under the normalization.
(ii) If $(a, b)=1$ then $N(c)$ is not changed by reduction.

Proof. First, we consider $N(a, b)$. If $(a, b)=c_{2}>1$ then a and b can be expressed as $a=\tilde{a} c_{2}$ and $b=\tilde{b} c_{2}$. We have $c_{2} \nmid c$ by $(a, b, c)=1$. By Theorem 1 , we have $c_{2} \mid h$. So h can be expressed as $h=\tilde{h} c_{2}$. Since $c_{2} \nmid c$, if $h=p a+q c$ then we have $c_{2} \mid q$ and we can express q as $q=q^{\prime} c_{2}$ for some q^{\prime}. Thus we have

$$
\begin{aligned}
& \exists p, q \in Z_{+} \text {s.t. } h=p a+q b \Leftrightarrow \exists p, q \in Z_{+} \text {s.t. } \tilde{h}=p \tilde{a}+q \tilde{b}, \\
& \exists p, q \in Z_{+} \text {s.t. } h=p a+q c \Leftrightarrow \exists p, q^{\prime} \in Z_{+} \text {s.t. } \tilde{h}=p \tilde{a}+q^{\prime} c .
\end{aligned}
$$

Therefore we have found that $N(a, b ; h)=N(\tilde{a}, \tilde{b} ; \tilde{h})$ and $N(a, c ; h)=N(\tilde{a}, c ; \tilde{h})$ and this proves (i).

Next, we consider $N(c)$. By $(a, b)=1$, it is sufficient to consider only the reduction with respect to b and c. Let $(b, c)=c_{0}>1$ then b, c and h can be expressed as $b=\tilde{b} c_{0}$, $c=\tilde{c} c_{0}$ and $h=\tilde{h} c_{0}$. Since $(a, b)=1$, we have $\left(c_{0}, a\right)=1$ and if we express $c=p a+q b$, we can express p as $p=p^{\prime} c_{0}$ for some p^{\prime}. So we have

$$
\begin{equation*}
\exists p, q \in Z_{+} \text {s.t. } c=p a+q b \Leftrightarrow \exists p^{\prime}, q \in Z_{+} \text {s.t. } \tilde{c}=p^{\prime} a+q \tilde{b} . \tag{q.e.d.}
\end{equation*}
$$

Thus we obtain $N(c)=N(\tilde{c})$.

So if $(b, c)=(a, c)=1$ and $(a, b)>1$ then we have only to show that $N\left(b^{\prime}, c^{\prime}\right)+N\left(a^{\prime}, c^{\prime}\right)=N\left(a^{\prime}\right)+N\left(b^{\prime}\right)$. Eventually it is enough to show that $N\left(a^{\prime}, c^{\prime}\right)=N\left(b^{\prime}\right)$ in case of $(a, c)=1$.

Lemma 4. Let ($a^{\prime}, b^{\prime}, c^{\prime} ; h^{\prime}$) be the normalization of a regular system of weights (a, b, c; h) whose type is A_{l} (suppose $h^{\prime}=b^{\prime}+c^{\prime}$ and $a^{\prime} \mid h^{\prime}$) or non-singular (suppose $a^{\prime}=h^{\prime}$). Then $b^{\prime} \mid h^{\prime}$ if and only if $b^{\prime}=1$.

Proof. We have only to prove that if $b^{\prime} \mid h^{\prime}$ then we have $b^{\prime}=1$. In the case of non-singular type, we have $b^{\prime} \mid a^{\prime}$. In the case of type A_{l}, we have $b^{\prime} \mid c^{\prime}$. On the other hand, we have $\left(b^{\prime}, c^{\prime}\right)=\left(a^{\prime}, b^{\prime}\right)=1$ by the definition of the normalization, so we have $b^{\prime}=1$ in both cases.
(q.e.d.)

By the previous lemma, we may assume that b^{\prime} and c^{\prime} satisfies one of the following conditions:
(II) $b^{\prime}>1 \quad c^{\prime}>1$,
(III) $b^{\prime}=1 \quad c^{\prime}>1$,
(IV) $b^{\prime}=1 \quad c^{\prime}=1$.

First, we consider type A_{l}.
The case (II) ($b^{\prime}>1, c^{\prime}>1, a^{\prime} \mid h^{\prime}, h^{\prime}=b^{\prime}+c^{\prime}$).
Since $a^{\prime} \mid h^{\prime}$ and $a^{\prime}<h^{\prime}$, we can express h^{\prime} as $h^{\prime}=a^{\prime} \alpha(\alpha>1)$.
We have $h^{\prime}=b^{\prime}+c^{\prime}$, so we have $N\left(b^{\prime}, c^{\prime}\right)=1$ considering $b^{\prime}, c^{\prime}>1,\left(b^{\prime}, c^{\prime}\right)=1$. a^{\prime} can not be expressed as $a^{\prime}=p b^{\prime}+q c^{\prime}(p, q>0)$ by $b^{\prime}+c^{\prime}=a^{\prime} \alpha>a^{\prime}$. Since $b^{\prime}, c^{\prime}>1$ and $\left(b^{\prime}, a^{\prime}\right)=\left(c^{\prime}, a^{\prime}\right)=1, a^{\prime}$ can not be expressed as $a^{\prime}=p b^{\prime}+q c^{\prime}(p=0$ or $q=0)$. So $N\left(a^{\prime}\right)=1$. Therefore we have $N\left(b^{\prime}, c^{\prime}\right)=N\left(a^{\prime}\right)=1$.

Secondly, we can express b^{\prime} as $b^{\prime}=p c^{\prime}+q a^{\prime}\left(0 \leq p<a^{\prime}\right)$ then

$$
h^{\prime}=b^{\prime}+c^{\prime}=(p+1) c^{\prime}+q a^{\prime} .
$$

Noting $p+1 \geq 1$ and $h^{\prime}=a^{\prime} \alpha$, we have $N\left(c^{\prime}, a^{\prime}\right)=N\left(c^{\prime}, a^{\prime} ; b^{\prime}\right)+1$. Note that in general we have $N\left(b^{\prime}\right)=N\left(c^{\prime}, a^{\prime} ; b^{\prime}\right)+1$, since $b^{\prime}=b^{\prime}+0 c^{\prime}+0 a^{\prime}$. Therefore we have $N\left(c^{\prime}, a^{\prime}\right)=N\left(b^{\prime}\right)$. Similarly we have $N\left(b^{\prime}, a^{\prime}\right)=N\left(c^{\prime}\right)$.
The case (III) ($b^{\prime}=1, c^{\prime}>1, a^{\prime} \mid h^{\prime}, h^{\prime}=b^{\prime}+c^{\prime}$).
Noting $b^{\prime}=1$ and $a^{\prime} \mid h^{\prime}$, we have $h^{\prime}=1+c^{\prime}=a^{\prime} \alpha(\alpha>1)$.
First, since $b^{\prime}=1$, we have $h^{\prime}=a^{\prime} \alpha=a^{\prime}(\alpha-1)+a^{\prime} b^{\prime}$. So we have $N\left(b^{\prime}, a^{\prime}\right)=\alpha+1$. Also noting $c^{\prime}=h^{\prime}-1=a^{\prime}(\alpha-1)+\left(a^{\prime}-1\right) b^{\prime}$, we have $N\left(b^{\prime}, a^{\prime} ; c^{\prime}\right)=\alpha$. On the other hand, we have $N\left(c^{\prime}\right)=1+N\left(b^{\prime}, a^{\prime} ; c^{\prime}\right)=1+\alpha$. So we have $N\left(b^{\prime}, a^{\prime}\right)=N\left(c^{\prime}\right)$.

Next by $1+c^{\prime}=a^{\prime} \alpha>a^{\prime}$ and $c^{\prime}>1$ we have $c^{\prime}>a^{\prime}$. Noting $b^{\prime}=1$, we have $a^{\prime}=a^{\prime} b^{\prime}+0 c^{\prime}$. So we have $N\left(b^{\prime}, c^{\prime} ; a^{\prime}\right)=1$ and $N\left(a^{\prime}\right)=1+N\left(b^{\prime}, c^{\prime} ; a^{\prime}\right)=2$. Since $h^{\prime}=b^{\prime}+b^{\prime} c^{\prime}$, we have $N\left(b^{\prime}, c^{\prime}\right)=2$. Therefore we have $N\left(b^{\prime}, c^{\prime}\right)=N\left(a^{\prime}\right)=2$.

Lastly noting $1=b^{\prime}<c^{\prime}$, if $a^{\prime}>1$ then $N\left(b^{\prime}\right)=1$ and if $a^{\prime}=1$ then $N\left(b^{\prime}\right)=2$. Also noting $h^{\prime}=1+c^{\prime}=a^{\prime} \alpha$ as above, if $a^{\prime}>1$ then $N\left(c^{\prime}, a^{\prime}\right)=1$ and if $a^{\prime}=1$ then $N\left(c^{\prime}, a^{\prime}\right)=2$. So we have $N\left(c^{\prime}, a^{\prime}\right)=N\left(b^{\prime}\right)$.

The case (IV) $\left(b^{\prime}=c^{\prime}=1, a^{\prime} \mid h^{\prime}, h^{\prime}=b^{\prime}+c^{\prime}=\alpha a^{\prime}(\alpha>1)\right)$.
In this case, we have $b^{\prime}=c^{\prime}=a^{\prime}=1$ and $h^{\prime}=2$. Therefore we have $N\left(b^{\prime}\right)=$ $N\left(c^{\prime}\right)=N\left(a^{\prime}\right)=3$ and $N\left(b^{\prime}, c^{\prime}\right)=N\left(c^{\prime}, a^{\prime}\right)=N\left(b^{\prime}, a^{\prime}\right)=3$.

Thus we have proved $r=m_{0}+3$ in the case that the type of the normalization is A_{l}.
Finally we study the case of non-singular type. Assuming that $c^{\prime}=h^{\prime}$, i.e., $(a, b)>1$, we notice that if $b^{\prime} \nmid h^{\prime}$, i.e., $b^{\prime}>1$, we have $b^{\prime}<c^{\prime}$.
The case (II) ($a^{\prime}, b^{\prime}>1, c^{\prime}=h^{\prime}$).
By the above notice, we have $1<a^{\prime}<c^{\prime}$ and $1<b^{\prime}<c^{\prime}$. We have $N\left(a^{\prime}, c^{\prime}\right)=1$ by $h^{\prime}=c^{\prime}$ and $a^{\prime} \nmid h^{\prime}$. We have $N\left(b^{\prime}\right)=1$ since $b^{\prime}<c^{\prime}, 1<a^{\prime}$ and $\left(a^{\prime}, b^{\prime}\right)=1$. So we have $N\left(a^{\prime}, c^{\prime}\right)=N\left(b^{\prime}\right)=1$. Similarly we have $N\left(b^{\prime}, c^{\prime}\right)=N\left(a^{\prime}\right)=1$.
The case (III) ($a^{\prime}=1, b^{\prime}>1, c^{\prime}=h^{\prime}$).
First, we have $b^{\prime}<c^{\prime}$. As we can express b^{\prime} as $b^{\prime}=b^{\prime} a^{\prime}+0 c^{\prime}$ noting $a^{\prime}=1$, we have $N\left(b^{\prime}\right)=1+1$ by $b^{\prime}<c^{\prime}$. As h^{\prime} can be expressed as $h^{\prime}=c^{\prime} a^{\prime}$ noting $a^{\prime}=1$, we have $N\left(a^{\prime}, c^{\prime}\right)=2$. So we have $N\left(a^{\prime}, c^{\prime}\right)=N\left(b^{\prime}\right)$.

Secondly, since $a^{\prime}=1,1<b^{\prime}$ and $1<c^{\prime}$, we have $N\left(a^{\prime}\right)=1$. Since $h^{\prime}=c^{\prime}$ and $b^{\prime} \nmid h^{\prime}$, we have $N\left(b^{\prime}, c^{\prime}\right)=1$. So we have $N\left(b^{\prime}, c^{\prime}\right)=N\left(a^{\prime}\right)$.
The case (IV) ($a^{\prime}=b^{\prime}=1, c^{\prime}=h^{\prime}$).
(i) $1<c^{\prime}\left(b^{\prime}<c^{\prime}, a^{\prime}<c^{\prime}\right)$. As h^{\prime} can be expressed as $h^{\prime}=c^{\prime}=a^{\prime} c^{\prime}\left(a^{\prime}=1\right)$, we have $N\left(a^{\prime}, c^{\prime}\right)=2$. By $b^{\prime}=a^{\prime}=1$ and $b^{\prime}<c^{\prime}$, we have $N\left(b^{\prime}\right)=2$. So we have $N\left(a^{\prime}, c^{\prime}\right)=N\left(b^{\prime}\right)$. Similarly we have $N\left(b^{\prime}, c^{\prime}\right)=N\left(a^{\prime}\right)$.
(ii) $c^{\prime}=1$. From the assumption, we have $a^{\prime}=b^{\prime}=c^{\prime}=h^{\prime}=1$. Then we have $(a, b),(b, c)$, $(a, c)>1$.

Consequently we have the following (a) or (b):
(a) $(a, b)>1, N\left(a^{\prime}, c^{\prime}\right)=N\left(b^{\prime}\right), N\left(b^{\prime}, c^{\prime}\right)=N\left(a^{\prime}\right)$
(b) $(a, b)>1,(b, c)>1(a, c)>1$.

Now as it was enough to show that if $(a, b)=1$ then $N\left(a^{\prime}, b^{\prime}\right)=N\left(c^{\prime}\right)$, so we have the equation (3) in any case.
(q.e.d.)
(B) The case of $a_{0} \geq 1$.

It holds that $\varepsilon^{\prime} \leq 0$ by Proposition 1. Using the invariants of reduction (Proposition 2), we have only to show that

$$
N\left(a^{\prime}, b^{\prime}\right)-N\left(c^{\prime}\right) \geq 0 \quad \text { for } \quad(a, b)=1
$$

In Section 2 we have noticed in the case $\varepsilon^{\prime} \leq 0$ that the normalization ($a^{\prime}, b^{\prime}, c^{\prime} ; h^{\prime}$) is also a regular system of weights. So we shall show $N(a, b)-N(c) \geq 0$ for $\varepsilon \leq 0$ and $(a, b)=(b, c)=(a, c)=1$. Noting that $N(c)=N(a, b ; c)+1$, we shall show that $N(a, b ; h) \geq N(a, b ; c)+1$ in each case of the following:
(a) The case of $N(a, b ; c)=0$.

It clearly holds $N(a, b ; h) \geq 1$ in the case that a (or b) divides $h-a$ or $h-b$. So we show the inequality in the case that both a and b divide $h-c$. Noting (a, b) $=1$, we have $h-c=d a b$. So $h>d a b \geq a b$. If we represent $h=p a+q b(0 \leq p<b)$ then we have $q>0$ by
$h \geq a b$. So $N(a, b ; h) \geq 1$.
(b) The case of $N(a, b ; c) \geq 1$.

We shall show that $N(a, b ; h)>N(a, b ; c)$ in the case that c divides $h-a$, as we can similarly show it in the other cases. We have an expression $h-a=c m$ where $m \geq 2$ noting $h \geq a+b+c$. On the other hand, we have different expressions

$$
c=\alpha_{i} a+\beta_{i} b, \quad \alpha_{i}, \beta_{i} \geq 0, \quad 1 \leq i \leq k, \quad \text { where } \quad k=N(a, b ; c)
$$

So we have different expressions of h using these expressions of c :

$$
\begin{aligned}
h & =a+c m \\
& =a+m \alpha_{i} a+m \beta_{i} b \\
& =a+m_{1} c+m_{2} c \quad\left(m=m_{1}+m_{2}, m_{1}, m_{2}>0\right) \\
& =a+\left(m_{1} \alpha_{i}+m_{2} \alpha_{j}\right) a+\left(m_{1} \beta_{i}+m_{2} \beta_{j}\right) b .
\end{aligned}
$$

If $\alpha_{i}<\alpha_{j}$ then we have $m \alpha_{i}<m_{1} \alpha_{i}+m_{2} \alpha_{j}<m \alpha_{j}$. Namely it holds that $N(a, b ; h)>$ $N(a, b ; c)$.

The case (B) was pointed out to the author by Prof. M. Tomari.
Finally we give some examples of a regular system of weights with $a_{0}=0$ or $m_{0}>r-3+a_{0}$ and $a_{0}>0$. For each example we give the characteristic function and the dual graph of the resolution associated with an isolated singularity. A number in a circle means the self-intersection number of the corresponding curve multiplied by -1 and circles without a number represent curves with self-intersection -2 .

Example 3 (type I-(1)). (4, 9, 11; 31).

$$
\begin{aligned}
\chi(T)= & T^{-7}+T^{-3}+T+T^{2}+T^{4}+T^{5}+T^{6}+T^{8}+T^{9}+T^{10}+T^{11}+T^{12} \\
& +T^{13}+T^{14}+T^{15}+T^{16}+T^{17}+T^{18}+T^{19}+T^{20}+T^{21}+T^{22} \\
& +T^{23}+T^{25}+T^{26}+T^{27}+T^{29}+T^{30}+T^{34}+T^{38} \\
m_{0}=0 & , \quad r=3 .
\end{aligned}
$$

Example 4 (the normalization is type $\left.A_{l}\right) . \quad(3,5,6 ; 21) \rightarrow(1,5,2 ; 7)$.

$$
\begin{aligned}
\chi(T)= & T^{-7}+T^{-4}+T^{-2}+2 T^{-1}+T+2 T^{2}+T^{3}+2 T^{4}+3 T^{5}+T^{6}+2 T^{7} \\
& +3 T^{8}+T^{9}+3 T^{10}+3 T^{11}+T^{12}+3 T^{13}+2 T^{14}+T^{15}+3 T^{16} \\
& +2 T^{17}+T^{18}+2 T^{19}+T^{20}+2 T^{22}+T^{23}+T^{25}+T^{28} . \\
m_{0}=2 & , \quad r=5 .
\end{aligned}
$$

Example 5 (the normalization is non-singular type). $(8,9,12 ; 36) \rightarrow(2,3,1 ; 3)$.

$$
\begin{aligned}
\chi(T)= & T^{-7}+T+T^{2}+T^{5}+T^{9}+T^{10}+T^{11}+T^{13}+T^{14}+T^{17}+T^{18} \\
& +T^{19}+T^{22}+T^{23}+T^{25}+T^{26}+T^{27}+T^{31}+T^{34}+T^{35}+T^{43} \\
m_{0}=0 & , \quad r=3
\end{aligned}
$$

Example 6. $(1,1,5 ; 10)$.

$$
\begin{align*}
& \chi(T)= T^{-3}+2 T^{-2}+3 T^{-1}+4+5 T+6 T^{2}+7 T^{3}+8 T^{4}+9 T^{5}+8 T^{6}+7 T^{7} \\
&+6 T^{8}+5 T^{9}+4 T^{10}+3 T^{11}+2 T^{12}+T^{13} \\
& m_{0}=7, \quad r=0 . \tag{2}
\end{align*}
$$

Example 7. $\quad(3,4,5 ; 15)$.

$$
\begin{aligned}
\chi(T)= & T^{-3}+1+T+T^{2}+T^{3}+T^{4}+2 T^{5}+2 T^{6}+T^{7}+T^{8}+2 T^{9}+2 T^{10} \\
& +T^{11}+T^{12}+T^{13}+T^{14}+T^{15}+T^{18} . \\
m_{0}=1 & \quad r=1 .
\end{aligned}
$$

References

[Do] I. Dolgachev, Weighted projective varieties, Group Actions and Vector Fields; Proc. Vancouver 1981, Lecture Notes in Math., 956 (1982), 34-71, Springer.
[GW] S. Goto and K. Watanabe, On graded ring I, J. Math. Soc. Japan, 30 (1978), 179-213.
[La] H. B. Laufer, On minimally elliptic singularities, Amer. J. Math., 99 (1977), 1257-1295.
[Pi] H. Pinkham, Normal surfaces singularities with C^{*}-action, Math. Ann., 227 (1977), 183-193.
[OW] P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with C^{*}-action, Ann. of Math., 93 (1971), 205-228.
[OW1] P. Orlik and P. Wagreich, Singularities of algebraic surface with C^{*}-action, Math. Ann., 193 (1971), 121-135.
[OW2] P. Orlik and P. Wagreich, Algebraic surfaces with C^{*}-action, Acta Math., 138 (1977), 43-81.
[Sa1] K. Saito, Algebraic surfaces for regular systems of weights, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, 517-614, Kinokuniya, 1987.
[Sa2] K. Saito, Theory of the general weight systems and related topics I, II, (in Japanese), Sûgaku, 38 (1986), I 97-115, II 202-217.
[Sa3] K. Saito, Regular systems of weights and associated singularities, Complex Analytic Singularities, Adv. Stud. Pure Math., 8 (1987), 479-526, North-Holland.
[Sa4] K. SAITO, On the existence of exponents prime to the Coxeter number, RIMS preprint, 529 (1985).
[Wa] P.Wagreich, The structure of quasihomogeneous singularities,Proc. Symp. Pure Math., 40 (1983), 593-611.
[Wh] J. Wahl, Deformations of quasi-homogeneous surface singularities, Math. Ann., 280 (1988), 105-128.
[W] K. Watanabe, Some remarks concerning Demazure's construction of normal graded rings, Nagoya Math. J., 83 (1981), 203-211.

Present Address:

Department of Mathematics, Tsuda College
Tsuda-machi, Kodaira-shi, Tokyo 187, Japan

[^0]: Received September 20, 1989

