
TOKYO J. MATH.
VOL. 16, No. 2, 1993

A Brownian Ball Interacting with Infinitely Many
Brownian Particles in $R^{d}$

Yasumasa SAISHO and Hideki TANEMURA*

Kumamoto University and Chiba University

(Communicated by Y. Maeda)

1. Introduction and main results.

In this paper we construct a system of a hard ball with radius $r(\in(O, \infty))$ interacting
with infinitely many point particles in $R^{d}(d\geq 2)$ . All particles and the ball are undergoing
Brownian motions and when the distance between a particle and the center of the ball
attains a given constant $r$, they repel each other instantly. Saisho and Tanaka [5]

constructed a system of mutually reflecting finitely many hard balls by solving certain
stochastic differential equation of Skorohod type. Following the idea of [5], Saisho [4]

constructed a system ofmutually repelling finitely many particles of $m$ types: the number
ofparticles of type $k$ is $n_{k}(\sum_{k=1}^{m}n_{k}=n<\infty)$ and when the distance between two particles
of different type attains a constant $r$, they repel each other instantly. In case each type
consists of only one particle, the model of [4] is reduced to that of [5]. Our present
model in this paper is formally regarded as the case of $m=2,$ $n_{1}=1$ and $ n_{2}=\infty$ in the
model of [4].

Let $\mathfrak{M}_{0}$ be the set of all countable subsets $\eta$ of $R^{d}\backslash U_{r}(0)$ satisfying $ N_{K}(\eta)\equiv$

$\#(\eta\cap K)<\infty$ for any compact subset $K$, where $U_{r}(x)=\{y\in R^{d} : |x-y|<r\}$ . The
configuration space of a hard ball with radius $r$ and infinitely many point particles is
defined by

$X=\{x=(x_{O}, x_{1}, \cdots)\in(R^{d})^{\infty} : \{x_{i}-x_{0}, i\in N\}\in \mathfrak{M}_{O}\}$ ,

where $x_{0}$ is the position of center of the hard ball and $x_{i}$ is that of the i-th point particle.
We put $W_{0}=C(w:[0, \infty)\rightarrow R^{d},$ $w(O)=0)$ and $W=W_{0}^{\infty}$ . Given $x=(x_{0}, x_{1}, \cdots)\in X$ and
$w=(w_{0}, w_{1}, \cdots)\in W$, we consider the following equation (1.1) under the conditions
(1.2), (1.3) and (1.4):
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(1.1) $\left\{\begin{array}{ll}\xi_{0}(t)=x_{0}+w_{0}(t)+\sum_{j=1}^{\infty}\int_{0}^{t}(\xi_{0}(s)-\xi_{j}(s))dL_{j}(s) & ,\\\xi_{i}(t)=x_{i}+w_{i}(t)+\int_{0}^{t}(\xi_{i}(s)-\xi_{0}(s))dL_{i}(s), & t\in N,\end{array}\right.$

(1.2) $\xi_{i}\in C([0, \infty)\rightarrow R^{d})$ , $i\in Z_{+}$ ,

(1.3) $|\xi_{i}(t)-\xi_{0}(t)|\geq r$ , $i\in N$ , $ t\in[0, \infty$ ) ,

(1.4) $L_{i},$ $i\in N$ are continuous nondecreasing functions with $L_{i}(0)=0$ and

$L_{\iota}(t)=\int_{0}^{t}[\{r\}(|\xi_{i}(s)-\xi_{0}(s)|)dL_{i}(s)$ ,

where $[_{A}$ stands for the indicator function of a set $A$ .
Let $P_{V}$ be a Wiener measure on $W_{O}$ and $P=P_{W}^{\theta\infty}$ . We denote by $\mu_{\lambda}$ a PoissoI

distribution on $R^{d}\backslash U_{r}(0)$ with intensity measure $\lambda dx$, that is, for any disjoint system
$\{A_{1}, A_{2}, \cdots, A_{m}\}\subset\ovalbox{\tt\small REJECT}(R^{d}\backslash U_{r}(0))$ such that $|A_{i}|=\int_{A_{1}}dx<\infty,$ $i=1,2,$ $\cdots,$ $m$ , and $\lambda>0$

$N_{A_{i}},$ $i=1,2,$ $\cdots,$ $m$ are independent random variables with

$\mu_{\lambda}(N_{A_{i}}=n)=\frac{(\lambda|A_{i}|)^{n}}{n!}\exp(-\lambda|A_{i}|)$ , $i=1,2,$ $\cdots,$ $m$ , $n\in N\cup\{0\}$ .

Let $\Gamma$ be the map from $X$ to $\mathfrak{M}_{O}$ defined by

$\Gamma(x)=\Gamma(x_{0}, x_{1}, \cdots)=\{x_{i}-x_{O} : i\in N\}$ .
Our main result of this paper is the following theorem.

THEOREM 1. Let $\hat{\mu}$ be a probability measure on $X$ such that $\Gamma\hat{\mu}=\mu_{\lambda}$ for some $\lambda>0$

where $\Gamma\hat{\mu}$ is the image measure of $\hat{\mu}$ under the map $\Gamma$ . Then, for almost all $(x, w)$ wit’
respect to $P=\hat{\mu}\otimes P$ there $e$xists a unique solution $(\xi(t), L(t))$ of the equation (1.1)
Furthermore, the distribution of $\Gamma\xi(t)$ is $\mu_{\lambda}$ for all $t\geq 0$ .

For the proof ofTheorem 1, we first construct a system of a Brownian ball colliding
with finitely many Brownian particles on some torus by using a Skorohod equation
and the same procedure as that of [5] (Section 2). We also give an estimate concerning
the motion of the Brownian ball in a way uniform with respect to the number of $th\epsilon$

particles (Lemma 2.6). The key idea of the proof of Lemma 2.6 is the decomposition
of additive functionals of reversible processes which is originally obtained by Lyons
and Zheng [2] for symmetric Markov processes associated with regular Dirichlet forms
We generalize this decomposition by employing the penalty method given in [6],
Secondly we show that under the assumption of Theorem 1 the summation in the
equation (1.1) is in fact a finite sum for each $t\geq 0$ by Lemma 2.6. The proof of Theorem
1 is given in Section 3.
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2. Skorohod equation for a torus.

For $M,$ $n\in N$ and $r\in(O, 1/2)$ , we define a domain $D_{M}$ in $R^{\langle n+1)d}$ by

$D_{M}=\{x=(x_{0}, x_{1}, \cdots, x_{n})\in R^{\langle n+1)d} : \rho_{M}(x_{i}, x_{0})>r, 1\leq i\leq n\}$ ,

where $\rho_{M}(x_{i}, x_{0})=\min\{|x_{i}-x_{0}+Mz| : z\in Z^{d}\}$ . We also define the set $\mathscr{N}_{x}$ of inward
normal unit vectors at $x\in\partial D_{M}$ by

$\mathscr{N}_{x}=\bigcup_{l>0}\mathscr{N}_{x,l}$ ,

$\mathscr{N}_{x,l}=\{n\in R^{\langle n+1)d} : |n|=1, U_{l}(x-ln)\cap D_{M}=\emptyset\}$ .
First we prove the following lemma.

LEMMA 2.1. For each $M,$ $n\in N,$ $D_{M}$ satisfies Conditions (A) and (B):
Condition (A). There exists a constant $l_{0}>0$ such that

$r_{x}=\mathscr{N}_{x,l_{O}}\neq\emptyset$ for any $x\in\partial D_{M}$ .
Condition (B). There exist constants $\delta>0$ and $\beta\in[1, \infty$ ) with the following property: for
any $x\in\partial D_{M}$ there exists a unit vector $l_{x}$ such that

$\langle l_{x}, n\rangle\geq 1/\beta$ for any ne $\bigcup_{y\in U_{\delta}(x)\cap\partial D_{Ii}}\mathscr{N}_{y}$ ,

where $\langle\cdot, \cdot\rangle$ denotes the usual inner product in $R^{\langle n+1)d}$ .
In addition we have

$\mathscr{N}_{x}=\{n$ : $|n|=1,$
$n=\sum_{i\in I}c^{i}n^{i},$

$c^{i}\geq 0\}$ , $x=(x_{0}, x_{1}, \cdots, x_{n})\in\partial D_{M}$ ,

where

$I=\{t\in\{1,2, \cdots, n\} : p_{M}(x_{i}, x_{O})=r\}$ ,

$n^{i}=(\frac{\tilde{x}_{0}-\tilde{x}_{i}}{\sqrt{2}r},$ $0,$ $\cdots,$ $0,$

$\frac{\tilde{x}_{i}-\tilde{x}_{0}}{\langle i+1)-th\sqrt{2}\gamma},0,$

$\cdots,$ $0)$ ,

and $\tilde{x}=(0,\tilde{x}_{1}, \cdots,\tilde{x}_{n})\in R^{(n+1)d}$ with $\tilde{x}_{i}\in K_{M}=[-M/2, M/2)^{d}$ and $\tilde{x}_{i}=x_{i}-x_{O}(mod MZ^{d})$

for $i=1,$ $\cdots,$ $n$ .
$PR\infty F$ . We introduce the domain $D_{0}$ defined by

$D_{0}=\{x=(x_{0}, x_{1}, \cdots, x_{n})\in R^{\langle n+1)d} : |x_{i}-x_{0}|>r, 1\leq i\leq n\}$ .
It is easy to see that
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(2.1) $D_{M}=\bigcap_{z_{O}\in Z^{d}}(D_{0}+(Mz_{O}, 0, \cdots, 0))$ ,

(2.2) $D_{M}=D_{M}+(Mz_{0}+y_{0}, Mz_{1}+y_{0}, \cdots, Mz_{n}+y_{0})$ ,

$\forall z_{0},$ $\cdots,$ $z_{n}\in Z^{d},$ $\forall y_{0}eR^{d}$, where $A+x=\{y+x : y\in A\}$ . If $xe\partial D_{M},$ $(2.1)$ and (2.2) yielt
$\tilde{x}\in\partial D_{M}$ and

(2.3) $D_{M}\cap U_{a}(x)=(D_{M}\cap U_{a}(\tilde{x}))+x-\tilde{x}$ , $a>0$ .
If we take $a\in(O, (M/2-r)/\sqrt{2})$ , for any $yeU_{a}(\tilde{x})$ and $z_{0}eZ^{d}\backslash \{0\}$ , we have

$|y_{i}-y_{0}+Mz_{0}|=|y_{i}-y_{0}+Mz_{0}-(\tilde{x}_{i}-\tilde{x}_{O})+(\tilde{x}_{i}-\tilde{x}_{O})|$

$\geq|\tilde{x}_{i}-\tilde{x}_{0}+Mz_{O}|-|y_{i}-\tilde{x}_{i}|-|y_{0}-\tilde{x}_{0}|$

$\geq M/2-\sqrt{2}|y-\tilde{x}|>r$ .
Thus, we have $\tilde{x}\in\partial D_{0}$ and

$D_{M}\cap U_{a}(\tilde{x})=D_{0}\cap U_{a}(\tilde{x})$ .
Combining this with (2.3), we obtain

$D_{M}\cap U_{a}(x)=(D_{0}\cap U_{a}(\tilde{x}))+x-\tilde{x}$ .
Moreover, it has been proved in [4] that $D_{O}$ satisfies Conditions (A) and (B) for

$J_{x}(D_{0})=\{n:|n|=1,$
$n=\sum_{i\in l_{O}}c^{i}m^{i},$

$c^{i}\geq 0\}$ , $x=(x_{0}, x_{1}, \cdots, x_{n})e\partial D_{0}$ ,

where

$I_{0}=\{i\in\{1,2, \cdots, n\} : |x_{i}-x_{0}|=r\}$ ,

$m^{t}=(\frac{x_{0}-x_{i}}{\sqrt{2}r},$ $0,$ $\cdots,$ $0,$

$\frac{x_{i}-x_{0}}{\langle t+1)- th\sqrt{2}r},0,$

$\cdots,$ $0)$ .

Thus, we obtain Lemma 2.1. $\square $

For given we $W_{O}^{n+1}=C(w:[0, \infty)\rightarrow R^{\langle n+1)d},$ $w(O)=0)$ and $xe\overline{D_{M}}$, Skorohot
equation for $D_{M}$ with reflecting boundary condition is written in the form
(2.4) $\zeta(t)=x+w(t)+\varphi(t)$ , $t\geq 0$ ,

where a solution $(\zeta, \varphi)$ should be found under the following two conditons (2.5) anc
(2.6) (we also call $\zeta$ a solution of (2.4)).

(2.5) $\zeta eC([0, \infty)\rightarrow\overline{D_{M}})$ .
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(2.6) $\varphi$ is an $R^{\langle n+1)d}$-valued continuous function with bounded variation
on each finite time interval satisfying $\varphi(0)=0$ and

$\varphi(t)=\int_{0}^{t}n(s)d\Vert\varphi\Vert_{s}$ ,

$\Vert\varphi\Vert_{t}=\int_{0}^{t}[\partial D_{M}(\zeta(s))d\Vert\varphi\Vert_{s}$ ,

where

$n(s)e\mathscr{N}_{\zeta\langle s)}$ if $\zeta(s)e\partial D_{M}$ ,

$\Vert\varphi\Vert_{t}=thetotalvariationof\varphi$ on $[0, t]$ .

The existence and uniqueness of solutions of Skorohod equations were studied by
many authors (Lions-Sznitman [1], Saisho [3], Tanaka [8]). By Lemma 2.1 we can
apply Theorem 4.1 in [3] and obtain the following result.

PROPOSITON 2.2. For each $n\in N$ and MeN the Skorohod equation (2.4) for $D_{M}$

has a unique solution.

REMARK 2.1. We denote by $\zeta(t, x, w)$ the unique solution of the Skorohod equa-
tion (2.4) for $D_{M},$ $x\in D_{M},$ $weW_{0}^{n+1}$ . From (2.2), for any $y_{0}eR^{d}$ we see that $ x^{\prime}\equiv$

$(x_{0}+y_{0}, x_{1}+y_{0}, \cdots, x_{n}+y_{0})eD_{M}$ and

$\zeta_{i}(t, x^{\prime}, w)=\zeta_{i}(t, x, w)+y_{0}$ , $i=1,2,$ $\cdots,$ $n$ .

By the same procedure as in Section 2 of [6], we can construct a continuous
function $V(x)$ on $R^{(n+1)d}$ with the following properties (2.7), (2.8) and (2.9):

$(2,7)$ $V(x)=V(x+Mz)$ for any $x\in R^{\langle n+1)d}$ , $z\in Z^{\langle n+1)d}$ ,

(2.8) $V(x)=\inf_{y\in D_{M}}|x-y|^{2}$ if $\inf_{y\in D_{M}}|x-y|\leq l_{0}$ ,

(2.9) $\nabla V$ is bounded and Lipschitz continuous.

Given we $W_{0}^{n+1},$ $x\in R^{\langle n+1)d}$ and meN, we denote by $\zeta^{m}(t)$ the solution of

(2.10) $\zeta^{m}(t)=x+w(t)-\frac{m}{2}\int_{0}^{t}\nabla V(\zeta^{m}(s))ds$ .

The following result is Theorem 2 in [6].

PROPOSITION 2.3 ([6]). Let $T>0$ and $x^{m},$ $m\in N$ be a sequence of $D_{m}$ which con-
verges to $xe\overline{D_{M}}$ . Then the process $\zeta^{m}(t, x^{m}, w)$ converges to the solution $\zeta(t, x, w)$ of the
equation (2.4) uniformly in $t\in[0, T]$ as $ m\rightarrow\infty$ .

Now let $\pi_{M}$ be the natural projection from $R^{d}$ to $T_{M}=R^{d}/MZ^{d}\cong K_{M}$ and define
$\pi_{M}$ : $R^{\langle n+1)d}\rightarrow T_{M}^{n+1}$ by
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$\pi_{M}(x_{0}, x_{1}, \cdots, x_{n})=(\pi_{M}x_{O}, \pi_{M}x_{1}, \cdots, \pi_{M}x_{n})$ .
Put $ D_{M}=\pi_{M}\overline{D_{M}}\sim$ and $\zeta(t, x, w)=\pi_{M}\zeta(t, x, w)$ . We denote by $Q$ the uniform distribution
on $D_{M}$ . The following proposition is the immediate consequence of Theorem 1 in [6]

PROPOSmON 2.4. Under $Q\otimes P_{W}^{\Phi\langle n+1)}$ theprocess $\zeta$( $t$, be, $w$ ) is a $D_{M}^{-}$-valued reversible
diffusion process.

As a corollary of Proposition 2.4 we obtain the following result.

COROLLARY 2.5. Under $Q\otimes P_{W}^{\otimes\langle n+1)}$ the process

$\tilde{\eta}(t, x, w)=(\zeta_{1}(t, x, w)-\zeta_{0}(t, x, w), \cdots, \zeta_{n}(t, x, w)-\zeta_{0}(t, x, w))$

is a stationary process with stationary measure $Q_{0}$ , where $Q_{x_{O}},$ $x_{0}\in T_{M}\dot{i}$ the n-foh
product distribution of the uniform distribution on $T_{M}\backslash U_{r}(x_{0})$ .

The following lemma is a key part of the proof of Theorem 1.
LEMMA 2.6. Let $\tau>0$ . Then there exists a positive constant $C$, which depends only

on $d$ and $T$, such that

$\int_{D_{A}x}\sim_{rW_{O}^{n+1}}\exp(\sup_{t\in[O.T]}|\zeta_{0}(t, x, w)-\zeta_{0}(0, x, w)|)Q(dx)P_{W}^{\Phi(n+1)}(dw)\leq C$ .

$PR\infty F$ . Let $\zeta^{m}(t)$ be the solution of (2.10). Put $\zeta^{m}(t)=\pi_{M}t^{m}(t)\sim$ and introduce a
probability measure $Q^{m}$ on $T_{M}^{n+1}$ defined by

$Q^{m}(dx)=\frac{1}{Z_{m}}\exp(-mV(x))dx$ , $Z_{m}=\int_{T_{M}^{n+1}}\exp(-mV(x))dx$ .

It is known that the process $\overline{\zeta^{m}}(t)$ is a reversible Markov process under $Q^{m}\otimes P_{W}^{\otimes(n+1}$

(see for instance Lemma 7.1 in [6]). If we define an additive functional $F_{t}$ by

$ F_{t}(\overline{\zeta^{m}}(\cdot))=\overline{\zeta^{m}}(t)-\overline{\zeta^{m}}(0)+\frac{m}{2}\int_{0}^{t}\nabla V(\overline{\zeta^{m}}(s))\&$ ,

then

$ F_{t}(\overline{\zeta^{m}}(T-\cdot))=\overline{\zeta^{m}}(T-t)-\zeta^{m}(T)+\frac{m}{2}\sim\int_{0}^{t}\nabla V(\overline{\zeta^{m}}(T-s))\&$

$=\overline{\zeta^{m}}(T-t)-\overline{\zeta^{m}}(T)+\frac{m}{2}\int_{T-t}^{T}\nabla V(\overline{\zeta^{m}}(s))\&$ .

Put $\bigwedge_{\hslash}\wedge\sim w^{\prime}(t)=w^{m}(t, x, w)=F_{t}(\zeta^{m}(T-\cdot))$ . Under $Q^{m}\otimes P_{\pi^{r}}^{\Phi\langle n+1)}$ , by the reversibility of the
process $\overline{\zeta^{m}}(t),\overline{w^{m}}(t)$ has the same distribution as that of $F_{t}(\overline{\zeta^{m}}(\cdot))=\pi_{M}w(t)$ and so is a
Brownian motion on $T_{M}^{n+1}$ . Using Proposition 2.3, for any sequence $x^{m},$ $meN$, of $\overline{D_{M}}$

which converges to $x\in\overline{D_{M}}$ we have
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$\overline{w^{m}}(t, x^{m}, w)\rightarrow\hat{w}(t, x, w)$ , uniformly in $t\in[0, T]$ as $ m\rightarrow\infty$ ,

where $\hat{w}(t, x, w)=\hat{w}(t)=\zeta(T-t)-\zeta(T)+\pi_{M}\varphi(T-t)-\pi_{M}\varphi(T)$ . Then we see that $\hat{w}(t)$ is
a Brownian motion on $T_{M}^{n+1}$ under $Q\otimes P_{W}^{\otimes\langle n+1)}$ . Since

$\zeta(t)-\zeta^{\sim}(0)=\frac{1}{2}\pi_{M}w(t)+\frac{1}{2}(\hat{w}(T-t)-\hat{w}(T))$ ,

we obtain Lemma 2.6 from Doob’s inequality. $\square $

REMARK 2.2. From Remark 2.1 we see that the distribution of the process
$(\tilde{\eta}(t, x, w), \delta_{x_{0}}\otimes Q_{x_{0}}\otimes P_{W}^{\otimes\langle n+1)})$ does not depend on $x_{0}eT_{M}$ and coincides with that of
the process $(\tilde{\eta}(t, x, w), Q\otimes P_{W}^{\otimes(n+1)})$ .

3. Proof of Theorem 1.

In this section we give a proof of Theorem 1. Without loss of generality we can
assume $r\in(O, 1/2)$ . First we introduoe a system of a Brownian ball colliding with finite-
ly many Brownian particles. Let $M,$ $n\in N$. Given $w=(w_{0}, w_{1}, \cdots, w_{n})\in W_{0}^{n+1}$ and
$x=(x_{O}, x_{1}, \cdots, x_{n})\in R^{\langle n+1)d}$ with $p_{M}(x_{i}, x_{0})\geq r,$ $1\leq i\leq n$ , we consider the following
equation (3.1) under the conditions (3.2), (3.3) and (3.4):

(3.1) $\left\{\begin{array}{l}\xi_{0}^{M}(t)=x_{0}+w_{0}(t)+\sum_{j=1}^{n}\sum_{z\in Z^{d}}\int_{0}^{t}(\xi_{0}^{M}(s)-\xi_{j}^{M}(s)+Mz)dL_{j,z}^{M}(s)\\\xi_{i}^{M}(t)=x_{i}+w_{i}(t)+\sum_{z\in Z^{d}}\int_{0}^{t}(\xi_{i}^{M}(s)-\xi_{0}^{M}(s)+Mz)dL_{i,z}^{M}(s)1\leq i\leq n\end{array}\right.$

(3.2) $\xi_{i}^{M}\in C([0, \infty)\rightarrow R^{d})$ , $0\leq i\leq n$ ,

(3.3) $\rho_{M}(\xi_{i}^{M}(t), \xi_{0}^{M}(t))\geq r$ , $1\leq i\leq n$ , $ te[0, \infty$ ) ,

(3.4) $L_{i,z}^{M},$ $z\in Z^{d},$ $1\leq i\leq n$ , are continuous nondecreasing functions with

$L_{i,z}^{M}(0)=0$ and

$L_{\iota_{Z}}^{M}(t)=\int_{0}^{t}[\{r\}(|\xi_{i}^{M}(s)-\xi_{0}^{M}(s)+Mz|)dL_{i,z}^{M}(s)$ .

The following Proposition is obtained by the equivalence of the Skorohod equation
(2.4) for $D_{M}$ and the equation (3.1), which can be shown by the same procedure as
that of the proof of Theorem 4.1 in [5].

PROPOSITION 3.1. $Foreachn\in NandMeNtheequation(3.1)hasauniquesolution$ .
We denote the unique solution of the equation (3.1) for $x$ and $w$ by $\xi^{M}(t, x, w)=$

$(\xi_{l}^{M}(t, x, w), 0\leq i\leq n),$ $L^{M}(t, x, w)=(L_{i,z}^{M}(t, x, w), 1\leq i\leq n, z\in Z^{d})$ .
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For $x=(x_{0}, x_{1}, \cdots)\in X$ and $w=(w_{0}, w_{1}, \cdots)\in W$ we put

$\{i_{0}, i_{1}, \cdots, i_{n}\}=\{t\in N : x_{i}-x_{0}\in K_{M}\}$ , $0=i_{0}<t_{1}<\cdots<i_{n}$ .
We also put $x_{M}=(x_{i_{O}}, x_{i_{1}}, \cdots, x_{i_{n}}),$ $w_{M}=(w_{i_{O}}, w_{i_{1}}, \cdots, w_{i_{n}})$ and

$\xi_{i}^{M}(t, x, w)=\left\{\begin{array}{ll}\xi_{k}^{M}(t, x_{M}, w_{M}) , & if i=i_{k} for some k\in\{0,1, \cdots, n\} ,\\x_{i}+w_{i}(t) , & otherwise,\end{array}\right.$

$L_{i}^{M}(t, x, w)=\{z\in Z^{l}\sum_{0}L_{k,z}^{M}(t, x_{M}, w_{M})$

,
$otherwiseifi=i_{k}for$

.

some $k\in\{1,2, \cdots, n\}$ ,

For $T>0$ and $M\in N$we introduce measurable subsets $\Lambda_{1}(M),$ $\Lambda_{2}(M),$ $\Lambda_{3}(M)$ and $\Lambda(M$

of $X\times W$ by

$\Lambda_{1}(M)=$ { $(x,$ $w):\exists t\in N,$ $\exists te[0,$ $T]$ s.t. $x_{i}-x_{0}\in K_{M},$ $x_{i}-x_{0}+w_{i}(t)\not\in K_{3M/2}$},
$\Lambda_{2}(M)=$ { $(x,$ $w)$ : $\exists ieN,$ $\exists t\in[0,$ $T]$ s.t. $x_{i}-x_{0}\not\in K_{M},$ $x_{i}-x_{0}+w_{i}(t)eK_{M/2}$} ,

$\Lambda_{3}(M)=\{(x, w) : \sup_{t\in l0,\eta}|\xi_{0}^{M}(t, x, w)-x_{0}|>M/8\}$ ,

$\Lambda(M)=\Lambda_{1}(M)u\Lambda_{2}(M)\cup\Lambda_{3}(M)$ .
REMARK 3.1. For any $(x, w)\in\Lambda(M)^{c}$ and any $te[0, T]$ we have

$\min_{z\in Z^{d}\backslash \{0\}}|\xi_{0}^{M}(t, x, w)-\xi_{i}^{M}(t, x, w)+Mz|>r$ , $i\in\{i_{1}, \cdots, i_{n}\}$ ,

$|\xi_{0}^{M}(t, x, w)-\xi_{i}^{M}(t, x, w)|>r$ , $i\not\in\{i_{1}, \cdots, i_{n}\}$ ,

and so $(\xi^{M}(t, x, w), L^{M}(t, x, w)),$ $t\in[0, T]$ is the unique solution of (1.1).

LEMMA 3.2.
$\sum_{M=1}^{\infty}P(\Lambda(M))<\infty$ .

$PR\infty F$ . First put $\Delta(M)=\{(x, w):\#(\Gamma x\cap K_{M})>\exp(M)\}$ . Since $\Gamma\hat{\mu}=\mu_{\lambda}$ , by
Chebychev’s inequality we have

$P(\Delta(M))\leq\lambda M^{d}\exp(-M)$ .
Using Doob’s inequality for the submartingale $(\exp(8|w(t)|), P_{W})$ , we obtain

$P(\Lambda_{1}(M))\leq P(\Delta(M))+P(\Lambda_{1}(M)\backslash \Delta(M))$

$\leq\lambda M^{d}\exp(-M)+\exp(M)P_{W}$( $sup|w(t)|>M/4$)
$ t\in l0,\eta$

$\leq\exp(-M)\{\lambda M^{d}+c(T)\}$ ,
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where $c(T)=\int_{W_{0}}\exp(8|w(T)|)P_{W}(dw)$ . Thus,

(3.5) $\sum_{M=1}^{\infty}P(\Lambda_{1}(M))<\infty$ .

We introduce the measurable sets $\Lambda_{2,k}(M)$ , keN defined by

$\Lambda_{2,k}(M)=\{(x, w)$ : $\exists i\in N,$ $\exists t\in[0, T]s.t$ .
$x_{i}-x_{0}\in K_{M+k+1}\backslash K_{M+k},$ $x_{i}-x_{O}+w_{i}(t)\in K_{M/2}$ }.

Then we have

$P(\Lambda_{2}(M))\leq\sum_{k=0}^{\infty}P(\Lambda_{2,k}(M))$

$\leq\sum_{k=0}^{\infty}\{P(\Delta(M+k))+\exp(M+k)P_{W}(\sup_{t\in[0,T]}|w(t)|>\frac{1}{4}(M+2k))\}$

$\leq\sum_{k=0}^{\infty}\exp(-(M+k))\{\lambda(M+k)^{d}+\exp(-2k)c(T)\}$ ,

which implies

(3.6) $\sum_{M=1}^{\infty}P(\Lambda_{2}(M))<\infty$ .

We denote by $\mu_{\lambda,M}$ a Poisson distribution on $K_{M}\backslash U_{r}(0)$ with intensity measure
$\lambda dx$ . Noting that the distribution of $\Gamma(x_{M})$ under $\hat{\mu}$ is $\mu_{\lambda,M}$ , by the equivalenoe of the
equations (2.4) and (3.1) we obtain

(3.7) $P(\Lambda_{3}(M))=P(\sup_{t\in[0,T]}|\xi_{0}^{M}(t, x_{M}, w_{M})-x_{0}|>M/8)$

$=\int_{R^{d}}\mu_{0}\wedge(dx_{0})\exp(-\lambda|^{\prime}K_{M}\backslash U_{r}(0)|)\sum_{n=0}^{\infty}\frac{\lambda^{n}}{n!}$

$\int_{\langle K_{M}\backslash U_{r}\langle 0)+x_{O})^{n}}dx_{1}\cdots dx_{n}P_{W}^{\otimes\langle n+1)}(\sup_{t\in[0,T]}|\zeta_{0}(t, x, w)-x_{O}|>M/8)$ ,

where $\wedge\mu_{0}(dy)=\hat{\mu}(x_{O}\in dy)$ . Using Remark 2.1 and Lemma 2.6, we have

(3.8) $\int_{\langle K_{\lambda i}\backslash U_{r}\langle 0)+x_{O})^{n}}dx_{1}\cdots dx_{n}P_{W}^{\otimes\langle n+1)}(\sup_{t\in[0,T]}|\zeta_{0}(t, x, w)-x_{0}|>M/8)$

$=\int_{r_{M\backslash U_{r}\langle O))^{\hslash}}}dx_{1}\cdots dx_{n}P_{W}^{\otimes\langle n+1)}(\sup_{t\in[0.T]}|\zeta_{0}(t, x, w)-x_{O}|>M/8)$

$=|T_{M}\backslash U_{r}(0)|^{n}Q\otimes P_{W}^{\otimes\langle n+1)}(\sup_{t\in[0,T]}|\zeta_{0}(t)-\zeta_{0}(0)|>M/8)$
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$\leq|T_{M}\backslash U_{r}(0)|^{n}C\exp(-M/8)$ .

Combining (3.7) and (3.8), we obtain

$P(\Lambda_{3}(M))\leq C\exp(-M/8)$

and

(3.9) $\sum_{M=1}^{\infty}P(\Lambda_{3}(M))<\infty$ .

Thus, $Lemma3.2isderivedfrom(3.5),$ $(3.6)$ and (3.9). $\square $

$PR\infty F$ OF THEOREM 1. Using $Bor\grave{e}l$ Cantelli’s lemma and Lemma 3.2, we obtai]

$P(\bigcup_{m\geq 1}\bigcap_{M\geq m}\Lambda(M)^{c})=1$ .

Thus, for almost all $(x, w)$ with respect to $P$ there exists $M_{O}\in N$ such that $(x, w)($

$\Lambda(M)^{c},$ $M\geq M_{0}$ , and so

$(\xi(t, x, w), L(t, x, w))=\lim_{M\rightarrow\infty}(\xi^{M}(t, x, w), L^{M}(t, x, w))$

$=(\xi^{M_{O}}(t, x, w), L^{M_{O}}(t, x, w))$ , $t\in[0, T]$ .
Thus, we obtain the first assertion of Theorem 1 from Remark 3.1.

Since the distribution of $\Gamma x_{M}$ is $\mu_{\lambda,M}$ under $\hat{\mu}$ , by Corollary 2.5 and Remark 2.
we see that under $P$ the process

$\eta^{M}(t, x, w)=\sim\{\pi_{M}\xi_{i}^{M}(t, x, w)-\pi_{M}\xi_{0}^{M}(t, x, w), i\in\{i_{1}, \cdots, i_{n}\}\}$

is a stationary process whose stationary measure is a Poisson distribution on $T_{M}\backslash U_{r}(0$

with intensity measure $\lambda dx$ . Since
$\Gamma\xi(t, x, w)\cap K_{M/8-r}=\eta^{M}(t, x, w)\sim\cap K_{M/8-r}$

for $(x, w)e\Lambda(M)^{c},$ $t\in[0, T]$ , we see that the distribution of $\overline{\eta^{M}}(t, x, w)$ vaguely converge
to $\Gamma\hat{\mu}asM\rightarrow\infty$ . Therefore, the distribution of $\Gamma\xi(t)$ is $\mu_{\lambda}$ . $\square $
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