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The aim of this paper is to give a proof of the following result due to Benedicks
and Carleson [1]. Let us consider a family of interval maps Q,: [—1, 1]-[—1, 1]
defined by '

0.(x) :=1—ax?

for parameters a€ [0, 2]. We regard the iterations of them as dynamical systems. See
[3] for general accounts of the dynamics of interval maps.

THEOREM. The Collet-Eckmann condition

lim inf~1— log| DQZ(1)|>0

n— oo n
holds for a subset E of parameters ac [0, 2] with positive Lebesgue measure.

The Collet-Eckmann condition implies that there exists a finite absolutely
continuous invariant measure for Q, [4]. So Jakobson’s theorem follows from this
theorem. We refer to [2, 5, 6] for Jakobson’s theorem.

In the original proof that is outlined in [1], the set of parameters is constructed
in inductive way and this causes some difficulties. We improve this point. As is seen in
section 1 below, we write the complement of the set E explicitly.

Remark that the proof of the theorem can not be very simple because the set E
should be ‘fractal-like’. In fact, the set of parameters for which Q, has an attracting
cycle is contained in the complement of the set E and, according to a recent result of
G. Swiatek, is dense in [0, 2]. So we have to use delicate argument on the estimate of
Lebesgue measure.

Let us give brief explanation of the idea behind the proof. In the proof below, we
take very small positive numbers ¢ and § in appropriate way. Then we can get the
following observations on the growth of | DQJj(1)|,j=1, 2, - - -, for Q, with ae[2—z¢, 2]:
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1. | DQI(1)]increases exponentially for some j’s in the beginning because the orbit
J(1) stays in a small neighborhood of —1 where DQ,> 3.

2. If the orbits QJ(1), Qi*'(1), - -+, Qi**~*(1) do not pass through the neigh-
borhood (—4, 8) of the critical point, then | DQX(QJ(1))| increases exponentially with
respect to k. (We will state this precisely in Lemma 3.2(2).)

3. Suppose Qi(1)e(—4, o) for some j. Then | 1—QJi**(1)|«1. If we assume that
| DQi(1)| increases exponentially for i<j and QJ(1) is not too close to the critical point,
it holds DQX(1)=DQXQ;* (1)) while

| QD) — Q@I (M) I~ DG || 1= QI () |«1.
Hence, choosing ¢>1 such that
| DOV |1 1—-QJ* (1) |~1
in appropriate way, we obtain
| DQYQI* (1)) |~ DRI | ~[1-QI+ ()|~
Since | 1-Q7* (1) |~| QI 1> ~| DQ(QI(1)) %, it follows
| DQZ* QD) |~ DQ(QI(1) |~ > 1.

This implies that, even if QJ(1)e (-4, §), the factor | DQ,(QI(1))|«1 is compensated
after g+ 1 iterate in this case (Figure 1).

log| DQI(1) |

J
FIGURE 1

From these observations, we can see that, if the orbit QJ(1) does not come too
close to the critical point or come close to the critical point too often, the quantity
| DQJ(1)| increases exponentially, that is, the Collet-Eckmann condition holds.
Conversely, if Q,, ae[2—¢, 2], does not satisfy the Collet-Eckmann condition, we can
find a sequence of integers 0 <m(1)<m(2)< --- <m(q) such that Q™9(1) comes very
close to the critical point 0. Then, for each i, we can find q; very close to a such that
O"™(1)=0. Hence the parameter a belongs to a small neighborhood of the set
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{be[2—¢,2]; OfP(1)=0} for each i. This leads us to an estimate of the measure of
the set of parameters a which does not satisfy the Collet-Eckmann condition.
For extension of the theorem to more general families, see [7].

§1. Definitions.

First we introduce some notations. For a C! map ¢ : I-R defined on an interval
I, we measure its distortion by

. | do(x) |
Dist(p, I)=sup log———.
xyel | de(y)|

We regard Dist(p, I)= oo if ¢ has any critical points on I. For ne Nu {0}, we define
amap ¢, : [0, 2]-[—1, 1] by £,(a):=QJ(1). Then, for n>1 and a€[0, 2], let y(n, a) be
the largest y >0 that satisfies

(I't) Dist(¢;, [a—y,a+y]1n[0,2])<1 for 1<j<n
and
(Ir2) &¢(la—y, a+y1n[0, 2D <[&.(a)—1/10, & (a)+1/10] .

We regard y(n, @)=0 when 0,&;(a)=0 for some 1<j<n.
Next we fix three constants which we will use throughout this paper. First let us
put 7,=10"*log2. Second we choose a positive constant Yo SO that

(1.1) logC(p, 9) <yoq{1 +log(p/q)}  forany O0<g<p

where C(p, q) =p!/(q!(p—q)"). This is possible from Stirling’s formula:
logn!=(n—1/2)logn—n+0(1) .

Then, third, we fix a large constant K> 10 such that

(1.2) K>2y4,(1+1log(1+K/n,)) .

Remark that these three are absolute constants.

Now we construct some subsets in the parameter space [0, 2] using these notations
and constants. For me N, ke NuU {0} and ae[0, 2], we define

Im(@) =[a—exp(—kK)y(m, a), a+exp(—kK)y(m, a)] .
Then we put

Jm,k= U Jm,k(a)

aeCpm

where
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Cn={ae[0,2]; ¢, (a)=0 and 9,¢;(a)#0 for 1<j<m}.

For n>1, let Z, be the set of all parameters a€[0, 2] such that ae ﬂ‘lf:lJm( ki for
some g€ N and sequences of integers {m(j)}4-; and {k(;)}4-, satisfying

(Z1) 1<m(l)<m(2)< - <m(qg)<n and k(j)=2 for all j
and
@) ¥ kG)~DE>non.
j=
Put Z=\),,,Z, We prove the theorem by showing the following two claims for
sufficiently small ¢>0: '

PROPOSITION A. AZN[2—¢, 2])<el*®/ where ) is Lebesgue measure.

PrOPOSITION B. Q, satisfies the Collet-Eckmann condition if ac[2—e¢,2]—Z.

§2. Proof of Proposition A.

Let c,, be the point of &, 1(0) that is closest to 2. Let I, =[c,, 2]. Then it is easy to
check that &, is diffeomorphic on 7,, and that ¢,(7,)=[—1, 0]. Also we have

(2.1) gI)<[—1,—1/2] for 1<j<m.

LemMa 2.1. If {m(j))}i=, and {k(j)}i-, satisfy the condition (Z1) for some n, we
have

" A (Iﬁ N _él Jm(j).'c(.i)) <2 exp( - _gl *k()— 1)K> " Mlz)

for any m> 1. Especially Iz 0 (- Jm(un =3 When mi>n.
Proor. Notice that we have
En(mo [0, 2))=[—1/10,1/10]  for m=>1

from the condition (I"2) in the definition of y( -, *). From (2.1),itholds thatJ,, o N I, = &
when m’'>m. The second statement of the lemma follows from this. Also the first
statement is trivial when m(1) <m. Hence we assume m(1)> and prove the first
statement. :

The maps¢;, 1<j<m, are diffecomorphic on each interval J,,,‘o(d), aeC,. From
this for j=m and the fact C,, < ., *(0), the intervals J,, o(a), ae C,,, are mutually disjoint.
Since 9,¢,,+ 1(a)=0 for ae &, 1(0), we have

2.2 Imo@ N1 (0= for any m'>m and aeC,, .
Suppose that J, (@) N J, 1 (@) # & for some k,k'>1, m<m’ and aeC,, d €C,,.
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Then, since J,, o(a’) does not contain the point a from (2.2), one of the components of
I, 0(@) — o (@) is contained in J,, ,(a). It follows
271 —e *B)\ T o(@) | < T (@) | 5

or | Jp o(@)|<3|J, (@) |. Therefore we obtain the inclusion J,, o(@) = J,, - 1(a).

T =\U"* Tm(5(@

where ( J* is the union over all ae C,,;, such that J,,;, o(@) » X = &. (Notice that this
is a disjoint union.) From the above argument, it holds J*; o = JX*;_ 1),k(j—1)—1- Hence
we obtain the estimate

AT i) = eXP(— k(N KA 5,0)
<exp(—k(NK)AJ ;- 1y,k6-1)-1)
=exp(—(k(j) — DK)AJIm; - 1)xii-1) -

From this for j=2,3, - - -, g, we get

AU @ kia) = exp( - .il (k(j)— I)K) A m1y,0) -
j=
Now remember that we assume m(1)>m. If m(1)=, Imi1),0 S J.0(cz). Otherwise
Jm1y,0 < Im=[cm, 2] because ci ¢ J %) o from (2.2). Therefore we have
AT m1),0) < A © I3 0(cm) < 24(15)
because 2 ¢ J;; o(cz). We have obtained the required. O

The number of combinations of {m(;)}4-, and {k(j)}4-, satisfying the condition
(Z1) and

3 k()-D=p

for some positive integers n and p is equal to that of the repeated combinations in
choosing p elements from 7 objects, and smaller than C(p +n, p). From Lemma 2.1, we
obtain

MmnZ)< Y, Y Clp+n, p)-2exp(—Kp)Al5)

n=m p>non/K
From (1.1) and (1.2), it holds
C(p+n, p)<exp(Kp/2) for p>nen/K.

Hence we have
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MznZ)< ), Y 2exp(— Kp/)AMIR) < Y 4exp(—non/2)ALR)

n2m p>non/K n>m

Aexp(—nom/2)
1 —exp(—no/2)

MIz) <1605 ' exp(—nom/2)M(I5) .

By easy calculation we can show that A(Z,,.,)>A(Z,)/S, at least, for large m. So, for
sufficiently small &> 0, there exists m(¢g) >|log ¢/log 6 | such that & <|I5,, | < Se. Therefore
we have

A[2—¢,2]1 " Z) <Mz N Z) < 16n5 ! exp(—nomi(e)/2) - Se < gl + ol

provided ¢ is sufficiently small.

§3. Proof of Proposition B.

Let us begin with three elementary lemmas.

LemmA 3.1. For xe[—1/10,1/10]—{0}, let us put k(x)=min{k>2|Q%x)=>
—1/2}. Then k(x)< —4log| x| and | DQ,(x)|+| DQEI(x)| > 1.

ProoF. Observe that
—1<—0,(x)<Qi(x)< -+ <@ I(N)<—112<0i7(x).
Put J=[—0Q,(x), Q2(x)]. Then it is easy to check that
4x2 < A(J)<8x?
and
1/4< Q32 <1.
Since DQ,>2 on [—1, —1/2), we have

M@ ™)

(k(x)—2)log2<log D)

< —logdx?,

that is,

2log| x|

k(x)< — < —4log| x| .
log2

Since DQ, is monotone decreasing on [—1, 0), we have

M2iD))

| DQ(Q4(x)) | =1 DQ2(— Q4(x)) | >m

for j=1,2,---, k(x)—2

and hence
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_ k1 ; MQ3P72()) 1
k(x)—1 — J .
| DQY (Q2(x) = jl;[l | DQ,(Q3(x)) | >2 i) > l6xZ
Therefore we obtain
_ 1
| DQ,(x)| | DQ5™(x) | > (4x)? T2 =1. O
X

Put 6 =exp(— 10000K). This is also an absolute constant.

LEMMA 3.2. There exists a small positive number ¢, such that Q, for ac[2—¢,, 2]
has the properties:

(1) Ifo<|x|<8'19° then there exists a positive integer k such that | QJ(x)|>1/2
Jor 0<j<k and | DQ,(x)| | DQ¥x)|>1.

() If1Qix)126 for j=0,1,2, -+, k—1, then

| DQX(x)|>Kkexp(99-10~2log2-k)
where k=05./2—03% <1. Especially, if | Q¥(x)| <4 in addition, thep
| DQX(x)|>exp(99:10~21log2+k) .

Proor. (1) follows from Lemma 3.1 provided that ¢, is small. Let us prove the
claim (2). Consider mapsT,:=h"'oQ,oh where h(x)=sin(zx/2). Then we have
Tr(x)=1-2|x|.PutJ; =(—4,8)and J,=[—1, —1+62) U (1—482, 1]. If ais sufficiently
close to 2, we have Q, '(J,)=J;UJ, and | DQ,|>2°%1%° on J,. Also we can assume
| DT,|>2%°/190 on [—1, 1]—A"'(J,uJ,) provided that &, is sufficiently small. Let /

be the smallest one among the integers 0 <j<k such that Qj(x)¢J,, and put /=k if

no such j exists. In the case /<k, we have Qj(x)¢J,uJ, for I<j<k and QX(x)¢J,. In
either cases /<k or /=k, we obtain the inequality

| DQ;(x)|=| Dh~ HQaCD T DT (A~ H(QaGN) |+ | DA™ H(QI)) |+ | DQy() |

S cos((m/2)h~ 1 (QX(x))) . 2(99/100)k
cos((m/2)h~ 1 (Q.(x)))

Since we havc

cos((n/2)h~1{(QX(x))) > inf cos((n/2)t)=6./2— 62
. te[—1,11—-h-1(J>3)
in the case /<k, the first claim of (2) holds. If | 0k(x)| <, we have
cos((x/2h~ Q5 _ |
cos((m/2)h~1(Qa(x))) ~
and hence the second claim of (2) holds. : O
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LEmMMA 3.3. If we put
n—1 D
a"=a+(x,n,a):=|i102 D | Q(x)l]
i=o [QI(x)]
Jor xe[—1,1], n>0 and a€ (0, 2] such that DQ}(x)#0, then we have

Dist(Q!, [x—a™, x+a+])s"il Dist(Q,, Qi([x—a*, x+a*])<1/10.
j=o0

Proor. We prove the following claim for 0 <j<n—1, which implies the lemma.
10| DQJ(x)|-a*
1 Qi(x)|

Assume (3.1.i) holds for i<j. Then it holds Dist(Q),[x—a*,x+a*])<1/10 and
hence

(3.1.)) Dis((Q,, Qi[x—a’, x+a*])<

|Qi([x—a™, x+a*D|<e'*°| DQi(x)|-2a* <1071 Qi(x)]| .

Since Dist(Q,, J) <|J|/d(J, 0) for any interval J which is apart from 0 at distance d(J, 0),
we get

| Qi([x—a*, x+a*])| 1o DQi(x)|-a*
9-107 1 QJ(x)| | Qi(x)|

Forae[2—e,, 2],put #(@)={meN | |Q2(1)| <d} and, for each me R(a), let g(m, a)
be the smallest ge NV that satisfies

log| DQA(1)|> —199-107 log| DQ(Q; (1)) | -

(If there is no such g, we put g(m, a)=00.)

Let us define a subsequence m;(a@)<m,(a)< --- of %#(a) in the following in-
ductive way: Put my(a)=0. Suppose that we have defined m;(a). If the set
{me R(a) | m>m;(a)+q(m;(a), a)} is not empty, then let m;, 1(a) be the smallest ele-
ment of this set, that is,

Dis{(Q,, Qi[x—a™, x+a*])< O

m; . (@)=min{me R(a) | m>m,(a)+q(ni,.(a), a)} .

Otherwise we do not define m;, ;(a) and stop this inductive definition.
Let us put

_ F (a)={m,(a), my(a), m3(a), - - -} .
REMARK. The sets #(a) and #(a) can be finite or even empty.

"From now on, we consider the condition on ae[2—¢,, 2] and me N:

am Y. log| DQ(QI(1))|=—10"3log2k  forall 0<k<m.

Jje F(a)n[0,k]
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The following is the main step of our proof.

LEMMA 3.4. There exists ;>0 such that, if ae[2—¢,,2] and m satisfy (*),m
then ‘
(1) |DOX1)|=exp(98+10~2(log 2)k) for 0 <k <m+ 1 and, for each #ie R(a) A [0, m],
(@) q(m, a)+1< —(3/log2)log| DQ(QF ()|,
(b) log| DQImI*1(QF(1))|> —98-107%log| DO(QT(1)) | >4~ 'log 2(¢(, a) + 1),
(©) log| DQ,(QI(1))|>log| DQ(Q7(1))| for m<j<m+q(m, a),
d Z;(_—'_-nia)lDQ({(Qaﬁ(l)) I/1e5 ) 1< 1/1 @2 ) |,
(I1) 1/2<4|8,(a)|/|DQX1)|<2 for k<m+1, and
A1) y(m, a)>10"ta*(1, m, a) for me F(a) n [0, m+1].
PROOF. Let &>0 be so small that Dis#(¢;, [2—2¢,2])<107! for j<10%. Let
my>10* be an integer that satisfies
(3.2) my>—10%logd/log2, my> —10%logk/log2 where x is the constant in
Lemma 3.2(2),
(3.3) exp(—98-10"2log2-m,) <.
Take 0 <&, <min{g, &, } so small that
(3.9 | DQ(QI(1))|>3 for any 0<j<m, and ae[2—¢,, 2] .

We prove the lemma for this &,.

We prove (I) by induction on m. In the case m < m,, the claims are easy consequences
of (3.4). (Remark that #(a) N [0, m] = in this case.) So we assume m>m,. We show
the claims (a)—(d) first. Let us assume me %(a) because otherwise there is nothing to
prove. From the assumption of induction, we have

(.5) log| DQ(1)|=98-10"2log2+j  for 0<j<m.
Let us show
(3.6) log| DQ,(QI(1))|= —10"%log2:j  for 0<j<m.

If j<my, this follows from (3.4). If j=>m, and j¢ %(a), that is, | @J(1)| =9, then, it fol-
lows from (3.2) that

log| DQ(Q! (1)) | =log2ad> —10"3log2-me> —10"3log2-j .

If j>m, and je #(a), we have either je #(a) or m<j<m+q(m, a) for some me
F(@)n[0,j—1] from the definition of #(a). Hence, using the claim (c) for
me % (a) N [0, m—1] (the assumption of induction) in the second case, we get

|DQ(QI(1)|= inf | DQQF(1)I

me F(a)n[0, j]

and, from (%), p»

log| DQ,(Qi(1))|= —107*log2-j .
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Therefore we obtain (3.6).
From (3.5) and (3.6), we have
—199-10"21og| DQ(QM(1))|<2-10"3log2-m<log| DQO™(1)| .
This implies g(m, a) <m. Again using (3.5) and (3.6), we get

~199-10~2log| DQQF()| , | _ 199-98""
98-10"2log2 = log2

g(m, a)< ———1og| DQ,(2;())|+1.

But, since | DQ,(Q7(1))| is very small or, more precisely,
log| DQ,(Q™(1)) | <log2ad <log4—10000K < — 99996 ,

we obtain the claim (a) for m. From the definition of q(*, *) and (3.6), we have

Q1| DQ1)| _*"2~" 2a| DQX1)| _2a-q(m, a)| DOLQI(1))| %10

So 1M1 5o 1DQLQI1)IT  exp(—10~3(log 2)q(m, a))
If we use (a) for m=m and the fact | DQ,(QM(1))| is small, we get
2a-q(m, a) exp(10 3 (log 2)q(m, a))
<4-((—3/log2)log| DQ(Q:'(1)) )| DQ(Q(1)) |~ ¥/*00°
<1072 DQ,(QF(1)|~1/*°.
Therefore we conclude

“n@=1| DQJ(1) |

(3.7 2 Il <1072 DQ(Qr(1) |2

and hence

(3-8) a*(1, g(m, @), a)>| DQ(Q (1) |*=|2a- QD) I*>1-0* (1) .
Remark that (3.8) and Lemma 3.3 imply that

(3.9) |log| DQJ(1) | —log| DQUQT**(1)1|<1/10  for 0<j<q(m,a)
and

(3.10) |log| DQ(QX(1))|—log| DQQr***i(1))I|<1/10  for 0<j<q(m,a).

The claim (b) follows from (3.9) and the definition of ¢(-, *). From (3.10), (3.6) and

(a), we get, for m<j<m+ q(m, a),

log| DQ,(Qi(1)) | >log| DQ,(Qi ™ (1))|—1/10
> —10"3log2-¢g(m, a)—1/10
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>3-10"2log| DQ(Q:(1)) | —1/10

>log| DQ,(Q (1) |-

This is the claim (c) for Zi=m. The claim (d) for m=m follows from (3.7), (3.9) and
(3.10). In fact we have

w@ | DQIQ™(L)) | ww | DI~ (@r*1(1))]
1DOLQS M _, b6 oma .
2 Jortiqy "/PeAQIMI X ==
q(m,a)— 1
<1pgery|-""S eus ! PLD)]

j=0 on
<e'?-1072-1DQ@rA) |~ <lor1) |7t .

Now let us show the first assertion of (I). Let my(a) and m,, ,(a) be any adjacent
elements in % (a) N [0, m]. Then Qi(1) ¢ (—34, ) for my(a) + q(m(a), a) <j<m,. ,(a) and
Qr+*@(1)e(—4, 6). Hence we can apply the second claim of Lemma 3.2 (2) and get

(3.11) log| DQM+ 1@~ m@) - atmi(a).a) = 1 () mi(@) + almla).a) + 11 )) |
>99-10"2log2-(m, . (@) —my(a) — g(m(a), a)—1)>0.

Also remark that, from the claim (b) for 7 =m,(a), we have

(3.12) log| DQI™@DTH(QMA(1))| > —98-107 2 log| DQLQ(1))|>0 .

Using these we can estimate log| DQ™*1(1)| from below. Let us denote

m*= ) #([m, m+qm+a)] " N).
me F(a)n[0,m]

Then, from (a) and (%),
m* < D (¢(m, a)+1)

meF(a)n[0,m]

< —

log| DQ,(Q7(1))|

e F@n[o,m 10g2
<3-:1073m

We consider two cases separately. First let us consider the case where there exists
my(a) e ¥ (a) N [0, m] such that m+ 1 <my(a) + q(m,(a), a). In this case we have

log| DO~ ™(Q@* (1)) | 21og| DO~ ™@(1)| —1/10= —1/10

from (3.9) and the assumption of induction. Hence, from (3.11), (3.12) and (%) a,ms
obtain
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log| DQ* (1) | >log| DQ®(1) | +log| DQ(Q7 (1)) |
+log| DQF ™™ QA+ (1)) |
>99-10"2log2 (m+ 1 —m*)+log| DO(Q™(1))|—1/10
>99-1072 log2+(0.997)(m + 1) — 10 (log 2)m—1/10
>98:10"2log2-(m+1).

Next we consider the case where there exists no m,(a) e #(a) n [0, m] such that m+1<
my(a) + q(m,(a), a). Let us denote the largest element of #(a) n [0, m] by m,(a). Then,
by using the first statement of Lemma 3.2 (2), we obtain

log| DQ™~ (@~ atmi(a).a) ) me(@) + amc(@)a) + 1(1)) | > log .
Hence we have
log| DO™*1(1)|>99-10"2log2-(m+1—m*)+logk
>98-10"21og2-(m+1) by (3.2).

We have finished the proof of (I).
Next we show (II). We have

k
0ali(@)= Z.l DQ;™H(QI(1)): 0,001 (1)) .

Since |0,0,1<1 and |0,0Q,(1)|=1, it holds

1 L 1 | 0,&:(a) ] 1 L 1
_ S +) .
| D@, (M) j=21DQi(1)| |DQ(1)| [DQ,1)| j=2|DQz(1)]
On the other hand, since 3.99 <| DQ,(1)|<4 and | DQ2(1) | > 15, we get, from (3.4) and
the first claim of (I),

k 1 1 mo—2

2 0 1
= <— ), 3774 ) exp(—98-1072(log2)j) <—-.
,-;leQg(m 15 ,-go J.;M p( (log2)j) 3

Hence the claim (II) holds. ‘
Let us prove (III). Notice that m>m, from (3.4). From the definition of a*(-), N
the first assertion of (I) and (3.3), we have

a*(1,m,a)<|DOF~1(1)| ! <exp(—98-10~2log2-m,) <% . |

Hence the interval |
I'=[a—10"'a*(1,m, a),a+10"a*(1, m, a)] N [0, 2] |
is contained in [2—2z, 2]. From the choice of & we have Dist(¢;, I)<10~! for j<100. |
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Put

Jj= Qg— 1([Qa(1)”a+(Qa(1)s m— 17 a)a Qa(1)+a+(Qa(1)9 m— la a)]r'\[— 19 1])
for 1 <j<m. We prove the following claim for 100 <j <7 by induction:
(3.13.)) Dist(¢;, D<1 and ¢(cJ;c[é(@)—1/10, (@) +1/10] .

Obviously this gives the claim (IIT).
Assume (3.13.i) holds for 100 <i<j. Since | 0,0,|<1 on [—1, 1], we have, for bel
and 100<i<j,

aafi+1(b)_ 1 B
T0.6:(6) DQA@@»LsaJKM-HDQAaw» DQ(E,(B)]
8e 2
<—  +2|b— ; E
<I6a£,-(b)|+ | a|<|DQ;(1)|+|DQ';“1(1)[

<9e-exp(—98-10%log2-i)
from (3.13.i), (II) and the first claim of (I). Also we have
| DQ(&:i(B)) | > e | DQ(&:(a)) | >exp(—107*log2-i—1)
from (3.13.i) and (3.6). By using the fact that |log(1l + x) | <2| x| for | x| <1/2, we obtain
duiva(®)
0a:(b)
Therefore, from the assumption that &,(I) = J, for i<j and Lemma 3.3, it holds

@éﬂw)_mmbgaxwxm]
6.5®) | ver | 0®)

log DQ,(&,(b)) | < 18e? exp(—97-10"%log2-i) .

i=100| bel

ji—1
Dist(&;, I) < Dist(& 190, 1)+ Y [max log

ji—1
<107'+ Y [Dis«(Q,, J;)+36e” exp(—97-10"2log2-)]<1.

i=100
Since we have

| DQI()|-a*(1, 1, a)<| DQI~ H(Q(1)) |-a*(Q(1), m—1, a)
<4:| DQI" Q1) |-a™ (1), M—1,a)<4-1072

from the definition of a*(-), we can see that &;(I)=J;<[£;(a)—1/10, {;(a)+1/10] by
easy calculations using Dis#(¢;, I) < 1 and Dis«(Q}~ "', J,) <1/10. Therefore (3.13.j) holds
for 100<j<m. O

Let us fix a parameter ae[2—¢,, 2] which does not satisfy the Collet-Eckmann
condition and show aeZ. From the last lemma, the condition (*),, does not hold
for some m. Let M e % (a) be the smallest integer for which (*),,, does not hold, that
is, '
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(3.19) 2. log| DQ(Qi(1) < —1073(log2)M .
jeF@n[o,M]

Let 4(a)={m(1)<m(2)< - -- <m(q)} be the set of me F(a) N[0, M] satisfying the
condition

G) log| DQL(QI1) = . )Z[_H ]210gl DQ(Q¥1)|
for any je F(a)n [0, m—1].
LemMma 3.5. (1) Zme,(a)long:'(l)|<—(2-103)‘1(log2)M,
(2 a*(1,m,a)-| DON(1)|>Y|QN()| for any me %(a).

ProoOF. For each me(#F (@)—%(a)) N [0, M], choose j(m)e F(a) N [0, m] so that
log| DQ(QI™(1))| < > 2log| DQ,(Q.(1)] .

ie F(a@)nLj(m)+ 1,m)

Then there exists a subset F< (# (@) —¥%(a)) N [0, M] such that the intervals [ j(m)+ 1, m]
for me F are mutually disjoint and cover (% (a)—%(a)) N [0, M]. Therefore

2. log| DQQi1) < 2 210g|DQ(Q.(1) -

ie F(a)n[0,M] ie(#F(a)— ¥(a))n[0,M]

This and (3.14) imply (1). Next let us prove the claim (2). Since me #(a), m=m,(a) for
some k. As in the proof of the first claim of Lemma 3.4 (I), we can get the following
for each i<k, by using (3.11) and (3.12):

log| Q1) || DO~ ™ Q(1)) |
>log| Q74(1) || DQIM@O* L(Qma1Y) |

k-1
+ . log| DQIm@D* L (Qpia(1))|

j=i+1
k—1
>0.03-log| DQ(QM(1))|—0.98 Y log| DQ(QM™(1))| .
j=i+1

(Notice that | DQ,(x)|=|2a-x|.) Since me %(a), we have
k

0.03-log| DQ,(Q;*(1)) |>0.06 -;-; ) log| DQ,(Q;(1))|

and hence

log| Q1) || DO ~™(Q(1)) |

>0.06-log| DO,(QI(1)) | —~(0.9-0.06) 3. log] DOQM(1))|

Jj=i+1
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>0.1-log| Q1) |+10(k—i—1).
It follows that

k-1 1 - .
i=Zl I Q:“(“)(l) ” DQ;"—mi(a)(Q:u(a)(l))I l Q ( )l

From this and Lemma 3.4(I)(d), we get, for 4:={, _; ., [mi(a), m;(a) +q(my(a), a)],
1
. <4 or)|".

,;4] QD1 DOF~H(Qa(1) | :

For je[0,m—1]— A, we can get
| DO~ H(QM(a@)) | >exp(4™ ! log2-(m—)))
by using (3.11), (3.12) and Lemma 3.2(2). In addition we have | QJ(1) || DQ*¥(Qi(1)) | >
100/5 from Lemma 3.2(1) because | Qj(1)|>¢ in this case. Put s=[—4logd/log2].
Then, if je [0, m—s—1]— A, it holds
| Qi(1)|-| DO~ ¥(Qi(1))| = 6-exp(4~ ' log2-(m—j))
>exp(4~tlog2-(m—j—s)) .

Therefore we have

L ~ , ol 1 :I—l
(1, m, )| DQ(1) | = [10 JZI(,,Q ()11 DO Qi) |

-1
S RS IS
je[Om—s—1]—A4

jeA jelm—s,m—1]—A4

>10—2[41°|Q;"(1)r1+(1"\‘7? Tles

0 -1
+ Z exp(—4‘1log2-i)] .

It is easy to see that the quantity in [ -] on the last line above is much smaller than
s/lom)|t QM(1)|~1. We get the claim (2). 0

Put k(j)=[—log| Qr¥(1)|/(2K)]1>100. Then, since log|QrY(1)|<logéd=
—10000K, we have

1 m(1
Z *k()—DK>—~ 3. gsl_Qé_(n

j=1 j=1

from Lemma 3.5(1). From Lemma 3.5(2) and Lemma 3.4 (II), (III), we obtain, for
each j,

>noM
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| QaP(1) | <exp(—k(j)K —10) 10 m(p(@) |- v(m()), @) .

Since | 0,8mp()|>e7 1 0mu(@)| for bel[a—y(m()), a), a+y(m(j), a)], we can find
a;€ C,,; such that | a;—a| <exp(—k(j)K— 5)y(m(j), a). From the definition of y(-, *),
we have y(m(j), a;)>27'p(m(j), a). Therefore a€J i wia;) for each j and ae Z,,.
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