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Abstract. We $\infty nsider$ orientation-preserving embeddings of the disk having seven or less fixed points

all of which are transversal. We classify all the braid types which can be realized as the braid type of the

fixed point set for such an embedding.

1. Introduction.

In this paper, we study the topological structure of the fixed point set for
orientation-preserving embeddings of the two-dimensional disk.

The braid is a useful invariant for the topological characterization of a collection
offixed points, or more generally of a collection ofperiodic points, for such an embedding
$f$ Many authors have investigated the role of the braid invariant in the study of
dynamical systems on the disk, and obtained various results concerned with the
relationship between the braid type of a given set of periodic points and the dynamical
complexity of $f$ (e.g. [3, 7, 8, 9, 11, 13, 14]).

In this paper, we study braid types from a different point of view: We limit ourselves
to embeddings having only transversal fixed points. Then the whole set Fix$(f)$ of its
fixed points is a finite set, and its braid type can be defined. We consider the question
of what kind of braid type occurs as the braid type of the fixed point set Fix$(f)$ for
such an embedding $f$ In other words, our objective is to ask for conditions on the
braid type of a collection of fixed points which ensure the existence of some other fixed
point.

Here, we give an answer to this problem in the case where $f$ has seven or less fixed
points. The main result (Theorem 1) shows that such braid types are exactly the braid
types obtained from the braid type with only one string by applying the operation which
twines a pair of parallel “cables” around one string repeatedly. In particular, it shows
that all of them do not contain pseudo-Anosov components.

The main tools used in the proof are Nielsen fixed point theory and a result proved
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in [17] conceming the relationship between three topological invariants for fixed
points–the fixed point index, the torsion number, and the braid type.

2. Braid types.

In this section, we consider the necessary preliminaries on the braid and the braid
type. For general references of the braid theory, see [1], [10], or [18].

Let $n$ be a positive integer. Let $V_{n}$ (resp. $W_{n}$) denote the set of ordered (resp.
unordered) n-tuples of distinct points in the plane $R^{2}$ , i.e.,

$V_{n}=$ { $(x_{1},$ $\cdots,$ $x_{n})|x_{i}\in R^{2}$ for $i=1,$ $\cdots,$ $n,$ $x_{i}\neq x_{j}$ if $i\neq j$ } ,

$W_{n}=\{S\subset R^{2}|\# S=n\}$ ,

where $\#$ denotes the cardinality. We equip $V_{n}$ with the topology induced from the
product topology on $R^{2n}$ . Define a surjective map $\pi:V_{n}\rightarrow W_{n}$ by

$\pi((x_{1}, \cdots, x_{n}))=\{x_{1}, \cdots, x_{n}\}$ .

Then sinoe $\pi$ is surjective, we can give $W_{n}$ the identification topology determined by
this map $\pi$ . It is easy to see that the map $\pi$ becomes an $n!$-fold regular covering map.

The fundamental group $\pi_{1}(W_{n})$ of $W_{n}$ is called the $n$-braid group and denoted by
$B_{n}$ . An element of $B_{n}$ is called an $n$-braid, or simply abraid. Thus abraid is defined to
be a homotopy class of loops in $W_{n}$ with base point being fixed.

On the other hand, if we allow the base point to vary in $W_{n}$ during the homotopy,
we obtain the notion of a “braid type”. We say two loops 1, $l^{\prime}$ : $[0,1]\rightarrow W_{n}$ are freely
homotopic, if there is a family $1_{\mu}$ : $[0,1]\rightarrow W_{n}$ of loops in $W_{n}$ with $l_{0}=l,$ $l_{1}=l^{\prime}$ which
depends continuously on the parameter $0\leq\mu\leq 1$ . We call a free homotopy class of
loops in $W_{n}$ an n-braid type, and denote by $BT_{n}$ the set of all n-braid types. This set
$BT_{n}$ can be identified with the set of all conjugacy classes of the group $B_{n}$ . In fact, the
surjective map from $B_{n}$ to $BT_{n}$ which is defined by sending the homotopy class of a
loop in $W_{n}$ into its free homotopy class induces a bijective correspondence between the
set of conjugacy classes of $B_{n}$ and the set $BT_{n}$ , since a change of base point in $W_{n}$

corresponds to a conjugation in $B_{n}$ . For $b\in B_{n}$ , we denote by $[b]$ the braid type
corresponding to the conjugacy class of $b$ .

Let $P_{n}$ denote the image of the homomorphism $\pi_{*}:$
$\pi_{1}(V_{n})\rightarrow B_{n}$ induced by the

covering map $\pi:V_{n}\rightarrow W_{n}$ . We call it the pure n-braid group and its element a pure
n-braid. It is easy to see that an n-braid represented by a loop $l$ is a pure braid if and
only if any lifting of $l$ to $V_{n}$ is also a loop. A braid type which is represented by a pure
n-braid is called a pure n-braid type. Let $PT_{n}$ denote the set of all pure n-braid types.

Let $l$ be a loop in $W_{n}$ . Then since $l$ can be lifted to the covering space $V_{n}$ , there
are continuous paths $x_{1}(t),$ $\cdots,$ $x_{n}(t)$ in the plane such that $\{x_{1}(t), \cdots, x_{n}(t)\}=l(t)$ .
Denote by $A(i)$ the embedded arc $\{(x_{i}(t), t)|0\leq t\leq 1\}$ in $R^{2}\times[0,1]$ , and call it the string
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corresponding to the path $x_{i}(t)$ . Also, we call the collection $\mathscr{A}=\{A(1), \cdots, A(n)\}$ of the
strings a geometric n-braid corresponding to the loop $l$. If $\mathscr{A}$ is a geometric braid, we
denote by $bt(\mathscr{A})$ the braid type represented by a loop 1 which corresponds to $\mathscr{A}$ .

Define the full twist braid $\theta_{n}\in B_{n}$ as the braid represented by the loop $R_{t}(S)(0\leq t\leq 1)$ ,
where $R_{t}$ is the rigid rotation of the disk with angle $2\pi t$ and $S\in W_{n}$ is the base point
$ofthefundamentalgroupB_{n}$ . It is known that ifn $\geq 3,$ $thecenterZ(B_{n})ofB_{n}$ coincides
with the infinite cyclic group generated by $\theta_{n}$ (see [1, Corollary 1.8.4]). Let $Z(B_{n})$ act
on $BT_{n}$ by $\theta_{n}\cdot[b]=[\theta_{n}b]$ , where $b\in B_{n}$ .

The group structure of $B_{n}$ is given as follows ([1, Theorem 1.8]): We choose
$E_{n}=\{e_{1}, \cdots, e_{n}\}$ as the base point of $B_{n}$ , where $e_{i}=(i, 0)$ . For $1\leq i\leq n-1$ , let $\sigma_{i}$ be the
elementary braid represented by the geometric n-braid in which the i-th string just
overcrosses the $(i+1)$-th string once and all other strings go straight from the top to
the bottom. Then $B_{n}$ has a presentation with generators $\sigma_{1},$ $\cdots,$ $\sigma_{n-1}$ and relations
$\sigma_{i}\sigma_{t+1}\sigma_{i}=\sigma_{i+1}\sigma_{i}\sigma_{i+1}$ and $\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}$ where $|i-j|>1$ . It is clear that $\theta_{n}=(\sigma_{1}\cdots\sigma_{n-1})^{n}$ .
Also, the group $P_{n}$ of pure n-braids coincides with the kernel of the homomorphism
from $B_{n}$ to the group of all permutations on the set $\{1, \cdots, n\}$ which sends $\sigma_{i}$ into the
transposition of $i$ and $i+1$ .

3. Main result.

Let $f:D\rightarrow D$ be an orientation-preserving $C^{1}$ -embedding of the two-dimensional
disk $D$ . We say a fixed point $x$ of $f$ is transversal if $x$ is in the interior of $D$ and the
differential $Df(x)$ does not have an eigenvalue 1, i.e., the graph of $f$ in $D\times D$ is transversal
to the diagonal.

Throughout the remainder of this paper, we assume that every fixed point of $f$ is
transversal. Under this assumption, $f$ has a finite number of fixed points, since each
fixed point is isolated. Moreover, the number of fixed points is odd, because the fixed
point index $ind(x, f)$ of each fixed point $x$ is known to be $(-1)^{u}$ , where $u$ is the number
(counted with multiplicity) of real eigenvalues of $Df(x)$ greater than 1 (see e.g. [12, $p$ .
12]), and the sum of the fixed point indices for all $x$ must be equal to the euler
characteristic of the disk, that is 1.

We define the notion of the braid type of a set of fixed points for $f$ Let $f_{t}$ : $D\rightarrow D$

$(0\leq t\leq 1)$ be an isotopy with $f_{0}=id,$ $f_{1}=f$, where id denotes the identity map. Such
an isotopy always exists, since we can isotope $f$ to a homeomorphism of $D$ which fixes
the boundary $\partial D$ of $D$ pointwise and therefore obtain the isotopy $\{f_{t}\}$ by the Alexander
trick (see [1, Lemma 4.4.1]). Let $S$ be a set of fixed points of $f$ Then $S$ has a finite
number, say $n$ , of elements, and the path $f_{t}(S),$ $0\leq t\leq 1$ , in $W_{n}$ becomes a loop with
base point $S$.

DEFINITION 1. We denote by $bt(S;\{f_{t}\})$ the pure braid type represented by the
loop $f_{t}(S)$ and call it the braid type of $S$ with respect to the isotopy $\{f_{t}\}$ . In the case
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where the isotopy $\{f_{t}\}$ is fixed, the braid type of $S$ will be abbreviated to $bt(S, f)$ or $bt(S)$ .
The definition of the braid type of $S$ depends on the choice of the isotopy $\{f_{t}\}$ as

follows: Let $\{f_{t}\}$ and $\{f_{t}^{\prime}\}$ be isotopies from id to $f$ Then it is known that there is an
integer $k$ such that two isotopies $\{R_{kt}\circ f_{t}\}$ and $\{f|\}$ are homotopic through isotopies
from id to $f$ This easily implies that

$bt(S;\{f_{t}^{\prime}\})=\theta_{n}^{k}\cdot bt(S;\{f_{t}\})$ .
In particular, the braid type of $S$ is unique up to multiples of the full twist braid.

In this paper, we consider the question of what kind of braid types appear as the
braid type of the fixed point set Fix$(f)$ of $f$ To state the main theorem, we define an
operation (C) which gives a new pure braid type $\beta^{\prime}\in PT_{n+2}$ from a pure braid type
$\beta\in PT_{n}$ . Choose a geometric n-braid $\mathscr{A}$ which represents $\beta$ . Let $\mathscr{A}^{\prime}$ be the geometric
$(n+2)$-braid which is obtained by first splitting one string of $\mathscr{A}$ into three parallel strings
and then applying a number of full twists to the three parallel strings. (The number of
full twists may be zero.) Define $\beta^{\prime}$ to be the braid type which is represented by $\mathscr{A}^{\prime}$ . Any
$\beta^{\prime}$ obtained in this way is called a braid type obtained from $\beta$ by applying the operation
(C). Roughly speaking, to apply this operation (C) means to twine a pair of parallel
cables around a string of a given braid type. Figure 1 gives an example of the braid
types $\beta^{\prime}$ obtained from $\beta=[\sigma_{1}^{2}]\in PT_{3}$ by applying the operation (C).

$|$

(C)

$|$

$\beta$

$\beta^{\prime}$

Figure 1

It is trivial that the resulting braid type $\beta^{\prime}$ depends on the number of full twists
applied to the three parallel strings. $\beta^{\prime}$ also depends on the choice of the string. For
instance, let $\beta(b, i, r)$ be the braid type obtained from a braid type $[b]$ , where $b\in P_{n}$ , by
applying the operation (C) where we choose the string containing $e_{i}$ as the string to be
splitted and choose an integer $r$ as the number of applied full twists. Let $b=\sigma_{1}^{2}\in P_{3}$ .
Then, we see $\beta(b, 3,0)=[\sigma_{1}^{2}]\in PT_{5}$ . This is clearly different from

$\beta(b, 1,0)=\beta(b, 2,0)=[\sigma_{3}\sigma_{2}(\sigma_{1})^{2}\sigma_{2}\sigma_{3}]\in PT_{5}$ .
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The following theorem characterizes the braid types which can be realized as the
braid type of Fix$(f)$ for $f$ having seven or less fixed points.

THEOREM 1. Let $\beta$ be a pure n-braid type, where $n=1,3,5$ , or 7. Then thefollowing
conditions are equivalent.

(1) $\beta$ is realized as the braid type of the fixed point set Fix$(f)$ for some
orientation-preserving $C^{1}$ -embedding $f$ of the disk having exactly $n$ fixed points all of
which are transversal.

(2) $\beta$ is obtainedfrom the l-braid type by applying the operation (C) repeatedly.

This theorem is an immediate consequence of Theorem 2 in the next section.
We close this section by giving the braid types satisfying the condition (2) of the

above theorem explicitely. Let Cable$(n)$ be the set of such pure n-braid types. Here, we
choose $E_{n}$ as the base point of $B_{n}$ , and consider $B_{n}$ as asubgroup of $B_{n+2}$ by regarding
$b\in B_{n}$ as an $(n+2)$-braid by adding $(n+1)$-th and $(n+2)$-th straight strings to $b$ . Let $e$

be the unit element of $B_{n}$ , and let $\overline{Z(B_{3})}$ be the subgroup of $B_{7}$ generated by $ff_{3}=(\sigma_{5}\sigma_{6})^{3}$ .
For a subgroup $H$ of $B_{n}$ , let $[H]$ denote the set of braid types $[b]$ for all $b\in H$.

PROPOSITION 1. (1) Cable(l) $=\{[e]\}$ ,
(2) Cable(3) $=[Z(B_{3})]=\{[\theta_{3}^{k}]|k\in Z\}$ ,
(3) Cable(5) $=[Z(B_{3})\cdot Z(B_{5})]=\{[\theta_{3}^{k}\theta_{5}^{l}]|k, l\in Z\}$ ,
(4) Cable(7) $=[Z(B_{3})\cdot Z(B_{5})\cdot Z(B_{7})]\cup[Z(B_{3})\cdot\overline{Z(B_{3})}\cdot Z(B_{7})]$ .

PROOF. (1) and (2) are trivial. Note that $\beta belongstoCable(n)$ if and only if $\beta$ is
obtained from some element of Cable$(n-2)$ by applying the operation (C). Therefore
we have

Cable(5) $=$ { $\beta(\theta_{3}^{l},$ $i,$ $r)|i=1,2,3$ , and $l,$ $r\in Z$}.

Since $\beta(\theta_{3}^{l}, i, r)=[\theta_{3}^{r-l}\theta_{5}^{l}]$ for any $i$ , we have (3).
Similarly since

Cable(7) $=\{\beta(\theta_{3}^{k}\theta_{5}^{l}, i, r)|1\leq i\leq 5, k, l, r\in Z\}$ ,

and $\beta(\theta_{3}^{k}\theta_{5}^{l}, i, r)$ is equal to $\theta_{3}^{r-k-l}\theta_{5}^{k}\theta_{7}^{l}$ if $i\leq 3$ , and $\theta_{3}^{k}\sigma_{3}^{r-l\theta_{7}^{l}}$ if $i\geq 4$ , we have (4). $\square $

REMARK. There is an alternative but equivalent way of defining a braid type: An
n-braid type is defined as a conjugacy class of the group of isotopy classes of
orientation-preserving homeomorphisms on the n-punctured disk which fix the outer
boundary pointwise (see e.g. Boyland [5]). Thus the braid types can be classified
according to the Nielsen-Thurston theory [19] of classification of surface homeo-
morphisms up to isotopy. It is clear that any element of Cable$(n)$ has no pseudo-
Anosov component. (In fact, any element of Cable$(n)$ is equal to a braid type which
corresponds to a “disk tree” consisting of $(n-1)/2$ copies of the diffeomorphism $a_{1,3,0}$

introduced by Llibre and MacKay [13].) Therefore, Theorem 1 implies that if $f$ has
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at most seven fixed points and all of them are transversal, then the braid type of the
fixed point set has no pseudo-Anosov component. This result fails for $n=9$ . In fact,
let $g_{1},$ $g_{2}$ be the generalized horseshoe diffeomorphisms introduced in [15, p. 63]. They
have $E_{3}=\{e_{1}, e_{2}, e_{3}\}$ as an attractive invariant set and the braids of $E_{3}$ determined by
$g_{1}$ and $g_{2}$ are equal to $\sigma_{1}$ and $\sigma_{2}^{-1}$ respectively. Let $f=g_{1}^{2}\circ g_{2}^{2}$ . Then $f$ has nine fixed
points all of which are hyperbolic. However, $bt(Fix(f))$ has a pseudo-Anosov
component, since the braid type $bt(E_{3}, f)$ is clearly equal to the pseudo-Anosov braid
type $[\sigma_{1}^{2}\sigma_{2}^{-2}]$ .

4. Indexed braid types.

We first define the notion of an ”indexed” braid type, which is necessary to state
Theorem 2. Let $Z^{*}$ denote the integers $Z$ with a symbol $\{*\}$ added, i.e.,

$Z^{*}=Zu\{*\}$ .

We call a pair $(l, \tau)$ of a loop 1 in $W_{n}$ and a map $\tau:l(O)\rightarrow Z^{*}$ an indexed loop in $W_{n}$ . In
other words, an indexed loop is a loop in $W_{n}$ where an index having a value in the set
$Z^{*}$ is assigned to each point of the subset 1(0) of the plane. Two indexed loops $(l, \tau)$

and $(l^{\prime}, \tau^{\prime})$ in $W_{n}$ are said to be homotopic if there exists a family $\{(1_{\mu}, \tau_{\mu})\},$ $0\leq\mu\leq 1$ , of
indexed loops in $W_{n}$ with $(l_{0}, \tau_{0})=(l, \tau),$ $(l_{1}, \tau_{1})=(l^{\prime}, \tau^{\prime})$ such that

(i) $\{l_{\mu}\}$ is a free homotopy of loops in $W_{n}$ , and
(ii) $\tau_{\mu}(x_{i}(\mu))$ is constant with respect to $\mu$ for each $i=1,$ $\cdots,$ $n$ , where

$x_{1}(\mu),$ $\cdots,$ $x_{n}(\mu)$ are continuous paths in $R^{2}$ with $\{x_{1}(\mu), \cdots, x_{n}(\mu)\}=S_{\mu}$ . (Note that such
paths always exist, since $S_{\mu}$ is a continuous path in $W_{n}$ with respect to $\mu.$ )

We denote by $[l, \tau]$ the homotopy class of $(l, \tau)$ , and call it an indexed n-braid type.
Thus an indexed braid type is considered as a braid type with index assigned to each
string.

In the case where both $l$ and $l^{\prime}$ represent pure braid types, a necessary and sufficient
condition for two indexed loops $(l, \tau)$ and $(l^{\prime}, \tau^{\prime})$ to be homotopic is that there is a
homotopy $\{l_{\mu}\}\sim$ of loops in $V_{n}$ such that

$\pi\circ l_{O}=l\sim$ , $\pi\circ l_{1}\sim=l^{\prime}$ , $\tau(x_{i}(0,0))=\tau^{\prime}(x_{i}(0,1))$ ,

where $x_{i}(t, \mu)$ is the i-th coordinate of $l_{\mu}(t)\in\sim V_{n}$ .
We introduce another expression of an indexed braid type which is more convenient

in some cases. Choose a base point $S$ of $B_{n}$ , and arrange the points in $S$ as $x_{1},$ $\cdots,$ $x_{n}$ .
For $b\in B_{n}$ and an n-tuple $J=(i_{1}, \cdots,j_{n})$ of elements of $Z^{*}$ , let $[b, J]$ denote the indexed
braid type represented by $(l, \tau_{J})$ , where $l$ is a loop based at $S$ representing $b$ and $\tau_{J}$ is
a map from $S$ to $Z^{*}$ defined by $\tau_{J}(x_{i})=j_{i}$ . It is easy to see that any indexed braid type
can be expressed in this form $[b, J]$ . Note that $J$ is not unique, as the following example
shows: Let $b=\sigma_{1}^{2}\sigma_{3}^{2}\in B_{4}$ . Then
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$[b, J]=[b, (i_{\nu\langle 1)} j_{v(4)})]$ ,

for any permutation $v$ on the set {1, 2, 3, 4} with $\{v(1), v(2)\}=\{1,2\}$ or {3, 4}.
If $n\geq 3$ , we define an action of the center $Z(B_{n})=\{\theta_{n}^{k}|k\in Z\}$ on the set of indexed

braid types as follows:

$\theta_{n}^{k}\cdot[b, J]=[\theta_{n}^{k}b, (j_{1}^{\prime}, \cdots,j_{n}^{\prime})]$ ,

where $j_{l}^{\prime}=j_{i}+kifj_{i}\in Zand*ifj_{i}=*$ .
Recall that every fixed point of the embedding $f$ is assumed to be transversal and

hence its fixed point index $ind(x, f)$ is always equal to 1 or $-1$ . We call a fixed point
$x$ of $f$ a positive (resp. negative) fixed point if $ind(x, f)=1$ (resp. $-1$ ). Let $Fix_{+}(f)$ (resp.
$Fix_{-}(f))$ be the set of all positive (resp. negative) fixed points of $f$

We give some examples of positive and negative fixed points. Let $x$ be a fixed point
of $f$, and $\lambda_{1},$ $\lambda_{2}$ denote the eigenvalues of the differential $Df(x)$ with $|\lambda_{2}|\leq|\lambda_{1}|$ . The
fixed point $x$ is called a sink, a source, a twisted saddle, or an untwisted saddle if
$|\lambda_{1}|<1,$ $|\lambda_{2}|>1,$ $\lambda_{1}<-1<\lambda_{2}<0$ , or $0<\lambda_{2}<1<\lambda_{1}$ respectively. Then a sink, a source,
and a twisted saddle are examples of positive fixed points, since $u=0$ or 2 for such $x$ .
On the other hand, it is easily shown that a fixed point is negative if and only if it is
an untwisted saddle.

We next define a topological invariant for negative fixed points which we call the
“torsion number”. Let $x$ be a negative fixed point. Choose an arbitrary nonzero
eigenvector $v$ in the stable (or equivalently unstable) eigenspace of $Df(x)$ . This is possible
since $x$ must be a saddle. Then the path $[0,1]\ni t\rightarrow Df_{t}(x)v/|Df_{t}(x)v|$ becomes a loop in
the unit circle. We call the topological degree of this loop the torsion number of $x$ and
denote it by $tor(x, \{f_{t}\})$ or by $tor(x, f)$ . Thus the torsion number counts the number of
rotations of eigenvectors of $Df(x)$ around $x$ while $t$ varies from $0$ to 1. It is trivial this
definition does not depend on the choice of $v$ .

We generalize the definition of the torsion number to positive fixed points by
putting $tor(x, f)=*for$ positive $x$ . By this generalization, the torsion number is improved
to contain the information on the fixed point indices as well. Denote by

$tor(f):Fix(f)\rightarrow Z^{*}$

the map defined by $tor(f)(x)=tor(x, f)$ .
Now we introduce the notion of an indexed braid type of a fixed point set which

combines all the information on the fixed point indices, the torsion numbers, and the
braid type.

DEFINITION 2. Let $S$ be a subset of Fix$(f)$ . Define the indexed braid type of $S$

denoted by $bt(S;\{f_{t}\})^{*}$ as the indexed braid type represented by the loop $f_{t}(S)$ together
with the map $tor(f)|_{S}$ : $S\rightarrow Z^{*}$ . When the isotopy $\{f_{t}\}$ is fixed, we write it simply by
$bt(S, f)^{*}$ or by $bt(S)^{*}$ .
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Likewise the braid type of $S$, the indexed braid type of $S$ is also unique up to
multiplication by full twist braids. More precisely, if $bt(S;\{f_{t}^{\prime}\})=\theta_{n}^{k}bt(S;\{f_{t}\})$ , then
$bt(S;\{f_{t}^{\prime}\})^{*}=\theta_{n}^{k}bt(S;\{f_{t}\})^{*}$ .

We define an operation (C)*which gives a new indexed pure $(n+2)$-braid type $\rho^{\prime}*$

from an indexed pure n-braid type $\beta^{*}$ which has at least one string with $index*$ . Let
$\mathscr{A}$ be a geometric braid which represents $\rho*$ . Choose a string of $\mathscr{A}$ with $index*assigned$ .
Split this string into three parallel strings and then apply a number, say $r$, of full twists
to these three parallel strings. We assign the $index*to$ two of these three parallel strings,
and the index $r$ to the other one of them. We do not change the indices of the other
strings. Let $\beta^{\prime*}$ be the indexed braid type obtained through this operation.

We have the following theorem conceming the indexed braid type of the fixed
point set.

THEOREM 2. Let $\beta^{*}be$ an indexed pure n-braid type, where $n=1,3,5$ , or 7. Then
the following two conditions are equivalent.

(1) $\beta^{*}$ is realized as the indexed braid type of the fixed point set for some
orientation-preserving $C^{1}$ -embedding $f$ of the disk having exactly $n$ fixed points all of
which are transversal.

(2) $\beta^{*}$ is obtained from the l-braid type with index $*by$ applying the operation
$(C)^{*}$ repeatedly.

This theorem will be proved in Section 6. We show here that Theorem 1 follows
from Theorem 2. Suppose a braid type $\beta$ satisfies the condition (1) of Theorem 1, i.e.,
$\beta=bt(Fix(f))$ for some $f$ By Theorem 2, $bt(Fix(f))^{*}$ must satisfy the condition (2) of
Theorem 2. Therefore, by comparing the two operations (C), $(C)^{*}$ , we see that $bt(Fix(f))$

satisfies the condition (2) of Theorem 1. Conversely, suppose $\beta=[b]$ satisfies the
condition (2) of Theorem 1. Then it is easy to see that there is a (unique) $J$ such that
$[b, J]$ satisfies the condition (2) of Theorem 2, and hence by Theorem 2,
$[b, J]=bt(Fix(f))^{*}$ for some $f$ Therefore by ignoring the indices, we have $\beta=bt(Fix(f))$ .

5. Some properties of braid types.

Here, we will describe some results on the braid type of a fixed point set, which
will be used in the proof of Theorem 2.

Suppose an orientation-preserving $C^{1}$ -embedding $h:D\rightarrow D$ is given. We assume $h$

has only finitely many fixed points, and all of them are contained in the interior of the
disk. We choose and fix an isotopy $\{h_{t}\}$ of the disk with $h_{0}=id$ and $h_{1}=h$ . For distinct
fixed points $x$ and $y$ of $h$ , define their linking number $lk(x, y;h)$ as the topological degree
of the loop $h_{t}(x)-h_{t}(y)$ in $R^{2}-\{0\}$ .

If $x$ is a negative fixed point of $f$, define the linking number $lk(x, x;f)$ of $x$ with
itself to be the torsion number $tor(x, f)$ .

Let $S$ be a subset of Fix$(h)$ . Let $D(S)$ denote the n-punctured disk obtained by
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removing $S$ from $D$ and recompactifying by adding a circle to each end of $D-S$, where
nisthe number of points in S. ($D(S)$ is considered asasubspace of D.) $Thenh_{t}$ can be
extended to a continuous embedding from $D(S)$ to $D(h_{t}(S))$ [$2$ , p. 24], which will be
denoted by $h_{S,t}$ . Let $C_{x}$ denote the boundary circle of $D(S)$ which corresponds to $x\in S$ .
We extend $h_{S,t}$ further to an isotopy $\pi_{S,t}$ ; $D\rightarrow D$ so that the center $d_{x}$ of the circle $C_{x}$

is a fixed point. Let $h_{s}=h_{S,1}$ and $\overline{h}_{s}=\pi_{S,1}$ . For a fixed point $x$ of $h_{S}$ and an inner
boundary $C_{y}$ of $D(S)$ , define the linking number $lk(x, C_{y};h_{s})$ of $x$ with $C_{y}$ as $lk(x, d_{y};k_{s})$ .
Note that if $x$ is a fixed point of $h$ which is not contained in $S$ and $y\in S$, then
$lk(x, y;h)=lk(x, C_{y};h_{S})$ .

Now we consider the embedding $f$ Let $S$ be a subset of Fix$(f)$ . Then $f_{S}$ : $D(S)\rightarrow D(S)$

can be defined. If $x\in S$ is positive, then Fix$(f_{S})\cap C_{x}$ is an isolated fixed point set for
$f_{S}$ . This fixed point set has fixed point index zero. In fact, by a local perturbation of
$f$ around $x$ we get a map $f^{\prime}$ such that $x$ is fixed by $f^{\prime}$ and the differential $Df^{\prime}(x)$ has
no real eigenvalues. Then $f_{\acute{S}}$ has no fixed points on $C_{x}$ and therefore by the homotopy
invariance of fixed point index (see e.g. [6], [12]), Fix$(f_{S})\cap C_{x}$ has fixed point index
zero. Also, if $x\in S$ is negative (i.e., if $x$ is an untwisted saddle), it is easy to see that $f_{S}$

has four fixed points on $C_{x}$ , two of which have fixed point index $-1$ and the other two
have fixed point index zero.

Let $\Lambda$ denote the ring $Z[t, t^{-1}]$ of integer polynomials in the variable $t$ and its
inverse, and $GL(n-1, \Lambda)$ the group of all invertible matrices of size $n-1$ with entries
in $\Lambda$ . Let $R:B_{n}\rightarrow GL(n-1, \Lambda)$ denote the reduced Burau representation ([1, Lemma
3.11.1], [18, (16.4)]). For a braid type $\beta$ , define a polynomial $\Gamma(\beta)\in\Lambda$ by

$\Gamma(\beta)=trR(b)$ ,

where $b\in B_{n}$ with $[b]=\beta$ . This is well defined since if two elements $b$ and $b^{\prime}$ of $B_{n}$

represent the same braid type, then they are conjugate and hence the matrices $R(b)$ and
$R(b^{\prime})$ are also conjugate. We have:

PROPOSITION 2.

$-\Gamma(bt(S, f))=\sum_{x\in S^{c}}ind(x, f)t^{lk\langle x,S)}-2\sum_{x\in S-}t^{lk\langle x,S)}$ ,

where $S^{c}=Fix(f)-S,$ $S_{-}=S\cap Fix_{-}(f)$ , and $lk(x, S)=\sum_{y\in S}lk(x, y;f)$ .

PROOF. For $x\in S_{-}$ , let $u_{x}^{1},$ $u_{x}^{2}$ be the fixed points in $C_{x}$ which have fixed point
index $-1$ .

For fixed points $x$ of $f_{S}$ , let $lk(x;f_{S})=\sum_{y\in S}lk(x, C_{y}; f_{S})$ . We can assume that $f_{S}$ has
no fixed points on $C_{x}$ for any positive $x\in S$. Then $f_{S}$ has finitely many fixed points.
The following formula is known (see e.g. [11, Sect. 2 $(D)],$ $[4$ , p. 29]):

$-\Gamma(bt(S, f))=\sum_{x\in Fix\langle f_{S})}ind(x, f_{S})t^{lk\langle x;f_{S})}$ .
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It is easy to see that for any $y\in S,$ $x\in S_{-}$ , and $\epsilon=1,2$ , we have

$lk(u_{x}^{\epsilon}, C_{y}; f_{s})=lk(x, y;f)$ .

This implies that $lk(u_{x}^{\epsilon}; f_{S})=lk(x, S)$ . Also, $lk(x;f_{S})=lk(x, S)$ for any $x\in S^{c}$ . Therefore,
if we let $U=\{u_{x}^{\epsilon}|x\in S_{-}, \epsilon=1,2\}$ , then we have

$-\Gamma(bt(S, f))=\sum_{x\in S^{c}}ind(x, f_{s})t^{lk\{x;f_{S})}+\sum_{u\in U}ind(u, f_{s})t^{lk\langle u;f_{S})}$

$=\sum_{x\in S^{c}}ind(x, f)t^{lk(x,S)}-2\sum_{x\in S-}t^{lk\langle x,S)}$ .

$\square $

If we take $S$ to be Fix$(f)$ in the above proposition, we obtain the following result
which gives a necessary condition, in terms of the Burau matrices, for a braid type to
be realized as the braid type of the fixed point set for some $f$ (This result will not be
used to prove the theorems in this paper.)

COROLLARY. The polynomial $\Gamma(bt(Fix(f)))$ has the following form:
$\Gamma(bt(Fix(f)))=2(t^{p_{1}}+\cdots+t^{p_{i}})$ ,

where $l=(\#Fix(f)-1)/2$ and $p_{1},$ $\cdots,$ $p_{l}$ are integers.

The following result plays an essential role in the proof of Theorem 2.
PROPOSITION 3. Suppose $\#Fix(f)\leq 7$ . Then for any subset $S$ of Fix$(f)$ consisting

of three points, we have $bt(S, f)=[\sigma_{1}^{2i}]$ for some integer $i$ up to multiplication with full
twist 3-braids.

$PR\infty F$ . Since $bt(S, f)$ is a 3-braid type, by an argument in the proof of Proposition
in [16], $bt(S, f)$ is equal to one of the following braid types up to full twists:

(i) $[\sigma_{1}^{2i}],$ $i\in Z$,
(ii) $[(\sigma_{1}\sigma_{2})^{\pm 1}],$ $[\sigma_{1}\sigma_{2}\sigma_{1}]$ ,
(iii) $[\alpha(i_{1})\cdots\alpha(i_{d})],$ $d\geq 1,$ $i_{1}\geq 5,$ $i_{2},$ $\cdots,$ $i_{d}\geq 4$ , where $\alpha(i)=\sigma_{1}^{i}\sigma_{2}$ .
Case (ii) does not occur, because the braid types in case (ii) are not pure braid types.
We will show that the case (iii) is also $imp_{\backslash }ossible$ . Suppose the case (iii) holds. We

first claim that there is a set $S^{\prime}$ of three positive fixed points of $f$ such that
$bt(S^{\prime}, f)=bt(S, f)$ . To prove this, it is enough to show that we can replace each negative
fixed point in $S$ with a positive one without altering the braid type. Assume $S$ contains
a negative fixed point $x_{1}$ . Let $x_{2},$ $x_{3}$ be the other fixed points in $S$. Replacing the isotopy
$\{f_{t}\}$ if necessary, we can assume $lk(x_{2}, x_{3};f)=0$ . Moreover we can assume the curves
$f_{t}(x_{2}),$ $f_{t}(x_{3})(0\leq t\leq 1)$ are constant in $t$, i.e., the strings corresponding to these curves
are straight lines. Let $Q=\{x_{2}, x_{3}\}$ . Then $Q=f_{t}(Q)$ for any $t$ and $f_{Q,t}$ maps $D(Q)$ to itself.
For a loop $c$ in the 2-punctured disk $D(Q)$ , let $[c]$ denote the free homotopy class of $c$

in $D(Q)$ . Then it is easy to see that fixed points $x,$ $y$ of $f_{Q}$ are in the same fixed point
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class if and only if the loops $f_{Q,t}(x)$ and $f_{Q,t}(y)$ in $D(Q)$ are freely homotopic. For a free
homotopy class $\gamma$ ofloops in $D(Q)$ , let $Fix_{\gamma}(f)$ be the fixed point class of $f_{Q}$ corresponding
to $\gamma$ . ( $Fix_{\gamma}(f)$ may be empty.) Since any orientation-preserving embedding of $D(Q)$ into
itself is homotopic to the identity, by the homotopy invariance of the fixed point index,
we have $ind(Fix_{\gamma}(f))=0$ for any $\gamma$ which is nontrivial, i.e., which does not contain any
constant loop. Therefore, since the free homotopy class $[f_{t}(x_{1})]$ of the loop $f_{t}(x_{1})$ is
nontrivial by the assumption that the case (iii) holds, the sum of the fixed point indices
for the fixed points $x$ of $f_{Q}$ with $x\neq x_{1}$ and $[f_{Q,t}(x)]=[f_{t}(x_{1})]$ is equal to one. It follows
from this that there must exist a fixed point $x_{1}^{\prime}$ of $f_{Q}$ having positive fixed point index
such that $f_{Q,t}(x_{1}^{\prime})$ is freely homotopic to $f_{t}(x_{1})$ in $D(Q)$ . This implies that $x_{1}^{\prime}$ lies in $D-Q$
and $bt(S, f)=bt(\{x_{1}^{\prime}, x_{2}, x_{3}\}, f)$ . Hence $x_{1}^{\prime}$ gives the desired positive fixed point. This
proves the claim.

By [16, p. 200, (5)] the coefficient of $t^{k}$ in the polynomial $\Gamma(bt(S^{\prime}, f))$ is nonzero
if $2d\leq k\leq\sum_{s=1}^{d}(i_{s}-1)$ . Hence, $\Gamma(bt(S^{\prime}, f))$ has at least $p+1$ nonzero terms, where
$p=\sum_{s=1}^{d}(i_{s}-3)$ . Therefore by applying Proposition 2 to $S^{\prime}$ , we have

$\#(Fix(f)-S^{\prime})\geq p+1$ .

From this and the hypothesis that $\#Fix(f)\leq 7$ , it follows that $p\leq 3$ and hence $(i_{1}, \cdots, i_{d})$

must be one of the sequences (6), (5), or $(5, 4)$ . This implies bt$(S, f)$ is nota pure braid
type, which is a contradiction. Therefore Case (iii) does not occur. $\square $

The following result has been proved in [17], which reduces the problem of
classifying indexed braid types for Fix$(f)$ to that of classifying indexed braid types for
the set of negative fixed points.

THEOREM 3 ([17]). Let $f,$ $g:D\rightarrow D$ be orientation-preserving $C^{1}$ -embeddings having
only transversalfixedpoints. Suppose $f$ and $g$ have the same number offixed points. Let
$f_{t},$

$g_{t}$ : $D\rightarrow D$ be isotopies with $f_{0}=g_{0}=id,$ $f_{1}=f,$ $g_{1}=g$ . Then the following conditions
are equivalent:

(1) $bt(Fix(f);\{f_{t}\})^{*}=bt(Fix(g);\{g_{t}\})^{*}$ ,
(2) $bt(Fix_{+}(f);\{f_{t}\})=bt(Fix_{+}(g);\{g_{t}\})$ ,
(3) $bt(Fix_{-}(f);\{f_{t}\})^{*}=bt(Fix_{-}(g);\{g_{t}\})^{*}$ .

6. Proof of Theorem 2.

The theorem is trivial for $n=1$ . We will prove the theorem for $n=3,5,7$ . We first
show that the condition (2) implies the condition (1). Note that every indexed braid
type satisfying the condition (2) for $n=3,5,7$ is equal to one of the following indexed
braid types up to full twists (cf. Proposition 1):

$\gamma^{*}=[e, (*, 0, *)]$ , $\gamma_{\langle k)}^{*}=[\theta_{3}^{k}, (*, k, *, 0, *)]$ ,

$\gamma_{\langle k,l)}^{*}=[\theta_{3}^{k}\theta_{5}^{l}, (*, k+l, *, l,*, 0, *)]$ , $\overline{\gamma}_{(k,l)}^{*}=[\theta_{3}^{k}ffl_{3}(*, k, *, 0, *, l, *)]$ ,
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where $k,$ $1$ are integers.
It is sufficient to verify that each of these indexed braid types can be realized as

the indexed braid type of the fixed point set for some embedding, since the indexed
braid type of a fixed point set is unique up to full twists.

Let $X$ be a vector field on the unit disk $D$ with two sinks $($ 1/2, $0),$ $(-1/2,0)$ and
one saddle $(0,0)$ as in Fig. 2. Let $\phi_{t}$ : $D\rightarrow D$ be the l-parameter group of transformations
associated to $X$.

Figure 2

Let $D^{\prime},$
$D^{\prime\prime}$ be concentric disks centered at $(-1/2,0)$ with radius 1/6, 1/3 respectively.

Also, let $\overline{D}^{\prime},\overline{D}^{\prime\prime}$ be the concentric disks centered at $($ 1/2, $0)$ with radius 1/6, 1/3

respectively. Let $k,$ $l$ be integers.
Let $\{\phi_{\langle k),t}\}$ be an isotopy which coincides with $\phi_{t}$ outside of $D^{\prime\prime}$ , whose restriction

to $D^{\prime}$ is conjugate to $\phi_{t}\circ R_{kt}$ : $D\rightarrow D$ via a rigid translation from $D^{\prime}$ to $D$ , and which
has no fixed points on $D^{\prime\prime}-D^{\prime}$ .

Let $\{\phi_{\langle k,l),t}\}$ be an isotopy which coincides with $\phi_{t}$ outside of $D^{\prime\prime}$ , and is conjugate
to $\phi_{\{k),t}\circ R_{lt}$ on $D^{\prime}$ , and has no fixed points on $D^{\prime\prime}-D^{\prime}$ . Also, let $\{\phi_{\langle k,l).t}\}$ be an isotopy
which coincides with $\phi_{(k),t}$ outside of $\overline{D}^{\prime\prime}$ , and is conjugate to $\phi_{t}\circ R_{lt}$ on $\overline{D}^{\prime}$ and has no
fixed points on $\overline{D}^{\prime\prime}-\overline{D}^{\prime}$ . Let

$\phi=\phi_{1}$ , $\phi_{(k)}=\phi_{\langle k),1}$ , $\phi_{\langle k,l)}=\phi_{\langle k,l),1}$ , $\phi_{\langle k,l)}=\phi_{\langle k,l),1}$ .

Then, it is easy to see that the indexed braid type of the fixed point set for each of
these maps $\phi,$ $\phi_{(k)},$ $\phi_{\langle k,1)},$ $\phi_{\{k,l)}$ is equal to $\gamma^{*},$ $\gamma_{\langle k)}^{*},$ $\gamma_{(k,l)}^{*},\overline{\gamma}_{\langle k,l)}^{*}$ respectively. Thus we have
proved that the condition (2) implies (1).

We next show the condition (1) implies (2).

If $h:D\rightarrow D$ is an embedding as in Section 5, $y_{1},$ $\cdots,$ $y_{l}$ are distinct fixed points of
$h$ , and $K=(k_{1}, \cdots, k_{l})$ is a sequence of integers, we define a set $Fix_{K}(h_{S})$ of fixed points
of $h_{S}$ : $D(S)\rightarrow D(S)$ , where $S=\{y_{1}, \cdots, y_{l}\}$ , by
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$Fix_{K}(h_{S})=$ {$x\in Fix(h_{S})|lk(x,$ $C_{yi}$ ; $h_{S})=k_{i}$ for any $i$ }.
(This set is called a homological Nielsen class in [11, Sect. 1 $(B)].$)

Let $f$ be an orientation-preserving embedding having 3, 5 or 7 fixed points all of
which are transversal. We only need to show that, for a particularly chosen isotopy
$\{f_{t}\}$ , the indexed braid type of Fix$(f)$ coincides with the indexed braid type of the fixed
point set for one of the embeddings $\phi,$ $\phi_{\langle k)},$ $\phi_{\langle k,l)},$ $\phi_{\langle k,l)}$ .

Let $l=(n-1)/2(=\#Fix_{-}(f))$ and $y_{1},$ $\cdots,$ $y_{l}$ be the elements of $Fix_{-}(f)$ . Let
$\tau_{i}=tor(y_{i})$ . The proof is divided into three cases.

Case 1. $n=3$ . We choose an isotopy $\{f_{t}\}$ for which $\tau_{1}=0$ . This is possible by
rotating the disk appropriately if necessary. Then

$bt(Fix_{-}(f))^{*}=[e, (\tau_{1})]=[e, $(0)$]=bt(Fix_{-}(\phi))^{*}$

Hence by Theorem 3, we have $bt(Fix(f))^{*}=bt(Fix(\phi))^{*}$ .
Case 2. $n=5$ . We choose $\{f_{t}\}$ such that $lk(y_{1}, y_{2} ; f)=0$ . Then,

$bt(Fix_{-}(f))^{*}=[e, (\tau_{1}, \tau_{2})]$ .

We can assume $y_{1}=(-1/2,0),$ $y_{2}=(1/2,0)$ . Then $Fix_{-}(f)=Fix_{+}(\phi)$ . Let $S=Fix_{-}(f)$ .
Since $f_{s},$ $\phi_{s}$ : $D(S)\rightarrow D(S)$ are isotopic, by the invariance of the fixed point index, we have

$ind(Fix_{\langle 0,0)}(f_{S}), f_{S})=ind(Fix_{(0,0)}(\phi_{S}), \phi_{S})=ind(0, \phi_{S})=-1$ .
This implies there is a fixed point of $f_{S}$ which has negative fixed point index and whose
linking numbers with $C_{\mathcal{Y}1}$ and $C_{\mathcal{Y}2}$ are both zero. Since any fixed point of $f$ in $D-S$
has positive fixed point index, this fixed point must be in $C_{y_{1}}$ or $C_{y_{2}}$ . Consequently,
we have that either $\tau_{1}$ or $\tau_{2}$ must be zero. We may assume $\tau_{2}=0$ . Then,

$bt(Fix_{-}(f))^{*}=[e, (\tau_{1},0)]=bt(Fix_{-}(\phi_{\langle\tau_{1})}))^{*}$

Hence, by Theorem 3, $bt(Fix(f))^{*}=bt(Fix(\phi_{(\tau_{1})}))^{*}$ .
Case 3. $n=7$ . Since $\#Fix_{-}(f)=3$ , by Proposition 3 we can choose an isotopy

$\{f_{t}\}$ such that $bt(Fix_{-}(f))=[\sigma_{1}^{2i}]$ for some integer $i$ . Therefore $bt(Fix_{-}(f))^{*}=[\sigma_{1}^{2i}$ ,
$(\tau_{1}, \tau_{2}, \tau_{3})]$ . Since $bt(Fix_{-}(f))=bt(Fix_{+}(\phi_{\langle i)}))$ , we may assume $Fix_{-}(f)=Fix_{+}(\phi_{\langle i)})$ . Let
$S=Fix_{-}(f)$ . Then $f_{S}$ and $(\phi_{\langle i)})_{S}$ are isotopic. Therefore, if $i$ is nonzero, then
$ind(Fix_{K}(f_{S}))=-1forK=(0,0,0),$ $(i, i, 0)$ . Also, ifiis zero, then ind$(Fix_{(0,0,0)}(f_{S}))=-2$ .
Similarly as in Case 2, from these we have the following:

(i) If $i$ is nonzero, then $\tau_{3}=0$ and either $\tau_{1}$ or $\tau_{2}$ is $i$.
(ii) Ifi is zero, then at least one of $\tau_{1},$ $\tau_{2},$ $\tau_{3}$ is zero.
Consider the case $i\neq 0$ . We may assume $\tau_{2}=i$. Let $k=\tau_{1}-i$. Then we have

$bt(Fix_{-}(f))^{*}=[\sigma_{1}^{2i}, (\tau_{1}, i, 0)]=bt(Fix_{-}(\phi_{\langle k,i)}))^{*}$

Hence by Theorem 3, the indexed braid type of Fix$(f)$ is equal to that of Fix $(\phi_{\langle k,i)})$ .
Now, consider the case $i=0$ . We can assume $\tau_{2}=0$ without loss of generality. Let
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$k=\tau_{1},$ $l=\tau_{3}$ . Then since the indexed braid types of $Fix_{-}(\phi_{\langle k,l)})$ and $Fix_{-}(f)$ are equal,
the indexed braid type of Fix$(f)$ is equal to Fix$(\phi_{\langle k,l)})$ by Theorem 3.

Thus, we have proved that the condition (1) in Theorem 2 implies the condition (2).

7. Relation between braid types and indexed braid types.

In this section, we will prove a result which shows that in classifying indexed braid
types of the fixed point sets, we can neglect the information on indices. This result
shows, in particular, that Theorem 2, which at a first glance seems to contain more
information than Theorem 1, is actually equivalent to Theorem 1. The result is:

PROPOSITION 4. $bt(Fix(f);\{f_{t}\})^{*}=bt(Fix(g);\{g_{t}\})^{*}\iota f$ and only if $bt(Fix(f);\{f_{t}\})=$

$bt(Fix(g);\{g_{t}\})$ .

To prove the proposition, we introduce some equivalence relation on the set of
strings of an indexed geometric braid. Suppose $\mathscr{A}=\{A(1), \cdots, A(n)\}$ is a geometric
braid with index $p_{i}$ assigned to each string $A(i)$ . We say two indexed strings $A(i)$ and
$A(j)$ are equivalent if $p_{i}=p_{j}$ and there is a homotopy of strings $\{C_{\mu}\}_{0\leq\mu\leq 1}$ such that
$C_{0}=A(i),$ $C_{1}=A(j)$ , and $C_{\mu}\cap A(k)$ is empty for any $k=1,$ $\cdots,$ $n,$ $0<\mu<1$ .

For a subset $I$ of $\{1, \cdots, n\}$ , define $\mathscr{A}(I)=\{A(i)|i\in I\}$ . We denote by $bt(\mathscr{A}(I))^{*}$

the indexed braid type $re$presented by a geometric braid $\mathscr{A}(I)$ with index $p_{i}$ assigned to
$A(i),$ $i\in I$.

LEMMA. Let $I,$ $J,$ $K$ be mutually disjoint subsets of $\{1, \cdots, n\}$ such that $J$ and $K$

have the same cardinality $d$. Assume we can arrange the elements of $J,$ $K$ as
$J=\{j_{1}, \cdots,j_{d}\},$ $K=\{k_{1}, \cdots, k_{d}\}$ so that two indexed strings $A(j_{s})$ and $A(k_{s})$ are equivalent
for each $1\leq s\leq d$ . Then

$bt(\mathscr{A}(IuJ))^{*}=bt(\mathscr{A}(I\cup K))^{*}$

$PR\infty F$ . Let $J_{s}=\{j_{s}, \cdots,j_{d}\},$ $K_{s}=\{k_{s}, \cdots, k_{d}\}$ for $s\leq d$. Let $ J_{d+1}=K_{d+1}=\emptyset$ and
$L_{s}=J\cup I_{s}\cup(K-K_{s})$ . Since $L_{1}=I\cup J$ and $L_{d+1}=I\cup K$, it is sufficient to show that

$bt(\mathscr{A}(L_{s}))^{*}=bt(\mathscr{A}(L_{s+1}))^{*}$

for each $1\leq s\leq d$ by induction on $s$ . Let $s=1$ . Since $A(j_{1})$ and $A(k_{1})$ are equivalent,
there is a homotopy of strings $C_{\mu}$ from $A(j_{1})$ to $A(k_{1})$ such that $C_{\mu}$ and $A(k),$ $k=1,$ $\cdots,$ $n$ ,
are disjoint for $0<\mu<1$ . Therefore, $bt(\mathscr{A}(IuJ))^{*}=bt(\mathscr{A}(I\cup J_{2}\cup\{k_{1}\}))^{*}$ via the
homotopy of geometric braids $\mathscr{A}(I\cup J_{2})uC_{\mu}$ . Thus the equality holds for $s=1$ . In the
same way, the equality is proved for any $s$ . $\square $

$PR\infty F$ OF PROPOSITION 4. It is trivial that $bt(Fix\omega)^{*}=bt(Fix(g))^{*}$ implies
$bt(Fix(f))=bt(Fix(g))$ . We will prove the converse. Assume $bt(Fix(f))=bt(Fix(g))$ . Let
$y_{1},$ $\cdots,$ $y_{l}$ and $y_{1}^{\prime},$

$\cdots,$
$y_{l}^{\prime}$ be the elements of $Fix_{-}(fl$ and $Fix_{-}(g)$ respectively. We alter
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$f_{t}$ to $f_{t}^{\prime}$ in a small neighborhood of $Fix_{-}(f)$ so that each $y_{i}$ is a sink of $f_{t}^{\prime}$ and there are
newly added two untwisted saddles $u_{2i-1},$ $u_{2i}$ close to $y_{i}$ . Similarly, alter $g_{t}$ to $g_{t}^{\prime}$ so that
$y_{i}^{\prime}$ is a sink of $g_{1}^{\prime}$ and there are two untwisted saddles $u_{2i-1}^{\prime},$ $u_{2i}^{\prime}$ added near $y_{i}^{\prime}$ . Let

$f^{\prime}=f_{1}^{\prime}$ and $g^{\prime}=g_{1}^{\prime}$ . Then

$Fix_{+}(f^{\prime})=Fix(f)$ , $Fix_{+}(g^{\prime})=Fix(g)$ ,

$Fix_{-}(f^{\prime})=\{u_{1}, \cdots, u_{2l}\}$ , $Fix_{-}(g^{\prime})=\{u_{1}^{\prime}, \cdots, u_{2l}^{\prime}\}$ .
Let $A(l)$ (resp. $A^{\prime}(i)$) be the string associated to $f_{t}^{\prime}(u_{i})$ (resp. $g_{t}^{\prime}(u_{i}^{\prime})$) and let

$\mathscr{A}=\{A(1), \cdots, A(2l)\}$ , $\mathscr{A}^{\prime}=\{A^{\prime}(1), \cdots, A^{\prime}(2l)\}$ .

Let $\tau_{i}=tor(u_{i}, f^{\prime}),$ $\tau_{i}^{\prime}=tor(u_{i}^{\prime}, g^{\prime})$ and we assign $\tau_{i}$ (resp. $\tau_{i}^{\prime}$ ) to the string $A(i)$ (resp. $A(i)^{\prime}$).
Let $\mathscr{A}(I_{1}),$ $\cdots,$ $\mathscr{A}(I_{k})$ be the equivalence classes in $\mathscr{A}$ , where $I_{1}\cup\cdots\cup I_{k}=\{1, \cdots , 2l\}$ .
Since the braid types of Fix$(f)$ and Fix$(g)$ are assumed to be equal, we have
$bt(Fix_{+}(f^{\prime}))=bt(Fix_{+}(g^{\prime}))$ . Therefore, we have by Theorem 3 that $bt(Fix_{-}(f^{\prime}))^{*}=$

$bt(Fix_{-}(g^{\prime}))^{*}$ . Hence, there is a homotopy of loops $l_{\mu}$ :
$\sim$

$[0,1]\rightarrow V_{n}$ such that $x_{i}(t, 0)=$

$f_{t}^{\prime}(u_{i}),$ $x_{i}(t, 1)=g_{t}^{\prime}(u_{v\langle i)}^{\prime})$ , and $\tau_{i}=\tau_{v\langle i)}^{\prime}$ for some permutation $v$ of $\{1, \cdots , 2d\}$ , where $x_{i}(t, \mu)$

is the i-th coordinate of $ l_{\mu}(t)\sim$ . Thus if $A(i)$ and $A(j)$ are equivalent, then so are $A^{\prime}(\nu(i))$

and $A^{\prime}(v(j))$ , and consequently the collection $\mathscr{A}^{\prime}(v(I_{1})),$ $\cdots,$
$\mathscr{A}^{\prime}(v(I_{k}))$ form the equivalence

classes of $\mathscr{A}^{\prime}$ .
Denote by $O$ (resp. $E$) the set { $i|1\leq i\leq 21,$ $i$ is odd (resp. even)}. Let

$I=O\cap v(O)$ , $J_{s}=v(I_{s})\cap O\cap v(E)$ , $K_{s}=v(I_{s})\cap E\cap v(O)$ ,

$J=\bigcup_{s=1}^{k}J_{s}$ , $K=\bigcup_{s=1}^{k}K_{s}$ .

Then $O=I\cup J,$ $v(O)=I\cup K$. Since $\mathscr{A}^{\prime}(J_{s})$ and $\mathscr{A}^{\prime}(K_{s})$ are contained in the same
equivalence class $\mathscr{A}^{\prime}(v(I_{s}))$ , the subsets $I,$ $J$, and $K$ satisfy the hypothesis of Lemma with
respect to $\mathscr{A}^{\prime}$ . Hence,

$bt(\mathscr{A}^{\prime}(v(O)))^{*}=bt(\mathscr{A}^{\prime}(I\cup K))^{*}=bt(\mathscr{A}^{\prime}(I\cup J))^{*}=bt(\mathscr{A}^{\prime}(O))^{*}$

Therefore, since $y_{i}$ is sufficiently close to $u_{2i-1}$ and $tor(y_{i}, f)=tor(u_{2i-1}, f^{\prime})$ , we have

$bt(Fix_{-}(f))^{*}=bt(\mathscr{A}(O))^{*}=bt(\mathscr{A}^{\prime}(v(O)))^{*}=bt(\mathscr{A}^{\prime}(O))^{*}$

On the other hand, clearly we have:

$bt(Fix_{-}(g))^{*}=bt(\mathscr{A}^{\prime}(O))^{*}$

Hence we have $bt(Fix_{-}(f))^{*}=bt(Fix_{-}(g))^{*}$ , and by Theorem 3 we have $bt(Fix(f))^{*}=$

$bt(Fix(g))^{*}$ . Thus the proof is completed.



472 TAKASHI MATSUOKA

References

[1] J. S. BIRMAN, Braids, Links, and Mapping Class Groups, Ann. Math. Studies 82 (1974), Princeton
Univ. Press.

[2] R. BOWEN, Entropy and the fundamental group, The Structure of Attractors in Dynamical Systems,
Lecture Notes in Math. 668 (1978), Springer-Verlag, 21-29.

[3] P. BOYLAND, Braid types and a topological method of proving positive entropy, preprint (1984).
[4] P. BOYLAND, Braid types of periodic orbits for surface homeomorphisms, Notes on Dynamics ofSurface

Homeomorphisms, Informal Lecture Notes, Univ. of Warwick (1989).
[5] P. BOYLAND, Rotation sets and monotone periodic orbits for annulus homeomorphisms, Comment.

Math. Helv. 67 (1992), 203-213.
[6] R. BROWN, The Lefschetz Fixed Point Theorem, Scott-Foresman (1971).

[7] J. FRANKS and M. MISIUREWICZ, Cycles for disk homeomorphisms and thick trees, Nielsen Theory
andDynamical Systems (ed. C. McCord), Contemp. Math. 152 (1993), Amer. Math. Soc., 69-139.

[8] J. M. GAMBAUDO, S. VAN STRIEN and C. TRESSER, The periodic orbit structure of orientation preserving
diffeomorphisms on $D^{2}$ with topological entropy zero, Ann. Inst. H. Poincar\’e Phys. Th\’eor. 50
(1989), 335-356.

[9] J. M. GAMBAUDO, S. VAN STRIEN and C. TRESSER, Vers un ordre de Sarkovskii pour les plongements
du disque pr\’eservant l’orientation, C. R. Acad. Sci. Paris S\’er. I Math. 310 (1990), 291-294.

[10] V. HANSEN, Braids and Coverings: Selected Topics, London Math. Soc. Stud. Texts 18 (1989), Cambridge
Univ. Press.

[11] H.-H. HUANG and B.-J. JIANG, Braids and periodic solutions, Topological Fixed Point Theory and
Applications (ed. B. Jiang), Lecture Notes in Math. 1411 (1989), Springer-Verlag, 107-123.

[12] B. JIANG, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14 (1983), Amer. Math. Soc.
[13] J. LLIBRE and R. S. MACKAY, A classification of braid types for diffeomorphisms of surfaces of genus

zero with topological entropy zero, J. London Math. Soc. 42 (1990), 562-576.
[14] T. MATSUOKA, The number and linking of periodic solutions of periodic systems, Invent. Math. 70

(1983), 319-340.
[15] T. MATSUOKA, Braids of periodic points and a 2-dimensional analogue of Sharkovskii’s ordering,

Dynamical Systems and Nonlinear Oscillations (ed. G. Ikegami), World Sci. Adv. Ser. Dyn. Syst. 1
(1986), 58-72.

[16] T. MATSUOKA, The number and linking of periodic solutions of non-dissipative systems, J. Differential
Equations 76 (1988), 19k20l.

[17] T. MATSUOKA, Braid type and torsion number for fixed points of orientation-preserving embeddings
on the disk, Math. Japon. (to appear).

[18] S. MORAN, The Mathematical Theory of Knots and Braids: an Introduction, North-Holland Math.
Studies 82 (1983).

[19] W. P. THURSTON, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math.
Soc. 19 (1988), 417431.

Present Address:
DEPARTMENT OF MATHEMATICS, NARUTO UNIVERSITY OF EDUCATION,
TAKASHIMA, NARUTO, 772 JAPAN.


