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1. Introduction.

The contents of this note consist of two parts. One is a generalization of our results
in the previous paper [8]. The other is to present a way of computing the multiplicity
of the splice diagram induced by a holomorphic vector fields on $C^{2}$ announced in [8].

In \S 2, we study some topological invariants around the isolated singularity of a
holomorphic vector field. The graph called a splice diagram was constructed from a
given generalized curve in [8]. We show by using the splice diagram that the Thurston
norm and the one-variable Alexander polynomial are topological invariants around the
singularity of vector fields. the splice diagram can be also defined from a holomorphic
vector field on $C^{2}$ . We show that the Thurston norm and the one-variable Alexander
polynomial are also topological invariants for holomorphic vector fields on $C^{2}$ .

First we recall the concept ofmultiplicity ofmulti-graph link. This link is represented
by a splice diagram with arrowhead vertices. Each arrowhead vertex in a diagram
corresponds to a component of a given multi-graph link. All arrowhead vertices have
an integer called a vertex weight which corresponds to the multiplicity of a link
component of a graph link. We refer to [5], [6], [7] and [8] for further interpretations
on a graph link, splice diagram, and arrowhead vertex of splice diagram. The multiplicity
of a link is defined as follows. Let $\Sigma$ be a homology 3-sphere and $(\Sigma, K)$ be an unoriented
link. Let $L=(\Sigma, S_{1}u\cdots uS_{n})$ be a link obtained by orienting $(\Sigma, K)$ . A multi-link on
$(\Sigma, K)$ means a link $L$ together with an integer $m_{i}$ associated with each component $S_{i}$ .
A component $-S_{i}$ ( $S_{i}$ with reversed orientation) with an integer $-m_{i}$ is the same as
$S_{i}$ with an integer $m_{i}$ . Hence a link is simply a multi-link with an integer $\pm 1$ . We call
the integer $m_{i}$ multiplicity of a component $S_{i}$ , and the set of integers $(m_{1}, \cdots, m_{n})$

multiplicities of a multi-graph link.
A multi-link on $(\Sigma, K)$ determines an integral cohomology class me $H^{1}(\Sigma-K)$ , and

the class $m$ is evaluated on a l-cycle $S$ by the linking number:
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$m(S)=Link(m_{1}S_{1}+\cdots+m_{n}S_{n}, S)=\sum m_{i}Link(S_{i}, S)$ .
It follows from the Alexander duality that $n$ linear forms Link$(S_{i}, -)\in H^{1}(\Sigma-K)$ are
a basis of $H^{1}(\Sigma-K)$ . We identify this basis with $Z^{n}$ , and a cohomology class $m$ with
$(m_{1}, \cdots, m_{n})$ . From the view points of geometric topology the multiplicity of a
component of the link means a positive integer which is summed up all over the winding
number of several paralell cable knots around a component of the link. Here, the cable
knots appear as the intersection between the boundary of the tubular neighborhood of
a component ofthe given multi-graph link and its Seifert surface. For the details see [5].

Next, let us observe the multiplicities of the graph multi-link induced from a plane
curve $f=0$ . A Milnor fibration is defined for this curve. This fibration is a foliation
induced by a Hamiltonian system defined by the next equation around the origin $0\in C^{2}$ ;

$\dot{x}=-\frac{\partial f}{\partial y}$ , $\dot{y}=\frac{\partial f}{\partial x}$ , $(x, y)\in C^{2}$

Hence the multi-link is defined by the intersections between the separatrices of this
Hamiltonian system and a small $S^{3}$ around the origin. The cable knots appear as the
intersections between a leaf near the separatrix of this fibration and a small $S^{3}$ . This
leaf is a regular fiber of the Milnor fibration and is a Seifert surface of the multi-link.
Thus the multiplicity of this link is equal to an integer which is summed up all over
the winding number of several parallel cable knots around a component of this link.

In [8] the intersection between separatrices of a vector field and a boundary of a
plumbed manifold was considered as a multi-graph link. Here a boundary of a plumbed
manifold is a 3-sphere and coincides with a boundary of a certain neighborhood of the
singularity of the vector field. Since separatrices of vector fields (integral curves of the
vector fields passing through the singularity) are analytic curves (plane curves), the
multiplicities of graph links defined in [8] are considered as the multiplicities of a graph
link induced by separatrices of a certain Hamiltonian system.

To obtain the multiplicity we must calculate the integral curves (i.e., the separatrices)
of a given vector field. However, we cannot usually get the concrete separatrices. Hence,
as in \S 3, we consider the linear holonomy of the vector field around certain simple
singularities appearing in the divisor of the final stage of blow-up processes. Foliations
induced by a given vector field are not always Milnor fibrations. However we can define
the type of the cable knot (see \S 3) for some vector fields. Here, this cable knot is also
the intersection between the boundary of the small neighborhood of a component of
the link and leaves near the separatrix. The components ofthe link define the intersections
between separatrices and a boundary of a certain neighborhood of the singularity of
our vector field like the case of Milnor fibrations. Hence we define here our multiplicity
of link components by the winding number of the cable knot around the component of
this link. The above cable knot is a connected component of the intersection between
the Seifert surface of this multi-link and the boundary of the tubular neighborhood of
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the component ofthis link. So this multiplicity is an extension of the ordinary multiplicity
oflinks defined in [8]. Notice that the above cable knot may not be all of the intersection
between the Seifert surface and the boundary of the tubular neighborhood of a
component of the link.

2. Topological invariants of the general holomorphic vector fields with an isolated
singularity $0$ in $C^{2}$ .

We have the same results as Theorem A and Theorem $B$ in [8] for the holomorphic
vector fields with an isolated singularity $0$ defined in $C^{2}$ . We will prove this fact in this
section. For the preparations we need several definitions and theorems.

DEFINITION 1 ([2]). Let $Z$ be an analytic vector field written as $\dot{x}=x^{n}P(x)+$

$yQ(x, y),\dot{y}=yR(x, y)$ , where $P(O)\neq 0$ . Suppose that the equation $y=0$ defines a smooth
invariant analytic line $S$ which contains the singularity $q$ of holomorphic foliation $F$

defined by $Z$ . The integer $n\in N$ is called the multiplicity of $F$ in $q\in S$ along $S$, and is
denoted by $\mu_{F}(q, S)$ .

It is clear that this multiplicity has no relation to the multiplicity of a multi-graph
link.

DEFINITION 2 ([2]). The weight $\rho(P)$ of a projective line $P$ which appears in the
process of desingularization is defined as

(1) 1 if $P$ appears immediately after exploding $0\in C^{2}$ ,
(2) the sum of the weights of the projective lines meeting at the singularity with $P$

which is created by performing blowing-up operations at the singularity.
$\rho(P)$ is equal to the absolute value of the Chern number of the line bundle

over the projective line $P$ . So it is equal to the absolute value of the vertex weight of
a vertex corresponding to the projective line $P$ defined as above.

We consider the desingularization $(U_{Z}, \pi, P_{Z}, F_{Z})$ of a vector field $Z$ . Let $p\in P$ be
a singularity of $F_{Z}$ and put

$\phi(p, P)=\mu_{Fz}(p, P)$ if $p\in P$ is not a corner.
$\mu_{F_{z}}(p, P)-1$ if $p\in P$ is a corner.

To prove Proposition 1 stated below, we need the following theorem proved in [2].

THEOREM 1 ([2]). The algebraic multiplicity $v=v_{Z}$ of $Z$ is given by $v+1=$
$\Sigma\rho(P)\phi(p, P)$ , where the summation runs through the singularities of $F_{Z}$ .

PROPOSITION 1. Suppose that $Z$ and $Z^{\prime}$ are holomorphic vector fields having an
isolated singularity $0$ in $C^{2}$ . If there exists a topological equivalence between $Z$ and $Z^{\prime}$ ,
then the minimalplumbing diagram definedby $Z$ is coincident with the one definedby $Z^{\prime}$ .

$PR\infty F$ . Let $S$ and $S^{\prime}$ be separatrices of $Z$ and $Z^{\prime}$ respectively. Since there exists
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a topological equivalence between $Z$ and $Z^{\prime}$ , both of the separatrices $S^{\prime}$ and $S$ are
desingularized simultaneously by the blowing up processes of several times. Let $k$ denote
the number of the blowing-up operations for the desingularization of separatrices $S$

and $S^{\prime}$ . Let $Z^{\langle k)}$ and $Z^{r\langle k)}$ be vector fields induced from $Z$ and $Z^{\prime}$ by $k$ blowing-ups
respectively.

Case (1). Singularities appearing on one component of divisors of $Z^{\langle k)}$ and $Z^{\prime\langle k)}$ .
Let $F_{Z}^{\langle k)}$ and $F_{Z’}^{\langle k)}$ be foliations defined by the vector field $Z^{\langle k)}$ and $Z^{\prime\{k)}$ respectively. If
a leaf $l_{Z}$ of $F_{Z}^{\langle k)}$ transversely interesects to an invariant component $CP^{1}$ , then there exists
a leaf $l_{Z^{\prime}}$ of $F_{Z^{\prime}}^{\langle k)}$ corresponding to $l_{Z}$ under a leaf preserving homeomorphism. $l_{Z^{\prime}}$ also
intersects transversely to an invariant component of the divisor. By using Lemma 1 in
[2] we see that the algebraic multiplicities of the vector fields $Z^{\langle k)}$ and $Z^{\prime\langle k)}$ at the above
intersection points are one. Now suppose that $\lambda_{1}^{\langle k)}$ and $\lambda_{2}^{\langle k)}$ ( $\lambda_{1}^{\prime\langle k)}$ and $\lambda_{2}^{\prime\langle k)}$ , resp.) are
eigenvalues of $Z^{\langle k)}$ ( $Z^{\prime\langle k)}$ , resp.) at the above intersection point. It is easily checked that
all eigenvalues $\lambda_{1}^{\langle k)},$ $\lambda_{2}^{\langle k)},$ $\lambda_{1}^{\prime\langle k)}$ and $\lambda_{2}^{\prime\{k)}$ are not zero. We have no relations such as
$m\lambda_{1}^{\langle k)}=n\lambda_{2}^{\langle k)}$ and $m^{\prime}\lambda_{1}^{\prime\langle k)}=n^{\prime}\lambda_{2}^{\prime\langle k)}$ , where $m,$ $n,$ $m^{\prime},$ $n^{\prime}\in N$ . For, if there exist such relations,
there exist infinitely many integral curves or exists only one integral curve passing through
the above intersection point. However this fact contradicts that $Z^{\langle k)}$ and $Z^{\prime\langle k)}$ must have
exactly two integral curves passing through the intersection point. Thus we conclude
that the above intersection points are non-zero simple singularities of $Z^{\langle k)}$ and $Z^{\prime\langle k)}$ .

Next we consider about a zero simple singularity occurring on an invariant com-
ponent $CP^{1}$ . All zero simple singularities have at least one invariant curve passing
through the singularity (see [2]). If a zero simple singularity has more than two invariant
curves, then it has exactly two, because all separatrices are already desingularized by
performing several blowing-ups. These two invariant curves intersect transversely at the
singularity. Thus one of them must be contained in the divisor. So we see that there
exists one separatrix which intersects transversely to the divisor or there exists no such
separatrix, i.e., all separatrices are contained in a divisor. If $Z^{\langle k)}$ has a separatrix of the
former type ofthe zero simple singularity, then $Z^{\prime(k)}$ has also the corresponding separatrix
by the leaf preserving homeomorphism between $Z^{\langle k)}$ and $Z^{\prime\langle k)}$ . If $Z^{\langle k)}$ has separatrices
of the latter type, then $Z^{\prime(k)}$ may not have corresponding separatrices. For the leaf
preserving homeomorphism is not necessarily extendible to the divisor. However the
separatrices of the latter type must be contained in a component of the divisor and so
the separatrices are not represented as arrowhead lines in a plumbing diagram. Thus
the existence of graph isomorphisms of plumbing diagrams for this case
does not ensure the one to one correspondence between zero simple singularities of $Z^{\langle k)}$

and $Z^{\prime\langle k)}$

We can check that the existence of zero simple singularities in the divisor does not
influence the isomorphisms between the plumbing diagrams $Z^{\langle k)}$ and $Z^{\prime\langle k)}$ in both cases.
In fact, take a differential equation that $\dot{x}=\lambda_{1}^{\langle k)}x+\alpha y^{p},\dot{y}=\lambda_{2}^{\langle k)}y^{p}$ . Here, $(x, y)$ denotes
a standard local coordinate around the origin in $C^{2},$ $\lambda_{1}^{\langle k)}/\lambda_{2}^{\langle k)}=p\in N$ and $\alpha\neq 0$ . Assume
that the singularity of the above type appears on an invariant component, that is, the
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topology of foliation near the singularity in $CP^{1}$ is equivalent to the topology of the
foliation induced by the above equation around $0$ . It does not ensure the one to one
correspondence between the above type singularities of $Z^{\langle k)}$ and $Z^{\prime\{k)}$ by a leaf preserving
homeomorphism. Thus we need to perform more blowing-ups at the singularity for the
desingularization of vector fields. It is clear that only one leaf passes through the
singularity in this case, and the leaf must be contained in an invariant component. Thus
no separatrices representing arrowhead lines in a plumbing diagram appear after
performing blowing-ups at these singularities. By using blowing-down we can assume
that there exist no such singularities on an invariant component. Any graph isomorphism
between the plumbing diagrams of $Z^{\langle k)}$ and $Z^{\prime\langle k)}$ is not also ruined by the existence of
singularities of these types. If the other types of singularities appear on the divisor, the
separatrices of such singularities must be contained in the divisor, because all separatrices
of $Z$ and $Z^{\prime}$ are already desingularized by performing several blowing-ups. Thus no
separatrices represented by arrowhead lines in a plumbing diagram appear after
performing blowing-ups at the singularities. Hence any graph isomorphism between the
plumbing diagrams of $Z^{\langle k)}$ and $Z^{\prime(k)}$ is not ruined.

Case (2). Singularities in the intersection points (or the corners) between two
components of the divisor. The case (2) is divided into the following two cases (see [2]).

(i) Thecornerisconstructedbyaninvariantcomponentandacriticalcomponent.
(ii) The corner is constructed by two invariant components.
The corner of type (i) (resp. type (ii)) in the divisor of $Z^{\langle k)}$ corresponds to the

corner of type (i) (resp. (ii)) in the divisor of $Z^{\prime\langle k)}$ by a leaf preserving homeomorphism.
There exist no separatrices which pass through the corner (or the intersection point)
because separatrices $S$ and $S^{\prime}$ are already desingularized. In the case (i) the type of
singularities appearing on the comers is zero simple singularity or the singularity defined
by the equations $\dot{x}=\lambda_{1}^{\langle k)}x+\alpha y^{p},\dot{y}=\lambda_{2}^{\langle k)}y$ as above. For the case of singularities defined
by the above equations we need to perform the blowing-up at the corner for the
desingularization of the vector field. However no new separatrices which transversely
intersect to the divisor are created by the blowing-up. So, by using blow-down operations,
the final resolution picture can be reduced to the one of which corner is zero simple
singularity. Thus we assume that the singularities appearing on the corners are zero
simple singularities for the case (i). In the case (ii) the intersection points are non-zero
simple singularity.

Case (3). Singularities appearing in a critical component. All critical components
of the divisor of $Z^{\langle k)}$ correspond to the critical components of the divisor of $Z^{\prime\langle k)}$ by a
leaf preserving homeomorphism between $Z^{\langle k)}$ and $Z^{l\langle k)}$ . If the vector field $Z^{\langle k)}$ and $Z^{\prime\langle k)}$

have a singularity on a critical component, then there exists only one leaf passing
through each singularity. In this case, just one explosion is needed for each vector
field $Z^{\langle k)}$ or $Z^{l\langle k)}$ . After performing one explosion, both singularities become non-zero
simple singularities. Hence the leaf preserving homeomorphism between $Z^{\langle k+1)}$ and
$Z^{r(k+1)}$ induces the graph isomorphism between the minimal plumbing diagrams. Thus
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two minimal plumbing diagrams coincide.

COROLLARY 3. Let $Z$ and $Z^{\prime}$ be vector fields as above, and assume that there
exists a topological equivalence between $Z$ and $Z^{\prime}$ . Then the minimal splice diagram
of $Z$ is isomorphic to the minimal splice diagram of $Z^{\prime}$ .

Now we obtain the same results as in Theorem A and Theorem $B$ by Corollary 3
and the same arguments as in Theorems A and $B$ in [8].

THEOREM C. Suppose that $Z$ and $Z^{\prime}$ are as above. If there exists a topological
equivalence between $Z$ and $Z^{\prime}$ , the minimal plumbing diagram $\Gamma_{Z}$ of $Z$ agrees with
the plumbing diagram $\Gamma_{Z^{\prime}}$ of $Z^{\prime}$ , and the pairs $(\Delta_{r_{z}}, n_{Z})$ and $(\Delta_{\Gamma_{Z}},, n_{Z},)$ coincide as in
Theorem A.

THEOREM D. Suppose that $Z$ and $Z^{\prime}$ are as above. If there exists a topological
equivalence between $Z$ and $Z^{\prime}$ , the minimal splice diagram $T_{Z}$ of $Z$ agrees with the
minimal splice diagram $T_{Z^{\prime}}$ of $Z^{\prime}$ , and the norm $\Vert m_{Z}\Vert$ of $Z$ is equal to the norm $\Vert m_{Z’}\Vert$ .

Notice that, concerning general holomorphic vector fields defined on $C^{2}$ , even if
given two vector fields are topologically equivalent to each other, the corresponding
two plumbing diagrams may not be isomorphic. On the other hand, the corresponding
two minimal plumbing diagrams are always isomorphic.

3. On a holonomy of holomorphic vector field and a splice diagram.

In this section we consider a relation between splice diagrams and certain holonomies
of vector fields, and define the multiplicity of the graph link induced by a vector field
as we announced in \S 1.

After desingularizing a given holomorphic vector field, we pay attention to non-zero
simple singularities of which eigenvalues $\lambda_{1}$ and $\lambda_{2}$ satisfy the condition

$m_{1}\lambda_{1}+m_{2}\lambda_{2}=0$ for some $m_{1},$ $m_{2}\in N$ .
We take sufficiently small 2-disks as fibers of the 2-disk bundle over every component
of a divisor of the final resolution picture. For each singularity which satisfies the above
condition, we take a small circle of which center is the singularity on the component
$CP^{1}$ and on the integral curve passing through the singularity respectively. Construct
a fence on each circle by using small 2-disks as in Figure 1. The fence is homeomorphic
to a solid torus.

Now we are in the position to investigate a holonomy about the foliations on the
fence induced by a given holomorphic vector field. Let $\hat{F}$ be a foliation on a plumbed
4-manifold represented by a final resolution picture of a given vector field and construct
a flow which is tangent to the leaves of $\hat{F}$ with a saddle structure at this singularity as
in \S 3 ([4]). By using this fact a real one dimensional flow (or a foliation) induced by
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FIGURE 1

the foliation $\hat{F}$ is defined on this fence (see [4]). The real foliations are defined only in
a neighborhood of each non-zero simple singularities of $\hat{F}$. Thus we reduce the study
of the holonomy of the above foliations to the study of the holonomy of foliations on
the same fence defined in a neighborhood of the singularity $0$ of the differential equation

$dz/dT=Z(z),$ $z=(z_{1}, z_{2}),$ $DZ(0)=\left(\begin{array}{ll}\lambda_{1} & 0\\0 & \lambda_{2}\end{array}\right)$ with resonance such that $m_{1}\lambda_{1}+m_{2}\lambda_{2}=0$ ,

where $0$ is the origin of $C^{2}$ and $m_{1}$ and $m_{2}$ are positive integers. Camacho and Sad ([1] and
[4]) studied the holonomy of foliations on the fence near the origin $0$ in $C^{2}$ . A holonomy
map induced by a flow (or a foliation) on a tubular neighborhood of a certain circle
(or a solid torus) is writtem as follows:

LEMMA 1 ([2]). Consider a holomorphic ordinary $d\iota fferential$ equation $dz/dT=Z(z)$

such that $z=(z_{1}, z_{2})$ and $DZ(0)=\left(\begin{array}{ll}\lambda_{1} & 0\\0 & \lambda_{2}\end{array}\right)$ with resonance $m_{1}\lambda_{1}+m_{2}\lambda_{2}=0(m_{1}, m_{2}\in N)$ .
Let $F_{Z}$ be a foliation induced by the above equation on a neighborhood of the origin,
and let $\gamma$ be a small circle of which center is the origin in $C^{2}$ defined on the plane $z_{1}=0$ .
Let $X$ denote $a$ one dimensional real foliation induced by $F_{Z}$ as above and $f$ denote a
holonomy map with respect to the foliation $X$ on the fence of $\gamma$ . Then the map $f$ is written
as follows:

$ f(z)=\mu_{1}z+Az^{kn+1}+\cdots$ , where $\mu_{1}=\exp 2\pi(\lambda_{1}/\lambda_{2})i$ .
Similarly, take a small circle $\gamma^{\prime}$ on the plane $z_{2}=0$ , and denote a holonomy map on the
fence of $\gamma^{\prime}$ by $g$ . Then the map $g$ is written as follows:

$ g(z)=\mu_{2}z+Bz^{km+1}+\cdots$ where $\mu_{2}=\exp 2\pi(\lambda_{2}/\lambda_{1})i$ ,

and integers $m,$ $k$, and $n$ are given by the indices of the following normalform of $dz/dT=$
$Z(z)$ ;

$\frac{dz_{1}}{dT}=\lambda_{1}z_{1}+az_{1}^{km+1}z_{2}^{kn}+R_{1}$ ,
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$\frac{dz_{2}}{dT}=\lambda_{2}z_{2}+bz_{1}^{km}z_{2}^{kn+1}+R_{2}$ .

The map $f$ in Lemma 1 is topologically conjugate to one of the following normal
forms:

$f_{norma1}(z)=\lambda z(1+z^{km_{1}})$ or $f_{norma1}(z)=\lambda z$ ,

where $\lambda=\exp(-m_{2}/m_{1})2\pi i$ (see Theorem 1 in [1]). Let us consider the dynamics of the
map $f_{norma1}$ . $\cap(f_{no^{1}rma1}^{m})^{p}(D^{2})-\{0\}$ is divided into $2km_{1}$ connected components as in
Figure 2. Let $z_{0}$ be a point contained in some component of $\cap(f_{norma1}^{m_{1}})^{p}(D^{2})-\{0\}$ .

FIGURE 2

Then the component containing the point $f_{norma1}^{i}(z_{0})(i=0,1,2,3, \cdots)$ coincides with
the component containing the point $Lf_{norma1}^{i}(z_{0})(i=0,1,2,3, \cdots)$ , where $Lf_{norma1}$

denotes the linear part of the map $f_{norma1}$ . Since the map $Lf_{norma1}$ is a periodic map
with the period $m_{1}$ , the point $f_{norma1}^{m_{1}}(z_{0})$ and the point $z_{0}$ are contained in the same
component. We can join successively the points $z_{0},$ $f_{norma1}(z_{0}),$ $f_{norma1}^{2}(z_{0}),$ $\cdots$ , and
$f_{norma1}^{m_{1}}(z_{O})$ by using the orbits of the flow $X$. If the point $z_{O}$ does not coincide with the
point $f_{norma1}^{m_{1}}(z_{0})$, join $z_{O}$ and $f_{normaI}^{m_{1}}(z_{0})$ by a certain arc contained in the above component.
Then we get a closed orbit around $\gamma$ or a circle approximating an orbit of $X$ passing
through $z_{O}$ in the neighborhood of $\gamma$ . Both circles are $(m_{1}, m_{2})$-cable around $\gamma$ . If the
circle is an approximating orbit of $X$ and does not coincide with any orbits of $X$ in the
tubular neighborhood of $\gamma$ , we call this circle a pseudo $(m_{1}, m_{2})$-cable orbit around $\gamma$ .

Now let $N$ be a neighborhood of the origin in $C^{2}$ and $\hat{U}$ be a plumbed 4-manifold
represented by a final resolution picture of a given vector field. $\hat{F}$ denotes a foliation
on $\hat{U}$ induced by the desingularized vector field. The foliation $\hat{F}$ on $\hat{U}-\cup CP^{1}$ is
topologically equivalent to the foliation $F$ induced by a given vector field defined on
$U-\{0\}$ . There is a fence on a small circle in a leaf of $\hat{F}$ in $\hat{U}$ of which the center is a
non-zero simple singularity. Here, the leaf which has a small circle defined as above
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becomes a separatrix in $U$ by the blowing-down operations. We denote by $X_{\partial U}$ the
foliation on the boundary of $U$ induced by the given holomorphic vector field $Z$ on $U$

in $C^{2}$ . Every component of the separatrices transversely intersects with the boundary
of $U$ at a circle. If we choose the separatrix in $U$ which becomes the leaf of $\hat{F}$ in $\hat{U}$

containing the above circle by blowing-up, then we can define the tubular neighborhood
$N$ of the intersection constructed of this separatrix in the boundary of $U$. We restrict
the foliation $X_{\partial U}$ to this neighborhood $N$ and denote it by $X_{\partial U}|N$. Then the foliation
on the neighborhood of the circle near the simple singularity in $\hat{U}$ is topologically
equivalent to the foliation $X_{\partial U}|N$ since the foliation $\hat{F}$ of $\hat{U}-\cup CP^{1}$ is topologically
equivalent to the foliation $F$ on $U-\{0\}$ . Thus the holonomy map of the foliation on
the fence in $\hat{U}$ is also topologically conjugate to the holonomy map of the foliation
$X_{\partial U}|N$ on a certain small disk which corresponds to the fence in $U$ under the leaf
preserving homeomorphism between $U-\{0\}$ and $\hat{U}-\cup CP^{1}$ . The next two lemmas
assert that the multiplicity defined in Definition 3 is invariant under the leaf preserving
homeomorphism.

LEMMA 2. Suppose that vector fields $Z$ and $Z^{\prime}$ are defined on a neighborhood of
the origin $0\in C^{2}$ and that there exists a topological equivalence between $Z$ and $Z^{\prime}$ near
the origin $0\in C^{2}$ . Moreover suppose that the orbits induced by $Z$ on the neighborhood $N_{Z}$

ofthe circle $\gamma_{Z}$ are $(m_{2}, \pm m_{1})$-cables $of\gamma_{Z}$ and the orbits induced by $Z^{\prime}$ ofthe corresponding
circle $\gamma_{Z^{\prime}}$ are $(m_{2}^{\prime}, m_{1}^{\prime})$-cables of $\gamma_{Z’}$ . Then $m_{2}=m_{2}^{\prime}$ .

Here the circle $\gamma_{Z}$ is the intersection between the boundary of the neighborhood
$U_{Z}$ of the origin $0$ and a certain separatrix of $Z$ and this separatrix becomes a curve
through the simple singularity in the plumbed 4-manifold $\hat{U}_{Z}$ with the resonance
condition $m_{1}\lambda_{1}+m_{2}\lambda_{2}=0$ by performing the desingularization of $Z$, where $\lambda_{1}$ and $\lambda_{2}$

are the eigenvalues of this simple singularity in $\hat{U}_{Z}$ . We assume that the circle $\gamma_{Z}$

corresponds to $\gamma_{Z^{\prime}}$ by the leaf preserving homeomorphism which defines the topological
equivalence between $Z$ and $Z^{\prime}$ .

Also we attend to the fact that the integer $|m_{1}|$ may not be invariant under the
leaf preserving homeomorphism, because it may not be extended to the divisor when
we perform blowing-up. The number $m_{2}$ (resp. $m_{2},$) defines the winding number of the
orbit of $Z$ (resp. $Z^{\prime}$) around the circle $\gamma_{Z}$ (resp. $\gamma_{Z},$).

PROOF. Since $Z$ and $Z^{\prime}$ have a topological equivalence there exists a map defined
on the neighborhood $U_{Z}$ of the origin $0\in C^{2}$ which sends every leaf of the foliation $F_{Z}$

induced by $Z$ to a leaf of the foliation $F_{Z^{\prime}}$ induced by $Z^{\prime}$ . We denote this map by $h$ .
The neighborhood $U_{Z’}$ of the origin $0\in C^{2}$ denotes the image of $U_{Z}$ under the
homeomorphism $h$ . Suppose that the plumbed 4-manifold $\hat{U}_{Z^{\prime}}$ is induced by $U_{Z’}$ as the
results of a desingularization of the vector field $Z^{\prime}$ . Notice that the map $h$ induces the
leaf preserving homeomorphism $\hat{h}:\hat{U}_{Z}-\cup CP^{1}\rightarrow\hat{U}_{Z^{\prime}}-\cup CP^{1}$ . This map $\hat{h}$ defines
a topological equivalence between the foliation defined on $\hat{U}_{Z}$ around the neighborhood
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of its non-zero simple singularity and the foliation on $\hat{U}_{Z’}$ around the neighborhood of
the corresponding simple singularity. So the leaf which passes through this singularity
in $\hat{U}_{Z}$ and is not contained in the divisor is sent to a leaf which passes through the
corresponding singularity in $\hat{U}_{Z}$ .

Let $g_{1}(x, y)$ and $g_{2}(x, y)$ be holomorphic functions having degree greater than two
and defined on the neighborhood of $0\in C^{2}$ . Consider the equations:

$\dot{x}=\lambda_{1}x+g_{1}(x, y)$

$(*)$

$\dot{y}=\lambda_{2}y+g_{2}(x, y)$

where the eigenvalues $\lambda_{1}$ and $\lambda_{2}$ satisfy the resonance condition $m_{1}\lambda_{1}+m_{2}\lambda_{2}=0$ . We
assume that there is a simple singularity of the foliation defined by the equation $(*)$

on a neighborhood in $\hat{U}_{Z}$ . We denote this neighborhood by $V$. So the leaf represented
by the equation $y=0$ in a local coordinate $(x, y)$ about this simple singularity $(0,0)$ in
$V$ corresponds to the given separatrix in $C^{2}$ as the results of blow-down operations.
Suppose that the separatrix in $C^{2}$ intersects with the circle $\gamma_{Z}$ in a small $S^{3}$ around the
origin $0\in C^{2}$ . Take a small circle $\gamma$ on the leaf defined by the equation $y=0$ in the
neighborhood of the simple singularity of which the center is the singularity and let $f_{Z}$

(resp. $f_{Z^{\prime}}$) be the holonomy map on a small disk $D$ (resp. $D^{\prime}$) which intersects with $\gamma$

(resp. $\gamma^{\prime}$) transversely in a neighborhood $\hat{N}_{\gamma}$ , (resp. $\hat{N}_{\gamma’}$) of $\gamma$ (resp. $\gamma^{\prime}$). We assume that
the disk $D^{\prime}$ is the image of $D$ under the map $\hat{h}:U_{Z}-\cup CP^{1}\rightarrow\hat{U}_{Z’}-\cup CP^{1}$ . We write
$\hat{N}_{\gamma’}=\hat{h}(\hat{N}_{\gamma})$ . Then $f_{z}$ and $f_{Z}$ , are topologically conjugate, i.e., $sf_{Z}s^{-1}=f_{Z’}$ for some
homeomorphism $s:(C, O)\rightarrow(C, 0)$ . Every orbit in $N_{Z}$ induced by the vector field $Z$ is a
cable knot $\gamma_{Z}$ in $S^{3}$ . Thus we can assume that $f_{Z}$ is defined by the normal form
$f_{Z_{norma1}}(u)=\exp(-2\pi im_{1}/m_{2})u$ ([1]). It is easily checked that the simple singularity with
resonance condition $m_{1}\lambda_{1}+m_{2}\lambda_{2}=0$ corresponds to a non-zero simple singularity with
a certain resonance condition. So every orbit around the circle $\gamma^{\prime}$ in $\hat{N}_{\gamma’}$ defines a cable
knot of $\gamma^{\prime}$ . Notice that $\hat{U}_{Z^{\prime}}-\cup CP^{1}$ is homeomorphic to $U_{Z’}-\{0\}$ , and there exists a
homeomorphism $k^{\prime}$ : $\hat{U}_{Z^{\prime}}-\cup CP^{1}\rightarrow U_{Z’}-\{0\}$ which sends the leaves of the foliation
of $\hat{U}_{Z’}-\cup CP^{1}$ to the leaves of the foliation of $U_{Z’}-\{0\}$ . The map $k^{\prime}$ sends $\gamma^{\prime}$ to $\gamma_{Z’}$ .
So we see that every orbits around the circle $\gamma^{\prime}$ in $\hat{N}_{\gamma}$ , defines the cable knot of $\gamma_{Z’}$ in
$N_{Z^{\prime}}$ . Suppose that $\hat{N}_{\gamma},$ $=k^{\prime-1}(N_{Z},)=k^{\prime-1}h(N_{Z})$ (see the commutative diagram below).

$N_{Z}\hat{N_{\gamma}\downarrow}k\rightarrow^{\rightarrow Ch\hslash}N_{Z’}\hat{N_{\gamma}\downarrow}k^{\prime}$

Using Theorem 1 in [1] and Lemma 2, we can define the normal form $f_{Z_{norma1}^{\prime}}$ of $f_{Z^{\prime}}$

by $f_{Z_{norma1}},(u)=\exp(-2\pi im_{1}^{\prime}/m_{2}^{\prime})u$ , since every orbit around the circle $\gamma_{Z’}$ in $N_{Z’}$ is
$(m_{2}^{\prime}, m_{1}^{\prime})$-cable knot of $\gamma_{Z’}$ . Hence we have that $sf_{Z}^{m_{2}}s^{-1}(u)=f_{Z^{\prime}}^{m_{2}}(u)=exp(-2\pi im_{1}^{\prime}/m_{2}^{\prime})$

$m_{2}u$ . The point $u$ agrees with $f_{Z_{norma1}}^{m_{2}}(u)$ . Thus we obtain $m_{2}/m_{2}^{\prime}\in Z$ . We also obtain
$m_{2}^{\prime}/m_{2}\in Z$ from the fact $s^{-1}f_{Z_{norma1}}^{m_{2}^{\prime}}s(u)=f_{z_{norma1}}^{m_{2}^{\prime}}(u)$ . Hence we obtain $m_{2}=m_{2}^{\prime}$ .
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LEMMA 3. Suppose that the circle $\gamma_{Z}$ and $\gamma_{Z’}$ are the same as in Lemma 2 and that
every orbit induced by $Z$ in the neighborhood $N_{Z}$ of the circle $\gamma_{Z}$ is pseudo $(m_{2}, m_{1})$-cable
orbit around $\gamma_{2}$ . Then the orbits induced by $Z^{\prime}$ in the tubular neighborhood $N_{Z’}$ cor-
responding to the ones of $Z$ by the leafpreserving homeomorphism are also certain pseudo
cable orbits. If the type of them are defined by the pair of integers $(m_{2}^{\prime}, m_{1}^{\prime})$ , then $m_{2}^{\prime}=m_{2}$ .

PROOF. Firstly, we must remark that pseudo orbits in $N_{Z}$ are not sent to any
pseudo orbits in $N_{Z’}$ by leaf preserving homeomorphism as in the proof of Lemma 2.
But we can define the holonomy map $f_{Z}$ (resp. $f_{Z^{\prime}}$) on the small disk $D$ (resp. $D^{\prime}$) which
transversely intersects with the circle $\gamma_{Z}$ (resp. $\gamma_{Z^{\prime}}$) as in Lemma 2. Also we see that $f_{Z}$

and $f_{Z^{\prime}}$ are topologically conjugate. The pseudo cable orbit in $N_{Z}$ is defined by a pair
of integers $(m_{2}, m_{1})$ . Hence by Theorem 1 in [1], the holonomy map $f_{Z}$ has the normal
form:

$ f_{Z_{norma1}}(u)=\exp(-2\pi im_{1}/m_{2})u+c_{1}u^{km_{2}+1}+\cdots$ (1)

Since every orbit around $\gamma_{Z^{\prime}}$ in $N_{Z’}$ induc$ed$ by the vector field $Z^{\prime}$ is not closed, we can
construct a pseudo cable orbit around $\gamma_{Z^{\prime}}$ by using the same arguments as stated before
Lemma 2. Take the normal form of the holonomy map of $f_{Z^{\prime}}$ ;

$ f_{Z_{norma1}},(u)=exp(-2\pi im_{1}^{\prime}/m_{2}^{\prime})u+c_{2}u^{km_{2}+1}+\cdots$ (2)

and let the map $s:D\rightarrow D^{\prime}$ be the same as defined in the proof of Lemma 2. Then

$ sf_{Z_{norma1}}^{m_{2}}s^{-1}(u)=f_{Z_{norma1}}^{m_{2}}(u)=\exp(-2\pi im_{1}^{\prime}/m_{2}^{\prime})m_{2}u+\cdots$

since $f_{Z}$ and $f_{Z}$ , are topologically conjugate. Here the point $u$ and $f_{Z_{norma1}}^{m_{2}}(u)$ are contained
in the same connected component which is invariant under $f_{Z_{norma1}}^{m_{2}}(u)$ (cf. [1]). Thus
we obtain $m_{2}/m_{2}^{\prime}\in Z$ and also $m_{2}^{\prime}/m_{2}\in Z$ from the fact $s^{-1}f_{Z_{norma1}^{\prime}}^{m_{2}^{\prime}}s(u)=f_{Z_{norma1}}^{m_{2}}’(u)$ . This
implies that $m_{2}=m_{2}^{\prime}$ . Take a holomorphic vector field defined on a certain neighborhood
$U$ of the origin $0\in C^{2}$ as above. There is a foliation around its non-zero simple singularity
on the plumbed manifold $\hat{U}$ which is a final stage of blowing-up operations of the
vector field on $U$. Every foliation around its simple singularity is always defined by the
differential equations:

$\dot{x}=ax+f_{1}(x, y)$

$\dot{y}=by+f_{2}(x, y)$

choosing a suitable coordinate $(x, y)$ around the singularity in $\hat{U}$ where $a$ and $b$ are
eigenvalues of this simple singularity such that $a/b\not\in Q_{+}$ and $f_{1}$ and $f_{2}$ are certain
holomorphic functions of which degrees are greater than two (see [4]). Here
$Q_{+}=\{x|x\in Q, x\geqq 0\}$ . The leaf of the foliation passing through this simple singularity
can be defined by the equations $x=0$ and $y=0$ using this coordinate. Now we define
the multiplicity of the graph link induced by a holomorphic vector field.
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DEFINITION 3. Suppose $L_{Z}$ be a graph link represented by the intersections between
a certain small $S^{3}$ around the origin $0\in C^{2}$ and separatrices of a holomorphic vector
field $Z$ . Let $\Gamma_{Z}$ be a splice diagram representing the graph link $L_{Z}$ , so $\Gamma_{Z}$ has an arrowhead
vertex which represents a leaf defined by the equation $\dot{x}=\lambda_{1}x+\cdots,\dot{y}=\lambda_{2}y+\cdots$ which
satisfies the resonance condition $m_{1}\lambda_{1}+m_{2}\lambda_{2}=0$ . Here we have used a local coordinate
$(x, y)$ around the singularity of this foliation on the plumbed manifold. Then we define
the multiplicity of a component of the link $L_{Z}$ represented by the arrowhead to be $m_{2}$

(resp. $m_{1}$ ).
If an arrowhead vertex of $\Gamma_{Z}$ is induced by a leafpassing through a simple singularity

of another type, then the multiplicity is defined to be an integer 1.

REMARK. It follows from Lemma 2 that the multiplicity in Definition 3 is invariant
modulo sign under the leaf preserving homeomorphism between the foliations induced
by topologically equivalent vector fields.

Let us call above number $m_{i}(i=1,2)$ or 1 as the vertex weights. Then the Alexander
polynomial of n-variables $A(t_{1}, \cdots, t_{n})$ is defined by the above splice diagram, and the
Alexander polynomial ofone-variable $A(t, t^{-1})$ is induced by the polynomial $A(t_{1}, \cdots, t_{n})$

as in Theorem 1 in [8]. Now the polynomial $A(t, t^{-1})$ is invariant under an orientation
preserving and leaf preserving homeomorphism modulo $\pm t^{N}$ ($N$ is an integer). By
Lemma 2 and Lemma 3, the multiplicity of the arrowhead is invariant under an
orientation preserving and leaf preserving homeomorphism up to the sign. Since
topological equivalence between given two vector fields induces a graph isomorphism
between two splice diagrams obtained from two vector fields, we see that the Alexander
polynomial of one-variable is invariant under an orientation preserving and leaf
preserving homeomorphism modulo $\pm t^{N}$ . Thus we get the next theorem.

THEOREM E. Suppose that $Z$ is a vectorfield as above and $L_{Z}$ is a multi-link induced
by $Z$ andhas certain multiplicities as defined in Definition 3. Then the Alexanderpolynomial
ofone-variable $A(t, t^{-1})$ induced by this multi-link $L_{Z}$ is an invariant under a leafpreserving
and orientation preserving homeomorphism modulo $\pm t^{N}$ for some integer $N$.
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