Some Arithmetic Fuchsian Groups with
 Signature ($0 ; e_{1}, e_{2}, e_{3}, e_{4}$)

Jun-ichi SUNAGA

Saitama University
(Communicated by Ma. Kato)

Abstract

We determine the arithmetic Fuchsian groups Γ with signature $\left(0 ; e_{1}, e_{2}, e_{3}, e_{4}\right)$ which are the subgroups of normalizer $\Gamma^{*}(A ; O)$ of maximal orders O in quaternion algebras A over the rational number field \mathbf{Q}.

1. Introduction.

To begin with, we shall recall the definition of a Fuchsian group (cf. Beardon [1], Iversen [2]). The group $S L_{2}(\mathbf{R})$ acts on the upper half plane $H=\{z \in \mathbf{C} \mid \operatorname{Im}(z)>0\}$ as the group of fractional linear transformations. A finitely generated discrete subgroup Γ of this transformation group is called a Fuchsian group. In this paper, we shall consider only Fuchsian groups of the first kind. Let Γ be a Fuchsian group of the first kind. We denote by P_{Γ} the set of the parabolic points of Γ and put $H^{*}=H \cup P_{\Gamma}$. Then we can naturally introduce a structure of the compact Riemann surface on the quotient space H^{*} / Γ. Denote by g, r and s the genus of H^{*} / Γ, the number of the elliptic and parabolic points of H^{*} / Γ respectively, and by $e_{i}(1 \leq i \leq r)$ the orders of the stabilizing groups of elliptic points of Γ. Then we call the symbol ($g ; e_{1}, e_{2}, \cdots, e_{r}, e_{r+1}, \cdots, e_{r+s}$) ($e_{i}=\infty$ for $r+1 \leq i \leq r+s$) the signature of Γ. The following equality holds concerning the volume $\operatorname{vol}\left(H^{*} / \Gamma\right)$ of the quotient space H^{*} / Γ and the signature ($g ; e_{1}, e_{2}, \cdots$, $e_{r}, e_{r+1}, \cdots, e_{r+s}$) of Γ (see Beardon [1]):

$$
\begin{equation*}
\operatorname{vol}\left(H^{*} / \Gamma\right)=\frac{1}{2 \pi} \int_{D_{\Gamma}} \frac{d x d y}{y^{2}}=2 g-2+\sum_{i=1}^{r+s}\left(1-\frac{1}{e_{i}}\right) \tag{1.1}
\end{equation*}
$$

where D_{Γ} is a fundamental domain of Γ in H and $1 / e_{i}=0$ for $r+1 \leq i \leq r+s$.
Next we also recall the definition of an arithmetic Fuchsian group (cf. Shimura [7]). Let k be a totally real algebraic number field of degree $n, \varphi_{i}(1 \leq i \leq n)$ be

[^0]Revised June 24, 1996

Q-isomorphisms of k into the real number field \mathbf{R} and φ_{1} be an identity map. Let A be a quaternion algebra which splits at the infinite place φ_{1} and is ramified at all other infinite places $\varphi_{i}(2 \leq i \leq n)$. Then there exists an \mathbf{R}-isomorphism

$$
\rho: A \otimes_{\mathbf{Q}} \mathbf{R} \rightarrow M_{\mathbf{2}}(\mathbf{R}) \oplus \mathbf{H}^{n-1}
$$

where \mathbf{H} is the Hamilton quaternion algebra over \mathbf{R}. We denote by ρ_{1} the composite of the restriction of ρ to A with the projection to $M_{2}(\mathbf{R})$. Let O be an order in A. Put

$$
O^{1}=\{x \in O \mid n(x)=1\}
$$

where $n()$ denotes the reduced norm of A over k. If we put $\Gamma^{(1)}(A, O)=\rho_{1}\left(O^{1}\right)$, then $\Gamma^{(1)}(A, O)$ is a discrete subgroup of $S L_{2}(\mathbf{R})$. A discrete subgroup Γ of $S L_{2}(\mathbf{R})$ is called arithmetic if Γ is commensurable with some $\Gamma^{(1)}(A, O)$. Furthermore, we define the normalizer $N(O)$ of O :

$$
N(O)=\{x \in A \mid x O=O x, n(x)>0\}
$$

Put

$$
G L_{2}^{+}(\mathbf{R})=\left\{g \in M_{2}(\mathbf{R}) ; \operatorname{det}(g)>0\right\}
$$

If we denote by $\Gamma^{*}(A, O)$ the image of $\rho_{1}(N(O))$ by the homomorphism

$$
\begin{equation*}
\psi: G L_{2}^{+}(\mathbf{R}) \ni g \rightarrow \operatorname{det}(g)^{-1 / 2} g \in S L_{2}(\mathbf{R}) \tag{1.2}
\end{equation*}
$$

then $\Gamma^{*}(A, O)$ is also a discrete subgroup of $S L_{2}(\mathbf{R})$.
We consider the problem to determine all arithmetic Fuchsian groups with given signature. It is proved that there exist only finitely many arithmetic Fuchsian groups with any given signature up to $S L_{2}(\mathbf{R})$-conjugation by K . Takeuchi (Takeuchi [11]). And he has determined explicitly all arithmetic Fuchsian groups with signature ($0 ; e_{1}, e_{2}, e_{3}$) (i.e. the triangle groups) and signature ($1 ; e$) (Takeuchi [10, 11]).

In this paper, we treat arithmetic Fuchsian groups with signature ($0 ; e_{1}, e_{2}, e_{3}, e_{4}$). We shall determine all subgroups Γ of $\Gamma^{*}(A, O)$ with signature $\left(0 ; e_{1}, e_{2}, e_{3}, e_{4}\right)$ obtained from a quaternion algebra A over the rational number field \mathbf{Q} up to $\Gamma^{*}(A, O)$-conjugation. Since Takeuchi has determined such groups in the case $A \cong M_{2}(\mathbf{Q})$ (in this case, it can be easily seen that $\Gamma^{*}(A, O)=\Gamma^{(1)}(A, O)=S L_{2}(Z)$, we shall deal with the remaining cases (i.e. $s=0$). We make use of the homomorphisms of $\Gamma^{*}(A, O)$ into the symmetric group S_{n} of degree n (cf. Singerman [9]). This method is a generalization of the one used in Takeuchi [12]. In the main theorem (Theorem 6), we shall give the complete list of the groups Γ mentioned above and the corresponding homomorphisms.

The author would like to thank Prof. K. Takeuchi for his valuable suggestions.
2. Signatures of $\Gamma^{*}(A, O), \Gamma^{(1)}(A, O)$.

Let A be an indefinite quaternion algebra over \mathbf{Q}, which means that A satisfies

$$
\begin{equation*}
\rho: A \otimes_{\mathbf{Q}} \mathbf{R} \cong M_{\mathbf{2}}(\mathbf{R}) \tag{2.1}
\end{equation*}
$$

From now on, we identify A with $\rho(A)$ by virtue of this isomorphism ρ and we regard A as a subring of $M_{2}(\mathbf{R})$. Then the reduced norm $n(x)$ coincides with $\operatorname{det}(x)$ and the reduced $\operatorname{trace} \operatorname{tr}(x)$ coincides with $\operatorname{tr}(x)$ as a matrix x. As for the discriminant $D(A)$ of A, we have the following theorem (e.g. Shimura [7]).

Theorem 1 (Hasse). Let notations be as above. The number of the places of \mathbf{Q} which are ramified in A is even.

From this theorem, we can express the discriminant $D(A)$ of A as follows:

$$
D(A)=p_{1} p_{2} \cdots p_{2 m}
$$

where p_{i} are distinct rational prime numbers. Let O be a maximal order in A. We note that there exists an element $\pi_{i} \in O$ such that $n\left(\pi_{i}\right)=p_{i}(1 \leq i \leq 2 m)$.

When we put $\Gamma^{(1)}(A, O)=\rho\left(O^{1}\right), \Gamma^{(1)}(A, O)$ is a discrete subgroup of $S L_{2}(\mathbf{R})$ (see Shimizu [5]), and $\rho(N(O))$ is a subgroup of $G L_{2}^{+}(\mathbf{R})$. When we denote by $\Gamma^{*}(A, O)$ the image of $\rho(N(O))$ by the map ψ in (1.2), $\Gamma^{*}(A, O)$ is also a discrete subgroup of $S L_{2}(\mathbf{R})$.

We have (cf. Vignéras [13])

$$
\begin{equation*}
\Gamma^{*}(A, O) / \Gamma^{(1)}(A, O) \cong(\mathbf{Z} / 2 \mathbf{Z})^{2 m} \tag{2.2}
\end{equation*}
$$

The quotient spaces $H / \Gamma^{*}(A, O), H / \Gamma^{(1)}(A, O)$, in our case, are compact Riemann surfaces. The volume of the Riemann surface $H / \Gamma^{(1)}(A, O)$ with respect to the $S L_{2}(\mathbf{R})$-invariant measure $d z=\left(1 / y^{2}\right) d x d y(x+i y \in \mathbf{C})$ on H is given by

$$
\begin{equation*}
\operatorname{vol}\left(H / \Gamma^{(1)}(A, O)\right)=\frac{1}{6} \prod_{p \mid D(A)}(p-1) \tag{2.3}
\end{equation*}
$$

(Shimizu [6]). And we have

$$
\operatorname{vol}\left(H / \Gamma^{(1)}(A, O)\right)=\left[\Gamma^{*}(A, O): \Gamma^{(1)}(A, O)\right] \operatorname{vol}\left(H / \Gamma^{*}(A, O)\right)
$$

so by (2.2), we have

$$
\begin{equation*}
\operatorname{vol}\left(H / \Gamma^{*}(A, O)\right)=\frac{1}{2^{2 m}} \operatorname{vol}\left(H / \Gamma^{(1)}(A, O)\right) \tag{2.4}
\end{equation*}
$$

On the other hand, if we denote by $\left(g^{(1)} ; e_{1}, e_{2}, \cdots, e_{r}\right),\left(g^{*} ; e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{r}^{\prime}\right)$ the signatures of $\Gamma^{(1)}(A, O)$ and $\Gamma^{*}(A, O)$ respectively, by (1.1) we have

$$
\begin{align*}
2 g^{(1)}-2 & =\operatorname{vol}\left(H / \Gamma^{(1)}(A, O)\right)-\sum_{i=1}^{r}\left(1-\frac{1}{e_{i}}\right) \tag{2.5}\\
2 g^{*}-2 & =\operatorname{vol}\left(H / \Gamma^{*}(A, O)\right)-\sum_{i=1}^{r^{\prime}}\left(1-\frac{1}{e_{i}^{\prime}}\right) \tag{2.6}
\end{align*}
$$

As for (2.5), for any elliptic element γ of $\Gamma^{(1)}(A, O)$, since $|\operatorname{tr}(\gamma)|<2$ and $\operatorname{tr}(\gamma) \in \mathbf{Z}$, we have $\operatorname{tr}(\gamma)=0, \pm 1$. Hence γ satisfies one of the equations $\gamma^{2}+1=0, \gamma^{2} \pm \gamma+1=0$. So we have $e_{i}=2$, 3. When we denote by $v_{k}^{(1)}$ the number of the elliptic points of $H / \Gamma^{(1)}(A, O)$ of order k, we have the following equality:

$$
\begin{equation*}
2 g^{(1)}-2=\operatorname{vol}\left(H / \Gamma^{(1)}(A, O)\right)-\frac{1}{2} v_{2}^{(1)}-\frac{2}{3} v_{3}^{(1)} \tag{2.7}
\end{equation*}
$$

By (2.2), $e_{i}^{\prime}=2,3,4,6$. Denote by v_{k}^{*} the number of elliptic points of $H / \Gamma^{*}(A, O)$ of order k. Then we have

$$
\begin{equation*}
2 g^{*}-2=\operatorname{vol}\left(H / \Gamma^{*}(A, O)\right)-\frac{1}{2} v_{2}^{*}-\frac{2}{3} v_{3}^{*}-\frac{3}{4} v_{4}^{*}-\frac{5}{6} v_{6}^{*} . \tag{2.8}
\end{equation*}
$$

Now we have to calculate $\boldsymbol{v}_{k}^{(1)}, \nu_{k}^{*}$.
Definition 1. Let $K=\mathbf{Q}(x)$ be a quadratic field, B its order, and p be a rational prime. We define the Artin symbol in the following way;

$$
\left(\frac{K}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \text { slits in } K \\
-1 & \text { if } p \text { is still a prime in } K \\
0 & \text { if } p \text { is ramified in } K
\end{aligned}\right.
$$

We need the following theorems.
Theorem 2 (Vignéras [13]).

$$
v_{2}^{(1)}=\prod_{p \mid D(A)}\left(1-\left(\frac{-4}{p}\right)\right), \quad v_{3}^{(1)}=\prod_{p \mid D(A)}\left(1-\left(\frac{-3}{p}\right)\right)
$$

where $\left(\frac{-d}{p}\right)$ denotes the Artin symbol of quadratic field $\mathbf{Q}(\sqrt{-d})$.
We denote by B_{c} the order of the quadratic imaginary field $\mathbf{Q}(\sqrt{-d})$ of conductor $c(c=1,2)$. Let n_{d}^{c} be the number of $N_{0}(O)$-conjugate classes of maximal embeddings of B_{c} into A where $N_{0}(O)=N(O) \cup \varepsilon N(O)(n(\varepsilon)=-1)$ (see Michon [4]).

Theorem 3 (Michon [4]).
(1)

$$
\begin{gathered}
v_{2}^{*}=\sum_{d \mid D(A)}\left(n_{d}^{1}+n_{d}^{2}\right)-\lambda(D) n_{1}^{1}-\mu(D) n_{3}^{1}, \\
v_{3}^{*}=(1-\mu(D)) n_{3}^{1}, \quad v_{4}^{*}=\lambda(D) n_{1}^{1}, \quad v_{6}^{*}=\mu(D) n_{3}^{1}
\end{gathered}
$$

where

$$
\lambda(D)= \begin{cases}1 & \text { if } D(A) \text { is even } \\ 0 & \text { if } D(A) \text { is odd }\end{cases}
$$

$$
\mu(D)=\left\{\begin{array}{llll}
1 & \text { if } D(A) \equiv 0 & (\bmod 3) \\
0 & \text { if } D(A) \not \equiv 0 & (\bmod 3)
\end{array}\right.
$$

(2) $n_{d}^{c}(c=1,2)$ is given as follows: $n_{d}^{c}=0$ if at least one $p_{i} \mid D(A)$ splits in $\mathbf{Q}(\sqrt{-d})$, or $c=2$ and $D(A)$ is even, or $c=2$ and $d \equiv 3(\bmod 4)$. Otherwise

$$
n_{d}^{c}= \begin{cases}\frac{h(-d)}{r} & \text { for } c=1 \\ \frac{h(-d)}{r \rho}\left(1-\left(\frac{-d}{2}\right)\right) & \text { for } c=2\end{cases}
$$

where $\rho=\left[B_{1}^{\times}: B_{2}^{\times}\right]$, and $h(-d)$ is the class number of $\mathbf{Q}(\sqrt{-d})$ and r denotes the number of ideal classes of L generated by the prime ideals dividing p_{i} which do not split in B_{c} ($c=1,2$).

Now we shall determine the signatures of $\Gamma^{*}(A, O)$ which contains the subgroups Γ with signatures $\left(0 ; e_{1}, e_{2}, e_{3}, e_{4}\right)$. We give the conditions on the discriminant $D(A)$ of A and the index $n=\left[\Gamma^{*}(A, O): \Gamma\right]$.

Put $D(A)=p_{1} p_{2} \cdots p_{2 m}$, then by (2.2) we have that $\left[\Gamma^{*}(A, O): \Gamma^{(1)}(A, O)\right]=2^{2 m}$. And put $\left[\Gamma^{*}(A, O): \Gamma\right]=n$. Hence it follows from (2.3), (2.4) that

$$
\begin{align*}
\operatorname{vol}\left(H / \Gamma^{(1)}(A, O)\right)= & \frac{1}{6} \prod_{i=1}^{2 m}\left(p_{i}-1\right), \quad \operatorname{vol}\left(H / \Gamma^{*}(A, O)\right)=\frac{1}{2^{2 m}} \operatorname{vol}\left(H / \Gamma^{(1)}(A, O)\right) \tag{2.9}\\
& \operatorname{vol}(H / \Gamma)=n \cdot \operatorname{vol}\left(H / \Gamma^{*}(A, O)\right) \tag{2.10}
\end{align*}
$$

Since the signature of Γ is $\left(0 ; e_{1}, e_{2}, e_{3}, e_{4}\right)$, we have

$$
\operatorname{vol}(H / \Gamma)=2-\sum_{i=1}^{4} \frac{1}{e_{i}}
$$

We may assume that $e_{i}=2,3,4,6(1 \leq i \leq 4)$, hence we have

$$
\frac{1}{6} \leq \operatorname{vol}(H / \Gamma)=2-\sum_{i=1}^{4} \frac{1}{e_{i}} \leq \frac{4}{3}
$$

Then we see that the equalities (2.9), (2.10) lead to

$$
\frac{1}{6} \leq \frac{n}{6 \cdot 2^{2 m}} \prod_{i=1}^{2 m}\left(p_{1}-1\right) \leq \frac{4}{3}
$$

This implies that

$$
\begin{equation*}
1 \leq n \prod_{i=1}^{2 m} \frac{p_{i}-1}{2} \leq 8 \tag{2.11}
\end{equation*}
$$

Since

$$
\frac{1}{2} \leq \prod_{i=1}^{2 m} \frac{p_{i}-1}{2}
$$

we have an upper bound on the index $n: n \leq 16$. And since

$$
\prod_{i=1}^{2 m} \frac{p_{i}-1}{2} \leq \frac{8}{n} \leq 8
$$

we also have an upper bound on the discriminant $D(A)$: $D(A) \leq 2 \cdot 3 \cdot 5 \cdot 17=510$. Considering these conditions, we obtain the following table for the pair $(D(A), n)$:

$D(A)$	n	$D(A)$	n	$D(A)$	n
$2 \cdot 3$	$2 \leq n \leq 16$	$3 \cdot 11$	$n=1$	$2 \cdot 29$	$n=1$
$2 \cdot 5$	$1 \leq n \leq 8$	$2 \cdot 17$	$1 \leq n \leq 2$	$2 \cdot 31$	$n=1$
$2 \cdot 7$	$1 \leq n \leq 5$	$5 \cdot 7$	$n=1$	$2 \cdot 3 \cdot 5 \cdot 7$	$1 \leq n \leq 2$
$3 \cdot 5$	$1 \leq n \leq 4$	$2 \cdot 19$	$n=1$	$2 \cdot 3 \cdot 5 \cdot 11$	$n=1$
$3 \cdot 7$	$1 \leq n \leq 2$	$3 \cdot 13$	$n=1$	$2 \cdot 3 \cdot 5 \cdot 13$	$n=1$
$2 \cdot 11$	$1 \leq n \leq 3$	$2 \cdot 23$	$n=1$	$2 \cdot 3 \cdot 7 \cdot 11$	$n=1$
$2 \cdot 13$	$1 \leq n \leq 2$	$3 \cdot 17$	$n=1$	$2 \cdot 3 \cdot 5 \cdot 17$	$n=1$

Table 1
We shall determine the signatures of $\Gamma^{(1)}(A, O), \Gamma^{*}(A, O)$ for $D(A)<100, D(A)=$ $210,330,390,462,510$ and give a table of these signatures together with $v^{(1)}=$ $\operatorname{vol}\left(H / \Gamma^{(1)}(A, O)\right), v^{*}=\operatorname{vol}\left(H / \Gamma^{*}(A, O)\right)$.

Theorem 4. Let the notations be as above. The data for $\Gamma^{(1)}(A, O), \Gamma^{*}(A, O)$ is given as follows:

$D(A)$	$v_{2}^{(1)}$	$v_{3}^{(1)}$	$g^{(1)}$	$v^{(1)}$	v_{2}^{*}	v_{3}^{*}	ν_{4}^{*}	v_{6}^{*}	g^{*}	v^{*}
$2 \cdot 3$	2	2	0	$1 / 3$	1	0	1	1	0	$1 / 12$
$2 \cdot 5$	0	4	0	$2 / 3$	3	1	0	0	0	$1 / 6$
$2 \cdot 7$	2	0	1	1	3	0	1	0	0	$1 / 4$
$3 \cdot 5$	0	2	1	$4 / 3$	3	0	0	1	0	$1 / 3$
$3 \cdot 7$	4	0	1	2	5	0	0	0	0	$1 / 2$
$2 \cdot 11$	2	4	0	$5 / 3$	2	1	1	0	0	$5 / 12$
$2 \cdot 13$	0	0	2	2	5	0	0	0	0	$1 / 2$
$3 \cdot 11$	4	2	1	$10 / 3$	4	0	0	1	0	$5 / 6$
$2 \cdot 17$	0	4	1	$8 / 3$	4	1	0	0	0	$2 / 3$
$5 \cdot 7$	0	0	3	4	2	0	0	0	1	1
$2 \cdot 19$	2	0	2	3	4	0	1	0	0	$3 / 4$
$3 \cdot 13$	0	0	3	4	6	0	0	0	0	1
$2 \cdot 23$	2	4	1	$11 / 3$	3	1	1	0	0	$11 / 12$
$3 \cdot 17$	0	2	3	$16 / 3$	5	0	0	1	0	$4 / 3$
$5 \cdot 11$	0	4	3	$20 / 3$	6	1	0	0	0	$5 / 3$
$3 \cdot 19$	4	0	3	6	7	0	0	0	0	$4 / 3$

$2 \cdot 29$	0	4	2	$14 / 3$	5	1	0	0	0	$7 / 6$
$2 \cdot 31$	2	0	3	5	5	0	1	0	0	$5 / 4$
$5 \cdot 13$	0	0	5	8	8	0	0	0	0	2
$3 \cdot 23$	4	2	3	$22 / 3$	6	0	0	1	0	$11 / 6$
$2 \cdot 37$	0	0	4	6	7	0	0	0	0	$3 / 2$
$7 \cdot 11$	4	0	5	10	9	0	0	0	0	$5 / 2$
$2 \cdot 41$	0	4	3	$20 / 3$	6	1	0	0	0	$5 / 3$
$5 \cdot 17$	0	4	5	$32 / 3$	8	1	0	0	0	$8 / 3$
$2 \cdot 43$	2	0	4	7	6	0	1	0	0	$7 / 4$
$3 \cdot 29$	0	2	5	$28 / 3$	7	0	0	1	0	$7 / 3$
$7 \cdot 13$	0	0	7	12	6	0	0	0	0	3
$3 \cdot 31$	4	0	5	10	9	0	0	0	0	$5 / 2$
$2 \cdot 47$	2	4	3	$23 / 3$	5	1	1	0	0	$23 / 12$
$5 \cdot 19$	0	0	7	12	10	0	0	0	0	3
$2 \cdot 3 \cdot 5 \cdot 7$	0	0	5	8	5	0	0	0	0	$1 / 2$
$2 \cdot 3 \cdot 5 \cdot 11$	0	8	5	$40 / 3$	4	0	0	1	0	$5 / 6$
$2 \cdot 3 \cdot 5 \cdot 13$	0	0	9	16	6	0	0	0	0	1
$2 \cdot 3 \cdot 7 \cdot 11$	8	0	9	20	5	0	1	0	0	$5 / 4$
$2 \cdot 3 \cdot 5 \cdot 17$	0	8	9	$64 / 3$	5	0	0	1	0	$4 / 3$

3. Main theorem.

Our main purpose in this paper is to determine all Fuchsian groups Γ with signature $\left(0 ; e_{1}, e_{2}, e_{3}, e_{4}\right)$ such that Γ is a subgroup of $\Gamma^{*}(A, O)$ of index n.

First in the case $n=1$, we have the following result directly from Theorem 4. We give the complete list of $\Gamma^{*}(A, O)$ with signature $\left(0 ; e_{1}, e_{2}, e_{3}, e_{4}\right)$ as follows:

$D(A)$	$\left(0 ; e_{1}, e_{2}, e_{3}, e_{4}\right)$
$2 \cdot 5$	$(0 ; 2,2,2,3)$
$2 \cdot 7$	$(0 ; 2,2,2,4)$
$3 \cdot 5$	$(0 ; 2,2,6)$
$2 \cdot 11$	$(0 ; 2,2,3,4)$

Hereafter, we assume that the index $n \geq 2$.
Using the signature of $\Gamma^{*}(A, O)$ and the equalities

$$
\begin{equation*}
\operatorname{vol}(H / \Gamma)=2-\sum_{i=1}^{4} \frac{1}{e_{i}}=n \cdot \operatorname{vol}\left(H / \Gamma^{*}(A, O)\right) \tag{3.1}
\end{equation*}
$$

we have the necessary conditions on the signature of Γ for each pair $(D(A), n)$ listed in Table 1.

Proposition 1. The possible signatures $\left(0 ; e_{1}, e_{2}, e_{3}, e_{4}\right)$ of the subgroups Γ of $\Gamma^{*}(A, O)$ is as follows:

$D(A)=3 \cdot 7 \mid \quad$ signature of $\Gamma^{*}(A, O):(0 ; 2,2,2,2,3)$	
n	signature of Γ
2	$(0 ; 2,6,6,6),(0 ; 3,3,6,6),(0 ; 3,4,4,6),(0 ; 4,4,4,4)$
$D(A)=2 \cdot 11 \mid \quad$ signature of $\Gamma^{*}(A, O):(0 ; 2,2,3,4)$	
n	signature of Γ
2 3	$\begin{aligned} & (0 ; 2,3,6,6),(0 ; 2,4,4,6),(0 ; 3,3,3,6),(0 ; 3,3,4,4) \\ & (0 ; 4,6,6,6) \end{aligned}$
$D(A)=2 \cdot 13 \mid \quad$ signature of $\Gamma^{*}(A, O):(0 ; 2,2,2,2,2)$	
n	signature of Γ
2	$(0 ; 2,6,6,6),(0 ; 3,3,6,6),(0 ; 3,4,4,6),(0 ; 4,4,4,4)$
$D(A)=2 \cdot 17 \mid \quad$ signature of $\Gamma^{*}(A, O):(0 ; 2,2,2,2,3)$	
n	signature of Γ
2	$(0 ; 6,6,6,6)$
$D(A)=2 \cdot 3 \cdot 5 \cdot 7 \mid \quad$ signature of $\Gamma^{*}(A, O):(0 ; 2,2,2,2,2)$	
n	signature of Γ
2	$(0 ; 2,6,6,6),(0 ; 3,3,6,6),(0 ; 3,4,4,6),(0 ; 4,4,4,4)$

Proof. We get this result by solving the equation obtained from (3.1) and the data listed in Theorem 4. We note that $e_{i}=2,3,4,6$. By virtue of this fact, we can find all solutions for the equation

$$
2-\left(\frac{1}{e_{1}}+\frac{1}{e_{2}}+\frac{1}{e_{3}}+\frac{1}{e_{4}}\right)=n \cdot \operatorname{vol}\left(H / \Gamma^{*}(A, O)\right) .
$$

Q.E.D.

Now we need the following Theorem.
Theorem 5 (Singerman [9]). Let Γ be a Fuchsian group of the first kind with signature ($g ; m_{1}, m_{2}, \cdots, m_{r} ; s$) which satisfies

$$
\Gamma=\left\langle a_{1}, b_{1}, \cdots, a_{g}, b_{g}, x_{1}, \cdots, x_{r}, p_{1}, \cdots, p_{s} \mid \prod_{i=1}^{g}\left[a_{i}, b_{i}\right] \prod_{j=1}^{r} x_{j} \prod_{k=1}^{s} p_{k}=x_{j}^{m_{j}}=1\right\rangle
$$

Then Γ contains a subgroup Γ_{1} of index N with signature ($g^{\prime}: n_{11}, \cdots, n_{1_{\rho_{1}}}, \cdots, n_{r_{\rho_{r}}} ; s^{\prime}$) if and only if
(1) There exist a permutation group G transitive on N letters and a surjective homomorphism $\theta: \Gamma \rightarrow G$ satisfying the following conditions:
a) The permutation $\theta\left(x_{j}\right)$ has precisely ρ_{j} cycles of lengths less than m_{j}, the lengths of these cycles being $m_{j} / n_{j_{1}}, \cdots, m_{j} / n_{j_{\rho_{j}}}$.
b) If we denote the number of cycles in the permutation $\theta(\gamma)$ by $\delta(\gamma)$ then

$$
s^{\prime}=\sum_{k=1}^{s} \delta\left(p_{k}\right)
$$

(2)

$$
\operatorname{vol}\left(H / \Gamma_{1}\right)=N \cdot \operatorname{vol}(H / \Gamma) .
$$

By this theorem, we can determine the signature of Γ. Furthermore, in order to determine all Γ up to $\Gamma^{*}(A, O)$-conjugation, we need the following proposition.

Proposition 2. Let Γ^{*} be a Fuchsian group and $\theta_{i}(i=1,2)$ be an injective homomorphism from Γ^{*} to the symmetric group S_{n} of degree n, whose image $G_{i}=\theta_{i}\left(\Gamma^{*}\right)$ in S_{n} acts transitively. Let H_{i} be the stabilizing subgroup of G_{i} at 1 , and put $\Gamma_{i}=\theta_{i}^{-1}\left(H_{i}\right)$. Then there exists an element $\gamma_{0} \in \Gamma^{*}$ such that $\Gamma_{2}=\gamma_{0} \Gamma_{1} \gamma_{0}^{-1}$ if and only if there exists an element $\sigma_{0} \in S_{n}$ such that

$$
\theta_{2}(\gamma)=\sigma_{0} \theta_{1}(\gamma) \sigma_{0}^{-1} \quad \text { for all } \gamma \in \Gamma^{*} .
$$

Proof. First we assume that $\Gamma_{2}=\gamma_{0} \Gamma_{1} \gamma_{0}^{-1}$. For left coset decomposition $\Gamma^{*}=$ $\bigcup_{l=1}^{n} \delta_{l} \Gamma_{1}$, suppose that an element $\gamma \in \Gamma^{*}$ transfers the left coset $\delta_{j} \Gamma_{1}$ to $\delta_{k} \Gamma_{1}$, i.e.

$$
\gamma \delta_{j} \Gamma_{1}=\delta_{k} \Gamma_{1}
$$

This implies $\theta_{1}(\gamma)(j)=k(j, k \in\{1,2, \cdots, n\})$. We can choose representatives $\left\{\delta_{j}^{\prime}\right\}$ of left coset decomposition by Γ_{2} such that $\delta_{j}^{\prime}=\gamma_{0} \delta_{j} \gamma_{0}^{-1}$. For this left coset decomposition, assume that

$$
\gamma \delta_{j}^{\prime} \Gamma_{2}=\delta_{m}^{\prime} \Gamma_{2}
$$

Then we have $\gamma \gamma_{0} \delta_{j} \Gamma_{1}=\gamma_{0} \delta_{m} \Gamma_{1}$. These imply $\theta_{2}(\gamma)(j)=m, \theta_{1}\left(\gamma_{0}^{-1} \gamma \gamma_{0}\right)(j)=m$. Hence we obtain

$$
\theta_{2}(\gamma)(j)=\theta_{1}\left(\gamma_{0}^{-1} \gamma \gamma_{0}\right)(j)
$$

Since this equality holds for $1 \leq j \leq n$,

$$
\theta_{2}(\gamma)=\theta_{1}\left(\gamma_{0}^{-1} \gamma \gamma_{0}\right) .
$$

Therefore, putting $\sigma=\theta\left(\gamma_{0}\right)^{-1}$, we have

$$
\theta_{2}(\gamma)=\sigma \theta_{1}(\gamma) \sigma^{-1} \quad \text { for all } \quad \gamma \in \Gamma^{*}
$$

Conversely, suppose that $\theta_{2}(\gamma)=\sigma \theta(\gamma) \sigma^{-1}, \sigma \in S_{n}, \gamma \in \Gamma^{*}$. Let H_{2} fix k and H_{1} fix j. Since G_{j} acts transitively, there exists an element $\rho \in G_{1}$ such that $\rho \sigma^{-1}(k)=j$. By assumption, $\sigma^{-1} H_{2} \sigma \subset G_{1}$, so we obtain $\sigma^{-1} H_{2} \sigma=\rho^{-1} H_{1} \rho$. Therefore,

$$
\begin{aligned}
\Gamma_{2} & =\theta_{2}^{-1}\left(H_{2}\right)=\left\{\gamma \in \Gamma^{*} \mid \theta_{2}(\gamma) \in H_{2}\right\}=\left\{\gamma \in \Gamma^{*} \mid \sigma \theta_{1}(\gamma) \sigma^{-1} \in H_{2}\right\} \\
& =\left\{\gamma \in \Gamma^{*} \mid \theta_{1}(\gamma) \in \sigma^{-1} H_{2} \sigma\right\}=\left\{\gamma \in \Gamma^{*} \mid \theta_{1}(\gamma) \in \rho^{-1} H_{1} \rho, \rho \in G_{1}\right\} \\
& =\left\{\gamma \in \Gamma^{*} \mid \theta_{1}\left(\gamma_{0}\right) \theta_{1}(\gamma) \theta_{1}\left(\gamma_{0}\right)^{-1} \in H_{1}\right\}=\left\{\gamma \in \Gamma^{*} \mid \gamma_{0} \gamma \gamma_{0}^{-1} \in \theta_{1}^{-1}\left(H_{1}\right)\right\} \\
& =\gamma_{0}^{-1} \theta_{1}^{-1}\left(H_{1}\right) \gamma_{0}=\gamma_{0}^{-1} \Gamma_{1} \gamma_{0}
\end{aligned} \quad \text { Q.E.D }
$$

By this proposition, we can classify the subgroups Γ of $\Gamma^{*}(A, O)$ up to $\Gamma^{*}(A, O)$-conjugation by giving the homomorphic images in S_{n} of the generators of $\Gamma^{*}(A, O)$. So we shall give the homomorphisms θ of $\Gamma^{*}(A, O)$ into S_{n} by determining the images of the generators of $\Gamma^{*}(A, O)$.

Theorem 6. Let notations be the same as before. The complete list of the subgroups Γ of $\Gamma^{*}(A, O)$ with signature $\left(0 ; e_{1}, e_{2}, e_{3}, e_{4}\right)$ up to $\Gamma^{*}(A, O)$-conjugation, and the homomorphisms $\theta: \Gamma^{*}(A, O) \rightarrow S_{n}$ is as follows:

$D(A)=2 \cdot 3 \mid$		$\Gamma^{*}(A, O)=\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3} \mid \gamma_{1}^{2}=\gamma_{2}^{4}=\gamma_{3}^{6}=\gamma_{1} \gamma_{2} \gamma_{3}=1\right\rangle$
n	homomorphism $\theta: \Gamma^{*}(A, O) \rightarrow S_{n}$	signature of Γ
2	$\begin{aligned} & \theta\left(\gamma_{1}\right)=(1)(2) \\ & \theta\left(\gamma_{2}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right) \\ & \theta\left(\gamma_{3}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right) \end{aligned}$	(0; 2, 2, 2, 3)
3	$\left.\begin{array}{l} \theta\left(\gamma_{1}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right)\left(\begin{array}{l} 3 \end{array}\right) \\ \theta\left(\gamma_{2}\right) \\ \theta\left(\begin{array}{ll} 1 & 3 \end{array}\right)(2) \\ \theta\left(\gamma_{3}\right) \end{array}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right)$	(0; 2, 2, 2, 4)
4	$\left.\begin{array}{l} \theta\left(\gamma_{1}\right)=\left(\begin{array}{lll} 1 & 2 \end{array}\right)(3)(4) \\ \theta\left(\gamma_{2}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right) \\ \theta\left(\gamma_{3}\right) \end{array}\right)=\left(\begin{array}{ll} 1) & (243 \end{array}\right)$	(0; 2, 2, 2, 6)
4	$\begin{aligned} & \theta\left(\gamma_{1}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right)(3)(4) \\ & \theta\left(\gamma_{2}\right)=\left(\begin{array}{ll} 1 & 3 \end{array} 24\right) \\ & \theta\left(\gamma_{3}\right)=\left(\begin{array}{ll} 1 & 3 \end{array}\right)\left(\begin{array}{ll} 2 & 4 \end{array}\right) \end{aligned}$	(0; 2, 2, 3, 3)
	$\begin{aligned} & \theta\left(\gamma_{1}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right)\left(\begin{array}{ll} 3 & 4 \end{array}\right) \\ & \theta\left(\gamma_{2}\right)=\left(\begin{array}{ll} 1 & 3 \end{array}\right)\left(\begin{array}{ll} 2 & 4 \end{array}\right) \\ & \theta\left(\gamma_{3}\right)=\left(\begin{array}{lll} 1 & 4 \end{array}\right)\left(\begin{array}{ll} 2 & 3 \end{array}\right) \end{aligned}$	
5	$\left.\begin{array}{l} \theta\left(\gamma_{1}\right)=\left(\begin{array}{llll} 1 & 2 \end{array}\right)\left(\begin{array}{ll} 3 & 4 \end{array}\right)(5) \\ \theta\left(\gamma_{2}\right) \end{array}\right)=\left(\begin{array}{llll} 1 & 3 & 5 & 4 \end{array}\right)(2)(2) .$	(0; 2, 2, 3, 4)

n	homomorphism $\theta: \Gamma^{*}(A, O) \rightarrow S_{n}$	signature of Γ
6	$\begin{aligned} & \theta\left(\gamma_{1}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right)\left(\begin{array}{lll} 3 & 4 \end{array}\right)\left(\begin{array}{ll} 5 & 6 \end{array}\right) \\ & \theta\left(\gamma_{2}\right)=(1)(3)(2) \\ & \theta\left(\gamma_{3}\right) \end{aligned}=\left(\begin{array}{ll} 1 & 6 \end{array}\right)\left(\begin{array}{ll} 3 & 5 \end{array}\right)$	(0; 2, 2, 4, 4)
	$\begin{aligned} & \theta\left(\gamma_{1}\right)=(12)\left(\begin{array}{ll} 3 & 4 \end{array}\right)\left(\begin{array}{ll} 5 & 6 \end{array}\right. \\ & \theta\left(\gamma_{2}\right)=(1)(3)(25)(46) \\ & \theta\left(\gamma_{3}\right)=(154362) \end{aligned}$	
	$\begin{aligned} & \theta\left(\gamma_{1}\right)=(12)\left(\begin{array}{ll} 1 & 4 \end{array}\right)(5)(6) \\ & \theta\left(\gamma_{2}\right)=(1)(3)(2456) \\ & \theta\left(\gamma_{3}\right)=\left(\begin{array}{ll} 1654 & 4 \end{array}\right) \end{aligned}$	
6	$\left.\begin{array}{l} \theta\left(\gamma_{1}\right)=\left(\begin{array}{lll} 1 & 2 \end{array}\right)\left(\begin{array}{ll} 3 & 4 \end{array}\right)\left(\begin{array}{l} 5 \end{array}\right) \\ \theta\left(\gamma_{2}\right) \end{array}\right)=\left(\begin{array}{ll} 1 & 2 \end{array} 35\right)\left(\begin{array}{ll} 4 & 6 \end{array}\right)$	(0; 2, 2, 3, 6)
7		(0; 2, 2, 4, 6)
8	$\left.\begin{array}{l} \theta\left(\gamma_{1}\right)=(12)\left(\begin{array}{lll} 3 & 4 \end{array}\right)\left(\begin{array}{ll} 5 & 6 \end{array}\right)(7)(8) \\ \theta\left(\gamma_{2}\right)=(125 \end{array}\right)\left(\begin{array}{ll} 3 & 4 \end{array}\right)$	(0; 2, 2, 6, 6)

n	homomorphism $\theta: \Gamma^{*}(A, O) \rightarrow S_{n}$	signature of Γ
8	$\left.\begin{array}{l} \theta\left(\gamma_{1}\right)=\left(\begin{array}{llll} 1 & 2 \end{array}\right)\left(\begin{array}{llll} 3 & 4 \end{array}\right)\left(\begin{array}{lll} 5 & 6 \end{array}\right)(7)(8) \\ \theta\left(\gamma_{2}\right) \end{array}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right) 7\left(\begin{array}{ll} 3 & 4 \end{array}\right)$	(0; 2, 2, 6, 6)
8		(0; 2, 3, 4, 4)
8		$(0 ; 3,3,3,3)$
9		$(0 ; 2,3,4,6)$
	$\left.\begin{array}{l} \theta\left(\gamma_{1}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right)\left(\begin{array}{lll} 3 & 4 \end{array}\right)\left(\begin{array}{lll} 5 & 6 \end{array}\right)\left(\begin{array}{ll} 7 & 8 \end{array}\right)(9) \\ \theta\left(\gamma_{2}\right) \\ \theta(12 \end{array}\right)$	
10		(0; 2, 4, 4, 6)
	$\left.\begin{array}{l} \theta\left(\gamma_{1}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right)\left(\begin{array}{lll} 3 & 4 \end{array}\right)\left(\begin{array}{lll} 5 & 6 \end{array}\right)\binom{7}{)}\binom{9}{10} \\ \theta\left(\gamma_{2}\right)=(12 \end{array}\right)$	
10		(0; 3, 3, 4, 4)
12	$\begin{aligned} & \theta\left(\gamma_{1}\right)=(12)\left(\begin{array}{ll} 3 & 4)(56)(78)(910)(1112) \\ \theta\left(\gamma_{2}\right) & =(1279)(34118)(561012) \\ \theta\left(\gamma_{3}\right) & =(1)(3)(5)(2961248)(71110) \end{array}\right. \end{aligned}$	(0; 2, 6, 6, 6)

n	homomorphism $\theta: \Gamma^{*}(A, O) \rightarrow S_{n}$	signature of Γ
12	$\begin{aligned} & \theta\left(\gamma_{1}\right)=(12)\left(\begin{array}{ll} 3 & 4)(56)(78)(910)(1112) \\ \theta\left(\gamma_{2}\right)=(1257)(34911)(612108) \\ \theta\left(\gamma_{3}\right)=(1)(3)(27104116)(58)(912) \end{array}\right. \end{aligned}$	(0; 3, 3, 6, 6)
12		$(0 ; 4,4,4,4)$
14	$\begin{aligned} & \theta\left(\gamma_{1}\right)=\left(\begin{array}{ll} 1 & 2)(34)(56)(78)(910)(1112)(1314) \\ \theta\left(\gamma_{2}\right) & =(1257)(3469)(8111013)(12)(14) \\ \theta\left(\gamma_{3}\right)=(1)(271314106)(3)(49111285) \end{array}\right. \end{aligned}$	(0; 4, 4, 6, 6)
16	$\begin{aligned} & \theta\left(\gamma_{1}\right)=(12)\left(\begin{array}{ll} 3 & 4 \end{array}\right)\left(\begin{array}{ll} 5 & 6 \end{array}\right)(78)(910)(1112)(1314)(1516) \\ & \theta\left(\gamma_{2}\right)=(12911)(341013)(561215)(781416) \\ & \theta\left(\gamma_{3}\right)=(1)(2116151410)(3)(413816129)(5)(7) \end{aligned}$	$(0 ; 6,6,6,6)$

n	homomorphism $\theta: \Gamma^{*}(A, O) \rightarrow S_{n}$	signature of Γ
1		$(0 ; 2,2,2,3)$
2	$\theta\left(\gamma_{1}\right)=(1)(2)$	$(0 ; 2,2,3,3)$
	$\theta\left(\gamma_{2}\right)=(12)$	
	$\theta\left(\gamma_{3}\right)=(12)$	
	$\theta\left(\gamma_{4}\right)=(1)(2)$	

n	homomorphism $\theta: \Gamma^{*}(A, O) \rightarrow S_{n}$	signature of Γ
4	$\begin{aligned} & \theta\left(\gamma_{1}\right)=\left(\begin{array}{lll} 1 & 2 \end{array}\right)\left(\begin{array}{ll} 3 & 4 \end{array}\right) \\ & \theta\left(\gamma_{2}\right)=\left(\begin{array}{ll} 1 & 3 \end{array}\right)\left(\begin{array}{ll} 2 & 4 \end{array}\right) \\ & \theta\left(\gamma_{3}\right)=\left(\begin{array}{ll} 1 & 4 \end{array}\right)\left(\begin{array}{ll} 2 & 3 \end{array}\right) \\ & \theta\left(\gamma_{4}\right)=(1)(2)(3)(4) \end{aligned}$	(0; 3, 3, 3, 3)
$D(A)=2 \cdot 7 \mid \Gamma^{*}(A, O)=\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4} \mid \gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{2}=\gamma_{4}^{4}=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}=1\right\rangle$		
n	homomorphism $\theta: \Gamma^{*}(A, O) \rightarrow S_{n}$	signature of Γ
1		(0; 2, 2, 2, 4)
2	$\begin{aligned} & \theta\left(\gamma_{1}\right)=(1)(2) \\ & \theta\left(\gamma_{2}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right) \\ & \theta\left(\gamma_{3}\right)=(12) \\ & \theta\left(\gamma_{4}\right)=(1)(2) \end{aligned}$	(0; 2, 2, 4, 4)
4	$\left.\begin{array}{l} \theta\left(\gamma_{1}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right)\left(\begin{array}{ll} 3 & 4 \end{array}\right) \\ \theta\left(\gamma_{2}\right)=(1 \end{array}\right)\left(\begin{array}{ll} 2 & 4 \end{array}\right)$	(0; 4, 4, 4, 4)
$D(A)=3 \cdot 5 \mid \Gamma^{*}(A, O)=\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4} \mid \gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{2}=\gamma_{4}^{6}=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}=1\right\rangle$		
n	homomorphism $\theta: \Gamma^{*}(A, O) \rightarrow S_{n}$	signature of Γ
1		(0; 2, 2, 2, 6)
2	$\begin{aligned} & \theta\left(\gamma_{1}\right)=(1)(2) \\ & \theta\left(\gamma_{2}\right)=(12) \\ & \theta\left(\gamma_{3}\right)=(12) \\ & \theta\left(\gamma_{4}\right)=(1)(2) \end{aligned}$	(0; 2, 2, 6, 6)
4	$\begin{aligned} & \theta\left(\gamma_{1}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right)\left(\begin{array}{ll} 3 & 4 \end{array}\right) \\ & \theta\left(\gamma_{2}\right)=\left(\begin{array}{ll} 1 & 3 \end{array}\right)\left(\begin{array}{ll} 2 & 4 \end{array}\right) \\ & \theta\left(\gamma_{3}\right)=\left(\begin{array}{ll} 4 \end{array}\right) \\ & \theta\left(\begin{array}{ll} 2 & 3 \end{array}\right) \\ & \theta\left(\gamma_{4}\right)=(1)(2)(3)(4) \end{aligned}$	$(0 ; 6,6,6,6)$
$D(A)=2 \cdot 11 \mid \Gamma^{*}(A, O)=\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4} \mid \gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{3}=\gamma_{4}^{4}=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}=1\right\rangle$		
n	homomorphism $\theta: \Gamma^{*}(A, O) \rightarrow S_{n}$	signature of Γ
1		(0; 2, 2, 3, 4)
2	$\begin{aligned} & \theta\left(\gamma_{1}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right) \\ & \theta\left(\gamma_{2}\right)=\left(\begin{array}{ll} 1 & 2 \end{array}\right) \\ & \theta\left(\gamma_{3}\right)=(1)(2) \\ & \theta\left(\gamma_{4}\right)=(1)(2) \end{aligned}$	(0; 3, 3, 4, 4)

Proof. It is sufficient to verify these results for each pair $(D(A), n)$ listed in Proposition 1. We shall give a brief proof of the theorem by taking the case $D(A)=2 \cdot 3, n=6$ and the signature $(0 ; 2,2,4,4)$. By Theorem 5 , we must find the integers $n_{i j} \in\{1,2,4,6\}$ such that

$$
6=\sum_{j=1}^{\rho_{1}} \frac{2}{n_{1_{j}}}=\sum_{j=1}^{\rho_{2}} \frac{4}{n_{2_{j}}}=\sum_{j=1}^{\rho_{3}} \frac{6}{n_{3_{j}}}, \quad n_{1_{j}}\left|2, \quad n_{2_{j}}\right| 4, \quad n_{3_{j}} \mid 6 .
$$

In this case, we get the following 3 solutions:

$$
\begin{equation*}
6=\frac{2}{1}+\frac{2}{1}+\frac{2}{1}=\frac{4}{1}+\frac{4}{4}+\frac{4}{4}=\frac{6}{2}+\frac{6}{2}, \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& 6=\frac{2}{1}+\frac{2}{1}+\frac{2}{1}=\frac{4}{4}+\frac{4}{4}+\frac{4}{2}+\frac{4}{2}=\frac{6}{1}, \tag{ii}\\
& 6=\frac{2}{1}+\frac{2}{1}+\frac{2}{2}+\frac{2}{2}=\frac{4}{4}+\frac{4}{4}+\frac{4}{1}=\frac{6}{1} \tag{iii}
\end{align*}
$$

From this, we have the following result:
(i) $\theta\left(\gamma_{1}\right)$ is of type $[2,2,2], \theta\left(\gamma_{2}\right)$ is of type [1, 1, 4] and $\theta\left(\gamma_{3}\right)$ is of type [3,3],
(ii) $\theta\left(\gamma_{1}\right)$ is of type $[2,2,2], \theta\left(\gamma_{2}\right)$ is of type $[1,1,2,2], \theta\left(\gamma_{3}\right)$ is of type [6],
(iii) $\theta\left(\gamma_{1}\right)$ is of type $[1,1,2,2], \theta\left(\gamma_{2}\right)$ is of type $[1,1,4]$ and $\theta\left(\gamma_{3}\right)$ is of type [6], where the permutation σ is of type $\left[n_{1}, n_{2}, \cdots, n_{r}\right]$ if σ is the product of disjoint r cycles of length $n_{j}(1 \leq j \leq r)$. In the case (i), we may assume that $\theta\left(\gamma_{1}\right)=(12)(34)(56)$ and that $\theta\left(\gamma_{2}\right)$ fixes the letters 1 and 3 . Then we have $\theta\left(\gamma_{2}\right)=(1)(3)(2546)$. Otherwise we find that $\theta\left(\gamma_{3}\right)$ cannot be of type [3, 3], which is a contradiction. Hence we have $\theta\left(\gamma_{3}\right)=\left(\begin{array}{ll}1 & 6\end{array}\right)\left(\begin{array}{ll}3 & 5\end{array}\right)$. In the case (ii), we may also assume that $\theta\left(\gamma_{1}\right)=(12)(34)(56)$ and that $\theta\left(\gamma_{2}\right)$ fixes the letters 1 and 3 . Then we have $\theta\left(\gamma_{2}\right)=(1)(3)(25)(46)$. Otherwise we have $\theta\left(\gamma_{3}\right)$ contain (56) and this contradicts the assumption that $\theta\left(\Gamma^{*}(A, O)\right)$ is a transitive subgroup of S_{n}. So we have $\theta\left(\gamma_{3}\right)=(154362)$. In the case (iii), we may assume that $\theta\left(\gamma_{1}\right)=(12)(34)(5)(6)$ and $\theta\left(\gamma_{2}\right)$ fixes the letter 1 and 3 . Then we have $\theta\left(\gamma_{2}\right)=(1)(3)(2456),(1)(3)(2564)$. This implies that $\theta\left(\gamma_{3}\right)=(165432)$, (164352), respectively. Hence we have

	$\theta\left(\gamma_{1}\right)$	$\theta\left(\gamma_{2}\right)$	$\theta\left(\gamma_{3}\right)$
(i)	$(12)(34)(56)$	(1) (3) (2546)	(162) (354)
(ii)	$(12)(34)(56)$	(1) (3) (2 5) (46)	(154326)
(iii)	$\left.\begin{array}{l} \left(\begin{array}{ll} 1 & 2 \end{array}\right)\left(\begin{array}{ll} 3 & 4 \end{array}\right)\binom{5}{1} \\ (12) \end{array}\right)$	(1) (3) (2456) (1) (3) (2564)	$\left.\begin{array}{l} \left(\begin{array}{l} 1 \\ 1 \end{array} 5432\right. \\ (1643 \end{array}\right)$

Next we take the signature $(0 ; 2,3,3,3)$. In this case, there are no solutions $n_{i j}$. Therefore this case never occurs. We can verify the result for other cases just in a similar way.
Q.E.D.

References

[1] A. F. Beardon, The Geometry of Discrete Groups, Graduate Text in Math. 91 (1983), Springer.
[2] B. Iversen, Hyperbolic Geometry, London Math. Soc. Student Text 25(1992), Cambrige Univ. Press.
[3] J. Lehner, Discontinuous Groups and Automorphic Functions, Math. Surveys 8 (1964), Amer. Math. Soc.
[4] J. F. Michon, Courbes de Shimura hyperelliptiques, Bull. Soc. Math. France 109 (1981), 217-225.
[5] H. Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. 77 (1963), 33-71.
[6] H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math. 81 (1965), 166-193.
[7] G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. 85 (1967), 58-159.
[8] G. Shimura, On Dirichlet series and Abelian varieties attached to automorphic forms, Ann. of Math. 72 (1962), 237-294.
[9] D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319-323.
[10] K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), 91-106.
[11] K. Takeuchi, Arithmetic Fuchsian groups with signature ($1 ; e$), J. Math. Soc. Japan 35 (1983), 381-407.
[12] K. Takeuchi, Subgroups of the modular group with signature ($0 ; e_{1}, e_{2}, e_{3}, e_{4}$), Saitama Math. J. 14 (1996), 55-78.
[13] M. F. Vignéras, Arithmétique des Algébres des Quaternions, Lecture Notes in Math. 800 (1980), Springer.

Present Address:
Department of Mathematics, Faculty of Science, Saitama University, Urawa, Saitama, 338 Japan.
e-mail: jsunaga@rimath.saitama-u.ac.jp

[^0]: Received March 11, 1996

