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Abstract. We give a functional analytical definition of the Maslov index for continuous curves in the
Fredholm-Lagrangian Grassmannian. Our definition does not require assumptions either at the endpoints
or at the crossings of the curve with the Maslov cycle. We demonstrate an application of our definition by

developing the symplectic geometry of self-adjoint extensions of unbounded symmetric operators. We discuss
continuous variations of the form $A_{D}+C_{t}$ , where $A_{D}$ is a fixed self-adjoint unbounded Fredholm operator

and $\{C_{t}\}$ a family of bounded self-adjoint operators. We extend the definition of the spectral flow to such
families of unbounded operators in a purely functional analytical way. We then prove that the spectral flow
is equal to the Maslov index of the corresponding family of abstract Cauchy data spaces.

Introduction.

In this paper we give an elementary, purely functional analytical proof of the
Spectral Flow Formula. We show that the spectral flow of a continuous curve of
self-adjoint (unbounded) Fredholm operators is equal to the Maslov index of the
corresponding curve of abstract Cauchy data.

Formulas of this type were first proved by Floer, [14]. He examined a concrete
example arising from the symplectic action $in\grave{t}egral$ in Hamiltonian mechanics. A general
formula was then proved by Yoshida, [33] establishing the equality of the spectral flow
and the Maslov index for a family ofDirac operators on a closed 3-dimensional manifold.
He applied this identification to the study of 3-dimensional manifold topology. More
recently Nicolaescu, [25], [26], [27] gave a generalization of the Spectral Flow Formula
for families ofDirac operators on higher dimensional manifolds by assuming invertibility
at the endpoints of the path. There are many papers discussing these topics under such
assumptions, see e.g. Bunke [9], Cappell, Lee, and Miller, [11], Furutani and Otsuki,

[28], [16], Kirk and Klassen, [19], [20], [21], [22].

The purpose of this paper is to provide a purely functional analytical proof of the
Spectral Flow Formula that clarifies which of these assumptions are essential. We ignore

Received July 2, 1996
Revised January 9, 1997



2 BERNHELM BOOSS-BAVNBEK AND KENRO FURUTANI

all features connected solely with geometric formulations of the problem. To do thi:
we must clarify the functional analytical meaning ofcutting a manifold by a hypersurfact
Here this will mean, first, that a self-adjoint operator (typically a Dirac operator) $i$

given over a compact manifold without boundary. A splitting of the manifold is the
a process which yields a pair of closed symmetric operators with suitable properties
This is naturally understood as an inverse procedure to the classical von Neuman $\cdot$

theory of self-adjoint extensions.
We proceed as follows. In Section 1 we develop the real and complex functiona

analysis of infinite-dimensional Lagrangians and give a new definition of the Maslo
index. Our Maslov index is defined for any continuous path and does not require an
deformations of the path, or assumptions at endpoints and crossings. It is applicabl
to both the finite-dimensional and the infinite-dimensional cases. In the case of cycles
our definition gives the usual Maslov index. For paths, it gives the additivity of th
Maslov index under catenation and also its homotopy invariance.

In Section 2 we determine the precise difference between our definition of th
Maslov index and that of Robbin and Salamon, who defined the Maslov index fo
smooth curves of Lagrangians which have regular crossings with the Maslov cycle (se
[31]).

In Section 3 we construct a specific continuous curve of Fredholm pairs $0$

Lagrangians. More precisely, we first define the space $\beta$ of abstract boundary value
of a fixed closed, symmetric operator $A$ in a real Hilbert space to be the quotient $spac|$

of the maximal and minimal domain of $A$ . Then we equip $\beta$ with a symplectic structure
Usually, the Cauchy data space for a differential operator over a compact $manifol\langle$

with boundary is defined as the $L_{2}$-closure of the space of sufficiently $differentiab]_{(}$

solutions restricted to the boundary (see [7], Chapter 13 which establishes also th $($

Lagrangian property of the Cauchy data spaces for Dirac operators). We provide $\dot{t}$

more algebraic argument by exploiting the symplectic structure of $\beta$ . From this $w($

immediately derive the Lagrangian property of the (abstract) Cauchy data spaces. Thi
property implies that the Cauchy data spaces are closed subspaces of $\beta$ and vary
continuously for a continuous variation $A+C_{t}$ of $A$ where $\{C_{t}\}$ is a family of bounde $($

self-adjoint operators. Here ‘continuous’ refers to the operator norm.
We study operator families which have the following properties. They $ar($

continuous families of unbounded closed symmetric operators which all have $t$

self-adjoint extension with compact resolvent. None of the operators has inner solutions
All the operators have the same domain and differ only by a self-adjoint bounde $($

operator.
There are three situations in which such families naturally arise. First, consider ,

Dirac operator acting on the sections of a fixed Clifford module bundle $E$ over a close $($

manifold $M$ with fixed Riemannian structure. Varying the connection in $E$ yields ,

family ofDirac operators. These are closed symmetric operators in $L_{2}(M;E)$ . Their self
adjoint extensions $A_{t}$ are uniquely determined and have domain equal to the $Sobole\tau$
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space $\ovalbox{\tt\small REJECT}^{1}(M;E)$ . The operators can be naturally seen as perturbations by bundle
homomorphisms (i.e. by particularly simple bounded operators) of a densely defined,

closed symmetric operator in $L_{2}(M;E)$ . Second, consider a family of Dirac operators
on a codimension $0$ submanifold $M_{+}$ with boundary. The domain $D\subset L_{2}(M_{+}; E_{|M_{+}})$

is specified once we impose a fixed global elliptic boundary condition, but vary the
connection. Third, consider a continuous variation of the boundary condition in the
Grassmannian of generalized Atiyah-Patodi-Singer projections. If we apply a suitable
unitary transformation (as explained by Douglas and Wojciechowski, [13], Formula
A10), this case will be reduced to the preceding second case (see also Booss-Bavnbek
and Wojciechowski, [8], Section 3).

In Section 4 we give a rigorous definition of the spectral flow for the aforementioned
class of continuous families of unbounded Fredholm operators. Our goal for the general
unbounded case is to obtain a spectral flow which is a homotopy invariant. Recall that
the spectral flow is a homotopy invariant for paths of bounded self-adjoint Fredholm
operators. Therefore it can be related to certain well-known topological phenomena.
It can, for example, be related to the fact that the non-trivial component of the space
of bounded self-adjoint Fredholm operators is a classifying space for the functor $KR^{-7}$

in the real case, and for the functor $K^{-1}$ in the complex case (see [5]).

The original definition of the spectral flow was given by Atiyah, Patodi and Singer
in [4]. They brought the graph of the spectrum of the family into ‘general position’ by
deformation and counted the number of intersections with $y=0$ . But this approach is
only meaningful for loops or loop-like curves; for example, operator curves with periodic
spectrum or with invertible endpoints. Still this approach is very useful for concrete
calculations, if the crossings are smooth and regular.

We proceed in two steps to get a precise definition which is independent of any
deformations made. First, we apply Phillips’ purely functional analytical definition of
the spectral flow for a continuous curve (not necessarily a loop) of bounded Fredholm
operators (see [30]). Phillips’ definition needs no assumptions about the zero eigenvalues
and does not require any deformation of the family into ‘general position’. More
precisely, on each small interval $[t_{1}, t_{2}]$ there is a bound $a>0$ such that $a$ does not
belong to the spectrum of any $A_{t}$ and such that only finitely many eigenvalues of $A_{t}$

belong to the interval $[-a, a]$ . We count the number of eigenvalues of $A_{t}$ which belong
to the interval $[0, a]$ for $t=t_{2}$ and $t=t_{1}$ , and take the difference between these two
integers. Then the spectral flow is the sum of these differences for a sufficiently fine
partition of the interval $[0,1]$ . In this way, we do not need to count the crossings and
avoid any ambiguities. The operators at the endpoints do not have to be invertible and
the movement of the eigenvalues do not have to strictly increase or decrease when
passing zero.

The second step is to discuss the spectral flow of continuous families of unbounded
self-adjoint Fredholm operators of the form $A_{t}:=A_{D}+C_{t}$ discussed in Section 3. Clearly,
any unbounded self-adjoint Fredholm operator $A_{t}$ can be transformed into a bounded
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self-adjoint Fredholm operator by the transformation

(0.1) $A_{t}\mapsto A_{t}\sqrt{Id+A_{t}^{2}}^{-1}$

Here $\sqrt{Id+A_{t}^{2}}^{-1}$ denotes the unique positive definite square root of the positive definit‘
operator $(Id+A_{t}^{2})^{-1}$ .

We define the spectral flow of the family $\{A_{t}\}$ directly on the operator level as tht
spectral flow of the transformed family. The transformation is, however, not continuou!
on the whole space of unbounded self-adjoint Fredholm operators. B. Fuglede gave ’

counterexample in [15]. We prove that (0.1) transforms a continuous path $\{A_{t}=A_{D}+C_{t_{Q}}$

of the aforementioned form into a continuous path of bounded self-adjoint Fredholrr
operators. In other words, we prove the continuity of the combined transformation

$C\mapsto A_{D}+C\mapsto(A_{D}+C)(Id+(A_{D}+C)^{2})^{-1/2}$

We shall also assign another continuous curve $\{\tilde{A}_{t}\}$ of bounded $self- adjoin\uparrow$

Fredholm operators to the curve $\{A_{t}\}$ . We show that this curve gives the same spectra
flow as the curve transformed according to (0.1).

In Section 5 we prove our main result (Theorem 5.1):

THE SPECTRAL FLOW FORMULA. Let $A$ be a closed symmetric operator in a rea
Hilbert space $H$ with domain $D_{m}$ and let $\{C_{t}\}_{t\in I}$ be a continuous family of boundet
self-adjoint operators on H. We assume that

1. the operator $A$ has a self-adjoint extension $A_{D}$ with compact resolvent;
2. there exists a positive constant $a$ such that

$D_{m}\cap ker(A^{*}+C_{t}-s)=\{0\}$

for any $s$ with $|s|<a$ and any $t\in[0,1]$ .
Then we have

(0.2) $sf(\{A_{D}+C_{t}\})=\mu(\{\gamma(ker(A^{*}+C_{t})\},$ $\gamma(D))$ ,

where $\gamma$ denotes theprojection ofthe domain $D_{M}ofA^{*}onto$ the symplectic space $\beta=D_{M}/D_{n}$

of abstract boundary values.

We construct a two-parameter family of operators and apply the relation formula
between the Robbin and Salamon definition and our definition of the Maslov index tc
analytic segments of these derived families. Then the Spectral Flow Formula follows
by a homotopy argument.

ACKNOWLEDGMENTS. We thank R. Nest for helping us to prove Proposition $4_{\sim}$

and B. Fuglede, G. Grubb, B. $\emptyset rsted$ , N. Otsuki, and K. P. Wojciechowski for $stimulatin\not\in$

discussions. We also thank the referee for helping us improve the presentation of this
paper. Our work was supported by the Danish Science Research Council, grants no
9501870 and no. 9503564.
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1. The Grassmannian of Lagrangian Fredholm pairs.

1.1. Symplectic functional analysis. We fix the following notation.
Let $(\ovalbox{\tt\small REJECT}, \langle\cdot, \cdot\rangle, \omega)$ be a fixed symplectic, separable real Hilbert spaoe and let

$J:\ovalbox{\tt\small REJECT}\rightarrow\ovalbox{\tt\small REJECT}$ denote the corresponding almost complex structure defined by
$\omega(x, y)=\langle Jx, y\rangle$ with $J^{2}=-Id,{}^{t}J=-J$, and $\langle Jx, Jy\rangle=\langle x, y\rangle$ . Here ${}^{t}J$ denotes the

transpose of $J$ with regard to the (real) inner product $\langle\cdot, \cdot\rangle$ . Let $\mathscr{L}=\mathscr{L}(\ovalbox{\tt\small REJECT})$ denote
the set of all Lagrangian subspaces of $\ovalbox{\tt\small REJECT}$ (i.e. $\Lambda=(J\Lambda)^{\perp}$). It is naturally identified with
the space $\mathscr{C}$ of self-adjoint involutions of $\ovalbox{\tt\small REJECT}$ which anti-commute with $J$ . The

correspondence is given by

$\mathscr{L}\ni\Lambda\mapsto C:=2P_{\Lambda}-Id\in \mathscr{C}$ and $\mathscr{C}\ni C\mapsto\Lambda:=\{x\in \mathscr{L}|Cx=x\}$ ,

where $P_{\Lambda}$ denotes the orthogonal projection onto $\Lambda$ . We topologize $\mathscr{L}$ by the topology
of $\mathscr{C}$ as a subset in the space $\mathscr{B}(\ovalbox{\tt\small REJECT})$ of bounded operators on $\ovalbox{\tt\small REJECT}$ . The space $\mathscr{L}$ is
contractible and therefore not topologically interesting. To get something topologically
meaningful, we fix a Lagrangian subspace $\Lambda_{0}$ .

DEFINITION 1.1. (a) The Fredholm-Lagrangian Grassmannian of a real symplectic
Hilbert space $\ovalbox{\tt\small REJECT}$ at a fixed Lagrangian subspace $\Lambda_{0}$ is defined as

$\mathscr{F}\mathscr{L}_{\Lambda_{O}}:=$ { $\Lambda\in \mathscr{L}|(\Lambda,$ $\Lambda_{0})$ Fredholm pair}

(i.e. dim $\Lambda\cap\Lambda_{0}<\infty,$ $\Lambda+\Lambda_{0}$ closed and codim $\Lambda+\Lambda_{0}<\infty$ ).

(b) The Maslov cycle of $\Lambda_{0}$ in $\ovalbox{\tt\small REJECT}$ is defined as

$x_{4_{O}}:=\mathscr{F}\mathscr{L}_{\Lambda_{0}}\backslash \mathscr{F}\mathscr{L}_{\Lambda_{O}}^{(0)}$ ,

where $\mathscr{F}\mathscr{L}_{\Lambda_{0}}^{\langle 0)}$ denotes the subset of Lagrangians intersecting $\Lambda_{0}$ transversally, i.e.
$\Lambda\cap\Lambda_{0}=\{0\}$ .

NOTE. The Fredholm-Lagrangian Grassmannian in an infinite-dimensional
symplectic Hilbert space was first considered in Swanson, [32].

Using the almost complex structure $J$, we consider the space $\ovalbox{\tt\small REJECT}$ as a complex
Hilbert space. We denote it by the same letter $\ovalbox{\tt\small REJECT}$ . The complex inner product of $\ovalbox{\tt\small REJECT}$ is
given by

$\langle x, y\rangle_{\mathbb{C}}:=\langle x, y\rangle-\sqrt{-1}\omega(x, y)$ .

Let $\mathcal{U}(\ovalbox{\tt\small REJECT})$ denote the group of all unitary operators on $\ovalbox{\tt\small REJECT}$ and $\mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$ denote the
subgroup of operators of the form $Id+K$, where $K$ is a compact operator. Then $\phi_{c}(\ovalbox{\tt\small REJECT})$

acts transitively on $\mathscr{F}\mathscr{L}_{\Lambda_{O}}$ in a natural way. Let

$p:\mathcal{U}_{c}(\ovalbox{\tt\small REJECT})-\mathscr{F}\mathscr{L}_{\Lambda_{O}}$

$U$ $\mapsto U(\Lambda_{O}^{\perp})$
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denote the mapping defined by this action. This mapping is the projection of the principa
fibre bundle $\mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$ onto its base space $\mathscr{F}\mathscr{L}_{\Lambda_{O}}$ (see Swanson, [32], Lemma 3).

Since $\ovalbox{\tt\small REJECT}$ can be considered as the complexification $\Lambda_{0}\otimes C\cong\Lambda_{0}+J\Lambda_{0}=\ovalbox{\tt\small REJECT}$ of $\Lambda_{0}$

we attain a complex conjugation by

$z=x\otimes 1+y\otimes\sqrt{-1}\mapsto x\otimes 1-y\otimes\sqrt{-1}=;\overline{z}$

$\Vert$
$\Vert$

$x+Jy$ x-Jy

where $x,$ $y\in\Lambda_{0}$ . Let $A\in \mathscr{B}(\ovalbox{\tt\small REJECT})$ . We let $\overline{A}$ denote the bounded operator on $\ovalbox{\tt\small REJECT}$ given by
$\overline{A}(z):=\overline{A(\overline{z})}$ and denote $TA:=\overline{A^{*}}$ . Notice that in difference to the real transpose ${}^{t}A,$ $th\epsilon$

new conjugate $TA$ belongs to the category of complex operators and is defined with
respect to the fixed $\Lambda_{0}$ .

Let $\Lambda\in \mathscr{F}\mathscr{L}_{\Lambda_{O}}$ be given. We choose an operator $U\in \mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$ such that $\Lambda=U(\Lambda_{0}^{\perp})$ .
From the definition of the conjugate $TU$ we obtain the following isomorphy of complex
subspaces of $\Lambda_{0}\otimes C\cong\ovalbox{\tt\small REJECT}$ ;

(1.1) $ker(U^{T}U+Id)\cong\Lambda\cap\Lambda_{0}+J(\Lambda\cap\Lambda_{0})\cong(\Lambda\cap\Lambda_{0})\otimes C$ .
Equation (1.1) proves:

LEMMA 1.2. For any $\Lambda\in \mathscr{F}\mathscr{L}_{\Lambda_{O}}$ and any $U\in \mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$ with $\Lambda=(\Lambda_{0}^{\perp})$ , we have
$\dim_{R}(\Lambda\cap\Lambda_{0})=\dim_{\mathbb{C}}ker(U^{T}U+Id)$ .

Our functional analytical definition of the Maslov index builds upon this property
of the operator $U^{T}U$.

1.2. The complex Fredholm-Lagrangian Grassmannian and the symmetric gener-
ator. Above we considered the complex Hilbert space consisting of the points of $\ovalbox{\tt\small REJECT}$ .
Now we consider the complexification $\ovalbox{\tt\small REJECT}\otimes C$ . This space splits into a direct sum of
the two eigenspaces $E_{+}$ , E-of $J\otimes Id$ for the eigenvalues $\pm\sqrt{-1}$ . We define the set of
complex Lagrangian subspaces of $\ovalbox{\tt\small REJECT}\otimes C$ by

$\mathscr{L}^{C}:=$ { $L\subset\ovalbox{\tt\small REJECT}\otimes C|L+(J\otimes IdXL)=\ovalbox{\tt\small REJECT}\otimes C$ and $\langle L,$ $(J\otimes Id)L\rangle^{\mathbb{C}}=0$ } ,

where $\langle\cdot, \cdot\rangle^{\mathbb{C}}$ denotes the Hermitian inner product in $\mathscr{L}\otimes C$ . We obtain a natural
embedding of $\mathscr{L}$ in $\mathscr{L}^{C}$ given by

$\mathscr{L}\ni\Lambda\mapsto\tau(\Lambda):=\Lambda\otimes C\in \mathscr{L}^{\mathbb{C}}$

Let $\mathscr{G}$ denote the group of all unitary operators which commute with $J\otimes Id$ , i.e.
which keep $E_{\pm}$ invariant. Hence $\mathscr{G}$ is isomorphic to $\mathcal{U}(E_{-})\times \mathcal{U}(E_{+})$ . Clearly $\mathscr{G}$ acts on
$\mathscr{L}^{C}$ . Let $\mathscr{G}_{c}$ denote the subgroup of operators of the form $Id+K$, where $K$ is a compact
operator on $\ovalbox{\tt\small REJECT}\otimes C$ . Then also this group splits into

$\mathscr{G}_{c}\cong \mathcal{U}_{c}(E_{-})\times \mathcal{U}_{c}(E_{+})$ .
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We define the complex Fredholm-Lagrangian Grassmannian by

$\mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes \mathbb{C}}^{C}:=$ { $L\in \mathscr{L}^{C}|(L,$ $\Lambda_{0}\otimes C)$ Fredholm pair}.

The group $\mathscr{G}_{c}$ acts transitively on $\mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes \mathbb{C}}^{c}$ . Let

$\rho^{\mathbb{C}}$ :
$\mathscr{G}_{c}g\rightarrow \mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes \mathbb{C}}^{\mathbb{C}}\mapsto g(\Lambda_{0}^{\perp}\otimes C)$

denote the map defined by this action. We obtain a commutative diagram

$\mathcal{U}_{c}(\ovalbox{\tt\small REJECT})\downarrow p\rightarrow^{\tau^{\tilde}}$

$\mathscr{G}_{c}\downarrow\rho^{c}$

$\mathscr{F}\mathscr{L}_{\Lambda_{O}}\rightarrow^{\tau}\mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes C}^{\mathbb{C}}$ ,

where $\tilde{\tau}$ denotes the complexification $U\mapsto U\otimes Id=\left(\begin{array}{l}\overline{U}0\\0U\end{array}\right)$ . Here we identify $\mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$ with

$\mathcal{U}_{c}(E_{\pm})$ by the (complex and anti-linear) isomorphisms
$\ovalbox{\tt\small REJECT}\rightarrow^{\cong}$ $E_{\pm}$

$z\mapsto\frac{z\otimes 1\mp J(z)\otimes\sqrt{-1}}{\sqrt{2}}$ ,

so that $\overline{U}$ operates on $E_{-}$ and $U$ on $E_{+}$ in the preceding matrix.
Now we construct an isomorphism between $\mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$ and $\mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes \mathbb{C}}^{\mathbb{C}}$ . Let $\Phi$ be the

mapping
$\Phi:\mathcal{U}_{c}(\ovalbox{\tt\small REJECT})\rightarrow$ $\mathscr{G}_{c}$

$U$ $\mapsto\left(\begin{array}{ll}Id & 0\\0 & U\end{array}\right)$ ,

where Id operates on E-and $U$ is considered as an operator $E_{+}\rightarrow E_{+}$ . We split

$\mathscr{G}_{c}=\{\left(\begin{array}{ll}Id & 0\\0 & U\end{array}\right)\}\times\{$ $\left(\begin{array}{ll}V & 0\\0 & V\end{array}\right)\}=\{\left(\begin{array}{ll}U & 0\\0 & V\end{array}\right)\}$ ,

and see that the range of $\Phi$ and the second factor of $\mathscr{G}_{c}$ intersect only at the identity.
We also see that the right inverse of $\Phi$ is given by

$\left(\begin{array}{ll}U & 0\\0 & V\end{array}\right)\mapsto VU^{-1}$ ,

where $U^{-1}$ is considered as an operator from $E_{+}$ to $E_{+}$ by successively identifying
$E_{-}\cong\ovalbox{\tt\small REJECT}_{C}\cong E_{+}$ .
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The preceding facts prove

PROPOSITION 1.3. For any real symplectic, separable Hilbert space $\ovalbox{\tt\small REJECT}$ with fixe
Lagrangian $\Lambda_{0}$ , we have a homeomorphism

$p^{C}\circ\Phi:\mathcal{U}_{c}(\ovalbox{\tt\small REJECT})\rightarrow^{\sim}\mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes C}^{\mathbb{C}}$ .
Note that the inverse mapping

$\Psi:=(\rho^{\mathbb{C}}\circ\Phi)^{-1}$ : $\mathscr{F}\mathscr{L}_{A_{O}\otimes \mathbb{C}}^{\mathbb{C}}\rightarrow \mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$

is explicitly given on the range of $\tau$ by
$\Lambda\otimes C\mapsto U\overline{U}^{-1}=U^{T}U$ where $U\in \mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$ with $\Lambda=U(\Lambda_{0}^{\perp})$ .

Hence we can introduce our key operator for the direct functional analytical definition
of the Maslov index:

DEFINITION 1.4. For any $\Lambda\in \mathscr{F}\mathscr{L}_{\Lambda_{O}}$ , we define the complex symmetric generatoJ
of $\Lambda$ (with regard to $\Lambda_{0}$) by

$W_{A}:=\Psi(\Lambda\otimes C)P\underline{\underline{rop.1}}.3U^{T}U\in \mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$ .
NOTE. The operator $W_{\Lambda}=U^{T}U$ is invariantly defined by $\Lambda$ . This was alread]

found by Leray, [23], Lemma 2.1, by direct calculation in the real Grassmannian. Ir
our context, the invariance of $W_{A}$ is just a geometric property of the $comple3$

Grassmannian. Consider the principal fibre bundle given by the action of the group $\mathscr{G}$

on $\mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes \mathbb{C}}^{C}$ . The bundle has a global section provided by $\Psi$ . That is the reason for tht
invariance of $W_{\Lambda}$ . Moreover, we can describe the set of all operators which arise $a_{\backslash }($

complex generators $W_{\Lambda}$ of (real) Fredholm-Lagrangians $\Lambda$ . It is exactly the subset oi
all $W\in \mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$ with $W=^{T}W$.

1.3. A proper functional analytical deflnition of the Maslov index for arbitrar]
paths. Let $\{\Lambda(t)\}_{t\in I}$ with $I=[0,1]$ be a continuous path in $\mathscr{F}\mathscr{L}_{A_{O}}$ . Then the famil]
$\{W_{A\langle t)}\}_{t\in I}$ of unitary operators on $\ovalbox{\tt\small REJECT}$ is also a continuous family in the operator norm
To define the Maslov index we proceed in a similar way as Phillips did when $he$ gave
a direct definition of the spectral flow of a continuous path of self-adjoint, boundec
Fredholm operators (for details see [30] or below Section 4).

To define the spectral flow one deals with an operator family with spectra
oscillations on the real line around zero. To define the Maslov index we define ar
operator family with spectral oscillations on the unit circle around $e^{i\pi}$ . In both cases
we want to count the net number of eigenvalues, counted with multiplicities, which
pass through a fixed gauge in the positive direction.

In general, it is not possible to lock the oscillations ofthe eigenvalues into an interval
$[-a, a]$ (or into an arc between $e^{i(\pi-a)}$ and $e^{i\langle\pi+a)}$) so that no eigenvalues can leak
through the boundary $\pm a$ when the parameter runs from $0$ to 1. But Phillips observed
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FIGURE 1. Horizontal and vertical spacing of the spectrum of the complex
symmetric generator $W_{\Lambda(t)}$

that the strategy works locally and can be patched together. We shall use a similar
approach to define the Maslov index.

We choose a partition $\{0=t_{0}<t_{1}<\cdots<t_{N}=1\}$ ofthe interval and positive numbers
$0<\epsilon_{j}<\pi,$ $j=1,$ $\cdots,$ $N$, such that

(1.2) $ker(W_{\Lambda(t)}-e^{i\langle\pi\pm\epsilon_{j})})=\{0\}$

for $t_{j-1}\leq t\leq t_{j}$ (see Figure 1). Here we use the fact that $W_{\Lambda\langle t)}-e^{i\pi}$ is a Fredholm operator.
This is clear since $W_{\Lambda(t)}$ is unitary with eigenvalues on the unit circle and since $W_{\Lambda\langle t)}-Id$

is compact with discrete eigenvalues and with $0$ as the only accumulation point.
If the equation (1.2) is satisfied at a point $t$ for an $\epsilon_{j}$ , it will be satisfied also in

near neighbouring points with the same bound $\epsilon_{j}$ . In such a way we can construct a
finite number of intervals $[t_{j\rightarrow 1}, t_{j}]$ which are a partition of the interval $[0,1]$ and which
satisfy equation (1.2) for suitable bounds $\epsilon_{j}$ .

We consider a continuous curve in the Fredholm-Lagrangian and admit that the
curve intersects with the Maslov cycle $\mathscr{M}_{\Lambda_{O}}$ for an infinite number of parameters. Hence,
there is in general not a concrete intersection number to define the Maslov index. We
now count a number which characterizes the oscillation and which coincides with the
intersection number of the curve with the Maslov cycle, if the curve is in a ‘general
position’.

DEFINITION 1.5. Let $\Lambda=\{\Lambda(t)\}_{t\in I}$ be a continuous path in the Fredholm-
Lagrangian Grassmannian $\mathscr{F}\mathscr{L}_{\Lambda_{O}}$ of a real symplectic Hilbert space $\ovalbox{\tt\small REJECT}$ at a fixed
Lagrangian $\Lambda_{0}$ . We define the Maslov index by

$\mu(\Lambda)=\mu(\Lambda;\Lambda_{0}):=\sum_{j=1}^{N}k(t_{j}, \epsilon_{j})-k(t_{j-1}, \epsilon_{j})$

with
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FIGURE 2. The locking of the eigenvalues between $\epsilon$ and $\epsilon^{\prime}$

$k(t, \epsilon_{j}):=\sum_{0\leq\theta<\epsilon_{j}}$ dim $ker(W_{\Lambda(t)}-e^{i\{\pi+\theta)})$ for $t_{j-1}\leq t\leq t_{j}$ ,

where the horizontal and vertical spacing $(t_{0}, \cdots, t_{N}),$ $(\epsilon_{1}, \cdots, \epsilon_{N})$ is chosen as in (1.2).

Notice that our definition of the Maslov index does not depend on the choice of
the horizontal or vertical spacing. This is not only because of the continuity of the
eigenvalues but also because the role of $\epsilon_{j}$, chosen as in (1.2), is to lock the eigenvalues
for $t\in[t_{j-1}, t_{j}]$ in the interval $[-\epsilon, \epsilon]$ . Choosing any other such $\epsilon^{\prime}$ will also lock the
eigenvalues between $\epsilon$ and $\epsilon^{\prime}$ , see Figure 2. This proves the claimed independence
of our definition of the Maslov index of the choice of the horizontal or vertical spacing.

All Robbin and Salamon’s ’axioms’ for the Maslov index (see [31], Theorem 2.3,
and, in similar form, Cappell, Lee, and Miller, [10]) follows at once from our con-
struction of the Maslov index. We emphasize the following properties.

THEOREM 1.6. (I) The Maslov index is well definedfor homotopy classes ofpaths
withfixed endpoints. In particular, the Maslov index is invariant under re-parametrization
ofpaths.

(II) The Maslov index is additive under catenation, $i.e$ .

$\mu(\Lambda_{1}*\Lambda_{2})=\mu(\Lambda_{1})+\mu(\Lambda_{2})$ ,

where $\{\Lambda_{1}(t)\},$ $\{\Lambda_{2}(t)\}$ are continuous paths with $\Lambda_{1}(1)=\Lambda_{2}(0)$ and

$(\Lambda_{1}*\Lambda_{2})(t):=\{_{\Lambda_{2}}^{\Lambda_{1}}\left\{\begin{array}{l}2t)0\leq t\leq 1/2\\2t-1)1/2<t\leq 1\end{array}\right.$

(III) The Maslov index is natural under the action of the group $Sp(\ovalbox{\tt\small REJECT})$ ofsymplectic
automorphisms of $\ovalbox{\tt\small REJECT}$ .

(IV) The Maslov index vanishes for paths which stay in one stratum $\mathscr{F}\mathscr{L}_{\Lambda_{O}}^{\langle k)}$ of
the stratified space $\mathscr{F}\mathscr{L}_{\Lambda_{O}}=\bigcup_{k=0}^{\infty}\mathscr{F}\mathscr{L}_{A_{O}}^{(k)},$ $i.e$. ifdim $\Lambda(t)\cap\Lambda_{0}=k$for one $k\geq 0$ and all $t\in I$.
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To define the Maslov index, we embedded the real Fredholm Grassmannian $\mathscr{F}\mathscr{L}_{\Lambda_{O}}$

in the complex Grassmannian $\mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes C}^{c}$ . The inclusion was given by complexification.
Clearly, there are many more Lagrangian curves in $\mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes C}^{\mathbb{C}}$ than those coming from
$\mathscr{F}\mathscr{L}_{\Lambda_{O}}$ . Also the complex Maslov cycle defined by

$\mathscr{M}_{\Lambda_{O}\otimes \mathbb{C}}:=\{L\in \mathscr{F}\mathscr{L}_{\Lambda_{0}\otimes \mathbb{C}}^{c}|L\cap(\Lambda_{0}\otimes C)\neq\{0\}\}$

is substantially larger than the real Maslov cycle as defined before. We can generalize
Lemma 1.2 and characterize the complex Maslov cycle by the property that for all its
$L$ , the operator $\Psi(L)$ has eigenvalue $-1$ . This leads to a genuinely complex version of
Definition 1.5:

DEFINITION 1.7. For any continuous family $\{L(t)\}\in \mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes \mathbb{C}}^{C}$ , we define the
complex Maslov index by

$\mu^{\mathbb{C}}(\{L(t)\}):=\sum_{j=1}^{N}k(t_{j}, \epsilon_{j})-k(t_{j-1}, \epsilon_{j})$ ,

where we replace the operator $W_{\Lambda\langle t)}$ by the operator $\Psi(L(t))$ in the definition of the
multiplicities $k(t., \epsilon.)$ .

Notice that Theorem 1.6 remains valid in the complex case. Furthermore, we see
at once that $\mu^{C}$ is the intersection number of the family $L(t)$ with the complex Maslov
cycle, if $\{L(t)\}$ is in a ’general position’. It is not difficult to derive the following formula:

PROPOSITON 1.8. Let $\{\Lambda(t)\}\in \mathscr{F}\mathscr{L}_{\Lambda_{O}}$ and $\{L(t)\}\in \mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes \mathbb{C}}^{\mathbb{C}}$ be two continuousfamilies
which have the same endpoints. They are homotopic in $\mathscr{F}\mathscr{L}_{\Lambda_{O}\otimes C}^{\mathbb{C}}$ , if and only if

$\mu(\{\Lambda(t)\})=\mu^{\mathbb{C}}(\{L(t)\})$ .

REMARK 1.9. We notice that $\mu(\{\Lambda(t)\})$ is the winding number of the closed curve
$\{\det W_{\Lambda\langle t)}\}_{t\in S^{1}}$ for loops, i.e. for $\Lambda(0)=\Lambda(1)$ , and for finite-dimensional $\ovalbox{\tt\small REJECT}$ . This is the
original definition of the Maslov index as explained in Arnold, [3]. Arnold’s definition
can be transferred to infinite-dimensional inductive limits. It was generalized by Swanson,
[32] to cycles in the Fredholm-Lagrangian Grassmannian. Similarly, we get for arbitrary
complex Lagrangian loops that $\mu^{C}(\{L(t)\})$ is the winding number of $\{\det\Psi(L(t))\}_{t\in S^{1}}$ .

2. The relation between the differential and functional analytical deflnition of the
Maslov index.

2.1. Review of the differential deflnition. Here we assume that the symplectic
vector space $\ovalbox{\tt\small REJECT}$ is finite-dimensional. Notice, though, that the definition of the Maslov
index given by Robbin and Salamon, [31], can be extended immediately to the
infinite-dimensional case following Swanson [32], Theorem 1.2, where the differentiable
structure for $\mathscr{F}\mathscr{L}_{\Lambda_{O}}$ was defined (see also Nicolaescu [26]). In our proof of the Spectral
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Flow Formula (in Section 5) we shall apply the Robbin and Salamon definition in th $($

infinite-dimensional form to a simple analytic family. Restricting ourselves to th $($

finite-dimensional case makes the presentation more easy, since we can then $identif\urcorner$

$\mathscr{F}\mathscr{L}_{\Lambda_{O}}$ with $\mathscr{L}$ and $\mathcal{U}_{c}(\ovalbox{\tt\small REJECT})$ with $\mathcal{U}(\ovalbox{\tt\small REJECT})$ . However, we still fix one Lagrangian subspac $($

$\Lambda_{0}$ to specify the Maslov cycle.
Roughly speaking, Robbin and Salamon’s differential approach for defining th $($

Maslov index is based on three observations:
(i) Tangent vectors $(\Lambda, A)\in T_{\Lambda}(\mathscr{L})$ can be regarded as symmetric bilinear form

$Q_{(\Lambda,\dot{\Lambda})}$ on $\Lambda$ in a natural way.
(ii) For a $C^{1}$ (or smooth) curve $\{\Lambda(t)\}_{t\in I}$ of Lagrangian subspaces there is $\dot{‘}$

natural way to distinguish the special case when the curve has only regular crossing
with the Maslov cycle $\ovalbox{\tt\small REJECT}_{A_{O}}$ . Here regular crossing at $t\in I$ means that the symmetri $($

bilinear form

$Q_{\langle\Lambda\langle t),\dot{\Lambda}\langle t))|\Lambda\langle t)\cap\Lambda_{O}}$ : $(\Lambda(t)\cap\Lambda_{0})\times(\Lambda(t)\cap\Lambda_{0})\rightarrow R$

is non-singular.
(iii) Since regular crossings are isolated, one can define a number by adding th $($

signatures and possible corrections at the ends of the path. The number is th $($

Robbin-Salamon (differential) Maslov index. Clearly, it will remain unchanged by $anl$

further deformation within the class of smooth curves with only regular crossings witl
the Maslov cycle. (It seems that there is no clear argument in the literature how on $($

can establish that the number will neither $ch$ange under deformations passing througl
the class of continuous curves with only regular crossings. See also Remark 2.2 below.

To explain observation (i), we set for a $(\Lambda, \Lambda)\in T_{\Lambda}(\mathscr{L})$ and $x,$ $ y\in\Lambda$ :

(2.1) $Q_{(\Lambda.\dot{\Lambda})}(x, y):=\frac{d}{ds}\omega(x, By)_{|s=0}$ ,

where the family $\{B_{s} : \Lambda\rightarrow J(\Lambda)\}_{|s|<<1}$ of linear maps is chosen in such a way tha
its graph $\Lambda(s):=\{x+B_{s}x|x\in\Lambda\}$ becomes a $C^{1}$ -curve through $\Lambda$ at $s=0$ witl
$(d/ds)\Lambda(s)_{|s=0}=\dot{\Lambda}$ .

We assume that $\{\Lambda_{t}\}_{t\in I}$ is a $C^{1}$ -curve with only regular crossings with the Maslo1
cycle $\mathscr{M}_{\Lambda_{O}}$ . From [31] we recall Robbin and Salamon’s definition of the (differential
Maslov index by

(2.2) $\mu^{RS}(\Lambda;\Lambda_{0}):=\neq signQ_{\langle\Lambda(0).\dot{A}\langle O))|A\langle O)\cap\Lambda_{0}}$

$+\sum_{0<t<1}$ sign $Q_{\langle\Lambda\langle t),\dot{\Lambda}\langle t))|\Lambda\langle t)\cap\Lambda_{O}}++signQ_{\langle\Lambda\langle 1),\dot{A}\langle 1))|\Lambda\langle 1)\cap\Lambda_{O}}$ .

2.2. The relation between the differential and functional analytical definition fo
smooth paths. Let us assume that the curve $\{\Lambda(t)\}_{t\in I}$ is of $C^{2}$-class and has only regula
crossings with the Maslov cycle $\mathscr{M}_{\Lambda_{O}}$ . We show that our functional analytical definitio]
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of the Maslov index coincides with Robbin and Salamon’s differential definition except
for the corrections at the endpoints of the path. These corrections sometimes cause
the differential Maslov index to become a half-integer, while our definition always
provides an integer (as wanted for Z-valued homotopy invariants). More precisely we
have:

THEOREM 2.1. Under the preceding conditions of $C^{2}- d\iota fferentiability$ and regular
crossings we have

(2.3) $\mu=\mu^{RS}-\frac{k_{t=0}}{2}+\frac{k_{t=1}}{2}$ ,

where $k_{t}$ denotes the crossing dimension dim $\Lambda(t)\cap\Lambda_{0}$ .

REMARK 2.2. Formula (2.3) also establishes the homotopy invariance of Robbin
and Salamon’s definition by avoiding the delicate argument of deformations within the
class of curves with only regular crossings.

PROOF. First we show that our and Robbin and Salamon’s definitions coincide in
suitable small intervals. We relate the eigenvalues of our symmetric unitary generator
$W_{\Lambda\langle t)}$ on both sides of $e^{i\pi}$ with the positive and negative eigenvalues of the quadratic
form $Q_{\langle\Lambda(t),\dot{\Lambda}(t))|\Lambda\langle t)\cap\Lambda_{O}}$ . Later we shall add over a partition of the unit interval $I$ into
small intervals and compare the eigenvalues at the endpoints of $I$.

Step 1: We consider a small neighbourhood of a point $t_{0},0<t_{0}<1$ , where
$\Lambda(t_{0})\cap\Lambda_{0}\neq\{0\}$ . Let $U_{t}\in \mathcal{U}(\ovalbox{\tt\small REJECT})$ be a curve of unitary transformations such that
$U_{t}(J\Lambda_{0})=\Lambda(t)$ for $|t-t_{0}|<<1$ . If we write $U_{t}=X_{t}+\sqrt{-1}Y_{t}$ , we can express the quadratic
form on the variable space $\Lambda(t)$ of (2.1) as a quadratic form on the fixed space $\Lambda_{0}$ by
substituting $x=U_{t_{O}}Ju$ and $y=U_{t_{O}}Jv$ with $u,$ $v\in\Lambda_{0}$ . As observed already by Robbin and
Salamon, the coordinate change yields

(2.4) $ Q_{\langle\Lambda\langle t_{O}),\dot{\Lambda}\langle t_{O}))}(U_{t_{O}}Ju, U_{t_{O}}Jv)=\langle\dot{Y}_{t_{O}}(u), X_{t_{O}}(v)\rangle-\langle\dot{X}_{t_{O}}(u), Y_{t_{O}}(v)\rangle$ .

Step 2: Note that $\Psi(\Lambda(t)\otimes C)=U_{t}^{T}U_{t}=:W_{t}$ is our $W_{\Lambda\langle t)}$ of Definition 1.4. Writing
$U_{t}=U_{t_{O}}e^{iA_{t}}$ and $W_{t}=W_{t_{O}}e^{iS_{t}}$ with self-adjoint $A_{t}$ and $S_{t}$ and $S_{t_{O}}=0$ yields

(2.5) $ Q_{\langle\Lambda\langle t_{0}).\dot{\Lambda}\langle t_{O}))}(-Y_{t_{O}}u+JX_{t_{O}}u, -Y_{t_{O}}v+JX_{t_{O}}v)=\langle\dot{a}_{t_{O}}(u), v\rangle$ ,

where $A_{t}=a_{t}+ib_{t}$ . Also, we have the unitary equivalence

(2.6) $\tau U_{t_{O}}\dot{S}_{t_{O}}=2\dot{a}_{t_{O}}^{T}U_{t_{O}}$ .

Equations (2.5) and (2.6) imply that sign $Q_{\langle\Lambda\langle t_{O}),\dot{\Lambda}(t_{O}))|\Lambda\langle t_{O})\cap\Lambda_{O}}$ coincides with the signatures
of $\dot{a}_{t_{O}}$ and $\dot{S}_{t_{O}}$ on corresponding subspaces of $\Lambda_{0}$ . Notice that the imaginary part $ib_{t_{O}}$

disappears in the signature formula for $ve$ry good reasons, namely because the choice
of $U_{t}$ is non-unique.

Step 3: Now we relate the signature of the quadratic form at $t_{0}$ to the curve of
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eigenvalues of $W_{t}$ for $|t-t_{0}|<<1$ . We assume that

$\dim_{R}(\Lambda(t_{0})\cap\Lambda_{0})=\dim ker(W_{t_{O}}-e^{i\pi})=k>0$ .
$Nowwe1ocktheeigenvaluesofW_{t}att=t_{0}$ (vertically’) by e $>0suchthat$

$ker(W_{t_{O}}-e^{i\langle\pi+\theta)})=\{0\}$ for $ 0<|\theta|\leq\epsilon$

and (horizontally’) by $\delta>0$ such that $ker(W_{t}-e^{i\langle\pi\pm\epsilon)})$ remains equal to $\{0\}$ . Hence

$\sum_{|\theta|\leq\epsilon}$ dim $ker(W_{t}-e^{i\langle\pi+\theta)})=k$

for $|t-t_{0}|<\delta$ .
Let

$0<\lambda_{1}\leq\cdots\leq\lambda_{p}$ and $0>\mu_{1}\geq\cdots\geq\mu_{q}$

denote the eigenvalues of $S_{\iota_{O}|A(t_{0})\cap A_{O}}$ . We have no vanishing eigenvalues since th $($

crossing is assumed to be regular, hence $p+q=k$ . Assume that $\Lambda(t)$ is of $C^{2}$-class
The transformation $W_{t}$ will have eigenvalues $\{\lambda_{l}(t)\}$ and $\{\mu_{j}(t)\}$ for $t$ sufficiently clos
to $t_{O}$ , say in the interval $[t_{0}-\delta, t_{0}+\delta]$ . These eigenvalues bifurcate from $-1$ at $t_{0}il$

the following form:
$\lambda_{l}(t)=e^{i\langle\pi+\lambda_{l}t+O\langle t^{2}))}$ , $l=1,$ $\cdots,p$ ,
$\mu_{j}(t)=e^{i\langle\pi+\mu_{j}t+O\langle t^{2}))}$ , $j=1,$ $\cdots,$ $q$ .

It follows that the point $t_{0}$ , where dim$R(\Lambda(t_{o})\cap\Lambda_{0})>0$ , is isolated and that

$\sum_{0\leq\theta\leq\epsilon}\dim ker(W_{t}-e^{i(\pi+\theta)})=p$ and $\sum_{-\epsilon\leq\theta<0}\dim ker(W_{t}-e^{i\langle\pi+\theta)})=q$

for $ t_{O}<I\leq t_{0}+\delta$ (and vice versa for $t_{O}-\delta\leq t<t_{0}$). Hence

(2.7) $\mu(\{\Lambda(t)\}_{t_{0}-\delta\leq t\leq t_{O}+\delta};\Lambda_{0})=k(t_{0}+\delta, \epsilon)-k(t_{0}-\delta, \epsilon)=p-q$

$=signQ_{\langle\Lambda\langle t_{O}).\dot{\Lambda}\langle t_{O}))|\Lambda\langle t_{O})\cap\Lambda_{O}}=\mu^{RS}(\{\Lambda(t)\}_{t_{0}-\delta\leq t\leq t_{O}+\delta};\Lambda_{0})$ .
Step 4: We still have to compare the counting at the endpoints if the crossing

are not transversal. At the left endpoint $t_{0}=0$ we have $k(O+\delta, \epsilon)=p$ and $k(O, \epsilon)=$

dim $\Lambda(0)\cap\Lambda_{0}=k=p+q$ ; hence our definition of the Maslov index contributes witl
$p-(p+q)=-q$ , while Robbin and Salamon’s definition contributes with $(p-q)/2=$

$k/2-q$ . Similarly, at the right endpoint $t_{O}=1$ , we $getk(1, \epsilon^{\prime})-k(1-\delta^{\prime}, \epsilon^{\prime})=k^{\prime}-q^{\prime}=p$

while Robbin and Salamon get $(p^{\prime}-q^{\prime})/2=p^{\prime}-k^{\prime}/2$ . That explains the error term
in the formula (2.3). We obtain the full proof of our theorem by the additivity unde
catenation of paths. $\subset$

3. An example: the Fredholm Lagrangian of abstract Cauchy data spaces.

3.1. The symplectic space of abstract boundary values. We assume that $H$ is $($

real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ ; that $D_{m}$ is a dense subsapce of $H;an($



MASLOV INDEX 15

that $A$ is $a$ closed symmetric operator in $H$ defined on $D_{m}$ . Let $D_{M}$ denote the domain
of the adjoint operator A* $ofA$ . We have

$D_{M}\supset D_{m}$ and $A^{*}$

I $D_{m}=A$ ,

i.e. $A^{*}$ is a (closed) extension of $A$ . Let $D_{M}^{g}$ and $D_{m}^{g}$ denote the corresponding Hilbert
spaces, equipped with the inner product coming from the graph norm

$\langle x, y\rangle_{\mathcal{G}}:=\langle x, y\rangle+\langle A^{*}x, A^{*}y\rangle$ for $x,$ $y\in D_{M}$ .

Then $D_{m}^{g}$ is a closed subspace of $D_{M}^{g}$ . We denote by $\Vert x\Vert_{g}:=\sqrt{\langle x,x\rangle_{g}}=\sqrt{\langle x,x\rangle+\langle A^{*}x,A^{*}x\rangle}$ .
Set $\beta:=D_{M}^{g}/D_{m}^{g}$ with the canonical projection

$\gamma:D_{M}^{g}\rightarrow$ $\beta$

$x\mapsto[x]=x+D_{m}$

and with the quotient norm

$\Vert\gamma(x)\Vert_{\beta}:=\inf_{a\in D_{m}}\Vert x+a\Vert_{g}$ for $\gamma(x)\in\beta$ .

We call $\beta$ the space of abstract boundary values and $\gamma$ the abstract trace map. We $ha$ve
a short exact sequence of Hilbert spaces

(3.1) $0\rightarrow D_{m}^{g}\subset\rightarrow D_{M}^{g}\rightarrow^{\gamma}\beta\rightarrow 0$

which splits with a right inverse $j$ of $\gamma$ . Then $\tilde{\beta}:=j(\beta)$ is a closed subspace of $D_{M}^{g}$ ,
characterized by

(3.2) $\tilde{\beta}\cong\beta$ , $D_{M}^{g}=D_{m}^{g}\oplus\tilde{\beta}$ and $D_{m}^{\mathcal{G}}1_{\mathcal{G}}\tilde{\beta}$ .

More precisely, we have:

LEMMA 3.1. (a) The space $\beta$ of abstract boundary values can be represented in
$D_{M}^{g}$ as the $-1$ -eigenspace of the square $(A^{*})^{2}$ of the (real) symmetric operator $A^{*}$ :

(3.3) $\tilde{\beta}=$ { $y\in D_{M}|A^{*}y\in D_{M}$ and $(A^{*})^{2}y=-y$}.

(b) Let $D\subset D_{M}^{g}$ be a subspace with $D_{m}\subset D$ . Then $D$ is closed in $D_{M}^{g}$ , if and only if
$\gamma(D)$ is closed in $\beta$ .

PROOF. (a) Let $ b\in\beta$ , say $b=\gamma(z)$ with $z\in D_{M}^{g}$ . We split $z=x+y$ , where $x\in D_{m}^{g}$

and $y\in D_{m}^{g\perp}$ . Then $y1_{\mathcal{G}}D_{m}^{\mathcal{G}}$ implies that $\langle x, y\rangle+\langle A^{*}x, A^{*}y\rangle=0$ . By definition
$\langle A^{*}x, A^{*}y\rangle=\langle x, A^{*}A^{*}y\rangle$ . Hence $y1_{\mathcal{G}}D_{m}^{\mathcal{G}}$ , if and only if $\langle x, A^{*}A^{*}y\rangle=\langle x, -y\rangle$ for all
$x\in D_{m}^{g}$ , i.e. $(A^{*})^{2}y=-y$ .

(b) If $D$ is closed in $D_{M}^{\mathcal{G}}$ , then the factor space $D/D_{m}^{g}=\gamma(D)$ is a complete space,
hence it is closed in $\beta$ . $\square $

We introduce a symplectic structure on $\beta$ by setting
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(3.4) $\omega([x], [y]):=\langle A^{*}x, y\rangle-\langle x, A^{*}y\rangle$ for $[x],$ $[y]\in\beta$ .

PROPOSITION 3.2. The form $\omega$ is a well-defined skew-symmetric bilinear form or
$\beta\times\beta$ with the following properties:

(i) $\omega$ is bounded;
(ii) $\omega$ is non-degenerate.

PROOF. (i) is proved as follows, using the elementary algebraic inequality $\sqrt{Bc}+$

$\sqrt{bC}\leq\sqrt{b+B}\sqrt{c}$FT for non-negative reals.

(3.5) $|\omega([x], [y])|\leq|\langle A^{*}x, y\rangle|+|\langle x, A^{*}y\rangle|\leq\Vert A^{*}x\Vert\Vert y\Vert+\Vert x\Vert\Vert A^{*}y\Vert$

$\leq\sqrt{\Vert x\Vert^{2}+\Vert A^{*}x\Vert^{2}}\sqrt{\Vert y\Vert^{2}+\Vert A^{*}y\Vert^{2}}=\Vert x\Vert_{g}\Vert y\Vert_{g}$ ,

where $x,$ $y\in D_{M}(=D_{M}^{g})$ . Hence $|\omega([x], [y])|\leq\Vert[x]\Vert_{\beta}\Vert[y]\Vert_{\beta}$ .
To prove (ii) we lift $\omega$ to the representation $\tilde{\beta}$ of $\beta$ in $D_{M}^{g}$ . Let $\tilde{\omega}$ denote the forr

$\tilde{\omega}(x, y):=\langle A^{*}x, y\rangle-\langle x, A^{*}y\rangle$ restricted to $\tilde{\beta}$, i.e.

$\tilde{\omega}(i([x]),j([y]))=\omega([x], [y])$ for all $[x],$ $[y]\in\beta$ .

Notice that

(3.6) $A^{*}(\tilde{\beta})\subset\tilde{\beta}$ and $(A^{*})^{2}=-Id$ on $\tilde{\beta}$ , and

(3.7) $\tilde{\omega}(x, y)=\langle A^{*}x, y\rangle_{g}$ .

From (3.6) and (3.7) we see that the mapping

$\tau:\beta\rightarrow$ $\rho*$

$[x]\mapsto\tau_{[x]}([y]):=\omega([x], [y])$

is an isomorphism of the Hilbert space $\beta$ onto its dual $\beta^{*}$ ; hence (ii) is proved. $\subset$

We can characterize various types of extensions of the fixed symmetric, closec
operator $A$ by the corresponding properties of the domains and by the abstract boundary
values (see also [1], [2]).

LEMMA 3.3. Let $D$ be a subspace of $D_{M}$ , which contains $D_{m}$ . Then the extensiot
$A_{D}:=A_{|D}^{*}$

(a) is closed(as an operator in H), $ifandonlyif\gamma(D)isclosed(in\beta)$ ;
(b) the extension is self-adjoint, $\iota f$ and only $\iota f\gamma(D)$ is a Lagrangian subspace of $\beta$

and
(c) it has compact resolvent, ifand only if the inclusion $D^{g}\subset_{\rightarrow}H$ is compact, wher‘

$D^{g}$ denotes the domain $D$ equipped with the graph norm.

PROOF. $(a)$ is just a reformulation of Lemma 3. $1b;(b)$ and (c) are immediate fron
the definition. $\subset$

3.2. Lagrangian property of Cauchy data spaces. As first suggested by Bojarski
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[6], the concept of Cauchy data spaces is fundamental to any systematic study of
splitting formulas for spectral invariants. This motivates the following definition in our
abstract setting:

DEFINITION 3.4. Let
$S:=kerA^{*}$

denote the solution space of $A^{*}$ . The space $S$ is closed in the graph norm in $D_{M}^{g}$ and
also in $H$. We call $\gamma(S)$ the Cauchy data space of $A^{*}$ .

All the arguments in this section will assume the following:

ASSUMPTION 1. There exists a self-adjoint Fredholm extension

$A_{D}:=A_{|D}^{*}$

defined on a domain $D$ with $D_{m}\subset D\subset D_{M}$ . In particular, $\gamma(D)$ is a Lagrangian subspace
in $\beta$ .

Assuming the existence of a Fredholm extension in our abstract setting corresponds
to the ellipticity condition in the concrete setting. We shall exploit the following list of
Fredholm properties:
$\langle 1\rangle$ By definition, $kerA_{D}=D\cap S$ is finite-dimensional.
$\langle 2\rangle$ We have a short exact sequence

$0-D_{m}\cap Sc_{\star}D\cap S\rightarrow^{\cap}\gamma_{|DS}\gamma(D\cap S)\rightarrow 0$ ,

which yields $D\cap S\cong D_{m}\cap S\oplus\gamma(D\cap S)$ .
$\langle 3\rangle$ Clearly $\gamma(D\cap S)\subset\gamma(D)\cap\gamma(S)$ ; in fact the spaces are equal, since $\gamma(x)=\gamma(s)$ for

$x\in D$ and $s\in S$ implies $x-s\in D_{m}$ . Hence $s\in D$ .
$\langle 4\rangle$ range $A_{D}=A^{*}(D)$ is closed in $H$ and $\dim H/rangeA_{D}<+\infty$ , so $A^{*}(D_{M})$ is also

closed in $H$.
$\langle 5\rangle$ ker $A=D_{m}\cap S=A^{*}(D_{M})^{\perp}$ , with the orthogonal complement taken in $H$.
$\langle 6\rangle$ $kerA_{D}=(rangeA_{D})^{\perp}$ , with the orthogonal complement taken in $H$.

Assumption 1 leads to the following proposition which is the main result of this
section.

PROPOSITION 3.5. The Cauchy data space $\gamma(S)$ is a closed, Lagrangian subspace of
$\beta$ and belongs to the Fredholm-Lagrangian Grassmannian $\mathscr{F}\mathscr{L}_{\Lambda_{O}}$ at $\Lambda_{0}:=\gamma(D)$ .

It is an astonishing aspect of symplectic functional analysis that the proof of $t$he
preceding proposition can be kept completely elementary due to the following geometric
comparison lemma.

LEMMA 3.6. Let (V, $\omega$) be a real symplectic Hilbert space with a fixed Lagrangian
subspace $\Lambda_{0}$ and an isotropic subspace $\Lambda$ . Then $\Lambda$ is Lagrangian, $lf$
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$\Lambda_{0}\cap\overline{\Lambda}=\{0\}$ and $\Lambda_{0}+\Lambda=V$ .

PROOF. Let $x\in\overline{\Lambda}$, say $x=x_{0}+x_{1}$ with $x_{0}\in\Lambda_{0}$ and $x_{1}\in\Lambda\subset\overline{\Lambda}$. Hence $x_{0}=$

$x-x_{1}\in\Lambda_{0}\cap\overline{\Lambda}$, which must vanish, so $ x=x_{1}\in\Lambda$ . This proves $\overline{\Lambda}=\Lambda$ .
To prove the Lagrangian property of $\Lambda$ , we take $x\in\Lambda^{o}$ and write it as $x=x_{0}+x$

as before. Since $\Lambda\subset\Lambda^{o}$ , we get

$x_{0}=x-x_{1}\in\Lambda_{0}\cap\Lambda^{O}=\Lambda_{\mathring{O}}\cap\Lambda^{o}=(\Lambda_{0}+\Lambda)^{o}=V^{o}=\{0\}$ ,

hence $ x=x_{1}\in\Lambda$ . $[$

PROOF OF PROPOSITION 3.5. Step 1: Let $[x],$ $[y]\in\gamma(S)$ . Then

$\omega([x], [y])=\langle A^{*}x, y\rangle-\langle x, A^{*}y\rangle=0$ ,

hence $\gamma(S)$ isotropic.
Step 2: Now we consider the sequence of continuous mappings

$D_{M}^{g}\rightarrow^{A^{*}}$ range $A^{*}\rightarrow^{\pi}$ range $A^{*}/rangeA_{D}$ .

Hence

$D+S=\{x\in D_{M}^{g}|A^{*}x\in rangeA_{D}\}=ker\pi\circ A^{*}$

must be closed, and we have a Hilbert space isomorphism

(3.8) $ D_{M}^{g}/(D+S)\rightarrow\cong$ range $A^{*}/rangeA_{D}$ .

Moreover, $\gamma(D+S)$ is closed in $\beta$ by Lemma 3. $1b$ and coincides with $\gamma(D)+\gamma(S)$ . Fron
the closedness of $\gamma(D)+\gamma(S)$ , we $get$

(3.9) $(\gamma(D)+\gamma(S))^{o}=(\gamma(D)+\overline{\gamma(S)})^{o}=\gamma(D)^{o}\cap\overline{\gamma(S)}^{o}$

Step 3: Since $\gamma(S)$ is isotropic, also $\overline{\gamma(S)}$ is isotropic. Recall that $\gamma(D)$ is Lagrangian
This yields

$\gamma(D)^{o}\cap\overline{\gamma(S)}^{o}\supset\gamma(D)\cap\overline{\gamma(S)}\supset\gamma(D)\cap\gamma(S)$ ,

hence, with (3.9)

(3.10) $(\gamma(D)+\gamma(S))^{o}\supset\gamma(D)\cap\gamma(S)$ .

Step 4: Now we exploit the Fredholm properties and ge $t$

(3.11) $D_{m}\cap S\oplus\gamma(D)\cap\gamma(S)^{\langle 2\rangle,\langle 3\rangle\langle 1\rangle}\cong D\cap S=kerA_{D}$

$\langle 6\rangle=(rangeA_{D})^{\perp}=H/rangeA_{D}\cong H/rangeA^{*}\oplus rangeA^{*}/rangeA_{D}$ .
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Since $D_{m}\cap S^{\langle 5\rangle}\cong H/rangeA^{*}$ , this yields

(3.12) $\gamma(D)\cap\gamma(S)\cong rangeA^{*}/rangeA_{D}\cong D_{M}/(D+S)(38)$

$\cong\beta/\gamma(D+S)=\beta/(\gamma(D)+\gamma(S))$ .

Moreover, for any closed subspace $L$ in $\beta$ , we have

$\beta/L^{o}\cong\beta^{*}/\tau_{\omega}(L)\cong\beta^{*}/\tau_{E}(L)\cong\beta/L^{\perp}$ ,

where the isomorphisms $\tau_{E},$ $\tau_{\omega}$ : $\beta\rightarrow\beta^{*}$ are given by $\tau_{E}([x])[y]:=\langle[x], [y]\rangle_{\beta}$ and
$\tau_{\omega}([x])[y]:=\omega([x], [y])$ . Hence

(3.13) dim $\beta/\gamma(D)+\gamma(S)=\dim(\gamma(D)+\gamma(S))^{o}$

Combined with formulas (3.10) and (3.12) this yields

(3.14) $(\gamma(D)+\gamma(S))^{o}=\gamma(D)\cap\overline{\gamma(S)}=\gamma(D)\cap\gamma(S)$ .

Step 5: Set $\mu:=\Lambda\cap\gamma(S)$ . Since $\mu$ is finite-dimensional, it is also closed. (3.14)

yields $\mu\subset\mu^{o}=\gamma(D)+\gamma(S)$ , i.e. $\mu$ is isotropic. Hence, in the reduced symplectic vector
space $\mu^{o}/\mu$ , we have

(3.15) $\gamma(D)/\mu\cap\overline{\gamma(S)/\mu}=\{0\}$ and $\gamma(D)/\mu+\gamma(S)/\mu=\mu^{o}/\mu$ .

Clearly, $\gamma(D)/\mu$ is Lagrangian in the factor space; hence we can apply Lemma 3.6 and
get that $\gamma(S)/\mu$ is Lagrangian in $\mu^{O}/\mu$ , hence $\gamma(S)$ Lagrangian in $\mu^{o}$ and in $\beta$ .

From Formula (3.13) we see that $\gamma(S)$ and $\gamma(D)$ forma Fredholm pair. $\square $

COROLLARY 3.7. Let $\Lambda$ be a Lagrangian subspace in $\beta$ . Then $(\Lambda, \gamma(S))$ is a Fredholm
pair, if and only if $A_{\gamma^{-1}\langle\Lambda)}:=A_{|\gamma^{-1}\langle\Lambda)}^{*}$ is a (self-adjoint) Fredholm operator. We then have

index $A_{\gamma^{-1}\langle\Lambda)}=I(\Lambda, \gamma(S))=\dim\Lambda\cap\gamma(S)-co\dim(\Lambda+\gamma(S))=0$ .

3.3. The continuity of the Cauchy data spaces. We shall investigate the Cauchy
data spaces of operator families of the form $\{A^{*}+C_{t}\}_{t\in I}$ , where $A$ is a closed symmetric,
densely defined operator in a Hilbert space $H$ which satisfies suitable additional
assumptions. We assume that $\{C_{t}\}_{t\in I}$ is a continuous family (with respect to the operator
norm) of bounded self-adjoint operators. Here the parameter $t$ runs in the interval
$I=[0,1]$ .

We define the space of abstract boundary values and the abstract trace map
$\gamma:D_{M}\rightarrow D_{M}^{g}/D_{m}^{g}=\beta$ as before. Notice that the vector spaces $\beta$ and the mapping $\gamma$ are
fixed even in the family situation; but, given by the grap $h$ of $A^{*}+C_{t}$ , the inner product
$\langle\cdot, \cdot\rangle_{t}^{g}$ for $D_{M}^{g}$ and $\beta$ varies with varying parameter $t$ . Hence the splitting $j_{t}$ : $\beta\rightarrow D_{M}^{g}$

varies and so does the representation of $\beta$ as subspace $j_{t}(\beta)=\tilde{\beta}_{t}$ in $D_{M}$ ; yet all norms
are uniformly equivalent with respect to $t\in[0,1]$ , and equivalent to the norm defined
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just by $A^{*}$ . Hence, in the following we $Px$ the inner product defined by $A^{*}$ . Moreover
the symplectic structure of the space $\beta$ , as defined in Formula (3.4), does not $depen\langle$

on the parameter $t$ .
We sharpen our previous Assumption 1 by demanding the existence of $a$ domai]

$D$ with $D_{m}\subset D\subset D_{M}$ , such that $A_{D}:=A_{|D}^{*}$ has compact resolvent. Hence, the operator
$A_{D}+C_{t}$ are Fredholm operators for that fixed $D$ and all $t\in I$.

ASSUMPTION 2. We shall assume the non-existence of inner solutions for al
operators $A^{*}+C_{t}$ , i.e.

$D_{m}\cap S_{t}=\{0\}$ for all $t\in[0,1]$ .

NOTE. The non-existence of inner solutions (’unique continuation property’) $i^{G}$,

not generally valid for elliptic differential operators, but it is established for Dira $($

operators (see e.g. [7], Chapter 8).

THEOREM 3.8. Under thepreceding assumptions (existence $ofa$ self-adjoint extension
$A_{D}$ with compact resolvent and non-existence of inner solutions), the spaces $\gamma(S_{t})$ ofCauchJ
data of a continuous family $\{A^{*}+C_{t}\}_{t\in I}$ vary continuously.

NOTE. As usual, we dePne the continuous dependence of $a$ family of subspace!
of $a$ Hilbert space on $a$ parameter by the continuity of the corresponding orthogona
projections.

PROOF. To prove the continuity, we need only to consider the local situation $a1$

$t=0$ . First we show that $\{S_{t}\}_{t\in I}$ is a continuous family of subspaces of $D_{M}^{g}$ ; then wt
show that $\gamma(S_{t})$ is a continuous family in $\beta$ .

We consider the bounded operator

$F_{t}$ : $ D_{M}^{g}\rightarrow$ $H\oplus S_{0}$

$x$ $\mapsto((A^{*}+C_{t})(x), P_{0}x)$

where $P_{0}$ : $H\rightarrow S_{0}$ denotes the orthogonal projection of $H$ onto the subspace $S_{o}$ , whic}
is closed in $D_{M}^{g}$ and in $H$.

Clearly, $F_{O}$ is injective: $F_{O}(x)=0$ implies $x\in S_{O}$ and $x=P_{O}x=0$ . The operator $F_{0}$ its
also surjective: Since $A^{*}+C_{0}$ has no inner solutions, we $h$ave $kerA+C_{0}=D_{m}\cap S_{0}\cong$

coker $A^{*}+C_{0}$ which shows that the operator $A^{*}+C_{0}$ is surjective. Let $y\in H$ and $x\in S_{(}$

and choose $z$ with $(A^{*}+C_{0})z=y$ . Let $w:=P_{O}(z)-x\in S_{0}$ . Then $F_{0}(z-w)=((A^{*}+C_{0})(z-$

$w)=y,$ $P_{0}(z-w)=x)$ . This proves that $F_{0}$ is an isomorphism.
Then all operators $F_{t}$ $a$re isomorphisms for small $t\geq 0$ , since $F_{t}$ is a continuous

family of operators. We define
$\varphi_{t}:=F_{t}^{-1}\circ F_{0}$ : $D_{M}^{g}\cong D_{M}^{g}$ for $t$ small.

We see that

(3.16) $\varphi_{t}(S_{o})=S_{t}$ ,
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since each $z\in\varphi_{t}(S_{0})$ implies $F_{t}(z)=0+P_{0}(z)$ . Hence $(A^{*}+C_{t})z=0$ ; vice versa, each $z\in S_{t}$

can be written in the form $F_{t}^{-1}F_{0}(y)$ with $y:=P_{0}(z)$ .
From (3.16) we get that

$\{P_{t} : =\varphi_{t}P_{0}\varphi_{t}^{-1} : D_{M}^{\mathcal{G}}\rightarrow S_{t}\}$

is a continuous family of projections onto the solution spaces $S_{t}$ . The projections are
not necessarily orthogonal, but can be orthogonalized and remain continuous in $t$ like
in [7], Lemma 12.8.

Now we must show that $\{\gamma(S_{t})\}$ is a continuous family in $\beta$ . This is not proved by
the formula $\gamma(S_{t})=\gamma(\varphi_{t}(S_{0}))$ alone. We must modify the endomorphism $\varphi_{t}$ of $D_{M}^{g}$ in such
$a$ way that it keeps the subspace $D_{m}$ invariant. To do that we notice that $D_{m}+S_{o}$ is
closed in $D_{M}^{i\mathcal{G}}$ . We define a continuous family of mappings by

$\psi_{t}:D_{M}^{g}=D_{m}+S_{0}+(D_{m}+S_{0})^{\perp}\rightarrow$ $ D_{M}^{\mathcal{G}}\ell$

$x+s$ $+$ $y$ $\mapsto x+\varphi_{t}(s)+y$

with $\psi_{0}=Id$ . Hence $\psi_{t}$ isomorphism for $t\ll 1$ , and $\psi_{t}(D_{m})=D_{m}$ for such small $t$ . Hence
we obtain a continuous family of mappings $\{\tilde{\psi}_{t} : \beta\rightarrow\beta\}$ with $\tilde{\psi}_{t}(\gamma(S_{0}))=\gamma(S_{t})$ . From that
we obtain a continuous family of projections as above. $\square $

REMARK 3.9. From the preceding arguments it also follows that the Cauchy data
spaces form a differentiable family, if $\{C_{t}\}$ is a differentiable family.

4. The spectral flow for families of self-adjoint (unbounded) Fredholm operators.

4.1. Phillips’ deflnition for continuous bounded families. Let $H$ be a real separable
Hilbert space and let $\hat{\mathscr{F}}$ denote the space of bounded self-adjoint Fredholm operators
fromH to H. It is well known that $\hat{\mathscr{F}}$ consists of three connected components (in the
operator norm)

$\hat{\mathscr{F}}=\hat{\mathscr{F}}_{-}\cup\hat{\mathscr{F}}_{+}u\hat{\mathscr{F}}_{*}$ ,

namely the contractible spaces of essentially negative and essentially positive operators
and the topologically non-trivial component of operators with essential spectrum on
both sides of the real line.

DEFINITION 4.1 [J. Phillips, 1995]. For any arbitrary continuous path $ A:[0,1]\ni$

$t\mapsto A_{t}\in\hat{\mathscr{F}}$ , we define the spectralflow by

$sf(A):=\sum_{j=1}^{N}k(t_{j}, \epsilon_{j})-k(t_{j-1}, \epsilon_{j})$

with

$k(t, \epsilon_{j}):=\sum_{0\leq\theta<\epsilon_{j}}$ dim $ker(A_{t}-\theta)$ for $t_{j-1}\leq t\leq t_{j}$ ,
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where the horizontal and vertical spacings $(t_{0}, \cdots, t_{N}),$ $(\epsilon_{1}, \cdots, \epsilon_{N})$ are chosen so that

(4.1) $ker(A_{t}-\epsilon_{j})=\{0\}$ and

for $t_{j-1}\leq t\leq t_{j}$ and $0\leq|\theta|<\epsilon_{j}$ .

$\sum_{|\theta|<\epsilon_{j}}$
dim $ker(A_{t}-\theta)<\infty$

It is possible to choose a vertical and horizontal spacing which satisfies (4.1), sinc
the spectrum of a self-adjoint bounded Fredholm operator changes continuously witl
the operator and the zero eigenvalue is discrete and offinite multiplicity. After Definitio]

1.5 we already mentioned Phillips’ argument why the definition does not depend $0l$

the choice of the horizontal and vertical spacing.

We list the following properties of the spectral flow to emphasize formal similaritie
with the Maslov index (see Theorem 1.6):

THEOREM 4.2. (I) The spectralflow is well definedfor homotopy classes ofpath
withfixed endpoints and it distinguishes the homotopy classes. In particular, it is invarian
under re-parametrization ofpaths.

(II’) The spectralflow is additive under catenation, $i.e$ .
$sf(A*B)=sf(A)+sf(B)$ ,

where $\{A_{t}\},$ $\{B_{t}\}$ are continuous paths with $A_{1}=B_{O}$ and

$(A*B)_{t}$ $;=\left\{\begin{array}{ll}A_{2t} & 0\leq t\leq 1/2\\B_{2t-1} & 1/2<t\leq 1.\end{array}\right.$

(III’) The spectralflow is invariant under the adjoint action of the full orthogona
group $\mathcal{O}(H)$ of $H$.

(IV’) The spectralflow vanishes for paths which stay in one (connected) stratum
$\hat{\mathscr{F}}_{l}^{(k)}:=$ { $F\in\hat{\mathscr{F}}_{\#}|$ dim kerF$=k$}, $\#\in\{-, +, *\}$

of the stratified space $\hat{\mathscr{F}}_{l}=\bigcup_{k=0}^{\infty}\hat{\mathscr{F}}_{\iota}^{\langle k)},$ $i.e$. if dim ker $A_{t}=k$ for all $t\in I$ and one $k\geq 0$ .
We can discuss the relations with the spectral flow $sf^{C}$ of the complex case in

exactly the same way as we did in Section 1 for the Maslov index: First we embed th
space $\mathscr{F}=\mathscr{F}(H)$ of Fredholm operators, defined on the real Hilbert space $H$, in th
complex Fredholm operator space $\mathscr{F}(H\otimes C)$ with the inclusion given $b\backslash $

,

complexification. Clearly, there are many more paths in $\hat{\mathscr{F}}(H\otimes C)$ than those comin,
from $\hat{\mathscr{F}}(H)$ .

Theorem 4.2 remains valid in the complex case. It is not difficult to derive th
following formula:

PROPOSITION 4.3. Let $\{A_{t}\}\in\hat{\mathscr{F}}(H)$ and $\{B_{t}\}\in\hat{\mathscr{F}}(H\otimes C)$ be two continuous path
which have the same endpoints. They are homotopic in $\hat{\mathscr{F}}(H\otimes C)$ , if and only if

$sf(\{A_{t}\})=sf^{\mathbb{C}}(\{B_{t}\})$ .
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Remark 4.4. In spite of formal similarities between the definition of the spectral
flow and of the Maslov index, it must be noted that the spectral flow ofa path in finite
dimension depends only on the eigenvalues at the endpoints. Consequently, it vanishes
for loops. This remains true for paths and loops in the components $\hat{\mathscr{F}}_{\pm}$ . The Maslov
index, however, depends on the path and not only on the endpoints, even in finite
dimension. Hence the spectral flow (counting passages through $0$ on the real line) is
topologically only interesting when we have an infinite number of eigenvalues (or

essential spectrum) on both sides of the real line. The Maslov index (counting passages
through $e^{i\pi}$ on the circle) is always topologically interesting. Our understanding of the
spectral flow as a quantum type invariant is nourished also by the observation that the
spectral flow is defined directly by operators and their eigenvalues and not by ’classical’
quantities. Moreover, it demands genuinely infinite-dimensional function space $s$ . In
spite of its coincidence with the Maslov index (see below Section 5), the spectral flow
reflects the finer distinction between the components $\hat{\mathscr{F}}_{-},\hat{\mathscr{F}}_{+}$ , and $\hat{\mathscr{F}}_{*}$ .

4.2. The construction of a continuous curve of bounded operators by the trans-
formation $A\mapsto A(Id+A^{2})^{-1/2}$ . Now we consider a path $\{A_{D}+C_{t}\}_{t\in I}$ of (unbound-

ed) self-adjoint Fredholm operators in $H$, where $A_{D}$ is $a$ fixed (unbounded) self-
adjoint operator with compact resolvent, and $\{C_{t}\}_{t\in I}$ is $a$ continuous path of bounded
self-adjoint operators on $H$.

To define the spectral flow ofthe family $\{A_{D}+C_{t}\}_{t\in I}$ , we apply the transformation

(4.2) $\mathscr{B}:c_{A}\hat{\mathscr{F}}\rightarrow\mapsto \mathscr{B}(A):=A\sqrt{Id+A^{2}}^{-1}\hat{\mathscr{F}}$

where $C\hat{\mathscr{F}}$ denote $s$ the space of (not necessarily bounded) self-adjoint Fredholm
operators. We define the convergence in $C\hat{\mathscr{F}}$ by the gap metric, i.e. the convergence of
the orthogonal projection operators onto the graphs of the Fredholm operators. Cordes
and Labrousse showed ([12], Addendum, Theorem 1), that on the subset of all bounded
operators, the topology, induced by the gap metric for closed operators, is equivalent
to that given by the operator norm.

The transformation $\mathscr{B}$ maps the connected component of $C\hat{\mathscr{F}}$ which contains $\hat{\mathscr{F}}_{*}$

into $\hat{\mathscr{F}}_{*}$ . The same holds for $\hat{\mathscr{F}}_{\pm}$ . From the Spectral Decomposition Theorem and the
Weierstass Approximation Theorem it follows that the mapping $\mathscr{B}$ , restricted to $\hat{\mathscr{F}}_{*}$ (or
$\hat{\mathscr{F}}_{\pm})$ , is continuous and homotopic to the identity map of $\hat{\mathscr{F}}_{*}$ (or $\hat{\mathscr{F}}_{\pm}$ ), see Atiyah and
Singer [5]. However, $a$ counterexample by Fuglede [15] shows that the mapping $\mathscr{B}$ is
not continuous on the whole space $C\hat{\mathscr{F}}$ , nor on the subspace $\hat{\mathscr{C}}$ of self-adjoint operators
with compact resolvent.

We shall show the continuity of the composed map

$C\mapsto A_{D}+C\mapsto \mathscr{B}(A_{D}+C)$

from $\hat{\mathscr{B}}$ to $\hat{\mathscr{F}}$ , where $\hat{\mathscr{B}}$ denotes the space of bounded self-adjoint operators on $H$.
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FIGURE 3. The integration path $\Gamma=\Gamma_{+}\cup\Gamma_{-}$

FIGURE 4. The integration path $\Gamma_{R}$ for $R>>N$

PROPOSITION 4.5. Let $S$ be a self-adjoint operator with spectral decompositiol
$S=\int_{-\infty}^{\infty}\lambda dE_{\lambda}$ and set $f_{\epsilon}(z):=ze^{-\langle 1/2+\epsilon)\log\langle 1+z^{2})}$ for $\epsilon>0^{1}$ Let $\Gamma=\Gamma_{-}\cup\Gamma_{+}$ denote $th|$

double cone around the x-axis with opening $(-\pi/4, \pi/4)$ turned off zero by passing insid
$\pm i$ (see Figure 3). Then the ‘ Cauchy integral’ converges and defines a bounded operato
with

(4.3) $\frac{1}{2\pi i}\int_{\Gamma}f_{\epsilon}(\lambda)(\lambda-S)^{-1}d\lambda=\int_{-\infty}^{\infty}f_{\epsilon}(\theta)dE_{\theta}=:f_{\epsilon}(S)$ .

PROOF (Communicated by R. Nest; see also [28] and [16]). The integral on th $($

right side of (4.3) exists and defines a bounded operator, since the function $f_{\epsilon}i$

bounded. It follows from the estimate

(4.4) $|f_{\epsilon}(z)|\sim 1/|z|^{2\epsilon}$ as $|z|\rightarrow\infty$

that also the integral on the left side of (4.3) is well defined and defines a bounde $($

operator. Therefore, to prove (4.3) it is enough to prove the equality of the two operator
on the dense subspace $\bigcup_{N>0}P_{N}(H)$ , where $P_{N}:=\int_{-N}^{N}dE_{\theta}$ .

Let $x\in H$ and $N>0$ . For $R\gg N$, we replace the infinite integration path $\Gamma$ by $th|$

finite closed contour $\Gamma_{R}$ as indicated in Figure 4. Then the operator $f_{\epsilon}(S)$ takes the fom

1 We fix the branch of $\log\langle 1+z^{2}$ ) for which $-n<\arg\log(1+z^{2})<\pi$ .



MASLOV INDEX 25

(4.5) $\int_{-N}^{N}f_{\epsilon}(\theta)dE_{\theta}=\int_{-N}^{N}\frac{1}{2\pi i}\int_{\Gamma_{R}}\frac{f_{\epsilon}(\lambda)}{\lambda-\theta}d\lambda dE_{\theta}$

$=\int_{-N}^{N}\lim_{R\rightarrow\infty}\frac{1}{2\pi i}\int_{\Gamma_{R}}\frac{f_{\epsilon}(\lambda)}{\lambda-\theta}d\lambda dE_{\theta}=\int_{-N}^{N}\frac{1}{2\pi i}\int_{\Gamma}\frac{f_{\epsilon}(\lambda)}{\lambda-\theta}d\lambda dE_{\theta}$

on the ‘compact element’ $P_{N}(x)$ . The last equality is proved by applying the estimation
(4.4). The last operator applied to $P_{N}(x)$ yields

(4.6) $\frac{1}{2\pi i}\int_{\Gamma}f_{\epsilon}(\lambda)(\int_{-N}^{N}\frac{1}{\lambda-\theta}dE_{\theta})(P_{N}(x))d\lambda$

$=\frac{1}{2\pi i}\int_{\Gamma}f_{\epsilon}(\lambda)(\int_{-\infty}^{\infty}\frac{1}{\lambda-\theta}dE_{\theta})(P_{N}(x))d\lambda$

$=\frac{1}{2\pi i}(\int_{\Gamma}f_{\epsilon}(\lambda)(\lambda-S)^{-1}d\lambda)(P_{N}(x))$ ,

which proves equation (4.3). $\square $

REMARK 4.6. The preceding proo $f$ must be carried out after complexifying $H$, if
the Hilbert $sp$ace $H$ is real. Anyway, the resulting operator $f_{\epsilon}(S)$ remains real so that
$f_{\epsilon}(S)$ can be considered an operator on $H$.

The following lemma is a consequence of the preceding proposition.

LEMMA 4.7. Let $S$ and $C$ be self-adjoint operators with $S$ unbounded and $C$ bounded.
Then we have in the operator norm

$\Vert f_{\epsilon}(S+C)-f_{\epsilon}(S)\Vert\leq c\Vert C\Vert$ ,

where the constant $c$ does not depend on $S,$ $C$, or $\epsilon>0$ .

PROOF. By Proposition 4.5 we have

(4.7) $ f_{\epsilon}(S+C)-f_{\epsilon}(S)=\frac{1}{2\pi i}\int_{\Gamma}f_{\epsilon}(\lambda)((\lambda-(S+C))^{-1}-(\lambda-S)^{-1})d\lambda$

$=\frac{-1}{2\pi i}\int_{\Gamma}f_{\epsilon}(\lambda)(\lambda-(S+C))^{-1}\circ C\circ(\lambda-S)^{-1}d\lambda$ .

Therefore

$\Vert f_{\epsilon}(S+C)-f_{\epsilon}(S)\Vert\leq\frac{1}{2\pi}\int_{\Gamma}|f_{\epsilon}(\lambda)|\frac{1}{|_{5}^{\sim}(\lambda)|^{2}}\Vert C\Vert d\lambda=c\Vert C\Vert$ . $\square $

Now we can conclude the main result of this subsection from Proposition 4.5 and
Lemma 4.7. We exploit that the limit $\lim_{\epsilon\rightarrow 0}f_{\epsilon}(S)$ exists in the strong sense for any



26 BERNHELM BOOSS-BAVNBEK AND KENRO FURUTANI

self-adjoint operator $S$ with compact $re$solvent and equals our transformed operator
$\mathscr{B}(S):=S(Id+S^{2})^{-1/2}$ by Lebesgue’s Convergence Theorem and the Resonance
Theorem.

THEOREM 4.8. Let $S$ be a self-adjoint operator with compact resolvent in a real
separable Hilbert space $H$ and let $C$ be a bounded self-adjoint operator. Then the sum
$S+C$ also has compact resolvent and is a closed Fredholm operator. We have

$\Vert \mathscr{B}(S+C)-\mathscr{B}(S)\Vert\leq c\Vert C\Vert$ ,

where the constant $c$ does not depend on $S$ or on $C$.

We shall apply the preceding theorem in the following form:

COROLLARY 4.9. Curves of self-adjoint (unbounded) Fredholm operators in a
separable real Hilbert space of the form $\{A_{D}+C_{t}\}_{t\in I}$ are mapped into continuous curves
in $\hat{\mathscr{F}}$ by the transformation $\mathscr{B}$ when $A_{D}$ has compact resolvent and $\{C_{t}\}_{t\in I}$ is a continuous
curve of bounded operators.

REMARK 4.10. Let

$\mathcal{T}_{A_{D}}$ :
$\hat{\mathscr{B}}C\rightarrow C\hat{\mathscr{F}}\mapsto A_{D}+C$

denote the translation by $A_{D}$ , mapping bounded self-adjoint operators on $H$ into closed
self-adjoint Fredholm operators in $H$. On $C\hat{\mathscr{F}}$ , the gap topology is defined by the metric

$g(A_{1}, A_{2});=\sqrt{\Vert R_{A_{1}}-R_{A_{2}}\Vert^{2}+\Vert A_{1}R_{A_{1}}-A_{2}R_{A_{2}}\Vert^{2}}$ ,

where $R_{A}:=(Id+A^{2})^{-1}$ (see Cordes and Labrousse, [12] and also Kato, [17]). In
Theorem 4.8 we proved that the composition $\mathscr{B}\circ \mathcal{T}_{A_{D}}$ is continuous.

Further, we can prove that the translation operator $\mathscr{T}_{A_{D}}$ is $a$ continuous operator
from $\hat{\mathscr{B}}$ onto the subspace $\hat{\mathscr{B}}+A_{D}\subset C\hat{\mathscr{F}}$ . The proof can be carried out along the
same lines as the proof of Theore$m4.8$ taking the functions $(1+\lambda^{2})^{-1}$ and $\lambda(1+\lambda^{2})^{-1}$

instead of $f_{\epsilon}(\lambda)$ . Thus it needs not take a limit $\epsilon\rightarrow 0$ .

We define:

DEFINITION 4.11. Let $\{A_{t}\}_{t\in I}$ be a continuous curve of (unbounded) self-adjoint
Fredholm operators of the form $A_{t}=A_{D}+C_{t}$ with the preceding assumptions. Then the
spectralflow of the continuous, unbounded curve $\{A_{t}\}_{t\in I}$ is defined by the spectral flow
of the continuous, bounded curve $\{\mathscr{B}(A_{t})\}_{t\in I}$ in $\hat{\mathscr{F}}$ .
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REMARK 4.12. The properties listed in Theorem 4.2 for the spectral flow of families
of bounded operators remain valid for our class of unbounded operators by the
construction of the curve $\{\mathscr{B}(A_{t})\}_{t\in I}$ .

4.3. An alternative construction of a continuous curve of bounded operators.
Phillips’ idea was to define the spectral flow of a continuous curve of bounded self-
adjoint Fredholm operators by locking curves of eigenvalues piecewise between con-
stant bounds. Now we want to construct a continuous curve $\{\tilde{A}_{t}\}$ of bounded self-
adjoint Fredholm operators little by little from small intervals of the spectrum of our
curve $\{A_{t}=A_{D}+C_{t}\}_{t\in I}$ and from the related eigenspaces. We lock the branching of
the zero eigen-values between constant bounds. We proceed in a similar way as in $t$he
proof ofTheorem 2.1 when we determined the relations between the functional analytical
and the differential definitions of the Maslov index.

PROPOSITION 4.13. Let $\{A_{t}=A_{D}+C_{t}\}_{t\in I}$ be a continuous family of self-adjoint
Fredholm operators. Then there exist a partition $0=t_{0}<\cdots<t_{N}=1$ of the interval and
continuous curves $\{A_{t}^{\langle j)}\}$ in $\hat{\mathscr{F}}_{*}on$ each small interval $[t_{j}, t_{j+1}]$ such that

1. $spec_{ess}(A_{t}^{\langle j)})=\{1, -1\}$ and

$spec(A_{t}^{\langle j)})=\{spec(A_{D}+C_{t})\cap(-a_{j}, a_{j})\}\cup\{1, -1\}$

for suitable positive reals $a_{1},$ $\cdots,$ $a_{N}$ ; and
2. ker $A_{t}^{\langle j)}=ker(A_{D}+C_{t})$ for $t_{j}\leq t\leq t_{j+1}$ .

PROOF. Step 1: To construct the jump curve, we first consider the family $\{A_{s}\}$

in a neighbourhood $t-\delta(t)\leq s\leq t+\delta(t)$ of a point $t\in I$, where ker $A_{t}=\{0\}$ . Then none
of the $A_{s}$ has any eigenvalue in a small vertical interval. Hence there is no contribution
to the spectral flow and we can define $A_{s}^{\langle t)}:=T$ for $s$ in $t$he interval $[t-\delta(t), t+\delta(t)]$ .
Here $T:H\rightarrow H$ denotes an isomorphism which is equal to Id on an infinite-dimension $a1$

subspace $L_{\langle t)}$ and equal to -Id on the orthogonal, also infinite-dimensional subspace
$L_{\langle t)}^{\prime}$ , with the polarization $(L_{(t)}, L_{(t)}^{\prime})$ chosen arbitrarily.

Step 2: We consider the family $\{A_{s}\}$ close to $a$ point $t$ , where we have dim $kerA_{t}>0$ .
Let $\lambda_{1}$ denote the smallest positive eigenvalue and $\mu_{1}$ the largest negative one. We choose
a positive real number $a(t)<1$ with $a(t)<\lambda_{1}$ and $a(t)<|\mu_{1}|$ and a $\delta(t)>0$ , such that
$a(t),$ $-a(t)\not\in specA_{s}$ for $s\in[t-\delta(t), t+\delta(t)]$ . For $s$ in this interval, we define

$ P_{s}^{\langle t)}:=\frac{1}{2\pi i}\int_{|\lambda|=a\langle t)}(A_{s}-\lambda)^{-1}d\lambda$ .

It follows that rank $ P_{s}^{\langle t)}=\dim$ ker $A_{t}$ . Then the operator $A{}_{s}P_{s}^{\langle t)}$ : $H\rightarrow H$ is bounded because
$P_{s}^{(t)}$ is of finite rank and $A_{s}$ keeps range $P_{s}^{\langle t)}$ invariant for $t-\delta(t)\leq s\leq t+\delta(t)$ .

Step 3: Now we can choose points $t_{0}\sim=0<t_{1}\sim<\cdots<t_{N}=\sim 1$ in such $a$ way that
$ t_{j+1}\sim-\delta(t_{j+1})\sim<t_{j}\sim+\delta(t_{j})\sim$ , and then choose points $t_{j}\in(t_{j}\sim-\delta(t_{j}), t_{j-1}\sim\sim+\delta(t_{j-1}\sim))$ with $0=$

$t_{0}=t_{O}<t_{1}\sim\sim<t_{1}<t_{2}\sim<\cdots<t_{N}<t_{N}=\sim 1$ . We set $ a_{j}:=a(t_{j})\sim$ for $j=0,$ $\cdots,$ $N$.
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Next we choose polarizations of the infinite-dimension
$(rangeP_{t_{j}}^{\langle t_{j})})^{\perp}\sim=L_{j}\oplus L_{j}^{\perp}$

with $L_{j}$ and $L_{j}^{\perp}$ infinite-dimensional. We define an operator $\Pi_{j}$ ; $H\rightarrow H$ with
$spec_{ess}=\{-1,1\}$ by

$\Pi_{j|rangeP_{C_{j}}^{(\iota_{j})}}^{\sim}=0$ , $\Pi_{j|L_{j}}=Id$ , and $\Pi_{j|L_{j}}\perp=-Id$ .

Step 4: Finally we define the jump curve
(4.8) $ A_{s}^{(j)}:=A_{s}F_{s}^{t_{j})}+(O_{s}^{J})^{*}\Pi_{j}O_{s}^{j}\sim$ for $t_{j}\leq s\leq t_{j+1}$ ,

which satisfies the properties 1 and 2. Here the orthogonal projections $a$re chosen in
such a way that $P_{s}^{\langle t_{j})}=O_{s}^{j}P_{t_{j}}^{\langle t_{j})}(O_{s}^{j})^{*}$ for$ t_{j}\leq s\leq t_{j+1}\sim\sim$ . $\square $

Since the dimensions of the kemels do not jump at the discontinuities of the curve,
and since the strata $\hat{\mathscr{F}}_{*}^{\{k)}$ are connected, we can insert continuous curve pieces at the
discontinuities without changing the spectral flow. This yields $a$ continuous curve
$t\mapsto\tilde{A}_{t}\in\hat{\mathscr{F}}_{*}$ with the following property:

COROLLARY 4.14. Ifeach operator $A_{t}=A_{D}+C_{t}$ has an infinite number ofeigenvalues
on both sides of the real line, then the curve $\{\tilde{A}_{t}\}$ and the curve $\{\mathscr{B}(A_{t})\}$ are homotopic in
$\hat{\mathscr{F}}_{*}in$ the sense that the endpoints are kept in two fixed strata.

NOTE. The preceding construction leads to a continuous curve $\{\tilde{A}_{t}\}$ in $\hat{\mathscr{F}}_{*}$ for any
continuous curve of self-adjoint Fredholm operators of the form $A_{t}=A_{D}+C_{t}$ . The
transformation $\mathscr{B}$ , however, leads to a curve in $\hat{\mathscr{F}}_{*}$ only if the operators of the original
curve have an infinite number of eigenvalues on both sides of the $re$al line. Curves of
positive or negative semi-bounded operators $are$ mapped by de in $\hat{\mathscr{F}}_{+},\hat{\mathscr{F}}_{-}$ , but, by the
preceding construction, invariably also in $\hat{\mathscr{F}}_{*}$ .

5. The spectral flow formula.

In this section we shall prove our main $re$sult, the equality of the spectral flow and
the Maslov index:

THEOREM 5.1 [Spectral flow formula]. Let $A$ be a closed symmetric operator in a
real Hilbert space $H$ with domain $D_{m}$ and let $\{C_{t}\}_{t\in I}$ be a continuous family of bounded
self-adjoint operators on H. We assume that

1. the operator $A$ has a self-adjoint extension $A_{D}$ with compact resolvent;
2. there exists a positive constant $a$ such that

$D_{m}\cap ker(A^{*}+C_{t}-s)=\{0\}$

for any $s$ with $|s|<a$ and any $t\in[0,1]$ .
Then we have
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(5.1) $sf(\{A_{D}+C_{t}\})=\mu(\{\gamma(ker(A^{*}+C_{t})\},$ $\gamma(D))$ ,

where $\gamma$ denotes theprojection ofthe domain $D_{M}ofA^{*}onto$ the symplectic space $\beta=D_{M}/D_{m}$

of abstract boundary values.

We notice that conditions 1 and 2 are naturally satisfied for operators of Dirac
type (i.e. for first-order differential operators with principal symbol of $A^{2}$ dePning the
Riemannian metric). This is valid both over $a$ closed manifold and over a manifold
with boundary subject to global elliptic boundary conditions. Clearly, a perturbation
which adds a real multiple of the identity will preserve the Dirac type and hence the
non-existence of inner solutions (unique continuation property’). This might, however,
not be $t$rue for general first-order elliptic differential operators.

We recall that the left side of Formula (5.1) was defined in Definition 4.11. For
the right side of Formula (5.1) we recall that $\{\gamma(ker(A^{*}+C_{t}))\}_{t\in I}$ is a continuous family
of Lagrangian subspace $s$ of $\beta$ by the assumptions made and by Theorem 3.8. The pair
$(\gamma(ker(A^{*}+C_{t})), \gamma(D))$ is $a$ Fredholm pair by Proposition 3.5. Hence we $ha$ve a continuous
curve $t\mapsto\Lambda(t)\in \mathscr{F}\mathscr{L}_{A_{O}}$ in the Fredholm-Lagrangian Grassmannian with $\Lambda(t):=$

$\gamma(ker(A^{*}+C_{t}))$ and $\Lambda_{O}:=\gamma(D)$ . Finally, by Definition 1.4, we have a family of unitary
operators $\{W_{t} : \beta\rightarrow\beta\}$ which defines the Maslov index of the curve (see Definition 1.5).
The space $\beta$ is considered as $a$ complex Hilbert space by the almost complex structure
which is defined by the form $\omega$ introduced in (3.4).

PROOF. We prove the theorem in three steps. First we construct a suitably fine
horizontal spacing $\{0=t_{O}<t_{1}<\cdots<t_{N}=1\}$ and a vertical spacing $\{a_{1}, \cdots, a_{N}\}$ . Then
we show

(5.2) $sf(\{\mathscr{B}(A_{D}+C_{t_{i+1}})-s\}_{0\leq s\leq a_{i+1}/\sqrt{}\overline{1+a_{i+1}^{2}}})$

$=\mu(\{\gamma(ker(A^{*}+C_{t_{i+1}}-s)\}_{0\leq s\leq a_{i+1}},$ $\gamma(D))$

for that spacing. This is the main part ofthe proof. It consists, so to speak, of establishing
the coincidence of the spectral flow and the Maslov index for segments of analytic
families. This will be done by explicit calculation which identifies the two invariants
with the integer $-\sum_{0\leq s\leq a_{i+1}}$ dim $ker(A_{D}+C_{t_{i+1}}-s)$ . Finally, we show how the general
case follows from the special case.

First step: Let $t$ be in $[0,1]$ . We shall construct a suitable horizontal and vertical
spacing. We denote the smallest positve eigenvalue of $A_{D}+C_{t}$ by $\lambda_{1}(t)$ and the largest
negative one by $\mu_{1}(t)$ . We distinguish two cases:
(I) $ker(A_{D}+C_{t})=\{0\}$ . For the vertical spacing we choose a positive

$b(t)<\min\{\lambda_{1}(t), |\mu_{1}(t)|, a\}$ .

For the horizontal spacing we take a $\delta(t)>0s$uch that the small box is kept free of
eigenvalues (see Figure 5), namely
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FIGURE 5. Vertical and horizontal spacing for $ker(A_{D}+C_{t})=\{0\}$

spec$(A_{D}+C_{t’})\cap(-b(t), b(t))=\emptyset$ for $t^{\prime}\in(t-\delta(t), t+\delta(t))$ .

(II) $ker(A_{D}+C_{t})\neq\{0\}$ . In this case we choose a positive

$b(t)<\min\{\lambda_{1}(t)/3, |\mu_{1}(t)|/3, a\}$ .

We choose $a$ $\delta(t)>0$ such that the eigenvalue $s$ in a small box are confined by two strip.
(see Figure $6a$), namely

spec$(A_{D}+C_{t},)\cap(b(t), 2b(t))=\emptyset$ ,

spec$(A_{D}+C_{t^{\prime}})\cap(-2b(t), -b(t))=\emptyset$

for $t^{\prime}\in(t-\delta(t), t+\delta(t))$ . This $\delta(t)$ provide $s$ the horizontal spacing.
Second step: In the first case, the regular case, we have for each $\delta^{\sim}\leq\delta(t)$

$sf(\{\mathscr{B}(A_{D}+C_{t},)\}_{t-5\leq t’\leq t+5})=0$ ,

since $A_{D}+C_{t’}$ is invertible for $t-\delta(t)\leq t^{\prime}\leq t+\delta(t)$ . We also have

$\mu(\{\gamma(ker(A^{*}+C_{t^{\prime}})\}_{t-ff\leq t’\leq t+l},$ $\gamma(D))=0$ ,

since $\gamma(ker(A^{*}+C_{t},)\cap\gamma(D)=\{0\}$ for $t-\delta(t)\leq t^{\prime}\leq t+\delta(t)$ .
For the second, singular case, we recall that the eigenvalues of the operato

$\mathscr{B}(A_{D}+C_{t^{\prime}})-s$ are of the form $\lambda/\sqrt{1+\lambda^{2}}-s$ , where $\lambda$ is an eigenvalue of the operato
$A_{D}+C_{t^{\prime}}$ . Hence the spectral flow of the family $\{\mathscr{B}(A_{D}+C_{t^{\prime}})-s\}_{0\leq s\leq b\langle t)/\sqrt{}\overline{1+b\langle t)^{2}}}$ equals

$-\sum_{0\leq s\leq b\langle t)/\sqrt{}\overline{1+b\langle t)^{2}}}$
dim $ker(\mathscr{B}(A_{D}+C_{t^{\prime}})-s)=-\sum_{0\leq s\leq b\{t)}$ dim $ker(A_{D}+C_{t’}-s)$
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a) Vertical and horizontal spacing for b) The spectral flow of the linear
$ker(A_{D}+C_{t})\neq\{0\}$ family $\{\mathcal{R}\langle A_{D}+C_{t^{\prime}})-s\}_{s\epsilon l0.F_{\langle t)l}}$ ,

$\tilde{b}(t)=b(t)\langle 1+b(t)^{2})^{-1/2}$

FIGURE 6

(see also Figure $6b$). We shall show that this intege $r$ equals the Maslov index of the
family $\{\Lambda(s, t^{\prime}):=\gamma(ker(A^{*}+C_{t’}-s))\}_{0\leq s\leq b\langle t)}\}$ at the Lagrangian $\Lambda_{0}:=\gamma(D)$ for each fixed
$t^{\prime}\in(t-\delta(t), t+\delta(t))$ . We have $\Lambda(s, t^{\prime})\cap\Lambda_{0}=\{0\}$ , if $s\not\in spec(A_{D}+C_{t^{\prime}})\cap[0, b(t)]$ . By our
assumption 1, the set $spec(A_{D}+C_{t^{\prime}})\cap[0, b(t)]$ contains only a finite number of ele-
ments. Consequently, the intersection of the curve $\{\Lambda(s, t^{\prime})\}_{0\leq s\leq b\langle t)}$ with $\gamma(D)$ is non-
trivial only at finitely many points; and these points are the eigenvalues $\lambda$ of the op-
erator $A_{D}+C_{t’}$ with $0\leq\lambda\leq b(t)$ . Clearly, the family $\{\Lambda(s, t^{\prime})\}_{0\leq s\leq b\langle t)}$ is $a$ smooth curve.

We determine the quadratic form $Q_{(\Lambda(\lambda,t’),\dot{\Lambda}(\lambda,t’))}$ for all such eigenvalues $\lambda$ and fixed $t^{\prime}$ ;

$Q_{\langle\Lambda\langle\lambda,t’).\dot{\Lambda}\langle\lambda,t^{\prime}))}([x], [x]):=\frac{d}{d\theta}\omega([x], B_{\theta}[x])_{|\theta=0}$ for $[x]=\gamma(x)\in\beta$ ,

where $\beta:=D_{M}/D_{m}$ denotes our symplectic space of boundary values and
$B_{\theta}$ : $\Lambda(\lambda, t^{\prime})\rightarrow\Lambda(\lambda, t^{\prime})^{\perp}$ is chosen in such a way that $\{[x]+B_{\theta}[x]|[x]\in\Lambda(\lambda, t^{\prime})\}=$

$\Lambda(\lambda+\theta, t^{\prime})$ for $\theta$ close to $0$ . It follows that $B_{0}=0$ .
Let $x\in ker(A_{D}+C_{t^{\prime}}-\lambda)$ or equivalently $\gamma(x)\in\Lambda(\lambda, t^{\prime})\cap\Lambda_{0}$ , and $\theta$ sufficiently small.

Then we can choose a smooth family
$\{u_{\theta}\in ker(A^{*}+C_{t^{\prime}}-\lambda-\theta)\}$

such that

$\gamma(x)+B_{\theta}(\gamma(x))=\gamma(u_{\theta})$ and $u_{0}=x$ .
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Hence

(5.3) $\omega(\gamma(x), B_{\theta}(\gamma(x)))=\langle A^{*}x, u_{\theta}-x\rangle-\langle x, A^{*}(u_{\theta}-x)\rangle$

$=\langle(A^{*}+C_{t^{\prime}}-\lambda)x, u_{\theta}-x\rangle-\langle x, (A^{*}+C_{t’}-\lambda)(u_{\theta}-x)\rangle=-\langle x, \theta u_{\theta}\rangle$ .
Differentiating yields

$\frac{d}{d\theta}-\langle x, \theta u_{\theta}\rangle_{|\theta=0}=-\langle x, u_{0}\rangle=-\langle x, x\rangle<0$

for $x\neq 0$ ; hence $Q_{\langle\Lambda\langle\lambda,t^{\prime}).\dot{\Lambda}\langle\lambda,t’))|\Lambda\langle\lambda.t’)\cap\gamma(D)}$ is negative definite.
This implies that the crossings $a$re all regular at $ s=\lambda$ , the eigenvalue of $A_{D}+C_{t},$ ,

so that we can apply Theorem 2.1 and determine $t$he Maslov index by adding the
signatures of the crossing forms; and it implies that this signature is just the dimension
of the kernel of $ A_{D}+C_{t’}-\lambda$ . Hence

(5.4) $\mu(\{\Lambda(s, t^{\prime})\}_{0\leq s\leq b\langle t)}, \gamma(D))=\sum_{0\leq s\leq b(t)}$ sign $Q_{(\Lambda\langle s.t’),\dot{\Lambda}\langle s.t’))|\Lambda\langle s.t’)\cap\Lambda_{0}}$

$=-\sum_{0\leq s\leq b\langle t)}$ dim $\Lambda(s, t^{\prime})\cap\gamma(D)=-\sum_{0\leq s\leq b\langle t)}\dim ker(A_{D}+C_{t’}-s)$ .

Based on these considerations we can choose the desired horizontal spacing
$\{0=t_{0}<t_{1}<\cdots<t_{N}=1\}$ and vertical spacing $\{a_{1} : =b(t_{1}), \cdots, a_{N} : =b(t_{N})\}$ .

Third step: Let $[t_{i}, t_{i+1}]$ be one of these small intervals. We consider the
two-parameter family $\{\mathscr{B}(A_{D}+C_{t})-s\}$ with $t\in[t_{i}, t_{i+1}]$ and $s\in[0, a_{i+1}/\sqrt{1+a_{i+1}^{2}}]$ . We
obtain

(5.5) $sf(\{\mathscr{B}(A_{D}+C_{t})\}_{t_{i}\leq t\leq t_{i+1}})+sf(\{\mathscr{B}(A_{D}+C_{t_{i+1}})-s\}_{0\leq S\leq a_{i+1/=}}\sqrt 1+a_{i+1})$

$-sf(\{\mathscr{B}(A_{D}+C_{t_{i}})-s\}_{o\sqrt{}\overline{1a}_{i+1}})=0\leq S\leq a_{i+1/+=}$

from Theorem 4.2 and

(5.6) $\mu(\{\gamma(ker(A^{*}+C_{t})\}_{t.\leq t\leq t.+1},$ $\gamma(D))$

$+\mu(\{\gamma(ker(A^{*}+C_{t_{i+1}}-s)\}_{0\leq s\leq a_{i+1}},$ $\gamma(D))$

$-\mu(\{\gamma(ker(A^{*}+C_{t_{i}}-s)\}_{0\leq s\leq a_{i+1}},$ $\gamma(D))=0$

from Theorem 1.6. The previous step showed that the spectral flow and the Maslov
index coincide for linear families. That yields

$sf(\{\mathscr{B}(A_{D}+C_{t})\}_{t_{i}\leq t\leq t_{i+1}})=\mu(\{\gamma(ker(A^{*}+C_{t})\}_{t_{i}\leq t\leq t_{i+1}},$ $\gamma(D))$

for each $sm$all interv$a1[t_{i}, t_{i+1}]$ . Then additivi$ty$ under catenation proves the
$theorem\ovalbox{\tt\small REJECT}$

.
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