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1. Introduction.

Let $M$ be a compact connected n-manifold and $\mathscr{M}(M)$ the space of Riemannian
metrics on $M$ . We study the critical metrics of the following functional;

$S^{p}$ : $\mathscr{M}(M)\rightarrow R$ ; $g\mapsto\frac{\int_{M}R_{g}^{p}dv_{g}}{(\int_{M}dv_{g})^{(n-2p)/n}}$ ,

where $R_{g}$ is the scalar curvature of $g$ and $p\in N$ .
The first variation formula for $S^{p}$ is

$\nabla^{2}R_{g}^{p-1}=\frac{1}{n}\Delta R_{g}^{p-1}g+R_{g}^{p-1}(Ric_{g}-\frac{R_{g}}{n}g)$ , (i)

where $Ric_{g}$ is the Ricci tensor of $g$ . Taking the divergence of (i) with respect to $g$ , we have

$\Delta R_{g}^{p-1}=\frac{n-2p}{2p(n-1)}(R_{g}^{p}-\overline{R_{g}^{p}})$ ,

where $\overline{R_{g}^{p}}=\int_{M}R_{g}^{p}dv_{g}/\int_{M}dv_{g}$ . The equation (ii) is also the first variation formula for
$S^{p}|_{c}$ , where $C$ is a conformal class of $\mathscr{M}(M)$ .

Obviously, if $R_{g}\equiv 0$ or $g$ is an Einstein metric, the metric $g$ satisfies the equation
(i). A metric of constant scalar curvature satisfies the equation (ii). The question is
whether the converses are true or not.

The case $p=1$ is well-known (e.g. [5]). When $n=2,$ $S^{2}|_{c}$ was studied by Calabi
([4], see also Section 3). If $n\geq 4$ and $p=n/2$ , the answer is positive (e.g. [2]). If $n=3$ ,
$p=2andR_{g}$ does not change the sign, then the metric which satisfies (i) is of constant
scalar curvature ([1]). According to Anderson ([1]), the general case is an open ques-
tion.

In this paper, we show the following results which are extentions of Anderson’s
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result.

THEOREM 1. Suppose $g$ satisfies the equation (ii). If any of the following conditioj

is satisfied, then $R_{g}$ is constant:
(i) for $p\geq 3,$ $(p-n/2)\max R_{g}\leq 0$ or $(p-n/2)\min R_{9}\leq 0$ ;
(ii) for $p=2,$ $(2-n/2)\max R_{g}\leq 0$ and $(2-n/2)\min R_{g}\leq 0$ .

COROLLARY. If $g$ satisfies (ii) and $(p-n/2)R_{g}\leq 0$ then $R_{g}$ is constant.

THEOREM 2. If $g$ satisfies the equation (i) and $R_{g}\geq 0$ , then $g$ is an Einstein metri
or $R_{g}$ is identically $0$ .

From Theorem 1 and Theorem 2, we obtain the affirmative answer to our questio]
in case $p\geq\max\{3, n/2\}$ , which implies a difficult part of the problem will be the cas
for relatively small $p$ .

The author would like to thank Professor Minyo Katagiri for his valuabl
suggestions and the referee for helpful remarks.

2. Proof of Theorem 1.

It is easy to see that

$\Delta R_{g}^{p}=\frac{p}{p-1}R_{g}\Delta R_{g}^{p-1}+pR_{g}^{p-2}|\nabla R_{g}|^{2}$

Combining (ii) with this, we have

$\Delta R_{g}^{p}(x)=\frac{n-2p}{2(n-1)(p-1)}R_{g}(x)(R_{g}^{p}(x)-\overline{R_{g}^{p}})$ ,

if either $x$ is acritical point of $R_{g}$ or $x$ is acritical point of $R_{g}^{p}$ for $p\geq 3$ . Thus we se
that if $R_{g}$ is not constant and if $p\geq 3$ then $(n-2p)R_{g}(x_{1})\leq 0$ at a maximum point $x_{1}c$

$R_{g}^{p}$ and $(n-2p)R_{g}(x_{2})\leq 0$ at a minimum point $x_{2}$ of $R_{g}^{p}$ . If $R_{g}$ is not constant and $pi$

even then $(n-2p)R_{g}(x_{1})<0$ . We then have $(n-2p)R_{g}\leq 0$ if $p$ is odd, and $(n-2p)R_{g}<$

if $p$ is even and $R_{g}(x_{2})\neq 0$ . Again from (ii), if $p\geq 3$ and $R_{g}$ takes $0$ somewhere the
$\overline{R_{g}^{p}}=0$ . Now it is easy to see the assertion (i). The assertion (ii) is proved by a simila
argument. $\square $

3. The case of dimension 2.

In dimension 2, the equations (i) and (ii) become the following simple form
respectively:

$\nabla^{2}R_{g}^{p-1}=\frac{1}{2}\Delta R_{9}^{p-1}g$ , (3.1
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$\Delta R_{g}^{p-1}=^{\underline{1-p}}(R_{g}^{p}-\overline{R_{g}^{p}})$ . (3.2)
$p$

In [4], Calabi introduced the functional $S^{2}$ on a complex manifold with a fixed K\"ahler

class. In dimension 2, a K\"ahler class is nothing but a conformal class of metrics. Thus
the equation to be considered will be (3.2).

Following the method given by Xu ([6]), we answer to our question for general $S^{p}$ .
LEMMA 3.1. For $p\geq 2,$ $g$ satisfies (3.1) if and only if $g$ is of constant scalar cur-

vature.

PROOF. From (3.1), $\nabla R_{g}^{p-1}$ is a conformal vector field. For a conformal vector
field $X$, the following formula is well-known (e.g. [3]):

$\int_{M}XR_{g}dv_{g}=0$ . (3.3)

Hence we have

$\int_{M}R_{g}^{p-2}|\nabla R_{g}|^{2}dv_{g}=0$ .

If $p$ is even, this implies $R_{g}$ is constant. If $p$ is odd, $R_{g}$ does not change a sign from
Theorem 1. Thus $R_{g}$ is constant. $\square $

LEMMA 3.2. (3.2) implies (3.1).

PROOF. The Ricci identity shows that

$\frac{1}{2}\Delta|\nabla f|^{2}-\frac{1}{2}div(\Delta f\nabla f)=|\nabla^{2}f-\frac{1}{2}\Delta fg|^{2}+\frac{1}{2}\nabla\Delta f\cdot\nabla f+\frac{R_{g}}{2}|\nabla f|^{2}$ ,

where we have used $Ric_{g}=(R_{g}/2)g$ because $n=2$ . Taking the integrals of the both sides,
we have

$0=\int_{M}|\nabla^{2}f-\frac{1}{2}\Delta fg|^{2}dv_{g}+\frac{1}{2}\int_{M}\nabla\Delta f\cdot\nabla fdv_{g}+\frac{1}{2}\int_{M}R_{g}|\nabla f|^{2}dv_{g}$ .

We put $f=R_{g}^{p-1}$ . Then it follows from (3.2) that

$0=\int_{M}|\nabla^{2}R_{g}^{p-1}-\frac{1}{2}\Delta R_{g}^{p-1}g|^{2}dv_{g}$

$-\frac{(p-1)^{2}}{2}\int_{M}R_{g}^{2p-3}|\nabla R_{g}|^{2}dv_{g}+\frac{(p-1)^{2}}{2}\int_{M}R_{g}^{2p-3}|\nabla R_{g}|^{2}dv_{g}$

$=\int_{M}|\nabla^{2}R_{g}^{p-1}-\frac{1}{2}\Delta R_{g}^{p-1}g|^{2}dv_{g}$ .

Hence (3.1) holds. $\square $
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REMARK. For $n\geq 3$ , this lemma does not hold.

THEOREM. For $p\geq 2,$ $g$ satisfies (3.2) ifand only if $g$ is of constant scalar curvature.

4. Proof of Theorem 2.

In this section we consider the equation (i). Lemma 3.1 gives a complete answer
in dimension 2. There the formula (3.3) plays an important role. This will be interpreted
as follows: Since $\nabla^{2}f=+\mathscr{L}_{\nabla f}g$ for any function $f$, the equation (i) gives us information
on $\mathscr{L}_{\nabla R_{g}^{p-1}}g$ . Naturally this leads to what will be $\mathscr{L}_{\nabla R_{g}^{p-1}}R_{g}$ . We can regard the formula
(3.3) as the integral of $\mathscr{L}_{X}R_{g}$ for $X=\nabla R_{g}^{p-1}$ . Following this line, we proceed the argument
in higher dimensional cases.

Recall that if a vector field $X$ and a 2-tensor $h$ satisfy $\mathscr{L}_{X}g=h$ then

$\mathscr{L}_{X}R_{g}=-\Delta$ tr $ h+h_{;ij}^{ij}-\langle h, Ric_{g}\rangle$ .
Taking the integrals of the both sides, we obtain

$\int_{M}XR_{g}dv_{g}=-\int_{M}\langle h, Ric_{g}\rangle dv_{g}$ .

In view of the equation (i), we put

$X=\nabla R_{g}^{p-1}$ , $h=\frac{2}{n}\Delta R_{g}^{p-1}g+2R_{g}^{p-1}(Ric_{g}-\frac{R_{g}}{n}g)$ ,

and we have

$\int_{M}\nabla R_{g}^{p-}R_{g}dv_{g}=-\int_{M}$ ( $\frac{2}{n}$ $(\Delta R_{g}^{p}‘ 1)R_{g}+2R_{g}^{p-1}|Ric_{g}-\frac{R_{g}}{n}g|^{2}$) $dv_{g}$ .

By integration by parts we have

$(p-1)(1-\frac{2}{n})\int_{M}R_{g}^{p-2}|\nabla R_{g}|^{2}dv_{g}=-2\int_{M}R_{g}^{p-1}|Ric_{g}-\frac{R_{g}}{n}g|^{2}dv_{g}$ .

Consequently we get

$\frac{(n-2)(p-1)}{2n}\int_{M}R_{g}^{p-2}|\nabla R_{g}|^{2}dv_{g}=-\int_{M}R_{g}^{p-1}|Ric_{g}-\frac{R_{g}}{n}g|^{2}dv_{g}$ .

From our assumption $R_{g}\geq 0$ , the left hand side is non-negative. Therefore the integranc
of the right side vanishes. $\square $
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