Critical Metrics of the Scalar Curvature Functional

Fumie YAGI

Nara Women's University
(Communicated by Y. Maeda)

1. Introduction.

Let M be a compact connected n-manifold and $\mathscr{M}(M)$ the space of Riemannian metrics on M. We study the critical metrics of the following functional;

$$
\mathscr{S}^{p}: \mathscr{M}(M) \rightarrow \mathbf{R} ; \quad g \mapsto \frac{\int_{M} R_{g}^{p} d v_{g}}{\left(\int_{M} d v_{g}\right)^{(n-2 p) / n}},
$$

where R_{g} is the scalar curvature of g and $p \in \mathbf{N}$.
The first variation formula for \mathscr{S}^{p} is

$$
\begin{equation*}
\nabla^{2} R_{g}^{p-1}=\frac{1}{n} \Delta R_{g}^{p-1} g+R_{g}^{p-1}\left(\operatorname{Ric}_{g}-\frac{R_{g}}{n} g\right) \tag{i}
\end{equation*}
$$

where Ric_{g} is the Ricci tensor of g. Taking the divergence of (i) with respect to g, we have

$$
\begin{equation*}
\Delta R_{g}^{p-1}=\frac{n-2 p}{2 p(n-1)}\left(R_{g}^{p}-\overline{R_{g}^{p}}\right), \tag{ii}
\end{equation*}
$$

where $\overline{R_{g}^{p}}=\int_{M} R_{g}^{p} d v_{g} / \int_{M} d v_{g}$. The equation (ii) is also the first variation formula for $\left.\mathscr{S}^{p}\right|_{C}$, where C is a conformal class of $\mathscr{M}(M)$.

Obviously, if $R_{g} \equiv 0$ or g is an Einstein metric, the metric g satisfies the equation (i). A metric of constant scalar curvature satisfies the equation (ii). The question is whether the converses are true or not.

The case $p=1$ is well-known (e.g. [5]). When $n=2,\left.\mathscr{S}^{2}\right|_{c}$ was studied by Calabi ([4], see also Section 3). If $n \geq 4$ and $p=n / 2$, the answer is positive (e.g. [2]). If $n=3$, $p=2$ and R_{g} does not change the sign, then the metric which satisfies (i) is of constant scalar curvature ([1]). According to Anderson ([1]), the general case is an open question.

In this paper, we show the following results which are extentions of Anderson's

[^0]result.
Theorem 1. Suppose g satisfies the equation (ii). If any of the following condition is satisfied, then R_{g} is constant:
(i) for $p \geq 3$, $(p-n / 2) \max R_{g} \leq 0$ or $(p-n / 2) \min R_{g} \leq 0$;
(ii) for $p=2$, $(2-n / 2) \max R_{g} \leq 0$ and $(2-n / 2) \min R_{g} \leq 0$.

Corollary. If g satisfies (ii) and $(p-n / 2) R_{g} \leq 0$ then R_{g} is constant.
Theorem 2. If g satisfies the equation (i) and $R_{g} \geq 0$, then g is an Einstein metric or R_{g} is identically 0 .

From Theorem 1 and Theorem 2, we obtain the affirmative answer to our question in case $p \geq \max \{3, n / 2\}$, which implies a difficult part of the problem will be the case for relatively small p.

The author would like to thank Professor Minyo Katagiri for his valuable suggestions and the referee for helpful remarks.

2. Proof of Theorem 1.

It is easy to see that

$$
\Delta R_{g}^{p}=\frac{p}{p-1} R_{g} \Delta R_{g}^{p-1}+p R_{g}^{p-2}\left|\nabla R_{g}\right|^{2}
$$

Combining (ii) with this, we have

$$
\Delta R_{g}^{p}(x)=\frac{n-2 p}{2(n-1)(p-1)} R_{g}(x)\left(R_{g}^{p}(x)-\overline{R_{g}^{p}}\right),
$$

if either x is a critical point of R_{g} or x is a critical point of R_{g}^{p} for $p \geq 3$. Thus we see that if R_{g} is not constant and if $p \geq 3$ then $(n-2 p) R_{g}\left(x_{1}\right) \leq 0$ at a maximum point x_{1} of R_{g}^{p} and $(n-2 p) R_{g}\left(x_{2}\right) \leq 0$ at a minimum point x_{2} of R_{g}^{p}. If R_{g} is not constant and p is even then $(n-2 p) R_{g}\left(x_{1}\right)<0$. We then have $(n-2 p) R_{g} \leq 0$ if p is odd, and $(n-2 p) R_{g}<0$ if p is even and $R_{g}\left(x_{2}\right) \neq 0$. Again from (ii), if $p \geq 3$ and R_{g} takes 0 somewhere then $\overline{R_{g}^{p}}=0$. Now it is easy to see the assertion (i). The assertion (ii) is proved by a similar argument.

3. The case of dimension 2.

In dimension 2, the equations (i) and (ii) become the following simple forms respectively:

$$
\begin{equation*}
\nabla^{2} R_{g}^{p-1}=\frac{1}{2} \Delta R_{g}^{p-1} g \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta R_{g}^{p-1}=\frac{1-p}{p}\left(R_{g}^{p}-\overline{R_{g}^{p}}\right) . \tag{3.2}
\end{equation*}
$$

In [4], Calabi introduced the functional \mathscr{S}^{2} on a complex manifold with a fixed Kähler class. In dimension 2, a Kähler class is nothing but a conformal class of metrics. Thus the equation to be considered will be (3.2).

Following the method given by Xu ([6]), we answer to our question for general \mathscr{S}^{p}.
Lemma 3.1. For $p \geq 2, g$ satisfies (3.1) if and only if g is of constant scalar curvature.

Proof. From (3.1), ∇R_{g}^{p-1} is a conformal vector field. For a conformal vector field X, the following formula is well-known (e.g. [3]):

$$
\begin{equation*}
\int_{M} X R_{g} d v_{g}=0 \tag{3.3}
\end{equation*}
$$

Hence we have

$$
\int_{M} R_{g}^{p-2}\left|\nabla R_{g}\right|^{2} d v_{g}=0
$$

If p is even, this implies R_{g} is constant. If p is odd, R_{g} does not change a sign from Theorem 1. Thus R_{g} is constant.

Lemma 3.2. (3.2) implies (3.1).
Proof. The Ricci identity shows that

$$
\frac{1}{2} \Delta|\nabla f|^{2}-\frac{1}{2} \operatorname{div}(\Delta f \nabla f)=\left|\nabla^{2} f-\frac{1}{2} \Delta f g\right|^{2}+\frac{1}{2} \nabla \Delta f \cdot \nabla f+\frac{R_{g}}{2}|\nabla f|^{2}
$$

where we have used $\operatorname{Ric}_{g}=\left(R_{g} / 2\right) g$ because $n=2$. Taking the integrals of the both sides, we have

$$
0=\int_{M}\left|\nabla^{2} f-\frac{1}{2} \Delta f g\right|^{2} d v_{g}+\frac{1}{2} \int_{M} \nabla \Delta f \cdot \nabla f d v_{g}+\frac{1}{2} \int_{M} R_{g}|\nabla f|^{2} d v_{g}
$$

We put $f=R_{g}^{p-1}$. Then it follows from (3.2) that

$$
\begin{aligned}
0= & \int_{M}\left|\nabla^{2} R_{g}^{p-1}-\frac{1}{2} \Delta R_{g}^{p-1} g\right|^{2} d v_{g} \\
& -\frac{(p-1)^{2}}{2} \int_{M} R_{g}^{2 p-3}\left|\nabla R_{g}\right|^{2} d v_{g}+\frac{(p-1)^{2}}{2} \int_{M} R_{g}^{2 p-3}\left|\nabla R_{g}\right|^{2} d v_{g} \\
= & \int_{M}\left|\nabla^{2} R_{g}^{p-1}-\frac{1}{2} \Delta R_{g}^{p-1} g\right|^{2} d v_{g}
\end{aligned}
$$

Hence (3.1) holds.

Remark. For $n \geq 3$, this lemma does not hold.
Theorem. For $p \geq 2, g$ satisfies (3.2) if and only if g is of constant scalar curvature.

4. Proof of Theorem 2.

In this section we consider the equation (i). Lemma 3.1 gives a complete answer in dimension 2. There the formula (3.3) plays an important role. This will be interpreted as follows: Since $\nabla^{2} f=\frac{1}{2} \mathscr{L}_{\nabla f} g$ for any function f, the equation (i) gives us information on $\mathscr{L}_{\nabla R_{g}^{p-1}} g$. Naturally this leads to what will be $\mathscr{L}_{\nabla R_{g}^{p-1}} R_{g}$. We can regard the formula (3.3) as the integral of $\mathscr{L}_{X} R_{g}$ for $X=\nabla R_{g}^{p-1}$. Following this line, we proceed the argument in higher dimensional cases.

Recall that if a vector field X and a 2-tensor h satisfy $\mathscr{L}_{x} g=h$ then

$$
\mathscr{L}_{X} R_{g}=-\Delta \operatorname{tr} h+h_{; i j}^{i j}-\left\langle h, \mathrm{Ric}_{g}\right\rangle .
$$

Taking the integrals of the both sides, we obtain

$$
\int_{M} X R_{g} d v_{g}=-\int_{M}\left\langle h, \mathrm{Ric}_{g}\right\rangle d v_{g} .
$$

In view of the equation (i), we put

$$
X=\nabla R_{g}^{p-1}, \quad h=\frac{2}{n} \Delta R_{g}^{p-1} g+2 R_{g}^{p-1}\left(\operatorname{Ric}_{g}-\frac{R_{g}}{n} g\right),
$$

and we have

$$
\int_{M} \nabla R_{g}^{p-1} R_{g} d v_{g}=-\int_{M}\left(\frac{2}{n}\left(\Delta R_{g}^{p-1}\right) R_{g}+2 R_{g}^{p-1}\left|\mathrm{Ric}_{g}-\frac{R_{g}}{n} g\right|^{2}\right) d v_{g}
$$

By integration by parts we have

$$
(p-1)\left(1-\frac{2}{n}\right) \int_{M} R_{g}^{p-2}\left|\nabla R_{g}\right|^{2} d v_{g}=-2 \int_{M} R_{g}^{p-1}\left|\mathrm{Ric}_{g}-\frac{R_{g}}{n} g\right|^{2} d v_{g}
$$

Consequently we get

$$
\frac{(n-2)(p-1)}{2 n} \int_{M} R_{g}^{p-2}\left|\nabla R_{g}\right|^{2} d v_{g}=-\int_{M} R_{g}^{p-1}\left|\mathrm{Ric}_{g}-\frac{R_{g}}{n} g\right|^{2} d v_{g}
$$

From our assumption $R_{g} \geq 0$, the left hand side is non-negative. Therefore the integrand of the right side vanishes.

References

[1] M. T. Anderson, Extrema of curvature functionals on the space of metrics on 3-manifolds, Calc.

Var. Partial Differential Equations 5 (1997), 199-269.
[2] A. Besse, Einstein Manifolds, Springer (1987).
[3] J. P. Bourguignon and J. P. Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc. 301 (1987), 723-736.
[4] E. Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud. 102 (1982), 259-290.
[5] O. Kobayashi, On the Yamabe problem, Sem. Math. Sci. 16 (1990), Dept. Math. Keio. Univ. (in Japanese).
[6] X. Xu, On the existence of extremal metrics, Pacific J. Math. 174 (1996), 555-568.

Present Address:

Department of Mathematics, Nara Women's University, Nara, 630-8506 Japan.

[^0]: Received October 18, 1997
 Revised March 11, 1998

