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1. Introduction.

Let M be a compact connected n-manifold and .# (M) the space of Riemannian
metrics on M. We study the critical metrics of the following functional;
.‘. um Ridv,
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where R, is the scalar curvature of g and peN.
The first variation formula for &7 is
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where Ric, is the Ricci tensor of g. Taking the divergence of (i) with respect to g, we have

-1 N—2p Y ..
AR} —M(Rg RP), (i1)
where R?= |, RFdv,/{, dv,. The equation (ii) is also the first variation formula for
&?|c, where C is a conformal class of #(M).

Obviously, if R,=0 or g is an Einstein metric, the metric g satisfies the equation
(i). A metric of constant scalar curvature satisfies the equation (ii). The question is
whether the converses are true or not.

The case p=1 is well-known (e.g. [5]). When n=2, ¥ ?|. was studied by Calabi
([4], see also Section 3). If n>4 and p=n/2, the answer is positive (e.g. [2]). If n=3,
p=2 and R, does not change the sign, then the metric which satisfies (i) is of constant
scalar curvature ([1]). According to Anderson ([1]), the general case is an open ques-
tion.

In this paper, we show the following results which are extentions of Anderson’s
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result.

THEOREM 1. Suppose g satisfies the equation (ii). If any of the following condition
is satisfied, then R, is constant:

(i) for p=3, (p—n/2)ymax R;<0 or (p—n/2)min R,<0;

(ii) for p=2,(2—n/2)max R,<0 and (2—n/2)min R,<0.

COROLLARY. If g satisfies (ii) and (p—n/2)R,<0 then R, is constant.

THEOREM 2. If g satisfies the equation (i) and R, >0, then g is an Einstein metric
or R, is identically 0.

From Theorem 1 and Theorem 2, we obtain the affirmative answer to our question
in case p>max{3, n/2}, which implies a difficult part of the problem will be the case
for relatively small p.

The author would like to thank Professor Minyo Katagiri for his valuable
suggestions and the referee for helpful remarks.

2. Proof of Theorem 1.
It is easy to see that

AR;=—p—1 R,AR?™'+pR?™ VR, |.
p -—
Combining (ii) with this, we have

n—2p
2n—1)p—-1)

ARJ(x)= R (x)RJ(x)—R]) ,

if either x is a critical point of R, or x is a critical point of R} for p>3. Thus we see
that if R, is not constant and if p>3 then (n—2p)R,(x,) <0 at a maximum point x, of
R? and (n—2p)R,(x,) <0 at a minimum point x, of R}. If R, is not constant and p is
even then (n—2p)R,(x,) <0. We then have (n—2p)R,<0 if p is odd, and (n—2p)R,<0
if p is even and R, (x,)#0. Again from (ii), if p>3 and R, takes 0 somewhere then
RP=0. Now it is easy to see the assertion (i). The assertion (ii) is proved by a similar
argument. []

3. The case of dimension 2.

In dimension 2, the equations (i) and (ii) become the following simple forms
respectively:

1

VZR;’“=7AR;"‘g, 3.1)
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ARP~1=2"P (o _Rpy. (3.2)
p

In [4], Calabi introduced the functional %2 on a complex manifold with a fixed Kahler
class. In dimension 2, a Kihler class is nothing but a conformal class of metrics. Thus
the equation to be considered will be (3.2).

Following the method given by Xu ([6]), we answer to our question for general &7.

LemMa 3.1. For p>2, g satisfies (3.1) if and only if g is of constant scalar cur-
vature. '

Proor. From (3.1), VR? ™! is a conformal vector field. For a conformal vector
field X, the following formula is well-known (e.g. [3]):

J XR,dv,=0 . : (3.3)
M

Hence we have
j R;'zl VRglzdvg=0 )
M

If p is even, this implies R, is constant. If p is odd, R, does not change a sign from
Theorem 1. Thus R, is constant. []

Lemma 3.2. (3.2) implies (3.1).
Proor. The Ricci identity shows that

2
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where we have used Ric,=(R,/2)g because n=2. Taking the integrals of the both sides,

we have
0= j
M

We put f=RP~!. Then it follows from (3.2) that

o,

(p—1)? _
—~2" 7 | R2P}VR,|2dv,+
M
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Hence (3.1) holds. [
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REMARK. For n>3, this lemma does not hold.

THEOREM. For p>2, g satisfies (3.2) if and only if g is of constant scalar curvature.

4. Proof of Theorem 2.

In this section we consider the equation (i). Lemma 3.1 gives a complete answer
in dimension 2. There the formula (3.3) plays an important role. This will be interpreted
as follows: Since V 2f=1%,,g for any function f, the equation (i) gives us information
on %gr-1g. Naturally this leads to what will be %gz-1R,. We can regard the formula
(3.3) as the integral of #R, for X=VR}~'. Following this lme we proceed the argument
in higher dimensional cases.

Recall that if a vector field X and a 2-tensor A satlsfy Zvg=nh then

ngg:: _A tl‘h+h”’u—<h, Ricg> .

Taking the integrals of the both sides, we obtain

J XR,dv,= —f <h,Ric,)dv, .
M M

In view of the equation (i), we put

R
X=VRrt, h=£AR;"lg+2R§“(Ricg——J—g),
n n

2
)dvy .

and we have

) R
Ric,——%¢g
n

J VRP™!R,dp,= — J (E(AR;‘I)RQHR;‘I
M M n

By integration by parts we have

2
(p_1)(1—%)J R;”2|VRg|2dvg=—2J Ry1 Ricg—ﬁg dv, .
M M n
Consequently we get
—2)(p—1 ) R, I?
u”—lj R;'ZIVRglzdvg=—j R?~!|Ric,~—2g| dv,.
2n M M n

From our assumption R, >0, the left hand side is non-negative. Therefore the integrand
of the right side vanishes. []
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