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Introduction.

A codimension $qC^{r}$ foliation $\mathcal{F}$ of a closed manifold $M$ is said to be $C^{r}$-stable if
there exists a neighbourhood $V$ of $\mathscr{F}$ in the set of codimension $qC$‘ foliations, which
carries a natural weak $C^{r}$-topology (cf. Hirsch [7], Epstein [2]), such that every foliation
in $V$ has a compact leaf. Kazuhiko Fukui has studied the stability of foliations of closed
manifolds by Klein bottles ([4], [5]). In this paper, we study the stability of Hausdorff
$C$‘ $(1 \leqq r\leqq\infty)$ foliations of closed manifolds of dimension $n(n=4,5)$ with tori as generic
leaves, where a foliation $\mathscr{F}$ is said to be Hausdorff if the leaf space $M/\mathscr{F}$ is Hausdorff.
Epstein showed if a foliation $\mathscr{F}$ is Hausdorff, there is a generic leaf $L_{0}$ with the property
that there is an open dense saturated subset of $M$ where all leaves have trivial holonomy
and are diffeomorphic to $L_{0}$ (cf. Epstein [2] and also \S 1). A leaf of $\mathscr{F}$ is said to be
singular if it has non-trivial holonomy group. We shall classify the types of the singular
leaves (Theorems 4, 5) and discuss their local stabilities (Theorems 9, 13 in the case of
codimension 2 foliations and Theorems 15, 18 for codimension 3).

The author would like to thank Prof. K. Fukui for fruitful discussions through
his papers and also to thank Prof. Takashi Inaba for his helpful advice.

1. Local behaviour of foliations.

Let $\mathscr{F}$ be a codimension $q$ compact Hausdorff $C$‘ $(1 \leqq r\leqq\infty)$ foliation of a closed
manifold $M$. On the local behaviour of $\mathscr{F}$, there are results of Epstein [2] and
Edwards-Millett-Sullivan [1] and it can be described after Fukui ([4], [5]) as follows:

PROPOSITION 1 (Epstein [2] Thm. 4.3). There is a generic leaf $L_{0}$ with the property
that there is an open dense saturated subset of $M$ where all leaves have trivial holonomy
and are $d\iota ffeomorphic$ to $L_{0}$ . Given a leaf $L$ , we can describe a neighbourhood $U(L)$ of
$L$ , together with the foliation on the neighbourhood as follows. There is a finite subgroup
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$G(L)$ of the orthogonal group $O(q)$ such that $G(L)$ acts freely on $L_{O}$ on the right and
$L_{O}/G(L)\cong L$ . Let $D^{q}$ be the unit disk. Wefoliate $L_{0}\times D^{q}$ with leaves of theform $L_{O}\times\{pt\}$ .
Thisfoliation is preserved by the diagonal action of $G(L)$ defined by $g(x, y)=(x\cdot g^{-1}, g\cdot y)$

for $g\in G(L),$ $x\in l_{O}$ and $y\in D^{q}$ , where $G(L)$ acts linearly on $D^{q}$ . So we have a foliation
induced on $U=L_{0}\times D^{q}/G(L)$ . The central leaf corresponding to $y=0$ is $L_{0}/G(L)$ . Then
there is a $C$‘-imbedding $\varphi:U\rightarrow M$ with $\varphi(U)=U(L)$ , which preserves leaves and
$\varphi(L_{O}/G(L))=L$ .

The neighbourhood $U(L)$ can be regarded as the total space of a normal disk bun-
dle of $L$ in $M$ with the structure group $G(L)$ and the restriction $p:L_{0}\rightarrow L$ is a finite
regular covering with the group $G(L)$ of covering transformations.

We say that a central leaf $L$ is singular if $G(L)$ is not trivial.

DEFINITION. Let $L$ be a leaf of $\mathscr{F}\mathscr{F}$ is said to be locally $C^{r}$-stable near $L$ if there
is an open neighbourhood $U(L)$ of $L$ such that for any small $C^{r}$ perturbation $\mathscr{F}^{\prime}$ of
$\mathscr{F}|U(L),$ $\mathscr{F}^{\prime}$ has a compact leaf $L^{\prime}$ which is close and diffeomorphic to $L$ . When a
foliation $\mathscr{F}$ is locally $C^{r}$-stable near $L$ , we shall say for convenience that the singular
leaf $L$ is locally $C$‘-stable. Otherwise the leaf $L$ is locally $C$‘-unstable.

We consider foliations of codimension two or three, with tori as the generic leaves
and classify neighbourhoods of singular leaves, which are obviously tori or Klein bottles.
Also we study the local stability of singular leaves.

A free action of a finite group $G$ on a manifold $L_{0}$ is completely determined by a
covering map $\Phi:(L_{0}, *\sim)\rightarrow(L, *)$ corresponding to a normal subgroup $N$ of $\pi_{1}(L, *)$ and
an epimorphism $\varphi:\pi_{1}(L, *)\rightarrow G$ with ker $\varphi=N$.

Given $N,$ $\varphi$ and $\Phi$ as above, we have a foliated neighbourhood $U=U(L_{O}, G, \varphi, \Phi)=$

$L_{0}\times D^{q}/G$ as in Proposition 1. Note that for any other covering map $\Phi^{\prime}$ corresponding
to the same $N,$ $U^{\prime}=U(L_{0}, G, \varphi, \Phi^{\prime})$ is diffeomorphic to $U$ as Seifert fibred manifolds.
Consequently, from now on we write $U(L_{O}, G, \varphi)$ omitting $\Phi$ . Now we choose a fixed
set of canonical generators for $\pi_{1}(L, *)$ , i.e. a set of generators $(a, b)$ if $L$ is a torus or
$(d_{1}, d_{2})$ if $L$ is a Klein bottle satisfying $aba^{-1}b^{-1}=1$ or $d_{1}^{2}d_{2}^{2}=1$ respectively. For given
$L$ and $G$, Seifert foliated neighbourhood $U(L)$ is completely determined up to iso-
morphism by a vector $(g_{1}, g_{2})$ with $g_{1}=\varphi(a),$ $g_{2}=\varphi(b)$, or $g_{i}=\varphi(d_{i})(i=1,2)$ , respec-
tively (see Vogt [11]). We say that $U(L)$ is a foliated neighbourhood of type $(g_{1}, g_{2})$

and $L$ is of type $(g_{1}, g_{2})$ .
PROPOSITION 2 (Vogt [11] Thm. 2). Let $F$ be a closed surface. Let $G,$ $G^{\prime}$ befinite

subgroups of $O(q)$, and let $\varphi:\pi_{1}(F, *)\rightarrow G(resp. \varphi^{\prime} : \pi_{1}(F, *)\rightarrow G^{\prime})$ be an epimorphism.
Then $U(F, G, \varphi)$ and $U(F, G^{\prime}, \varphi^{\prime})$ are isomorphic if and only if there is an inner
automorphism $\beta$ of $O(q)$ mapping $G$ onto $G^{\prime}$ and an automorphism $\alpha$ of $\pi_{1}(F, *)$ such that
$\varphi^{\prime}=\beta\circ\varphi\circ\alpha$ .

REMARK 3. In our situation, Proposition 2 says that Seifertfoliated neighbourhoods
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$U(L)$ and $U(L^{\prime})$ for two singular leaves $L$ and $L^{\prime}$ , are isomorphic if and only if $L\cong L^{\prime}$ and
$\varphi^{\prime}=\beta\circ\varphi\circ\alpha$ for some appropriate automorphisms $\alpha,$

$\beta$ , where $\varphi$ or $\varphi^{\prime}$ is the holonomy
homomorphism of $L$ or $L^{\prime}$ respectively. In such a case we shall hereafter say that $(\varphi(a)$ ,
$\varphi(b))$ or $(\varphi(d_{1}), \varphi(d_{2}))$ is equivalent to $(\varphi^{\prime}(a), \varphi^{\prime}(b))$ or $(\varphi^{\prime}(d_{1}), \varphi^{\prime}(d_{2}))$ , respectively, with
respect to admissible automorphisms $\alpha,$

$\beta$ .

Now we have the following table (Vogt [11]), of isomorphism classes of foliated
neighbourhoods of the torus $T^{2}$ or the Klein bottle $K^{2}$ which appears as a singular
leaf with holonomy group $G$ , in a compact foliation of codimension 2 whose generic
leaf is the torus.

TABLE 1. Singular $T^{2}$ -leaf of type $(\varphi(a), \varphi(b))$

Here $u=\left(\begin{array}{ll}cos2\pi/k & -sin2\pi/k\\sin2\pi/k & cos2\pi/k\end{array}\right),$ $v=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right),$ $Z_{k}$ is a cyclic group of order $k$ , and $D_{k}$

denotes a dihedral group of order $2k$ .

TABLE 2. Singular $K^{2}$-leaf of type $(\varphi(a), \varphi(b))(a=d_{1}, b=d_{1}d_{2})$

Here $(l, k)=1$ means $gcd(l, k)=1$ .

For a Hausdorff foliation of a closed 5-manifold, we have the following:

THEOREM 4. Let $\mathscr{F}$ be a compact Hausdorff $C^{r}(r\geqq 1)$ foliation ofa 5-manifold $M$

with the torus as a generic leaf and let $L$ be a singular leaf homeomorphic to the torus.
Then the singular leaf type of $L$ is one of these types listed in thefollowing table. Moreover
any two vectors in the table are not mutually equivalent except vectors marked with $*$).
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TABLE 3. Singular $T^{2}$-leaf of type $(\varphi(a), \varphi(b))$

THEOREM 5. Let $\mathscr{F}$ be a compact Hausdorff $C$‘ $(r\geqq 1)$ foliation of a 5-manifold $M$

with the torus as a generic leaf and let $L$ be a singular $K^{2}$-leaf. Then the singular leaf
type of $L$ is one of these types listed in the following table. Furthermore, any two types
in the table are not mutually isomorphic except types marked with $*$).

TABLE 4. Singular $K^{2}$-leaf of type $(\varphi\langle a),$ $\varphi\langle b$)) $\langle a=d_{1},$ $b=d_{1}d_{2}$ )
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Here $(l, k)=1$ means $gcd(l, k)=1$ . See \S 2 and \S 4 for notations as well as, $\cdots*9$ )

2. Singular $T^{2}$-leaves in 5-manifolds.

Now we consider a compact Hausdorff $C$‘ $(r\geqq 1)$ foliation $\mathscr{F}$ of codimension three
with tori as generic leaves. We shall classify foliated neighbourhoods of singular leaves
into isomorphic classes. The finite subgroups of $O(3)$ are listed in the following table
(see Fukui [5] or Grove-Benson [6]):

Here

$u=\left(\begin{array}{lll}cos(2\pi/k) & -sin(2\pi/k) & 0\\sin(2\pi/k) & cos(2\pi/k) & 0\\0 & 0 & 1\end{array}\right)$ , $J=\left(\begin{array}{lll}-1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1\end{array}\right)$ , $v=\left(\begin{array}{lll}1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1\end{array}\right)$ .

Let $L$ be a singular $T^{2}$-leaf of $\mathscr{F}$, and $\varphi:\pi_{1}(L, *)\rightarrow G$ be the holonomy epimorphism
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of $L$ . A foliated neighbourhood $U(L)$ is determined by a vector $(\varphi(a), \varphi(b))$ with respect
to canonical generators a, bof $\pi_{1}(L, *)$ .

REMARK 6. Since $\varphi$ is an epimorphism from $\pi_{1}(L, *)(\cong Z^{2})$ to $G,$ $G$ must be one
of the groups $G_{i}(Z_{k})$ ($i=1,2,3;k$ : positive integer), $G_{1}(D_{k})(k\leqq 2),$ $G_{2}(D_{1}),$ $G_{3}^{Z}(D_{k})(k\leqq 2)$

and $G_{3}^{D}(D_{k})(k\leqq 2)$ .

We shall prove Theorem 4.
(1) $G=G_{1}(Z_{k})$ . We can define an epimorphism $\varphi$ by $\varphi(a)=u^{l},$ $\varphi(b)=u^{m}$ , where

$gcd(l, m, k)=1$ . For all pairs $l,m$ , they determine the isomorphic Seifert foliated manifolds,
i.e. the singular leaf type $(u^{l}, u^{m})$ is equivalent to $(u, 1)$ , since $(u^{l}, u^{m})$ can be reduced to
$(u, 1)$ by applying the Process $(C1)$ . (cf. E. Vogt [11], also see the next section.)

(2) $G=G_{1}(D_{k})$ . For $k=1,$ $G=G_{1}(D_{1})=\{v;v^{2}=1\}$ . There exists an epimorphism
$\varphi$ which is defined by $(\varphi(a), \varphi(b))=(v, 1)$ . Other vectors $(\varphi(a), \varphi(b))=(v, v),$ $(1, v)$ are
equivalent to $(v, 1)$ by applying Process $(C1)$ . Furthermore, $(v, 1)$ is equivalent to $(u, 1)$

in the case $G=G_{1}(Z_{2})$ . $(Notice^{*1)})$

For $k=2(G=G_{1}(D_{2})=\{u, v;u^{2}=v^{2}=(uv)^{2}=1\}),$ $(\varphi(a), \varphi(b))=(u, v)$ determines a
singular leaf of type $(u, v)$ , and other vectors $(uv, v),$ $(u, uv)$ are all equivalent to $(u, v)$ .

(3) $G=G_{2}(Z_{k})$ . For $k=1,$ $(\varphi(a), \varphi(b))=(J, 1)$ determines a singular leaf of type
$(J, 1)$ (clearly equivalent to (1, $J)$). For $k\geqq 2$ , there can exist three cases.

1. $(\varphi(a), \varphi(b))=(u^{l}, J),$ $gcd(l, k)=1$ . All such pairs are equivalent to $(u, J)$ .
(Process $(C2)$)

2. $(\varphi(a), \varphi(b))=(u^{l}J, u^{m}),$ $gcd(l, m, k)=1$ . When $k$ is an odd integer, $\varphi$ is an
epimorphism for all $m\geqq 0$ , while $\varphi$ is an epimorphism for an even $k$ if and only if $m$ is
odd, e.g. $\varphi$ is an epimorphism for $(l, m, k)=(2,3,6)$ but is not for (3, 2, 6). In each 01
these cases, the vector $(\varphi(a), \varphi(b))$ is equivalent to $(u, J)$ . (Process (C2’))

3. $(\varphi(a), \varphi(b))=(u^{l}J, u^{m}J),$ $gcd(l, m, k)=1$ . $\varphi$ can be an epimorphism for any paiI
$(l, m)$ if $gcd(l, m, k)=1$ . Also in this case all vectors are equivalent to $(u, J)$ . (Process
$(C2^{\prime}))$

Consequently there exists the unique singular leaf type $(u, J)$ for $k\geqq 2$ .
(4) $G=G_{2}(D_{1})$ . $(\varphi(a), \varphi(b))=(v, J)$ determines a singular leaf. Other vectors $(J, v)$

$(v, vJ)$ and $(J, vJ)$ are all equivalent to $(v, J)$ (Process $(C1^{\prime})$), and $(v, J)$ is also equivalenl
to $(u, J)$ in the case (3) of $G=G_{2}(Z_{2})$ . $(^{*2)})$ . For $k\geqq 2$ , there exists no epimorphism $\varphi$

since each group $G_{2}(D_{k})$ has three elements $u,$ $v,$
$J$ as generators.

(5) $G=G_{3}(Z_{k})$ ( $k$ : even). There exist epimorphisms $\varphi’ s$ defined by $(\varphi(a), \varphi(b))=$

$(Ju‘, u^{m}),$ $gcd(l, m, k)=1,$ $l$ is odd and $m$ is even, or $(\varphi(a), \varphi(b))=(Ju^{l}, Ju^{m}),$ $gcd(l, m, k)=1$

$l$ and $m$ are both odd. $(Ju‘, u^{m}),$ $(Ju^{l}, Ju^{m})$ are equivalent to $(Ju, 1)$ by Process (C2).
(6) $G=G_{3}^{Z}(D_{k})$ . For $k=1,$ $(\varphi(a), \varphi(b))=(Jv, 1)$ is the unique singular leaf type

and isomorphic to $(Ju, 1)$ in the case (5) $G=G_{3}(Z_{2})(^{*3)})$ . For $k=2,$ $(\varphi(a), \varphi(b))=(u,$ $Jv$

determines the singular leaf which is isomorphic to leaves of types $(Jvu, u),$ $(Jv, u)$

$(Jv, Jvu)$ .
(7) $G=G_{3}^{D}(D_{2})$ . The singular leaf $L$ can appear as a singular leaf type
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$(\varphi(a), \varphi(b))=(Ju, v)$ , and this leaf type is equivalent to leaf types $(Jvu, u),$ $(Jv, u),$ $(Jv, Jvu)$,

moreover $(Ju, v)$ is identified with $(u, Jv)$ in the case (6) $G_{3}^{Z}(D_{2})$ . $(^{*4)})$

In the next section, we shall show how to transform a vector $(\varphi(a), \varphi(b))$ into a
vector listed in the table of Theorem 4.

3. Processes of changing a vector $(\varphi(a), \varphi(b))$ to an equivalent vector.

Proposition 2 says that $(\varphi(a), \varphi(b))$ is equivalent to $(\varphi^{\prime}(a), \varphi^{\prime}(b))$ for epimorphisms
$\varphi,$

$\varphi^{\prime}$ : $\pi_{1}(L, *)\rightarrow G$ if and only if $\varphi^{\prime}=\beta\circ\varphi\circ\alpha$ for some appropriate automorphisms $\alpha$ ,
$\beta$ of $\pi_{1}(L, *),$ $G$, respectively. When there exists an automorphism $\alpha$ , or $\beta$ for given
$(\varphi(a), \varphi(b)),$ $(\varphi^{\prime}(a), \varphi^{\prime}(b))$ satisfying the relation $\varphi^{\prime}=\varphi\circ\alpha$ , or $\varphi^{\prime}=\beta\circ\varphi$ , we shall say that
$\alpha$ , or $\beta$ transforms $(\varphi(a), \varphi(b))$ into $(\varphi^{\prime}(a), \varphi^{\prime}(b))$ , respectively. We shall show how to
transform $(\varphi(a), \varphi(b))$ into the vector listed in Theorem 4 by applying a series of
elementary automorphisms.

Automorphisms of $\pi_{1}(L, *)$ will always be defined by their effect on the canonical
generators, since $L$ is a torus.

Let $A_{1},$ $A_{2}$ , and $A_{3}$ be the automorphisms of $\pi_{1}(L, *)$ defined by $(A_{1}(a), A_{1}(b))=$

$(ab^{s}, b),$ $(A_{2}(a), A_{2}(b))=(a, a^{s}b)$ for some integer $s$ and $(A_{3}(a), A_{3}(b))=(b, a)$, respectively.

Process $(C1)$ (cf. Vogt [11] $(P1)$) $(\varphi(a), \varphi(b))=(u^{l}, u^{m}),$ $gcd(l, m, k)=1$ is reduced to
$(u, 1)$ . $u$ is the generator of the cyclic group $Z_{k}$ . The automorphism $A_{1}$ transforms $(u^{l}, u^{m})$

into $(u^{l+sm}, u^{m})$ and $A_{2}$ transforms $(u^{l}, u^{m})$ into $(u^{l}, u^{sl+m})$ . A series of automorphisms
of $(A_{1}, A_{2}, A_{3})$ transforms $(u^{l}, u^{m})$ into $(u^{p}, 1)$ where $p=gcd(l, m)$ , and we can reduce
$(u^{p}, 1)$ to $(u, 1)$ by applying another series of $(A_{1}, A_{2}, A_{3})$ , since $gcd(p, k)=1$ .

Process $(C1^{\prime})$ Let $\alpha$ be an automorphism defined by $(a, b)\mapsto$ ($a$ , ab) (a special case
of $A_{2}$). Automorphisms $A_{3},$ $\alpha$ and $ A_{3}\circ\alpha$ transform $(J, v),$ $(v, vJ)$ and $(J, vJ)$ into $(v, J)$,
respectively.

Process $(C2)$ $(\varphi(a), \varphi(b))=(u^{l}, J),$ $gcd(l, k)=1$ is equivalent to $(u, J)$ . Since $(l, k)=1$ ,
there exist integers $p,$ $q$ satisfying $pl+qk=1$ . We take automorphisms $\alpha_{i}(i=1,2,3,4)$

(special cases of $A_{1},$ $A_{2}$) as follows:

$\alpha_{1}$ : $(a, b)\mapsto(ab, b)$ , $\alpha_{2}$ : $(a, b)\mapsto(a, a^{p}b)$ ,

$\alpha_{3}$ : $(a, b)\mapsto(ab^{1-l}, b)$ , $\alpha_{4}$ : $(a, b)\mapsto(a, a^{-1}b)$ .
Automorphism $\alpha_{1}$ or $\alpha_{2}$ transforms $(u^{l}, J)$ into $(u^{l}J, J)$ or $(u^{l}, uJ)$ , respectively. Applying
$\alpha_{2}$ after $\alpha_{1}$ (i.e. applying $\alpha_{2}\circ\alpha_{1}$ ), $(u^{l}, J)$ changes to $(u^{l}J, uJ^{p+1})$ . Next we define
automorphism $\alpha$ of $\pi_{1}(L, *)$ as follows:

$\alpha=\alpha_{4}\circ\alpha_{3}\circ\alpha_{2}$ for $l$ : odd, $\alpha=\alpha_{4}\circ A_{3}\circ\alpha_{3}\circ\alpha_{2}\circ\alpha_{1}$ for $l$ : even, and $p$ : odd, and $\alpha=$

$\alpha_{4}\circ\alpha_{3}\circ\alpha_{2}\circ\alpha_{1}$ for $l$ and $p$ : even, respectively. Applying $\alpha$ to $(u^{l}, J)$ , we can reduce $(u^{l}, J)$

to $(u, J)$ .
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Process (C2) For vectors $(u^{l}J, u^{m}J^{\epsilon})(\epsilon=0,1),$ $gcd(l, m, k)=1$ , the automorphisn
$A_{1}$ , or $A_{2}$ transforms $(u^{l}J, u^{m}J^{\epsilon})$ into $(u^{l+sm}J^{1+\epsilon m}, u^{m}J^{\epsilon})$ or $(u^{l}J, u^{m+sl}J^{\epsilon+sl})$ , respectively
So we can reduce $(u^{l}J, u^{m}J^{\epsilon})$ to $(u, J)$ by an analogous process to $(C2)$ .

4. Singular $K^{2}$-leaf, Proof of Theorem 5.

Now we consider a foliation $\mathscr{F}$ with a singular leaf diffeomorphic to the Klei]

bottle $K^{2}$ . Let $L$ be a singular $K^{2}$-leaf of $\mathscr{F}$ Let $\varphi:\pi_{1}(L, *)\rightarrow G$ be the holonom
epimorphism whose kernel ker $\varphi$ determines the covering space $p:T^{2}\rightarrow K^{2}$ . It is clea
that ker $\varphi$ must be an abelian normal subgroup of $\pi_{1}(L, *)(\cong\pi_{1}(K^{2}, *))$ .

We take the canonical generators $d_{1},$ $d_{2}$ for $\pi_{1}(L, *)$ , and also take generators $\iota$

$b$ as follows:

$\pi_{1}(L, *)=\{d_{1}, d_{2} ; d_{1}^{2}d_{2}^{2}=1\}=\{a, b;aba^{-1}b=1\}$ , $a=d_{1}$ , $b=d_{1}d_{2}$ .

When we consider the existence of epimorphisms of $\pi_{1}(L, *)$ onto $G$ with abelia]

kernels, we can assume that $G$ is one of the groups $G_{i}(Z_{k}),$ $G_{i}(D_{k}),$ $G_{3}^{Z}(D_{k})$ , and $G_{3}^{D}(D_{k}$ .
The reason is as follows (Fukui [5] Prop. 6):

Let $H$ denote the subgroup of $\pi_{1}(L, *)$ generated by a and $b$ . Then $H$ is an abelia]

normal subgroup of $\pi_{1}(L, *)$ . If $\varphi:\pi_{1}(L, *)\rightarrow G$ is an epimorphism, $\varphi(H)$ is also $a$ )

abelian normal subgroup of $G$ . The index of $H$ in $\pi_{1}(L, *)$ is two. Now, suppose tha
$G=G_{1}(A_{4})$ . The index of $\varphi(H)$ in $G_{1}(A_{4})$ is greater than two sinoe $\varphi(H)$ must be on
of the subgroups $V_{4}$ (Kleinian group), $\{1, $(12)(34) $\}$ and {1}. For $G=G_{1}(A_{5})$ which $i$

simple, $\varphi(H)$ must be the trivial subgroup {1}. Thus, also in this case, there does nc
exist any epimorphism.

For other groups $G_{i}(S_{4})(i=1,2,3),$ $G_{2}(A_{4})$ and $G_{2}(A_{5})$ , the same conclusion hold
because they are non-commutative and contain the group $G_{1}(A_{4})$ or $G_{1}(A_{5})$ , as
subgroup, respectively. Therefore there cannot appear any singular leaves with holonom
group $G$ as above.

In order to determine the isomorphism classes of the foliated neighbourhoo $($

$U(L)$ we shall classify vectors $(\varphi(a), \varphi(b))$ similarly as in the case of the singular $T$

leaves.
(1) $G=G_{1}(Z_{k})$

We consider homomorphisms $\varphi’ s$ defined by $(\varphi(a), \varphi(b))=(u^{\iota}, u^{m});gcd(l, k)=1,$ m–
$0$, or $k/2$ with $k\equiv 0$ (mod2).

Then $\varphi$ is an epimorphism. Since ker $\varphi$ is the normal subgroup $of\pi_{1}(K^{2}, *)$ generate
by $a^{k},$ $b$ (we shall describe this as ker $\varphi=[a^{k},$ $b]$ for short) for $m=0$ or by $a^{m}b,$ $b^{2}$ fo
$m=k/2$ with $k$ even, an epimorphism satisfies the required condition that ker $\varphi$ is abelian
if $k$ is even for $m=0$ , and if $k\equiv 0$ (mod4) for $m=k/2$ .

Thus there can appear the singular leaf of type $(u^{l}, 1)$ for $k$ even, and of typ
$(u‘, u^{k/2})$ for $k\equiv 0$ (mod4) if $gcd(k, l)=1$ . $(u‘, u^{m})$ is equivalent to $(u^{l^{\prime}}, u^{m}’)$ if and only
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$l\equiv\pm l^{\prime}(mod k)$ and $m=m^{\prime}=0$ , or $1\equiv\pm l^{\prime}(mod k/2)$ and $m=m^{\prime}=k/2$ . (cf. Process $(C3, C4)$

in \S 5.)
For any other case, no singular leaves exist because the kernel ker $\varphi$ is non-

abelian.

(2) $G=G_{1}(D_{k})$

For $k=1$ , there exists an epimorphism $\varphi$ which is defined by $(\varphi(a), \varphi(b))=(v, 1)$ .
Then the kernel ker $\varphi=[a^{2}, b]$ is an abelian normal subgroup of $\pi_{1}(L, *)$ . The singular
leaf of type $(v, 1)$ can appear. But this leaf is identified with the leaf of type $(u^{l}, 1)$ in
the case $G=G_{1}(Z_{k}),$ $k=2,$ $l=1.$ (Notice)

For $k\geqq 2$ , it suffices to consider homomorphisms of two types as follows:
1. $(\varphi(a), \varphi(b))=(u^{l}, u^{m}v);(l, k)=1,$ $m=0,$ $ork/2$ . Only fork $=2,$ $\varphi$ definesa surjec-

tive homomorphism and ker $\varphi=[a^{2}, b^{2}]$ is abelian. It is clear that $(\varphi(a), \varphi(b))$ for $m=1$ ,

is transformed into $(u, v)$ by considering an automorphism $\beta:(u, v)\mapsto(u, uv)$ of $G_{1}(D_{k})$

(cf. Process $(C4).$ )
2. $(\varphi(a), \varphi(b))=(u^{m}v, u^{l});(l, k)=1,0\leqq m\leqq k-1$ . If $k\geqq 2$ , ker $\varphi=[a^{2}, b^{k}]$ is abelian

and a singular leaf of type $(u^{m}v, u^{l})$ can appear.
For $k=2$ , any other epimorphisms $\varphi$ (i.e. $(\varphi(a),$ $\varphi(b))=(uv,$ $v),$ $(v,$ $uv)$) including above

$\varphi’ s$ determine the isomorphic Seifert foliated neighbourhood and the singular leaf of
the same type $(u, v)$ (cf. $(C4,$ $C5)$). And for $k\geqq 3,$ $(u^{m}v, u‘)$ and $(u^{m}’ v, u^{l}’)$ determine
the isomorphic Seifert foliated neighbourhoods if and only if $l=\pm l^{\prime}(mod k)$ . (Process
$(C5))$

(3) $G=G_{2}(Z_{k})$

For $k=1$ , there exists the epimorphism $\varphi$ defined by $(\varphi(a), \varphi(b))=(J, 1)$ whose kernel
ker $\varphi$ is abelian. Other epimorphisms cannot satisfy the required condition.

For $k\geqq 2$ , we need to consider homomorphisms in four cases as follows:
1. $(\varphi(a), \varphi(b))=(u^{l}, u^{m}J);(l, k)=1,$ $m=0$ , or $m=k/2$ .
For any $k,$

$\varphi$ is an epimorphism and ker $\varphi=[a^{k}, b^{2}]$ is abelian if $k\geqq 2$ and even.
2. $(\varphi(a), \varphi(b))=(J, u^{l});(l, k)=1$ .
$\varphi$ defines a surjective homomorphism if and only ifk $=2$ . The kernel ker $\varphi=[a^{2}, b^{2}]$

is also abelian.
3. $(\varphi(a), \varphi(b))=(u^{l}J, u^{m});(l, k)=1,$ $m=0$ or $m=k/2$ .
Case $m=0$ : for $k$ odd, $\varphi$ are epimorphisms and ker $\varphi=[a^{2k}, b]$ are abelian. $((J, 1)$

for $k=1$ can be regarded as a special case of the case 3.)
Case $m=k/2$ : for $k\equiv 2$ (mod4), $\varphi$ can be epimorphisms and ker $\varphi=[a^{k}, b^{2}]$ are

abelian.
4. $(\varphi(a), \varphi(b))=(u^{l}J, u^{m}J);(l, k)=1,$ $m=0$ or $m=k/2$ .
Case $m=0$ : for $k\geqq 2$ and even, ker $\varphi=[a^{k}, b^{2}]$ are abelian.
Case $m=k/2$ : for $k\geqq 2$ and $k\equiv 0$ (mod4), ker $\varphi=[a^{k/2}, b^{2}]$ are abelian.
4’. $(\varphi(a), \varphi(b))=(u^{l}J, u^{m}J);k\equiv 2$ (mod4), $m=k/2$ . If $(l, k/2)=1$ and $l$ is even, $\varphi$ are

epimorphisms with abelian kemel ker $\varphi=[a^{k}, b]$ , but there exist no epimorphisms if $l$
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is odd and $(l, k/2)=1$ .
Furthermore, we have some equivalence relations among them. At first, $(uJ, u)$ (fo

$k=2,$ $l=1$ in the case 3) is reduced to $(J, u)$ (for $k=2$ in Case 2) (Process $(C3)$). In $($

similar way, we can see that singular leaves of types $(u^{l}, J)$ in Case 1 for $m=0,$ $an|$

$(u^{l}J, J)$ in Case 4, $k\equiv 0$ (mod2), $m=0$ determine isomorphic Seifert foliated neigh
bourhoods.

For the leaf types $(u^{l}, u^{k/2}J)$ in the case 1, they are equivalent to $(u^{l}’ J,$ $u^{k/2}J$

$l+l^{\prime}=k/2$ in the case 4. Finally, $(u^{l}, J)$ is equivalent to $(u^{l}’, J)$, or $(u^{l}, u^{k/2}J)$ is equivalen
to $(u^{l^{\prime}}, u^{k/2}J)$ if and only if $l\equiv\pm l^{\prime}(mod k)$ for $(k, l)=(k, l^{\prime})=1$ , respectively (Process $(C_{\vee}^{7}$

$C4))$ .
Now we have the following: for the group $G_{2}(Z_{k}),$ $k\geqq 1$ , there exist the followin

five types of singular leaves,
for $k=1$ , $(J, 1)$,

for $k\geqq 2$, $(u^{l}, J)$ , $(k, l)=1$ , $k\equiv 0$ (mod2) , $1\leqq l<k/2$ ,

$(u‘, u^{k/2}J)$ , $(k, l)=1$ , $k\equiv 0$ (mod2), $1\leqq l<k/2$ ,

$(u^{l}J, 1)$ , $(k, l)=1$ , $k\equiv 1$ (mod2) , $1\leqq l<k/2$ ,

$(u^{l}J, u^{k/2})$ , $(k, l)=1$ , $k\equiv 2$ (mod4) , $1\leqq l<k/2$ .

(4) $G=G_{2}(D_{k})$

For $k=1$ , we shall define the homomorphisms $\varphi’ s$ by $(\varphi(a), \varphi(b))=(v, J),$ $(J, v),$ $an($

$(v, vJ)$ .
It is clear that these homomorphisms are all epimorphisms, and ker $\varphi=[a^{2},$ $b^{2}$

are abelian. These three $\varphi’ s$ determine mutually non-isomorphic Seifert foliate $($

neighbourhoods. But one of them, $(v, J)$ is equivalent to $(u, J)$ in the case $G_{2}(Z_{2})$ . $(*6)^{\backslash }$

For $k=1$ , any homomorphism $\varphi:\pi_{1}(L, *)\rightarrow G$, defined by assigning $\varphi(a),$ $\varphi(b)$ to differen
two elements in $\{v, J, vJ\}$ , becomes an epimorphism. But it is equivalent to one of th
above three $\varphi’ s$ .

On the other hand, there exist no epimorphisms for $k\geqq 2$ , since $G$ is generated $b$

three elements $u,$ $v,$
$J$ .

(5) $G=G_{3}(Z_{k}),$ ( $k$ : even)
We have two types of epimorphisms $\varphi$ defined by
1. $(\varphi(a), \varphi(b))=(Ju^{l}, 1),$ $(l, k)=1$ ,

2. $(\varphi(a), \varphi(b))=(Ju^{l}, u^{k/2}),$ $(l, k)=1,$ $k\equiv 0$ (mod4).
The former has the kernel ker $\varphi=[a^{k}, b]$ that is abelian for any $k\equiv 0$ (mod2), an

the latter has the kemel ker $\varphi=[a^{k/2}b, b^{2}]$ which is abelian for $k\equiv 0$ (mod4).
$(Ju‘, 1)$ is equivalent to $(Ju^{l}’, 1)$ if and only if $l\equiv l^{\prime}(mod k)$ . Similarly, $(Ju^{l}, u^{k/2})l$

equivalent to $(Ju^{l}’, u^{k/2})$ if and only if $l\equiv\pm l^{\prime}(mod k/2)$ . $((C3, C4))$

Other $\varphi’ s$ which are equivalent to none of the above two epimorphisms, do nc
satisfy the required conditions.
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(6) $G=G_{3}^{Z}(D_{k})$

There exists an epimorphism $\varphi$ for $k=1$ , defined by $(\varphi(a), \varphi(b))=(Jv, 1)$, and the
kernel ker $\varphi=[a^{2}, b]$ is abelian, but it defines the singular leaf of the same type with
$(Ju, 1)$ in the case $G_{3}(Z_{2})$ . $(^{*7)})$ . Other epimorphisms do not satisfy the abelian condi-
tion.

For $k\geqq 2$ ,
1. $(\varphi(a), \varphi(b))=(u^{l}, u^{m}Jv);(l, k)=1,0\leqq m\leqq k-1$ .
Only for $k=2$ therefore $l=1,$ $\varphi$ defines a surjective homomorphism.
We can define epimorphisms of another type by
2. $(\varphi(a), \varphi(b))=(u^{m}Jv, u^{l});(l, k)=1,0\leqq m\leqq k-1$ , which satisfy the required

conditions.
We define the automorphism $\gamma$ of $G_{3}^{Z}(D_{k})$ which satisfy the conditions mentioned

in Proposition 2 (cf. Process $(C5)$ , \S 5):

$\gamma$ : $(u, Jv)\mapsto(u, u^{m}Jv)$ .

Applying $\gamma$ to $(u^{l}, Jv)$ in the case 1, $(u^{l}, Jv)$ is transformed into $(u^{l}, u^{m}Jv)$ . Also
applying $\gamma$ to $(Jv, u‘)$ in the case 2, $(Jv, u^{l})$ is changed to $(u^{m}Jv, u‘)$ for all possible $m$ .

Any other epimorphisms whose kemels are abelian, determine the isomorphic
Seifert foliated neighbourhoods and the singular leaves in the above three cases.

Hence we have the following: for $G=G_{3}^{Z}(D_{k})$ , there can appear singular leaves of
the following leaf types,

$(Jv, 1)$ , for $k=1$

$(u, Jv)$ , for $k=2$

$(Jv, u^{l});(k, l)=1$ , $1\leqq l<k/2$ , for $k\geqq 2$ .

(7) $G=G_{3}^{D}(D_{k}),$ $k$ is even.
We consider homomorphisms defined by

$(\varphi(a), \varphi(b))=(Ju^{l}, v);(l, k)=1$ ,

$(\varphi(a), \varphi(b))=(v, Ju^{l}v);(l, k)=1$ .

Only for $k=2$ , we obtain epimorphisms with abelian groups ker $\varphi$ . Clearly, $(Ju, v)$

defines the singular leaf type of the same type as $(u, Jv)forG_{3}^{Z}(D_{2})$ that is to say $(Ju, v)$

in this case (7) is equivalent to $(u, Jv)$ in the case (6). $(^{*8)})$

For $k\geqq 2$ (and even),

$(\varphi(a), \varphi(b))=(u^{m}v, Ju^{l});(l, k)=1$ , $m$ is even and $0\leqq m\leqq k-2$

$(\varphi(a), \varphi(b))=(Ju^{m}v, Ju^{l});(l, k)=1$ , $m$ is odd and $1\leqq m\leqq k-1$

define the epimorphisms $\varphi’ s$ which satisfy the required conditions with ker $\varphi=[a^{2}, b^{k}]$ .
Now, $(u^{m}v, Ju^{l})$ and $(Ju^{m+1}v, Ju^{l})$ are equivalent to each other since they are reduced
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to $(v, Ju^{l})$ and $(Juv, Ju^{l})$ , respectively, (Process $(C5)$) and finally, $(v, Ju^{l})$ are trans $\cdot$

formed into $(Juv, Ju^{l})$ by applying appropriate automorphisms and also con-
sidering representations with respect to the generators $d_{1},$ $d_{2}$ . (Process $(C3,$ $C5)$). By
changing vectors to other equivalent vectors, it can be proved that any other epi-
morphisms determine Seifert foliated neighbourhoods isomorphic to one of the above
three types.

Furthermore for $k=2,$ $(v, Juv)$ is equivalent to $(v, Ju)$ by the automorphism of
$G_{3}^{D}(D_{2})$ (see the next section), and also equivalent to $(u, Jv)$ for $G_{3}^{Z}(D_{2})(^{*9)})$ .

Now we can summarize these results as in Theorem 5.

5. Proposition 2 and some automorphisms.

In order to complete the proofofTheorem 5, we investigate what are automorphisms
with required conditions in Proposition 2.

Let $\varphi,$
$\varphi^{\prime}$ : $\pi_{1}(L, *)\rightarrow G$ be epimorphisms and $d_{1},$ $d_{2}$ be the canonical generators of

$\pi_{1}(L, *)$ satisfying $d_{1}^{2}d_{2}^{2}=1$ .

Process $(C3)$ It is clear that $(\varphi(a), \varphi(b))$ is equivalent to $(\varphi^{\prime}(a), \varphi^{\prime}(b))$ if and only if
$(\varphi(d_{1}), \varphi(d_{2}))$ is equivalent to $(\varphi^{\prime}(d_{1}), \varphi^{\prime}(d_{2}))$ .

If there exists an admissible pair $(\alpha, \beta)$ for $\varphi,$
$\varphi^{\prime}$ (i.e. $\varphi^{\prime}=\beta\circ\varphi\circ\alpha$) and $\alpha$ is an inneI

automorphism of $\pi_{1}(L, *)$ by $g$ , then the pair $(id, \beta^{\prime})$ is also admissible where $id$ ’ is
the identity automorphism of $\pi_{1}(L, *)$ and $\beta^{\prime}$ is the composition of the inner
automorphism of $G$ by $\varphi(g)$ with $\beta$ . Therefore it suffices to classify singular leaves intc
their isomorphism classes, hence we consider $\alpha$ to be one of automorphisms of following
four types:

$(d_{1}, d_{2})\mapsto(d_{1}, d_{2})$ , $(d_{1}, d_{2})\mapsto(d_{2}, d_{1})$ , $(d_{1}, d_{2})\mapsto(d_{1}^{-1}, d_{2}^{-1})$ ,

$(d_{1}, d_{2})\mapsto(d_{2}^{-1}, d_{1}^{-1})$ .

For $G=G_{2}(Z_{k}),$ $k\equiv 0(mod 2)$ , in the case (3), we considered two vectors $(\varphi(a), \varphi(b))=$

$(u^{l}, u^{k/2}J)$ (of the case 1), and $(u^{l}’ J, u^{k/2}J)$ (of the case 4). They are changed to vectors
$(u^{l}, u^{\langle k/2)-l}J)$ and $(u^{l^{\prime}}J, u^{\langle k/2)-l}’)$ , respectively, which are equivalent to each other by the
automorphism defined by $(d_{1}, d_{2})\mapsto(d_{2}, d_{1})$ if $l+l^{\prime}=k/2$ .

We shall investigate what are automorphisms with the required property, of finite
groups of $O(3)$ .

THEOREM 7. If $G$ is one ofthefollowingfinite subgroups of $O(3):G_{j}(Z_{k})(i=1,2,3)$
$G_{i}(D_{k})(i=1,2),$ $G_{3}^{Z}(D_{k})$ and $G_{3}^{D}(Z_{k})$ , then automorphisms $\beta$ of $G$ induced by inne’
automorphisms of $O(3)$ are given in the following:
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PROOF. Recall that $u$ is a rotation through $2\pi/k$ about z-axis, $v$ is a rotation
through $\pi$ about x-axis and $J$ is a multiplication by $-1$ . If $\beta$ is an inner automorphism
of $O(3),$ $\beta(J)=J$ since $J$ is an element in the center of 0(3). Let $G$ be a finite subgroup
mentioned in the theorem. If the restriction $\beta|_{G}\in Aut(G)$ (the group of automorphisms
of $G$), the image $\beta$($generators$ of $G$) generates $G$ again.

For $G=G_{i}(Z_{k})(i=1,2,3)$ , we shall expect that automorphisms with the required
conditions are those $\beta’ s$ satisfying $\beta(u)=u^{l}$ or $\beta(Ju)=Ju^{l},$ $gcd(l, k)=1$ , respectively. Any
$elementg\in O(3)$ can be described as products of the formg $=r_{\phi_{1}}r_{\theta}^{\prime}r_{\phi_{2}}J^{\epsilon}$ org $=r_{\theta_{1}}^{\prime}r_{\phi}r_{\theta_{2}}^{\prime}J^{\epsilon}$

$(\epsilon=0,1)$ , respectively, where $r_{\phi}$ is a rotation through $\phi$ about z-axis, and $r_{\theta}^{\prime}$ is a rotation
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through $\theta$ about x-axis. Therefore we can show, after some elementary calculations,

that the only possibilities are $\beta(u)=u^{\pm 1}$ and $\beta(Ju)=Ju^{\pm 1}$ (i.e. $l\equiv\pm 1(mod k)$). For
$G=G_{i}(D_{k})(k=1,2),$ $G_{3}^{D}(D_{k})$ , or $G_{3}^{Z}(D_{k})$ we have the results in the above table by analogous
calculations.

Process $(C4)$ Applying automorphisms listed in Theorem 7, we can show when
singular leaves are equivalent, with $G_{i}(Z_{k})$ as its holonomy group.

For example, let $\beta:(u, J)\mapsto(u^{-1}, J)$ be an automorphism of $G_{2}(Z_{k})$ . $(u^{l}, J)$ in Case
1, $m=0$ , is transformed by $\beta$ into $(u^{-l}, J)$ . Now $(u^{-l}, J)$ and $(u^{l}J, J)$ in Case 4, $m=0$

are changed to vectors $(u^{-l}, u^{l}J)$ and $(u^{l}J, u^{-l})$ which are equivalent by Process $(C3)$ .

Process $(C5)$ Changing process ofvectors in cases for $G=G_{i}(D_{k})(k=1,2),$ $G_{3}^{D}(D_{k})$ .
or $G_{3}^{Z}(D_{k})$ .

Let $G$ be $G_{3}^{D}(D_{k}),$ $k\geqq 2,$ $k\equiv 0$ (mod2) and $\beta_{m}$ be the automorphism defined by
$(Ju, v)\mapsto(Ju, u^{m}v),$ $m\equiv 0$ (mod2). Applying $\beta_{m}^{-1}$ to $(u^{m}v, Ju^{l})$ and $\beta_{m^{\prime}}^{-1}$ to $(Ju^{m’+1}v, Ju^{l})$ .
$(k, l)=1$ , they are reduced to $(v, Ju^{l}),$ $(Juv, Ju^{l})$ , respectively. Considering these vectors
with respect to the generators $d_{1},$ $d_{2}$ instead of $a,$

$b$, they are represented by $(v, Ju^{-l}v)$

$(Juv, u^{1-l}v)$, respectively. The latters are also transformed into $(v, Ju^{l}v)$ and $(Ju^{l}v, v)$

which are equivalent, by appropriate automorphisms, respectively (Process $(C3,$ $C5)$)

Thus $(u^{m}v, Ju^{l})$ and $(Ju^{m^{\prime}+1}v, Ju^{l}),$ $(k, l)=1$ , are equivalent to each other. Furthermore
for $k=2,$ $(v, Juv)$ and $(v, Ju)$ are equivalent by the automorphism $(Ju, v)\mapsto(Juv, v)$ .

This completes the proof of Theorem 5.

6. Local stability of a singular leaf in 4-manifolds.

First we consider a compact Hausdorff $C$‘ $(r\geqq 1)$ foliation $\mathscr{F}$ of codimension $\not\in$

with tori as generic leaves. Let $L$ be a singular $T^{2}$-leaf of $\mathscr{F}$ and let $a$ and $b$ be generators
of $\pi_{1}(L, *)\cong Z\oplus Z$ . IfL isasingular leaf of type $(\varphi(a), \varphi(b))$, the linear holonomies of
$L$ along $a,$

$b$ are represented by $\varphi(a),$ $\varphi(b)$ in the holonomy group $G$, respectively. Thus
by Hirsch’s stability theorem ([7]) we have the following proposition:

PROPOSITION 8. Let $L$ be a singular leaf homeomorphic to the torus $T^{2}$ of type
$(\varphi(a), \varphi(b))$ . If one of $\varphi(a)$ and $\varphi(b)$ has not 1 as an eigenvalue, then $\mathscr{F}$ is locally $C^{1}$ -stable
near $L$.

THEOREM 9 (cf. Fukui [3]). Let $\mathscr{F}$ be a Hausdorff $C(r\geqq 1)$ foliation of a closet
4-mamfold $M$ with tori as generic leaves. If $\mathscr{F}$ has a singular $T^{2}$-leaf whose holonomJ
group is not isomorphic to $D_{1}$ (equivalently, whose singular leaf type is not $(v,$ $1)$), then $\ovalbox{\tt\small REJECT}$

is $C^{1}$ -stable.

PROOF. If $L$ is a singular leaf of $\mathscr{F}$, its holonomy group is $Z_{k}(k\geqq 2)$ or $D_{2}ane$

one of the linear holonomies of $L$ along $a$ and $b$ has not 1 as an eigenvalue. Proposition
8 implies that $\mathscr{F}$ is locally $C^{1}$ -stable near $L$ , and $\mathscr{F}$ is $C^{1}$ -stable.
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PROPOSITION 10. Let $\mathscr{F}$ be a Hausdorff $C^{r}(r\geqq 1)$ foliation of closed 4-manifold by
tori. If $L$ is a singular leaf of $\mathscr{F}$ of type $(v, 1)$ (such $L$ is called a reflection leaf in [3]),
$L$ is locally $C^{1}$ -unstable.

PROOF. Let $H:\pi_{1}(L, *)\rightarrow Diff(R^{2})$ be the holonomy representation of $L$ . The
singular leaf of type $(v, 1)$ means that $H(a)(x_{1}, x_{2})=(x_{1}, -x_{2})$ and $H(b)(x_{1}, x_{2})=(x_{1}, x_{2})$

for $(x_{1}, x_{2})\in R^{2}$ . If we define a perturbation of $H,$ $H^{\prime}$ : $\pi_{1}(L, *)\rightarrow Diff(R^{2})$ by
$H^{\prime}(a)(x_{1}, x_{2})=(x_{1}+\epsilon, -x_{2})$ and $H^{\prime}(b)(x_{1}, x_{2})=(x_{1}, x_{2})$ for a sufficiently small positive
number $\epsilon,$

$H^{\prime}$ is well-defined, because the relation $H^{\prime}(a)H^{\prime}(b)H^{\prime}(a)^{-1}H^{\prime}(b)^{-1}=1$ (identity
map of $R^{2}$) holds. We can define a new foliation $\mathscr{F}^{\prime}$ by $H^{\prime}$ , which is $C^{1}$ -close to $\mathscr{F}$

and so that $\mathscr{F}^{\prime}$ has no compact leaves near $L$ .

REMARK 11. Even ifafoliation $\mathscr{F}$ ofa closed 4-manifold by tori has only reflection
leaves as singular leaves, $\mathscr{F}$ does not need to be $C^{1}$ -unstable. Infact, Fukui [3] constructed
such foliations one of which is $C^{1}$ -stable and another is $C^{1}$ -unstable.

Now we consider a foliation with the Klein bottle as a singular leaf.

THEOREM 12. Let $\mathscr{F}$ be a Hausdorff $C^{r}(r\geqq 1)$ foliation ofa closed 4-manifold with
tori as generic leaves. Let $L$ be a singular leaf of $\mathscr{F}$ homeomorphic to the Klein bottle
$K^{2}$ of type $(\varphi(a), \varphi(b))$ , where $a$ and $b$ are generators of $\pi_{1}(L, *)$ satisfying the relation
$aba^{-1}b=1$ . Then, $\mathscr{F}$ is locally $C^{1}$ -stable near $L$ if one of the following is satisfied:

(i) $\varphi(a)$ has neither 1 nor $-1$ as eigenvalues,
(ii) $\varphi(b)$ has not 1 as an eigenvalue.

PROOF. We consider a double covering $q:\overline{U(L)}\rightarrow U(L)$ of the tubular neighbour-
hood $U(L)$ of $L$ corresponding to the subgroup $H$ of $\pi_{1}(L, *)\cong\pi_{1}(U(L), *)$ generated
$bya^{2}$ and b. PutL $=q^{-1}(L)$ and let*\sim \in q $(*)$ . $Take\tilde{a}and\tilde{b}$ as generators of $\pi_{1}(\tilde{L}, *\sim)$

so that $q_{*}(\tilde{a})=a^{2}$ and $q_{*}(b^{\sim})=b$ . Then, since one of the linear holonomies along $\tilde{a}$ and
$\tilde{b}$ has not 1 as an eigenvalue, it follows from Proposition 8, that the double covering
$\overline{\mathscr{F}|U}$ of $\mathscr{F}|U$ is locally $C^{1}$ -stable near $\tilde{L}$ . Therefore $\mathscr{F}$ is locally $C^{1}$ -stable near $L$ .

THEOREM 13. Let $\mathscr{F}$ be a Hausdorff $C$‘ $(r\geqq 1)$ foliation of a closed 4-manifold $M$

with tori as generic leaves.
(i) Suppose $\mathscr{F}$ has a singular leafhomeomorphic to the Klein bottle whose holonomy

group is the cyclic group $Z_{k}(k\geqq 4)$, or the dihedral group $D_{k}(k\geqq 3)$ or $D_{2}$ with singular
leaf type being $(v, u)$ . Then $\mathscr{F}$ is $C^{1}$ -stable.

(ii) Let $\mathscr{F}$ have a singular leafL homeomorphic to the Klein bottle with the holonomy
group $Z_{2}$ or $D_{1}$ , or a singular leaf $L^{\prime}$ homeomorphic to the Klein bottle of type $(u, v)$ for
$D_{2}$ , then $\mathscr{F}$ is locally $C^{1}$ -unstable near $L$ or $L^{\prime}$ .

PROOF. (i) The singular leaf mentioned in (i), is locally $C^{1}$ -stable by Theorem
12. Therefore the foliation $\mathscr{F}$ is $C^{1}$ -stable if it has one of the singular leaves listed above.

(ii) Suppose $\mathscr{F}$ has a singular leaf $L$ with holonomy group $Z_{2}$ . $L$ is of the type
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$(u, 1)$ . Let $H:\pi_{1}(L, *)\rightarrow Diff(R^{2})$ be the holonomy representation with respect to $\mathscr{F}$ The
singular leafoftype $(u, 1)$ means that $H(a)(x_{1}, x_{2})=(-x_{1}, -x_{2})$ and $H(b)(x_{1}, x_{2})=(x_{1}, x_{2})$

for $(x_{1}, x_{2})\in R^{2}$ . Ifwe define a perturbation of $H,$ $H^{\prime}$ : $\pi_{1}(L, *)\rightarrow Diff(R^{2})$ by $H^{\prime}(a)=H(a)$

and $H^{\prime}(b)(x_{1}, x_{2})=(x_{1}+\epsilon, x_{2})$ for a sufficiently small positive number $\epsilon,$

$H^{\prime}$ is well-defined,
because the relation $H^{\prime}(a)H^{\prime}(b)H^{\prime}(a)^{-1}H^{\prime}(b)=1$ holds. We can define a new foliation
$\mathscr{F}^{\prime}$ by $H^{\prime}$ , which is $C^{1}$ -close to $\mathscr{F}$ but has no compact leaves near $L$ .

Suppose $\mathscr{F}$ has a singular leaf $L$ of the holonomy group $D_{1}$ . $L$ is of the type $(v, 1)$ .
Let $H:\pi_{1}(L, *)\rightarrow Diff(R^{2})$ be the holonomy representation with respect to $\mathscr{F}$ where
$H(a)(x_{1}, x_{2})=(x_{1}, -x_{2})$ and $H(b)(x_{1}, x_{2})=(x_{1}, x_{2})$ for $(x_{1}, x_{2})\in R^{2}$ . If we define a
perturbation of $H$ by $H^{\prime}(a)=H(a)$ and $H^{\prime}(b)(x_{1}, x_{2})=(x_{l}, x_{2}+\epsilon)$ for a sufficiently small
positive number $\epsilon,$

$H^{\prime}$ is well-defined, because the relation $H^{\prime}(a)H^{\prime}(b)H^{\prime}(a)^{-1}H^{\prime}(b)=1$

holds. We can define a new foliation $\mathscr{F}^{\prime}$ by $H^{\prime}$ , which is $C^{1}$ -close to $\mathscr{F}$ and a required
foliation.

If $\mathscr{F}$ has a singular leaf $L$ of type $(u, v)$ , and $H$ be the holonomy representation,
then $H(a)(x_{1}, x_{2})=(-x_{1}, -x_{2})$ and $H(b)(x_{1}, x_{2})=(x_{1}, -x_{2})$ for $(x_{1}, x_{2})\in R^{2}$ . If we define
a perturbation $H^{\prime}$ by $H^{\prime}(a)=H(a)$ and $H^{\prime}(b)(x_{1}, x_{2})=(x_{1}+\epsilon, -x_{2})$ for sufficiently small
$\epsilon,$

$H^{\prime}$ is well-defined and it defines a required foliation. This completes the proof.

Now we have the following tables, of isomorphism classes and their local stabilities
of foliated neighbourhoods of singular leaves with holonomy group $G$ , in a compact
Hausdorff foliation of closed 4-manifold $M$, whose generic leaf is a torus.

TABLE 5. Local stability for singular $T^{2}$-leaf of type $\langle\varphi(a),$ $\varphi(b))$

TABLE 6. Local stability for singular $K^{2}$ leaf of type $(\varphi\{a),$ $\varphi\langle b$)) $\langle a=d_{1},$ $b=d_{1}d_{2}$ )
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7. Local stability in 5-manifolds.

In this section we consider a Hausdorff foliation $\mathscr{F}$ of a closed 5-manifold $M$ with
a torus as a generic leaf. First, let a singular leaf of $\mathscr{F}$ be a torus.

PROPOSITION 14. Let $\mathscr{F}$ be a Hausdorff $C^{r}(r\geqq 1)$ foliation of a closed 5-manifold
$M$ by tori. A singular $T^{2}$-leaf $L$ of $\mathscr{F}$ is locally $C^{1}$ -unstable if the holonomy group of $L$

is one of the following:

$G_{1}(Z_{k})$ , $G_{1}(D_{1}),$ $G_{3}(Z_{2})$ , $G_{3}^{Z}(D_{k})$ , and $G_{3}^{D}(D_{2})$ .

PROOF. Let a singular leaf $L$ have the holonomy group $G_{1}(Z_{k})$ , and the singular
leaf type $(u, 1)$ . Let $H:\pi_{1}(L, *)\rightarrow Diff(R^{3})$ be the holonomy representation with respect
to $\mathscr{F}$ The singular leaf of type $(u, 1)$ means that $H(a)(x)=ux$ and $H(b)(x)=x$ for
$x={}^{t}(x_{1}, x_{2}, x_{3})\in R^{3}$ . ux means the product ofa matrixu anda vector x. If we define a
perturbation $H,$ $H^{\prime}$ : $\pi_{1}(L, *)\rightarrow Diff(R^{3})$ by $H^{\prime}(a)(x)=x+{}^{t}(0,0, \epsilon)$ and $H^{\prime}(b)=H(b)for^{-}a$

sufficiently small positive number $\epsilon$ , $H^{\prime}$ is well-defined, because the relation
$H^{\prime}(a)H^{\prime}(b)H^{\prime}(a)^{-1}H^{\prime}(b)^{-1}=1$ holds. We can define a new foliation $\mathscr{F}^{\prime}$ by $H^{\prime}$ , which is
$C^{1}$ -close to $\mathscr{F}$ and $\mathscr{F}^{\prime}$ has no compact leaf in a neighbourhood $U(L)$ of $L$ .

If $L$ has the holonomy group $G_{1}(D_{1})$ and the leaf type $(v, 1)$ , the foliated
neighbourhood $U(L)$ is diffeomorphic to the foliated neighbourhood of the singular
leaf of type $(u, 1)$ , therefore $L$ is locally unstable.

In the other cases, analogously, there are required perturbations for the holonomy
representations, which define new foliations $\mathscr{F}^{\prime},$

$C^{1}$ -close to $\mathscr{F}$, without compact leaves
near $L$ . This completes the proof.

THEOREM 15. Let $\mathscr{F}$ be as above. $\mathscr{F}$ is $C^{1}$ -stable, $\iota f\mathscr{F}$ has a singular $T^{2}$-leafwhose
holonomy group is isomorphic to one of the following: $G_{1}(D_{2}),$ $G_{2}(Z_{k})$ (for any k) and
$G_{3}(Z_{k})$ (for $k\geqq 4$ and even).

PROOF. Let $L$ be a singular $T^{2}$-leaf of $\mathscr{F}$, and $a,$
$b$ be generators of $\pi_{1}(L, *)$ .

Suppose the holonomy group of $L$ is one of the above except $G_{1}(D_{2})$ . The linear
holonomy along one of $a,$

$b$ does not have 1 as an eigenvalue. Therefore $\mathscr{F}$ is locally
$C^{1}$ -stable near $L$ . If the holonomy group of $L$ is $G_{1}(D_{2})$ , the local stability follows from
the results by D. Stowe [10] and M. Hirsch [8].

We recall some definitions and notations from the papers of Stowe [10] and Hirsch
[9].

Let $G$ be a topological group and $M$ a finite-dimensional $C^{1}$ manifold, and let an
action $\alpha$ of $G$ on $M$ be a continuous homomorphism $\alpha:G\rightarrow Diff^{1}(M)$ . A point of $M$ is
stationary for $\alpha$ if it is fixed by $\alpha(g)$ for every $g\in G$ . A stationary point $p$ is stable if,
given any neighbourhood $U$ of $p$, there is a neighbourhood $N$ of $\alpha$ such that each $\beta\in N$

has a stationary point in $U$.
The action $\alpha$ with stationary point $p$ induces a linear action on the tangent space
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$T_{p}(M)$ , given by $g\mapsto D\alpha(g)_{p}$ for $g\in G$ . We will write this linear action $\alpha_{p}$ shortly for
convenience. This linear action $\alpha_{p}$ makes $T_{p}(M)$ into a G-module.

A crossed homomorphism or a cocycle $c:G\rightarrow T_{p}(M)$ is a continuous map such that

$c(gh)=c(g)+gc(h)$ , $(g, h\in G)$ .

This is the condition that a map $\alpha_{c}$ : $G\rightarrow Aff(T_{p}(M))$ is a homomorphism, defined by
$\alpha_{c}(g)(x)=\alpha_{p}(g)x+c(g),$ $(x\in T_{p}(M), g\in G)$ .

A point $y\in T_{p}(M)$ will be stationary for $\alpha_{c}$ exactly when $c(g)=y-\alpha_{p}(g)y$ for all
$g\in G$ . The crossed homomorphism $c$ is called principal if there exists a stationary point
for $\alpha_{c}$ .

The vector space $H^{1}(G, T_{p}(M))$ is defined as the factor space of crossed homo-
morphisms modulo principal ones.

PROPOSITION 16 (D. Stowe [10] Thm. A). If $G$ is a finitely-generated discrete
group and $H^{1}(G, T_{p}(M))=0$, then $p$ is stable.

M. Hirsch [8] has shown that for any linear action of a nilpotent group, $H^{1}$ will
be trivial provided the linear action $\gamma$ on $T_{p}(M)$ fixes only the origin.

Now we consider the case where the holonomy group of $L$ is $G_{1}(D_{2})$ . $L$ is of the
type $(u, v)$ where $u$ and $v$ are rotations of $R^{3}$ through $\pi$ about z-axis and x-axis,
respectively.

The linear holonomy $LH:\pi_{1}(L,*)(\cong\pi_{1}(T^{2}, *))\rightarrow GL(3, R)$ defined $LH(a)=u$ ,

$LH(b)=v$ , clearly fixes only the origin, therefore the stationary point $p$ is stable. This
completes the proof of Theorem 15.

Next we consider a foliation with singular leaves which are homeomorphic to the
Klein bottle. Recall that we take $a$ and $b$ , generators of $\pi_{1}(K^{2}, *)$ , so as to satisfy the
relation $aba^{-1}b=1$ .

PROPOSITION 17. Let $L$ be a singular $K^{2}$-leaf. $\mathscr{F}$ is locally $C^{1}$ -unstable near $L$

unless the holonomy group $G$ and the leaf type $(\varphi(a), \varphi(b))$ of $L$ are as follows: $G_{2}(Z_{k})$,
$(u‘, J)$ for $k\equiv 0$ (mod2), or $(u^{l}, u^{k/2}J)$ for $k\equiv 0$ (mod2), $k\geqq 4,$ $G_{2}(D_{1}),$ $(v, J)$, or $G_{3}^{D}(D_{k})$,

$(v, Ju^{l})$ for $k\equiv 0(mod 2),$ $k\geqq 4$ .

PROOF. (1) Let a singular leaf $L$ have the holonomy group $G_{1}(Z_{k})$ , and the
singular leaf type $(u^{l}, 1)$ for $k\equiv 0$ (mod2) or $(u^{l}, u^{k/2})$ for $k\equiv 0$ (mod4), respectively. Let
$H:\pi_{1}(L, *)\rightarrow Diff(R^{3})$ be the holonomy representation with respect to $\mathscr{F}$ The singular
leaf of type $(u^{l}, 1)$ means that $H(aKx)=u^{l}x$ and $H(b)(x)=x$ for $x={}^{t}(x_{1}, x_{2}, x_{3})\in R^{3}$ . If
we define a perturbation of $H,$ $H^{\prime}$ : $\pi_{1}(L, *)\rightarrow Diff(R^{3})$ by $H^{\prime}(a)(x)=H(a)(x)+{}^{t}(0,0, \epsilon)$ and
$H^{\prime}(b)=H(b)$ for a sufficiently small positive number $\epsilon,$

$H^{\prime}$ is well-defined, because the
relation $H^{\prime}(a)H^{\prime}(b)H^{\prime}(a)^{-1}H^{\prime}(b)=1$ (identity map) holds. We can define a new foliation
$\mathscr{F}^{\prime}$ by $H^{\prime}$ , which is $C^{1}$ -close to $\mathscr{F}\mathscr{F}^{\prime}$ has no compact leaf in a neighbourhood $U(L)$

of $L$ since the perturbation $H^{\prime}$ has no common fixed points with respect to $H^{\prime}(a)$ and
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$H^{\prime}(b)$ , therefore $\mathscr{F}$ is locally $C^{1}$ -unstable near $L$ . Now we shall say that the holonomy
representation $H$ has an appropriate perturbation $H^{\prime}$ of the type I.

Analogously, for the singular leaf of type $(u^{l}, u^{k/2})$ and the holonomy representation
$H$ determined by $H(a)(x)=u^{l}x$ and $H(b)(x)=u^{k/2}x$ , we can define a perturbation $H^{\prime}$ of
type I. We have a new foliation $\mathscr{F}^{\prime}$ by deforming $\mathscr{F}$ on a neighbourhood $U(L)$ of $L$

by $H^{\prime}$ where $\mathscr{F}^{\prime}$ has no compact leaves.
(2) Suppose that a singular leaf $L$ has the holonomy group $G_{1}(D_{k})$ , and the singular

leaf type $(v, 1)$ for $k=1,$ $(v, u^{l})$ for $k\geqq 2$ , respectively. The perturbed holonomy
representation $H^{\prime}$ of $H$ is defined by $H^{\prime}(a)=H(a)$ , and $H^{\prime}(b)(x)=H(b)(x)+{}^{t}(0,0, \epsilon)$ for a
sufficiently small positive number $\epsilon$ . We can have a required foliation by $H^{\prime}$ . We say
$H^{\prime}$ is of the type II.

(3) Let a singular leaf have the holonomy group $G_{2}(Z_{k})$ . First we consider the
cases where the leaf type is $(J, 1)$ for $k=1$ or $(u, uJ)$ for $k=2$ . In these cases, a perturbation
$H^{\prime}$ is given by $H^{\prime}(a)=H(a)$ and $H^{\prime}(b)(x)=H(b)(x)+{}^{t}(\epsilon, 0,0)$ for a small $\epsilon$ . This perturbation
is said to be of type II’. Next, if the leaf type is $(u^{l}J, 1)$ for $k\equiv 1$ (mod2), $k\geqq 3$ , or
$(u^{l}J, u^{k/2})$ for $k\equiv 2$ (mod4), respectively, then we have a perturbed holonomy re-
presentation $H^{\prime}$ of the type II.

Analogously, for other singular leaves $L$ , we can have perturbed holonomy
representations with required conditions, respectively, and can define new foliations
$C^{1}$ -close, without compact leaves near $L$ .

This completes the proof.

THEOREM 18. Let $L$ be a singular leaf of $\mathscr{F}$ homeomorphic to the Klein bottle $K^{2}$ .
If the holonomy group $G$ and the leaf type $(\varphi(a), \varphi(b))$ of $L$ are $G_{2}(Z_{k}),$ $(u^{l}, J)$ for
$k\equiv 0$ (mod2), or $(u^{l}, u^{k/2}J)$ for $k\equiv 0$ (mod2), $k\geqq 4,$ $G_{2}(D_{1}),$ $(v, J)$ , or $G_{3}^{D}(D_{k}),$ $(v, Ju^{l})$ for
$k\equiv 0$ (mod2), $k\geqq 4$ , then $\mathscr{F}$ is $C^{1}$ -stable.

PROOF. This follows from Theorem 12, except the case where the group and leaf
type are $G_{2}(Z_{k}),$ $(u^{l}, u^{k/2}J)$ for $k\equiv 0$ (mod2), $k\geqq 4$ , since their linear holonomies along
$b$ have not 1 as eigenvalues.

PROPOSITION 19. Let a singular leaf $L$ have $G_{2}(Z_{k})$ as the holonomy group and leaf
type $(u^{l}, u^{k/2}J)$ for $k\geqq 4$ and even, where $gcd(l, k)=1$ . Then $L$ is locally $C^{1}$ -stable.

PROOF. $L$ is of type $(u^{l}, u^{k/2}J)$ . Here $u^{l}=R$ is a rotation of $R^{3}$ through $2l\pi/k$ about
z-axis and $u^{k/2}J=V$ is the reflection through xy-plane or the reflection along z-axis,
respectively.

The linear holonomy $LH:\pi_{1}(L, *)(\cong\pi_{1}(K^{2}, *))\rightarrow GL(3, R)$ is defined by $LH(a)=R$ ,

$LH(b)=V$ Therefore the stationary point $p$ for $LH$ is stable if $H^{1}(\pi_{1}(K^{2}, *),$ $R^{3}$) $=0$

(Proposition 16).
The set of cocycles

$Z^{1}=Z^{1}(\pi_{1}(K^{2}, *),$ $R^{3}$) $=\{c:\pi_{1}(K^{2}, *)\rightarrow R^{3} ; c(gh)=gc(h)+c(g)\}$
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will be generated by $c(a),$ $c(b)$ with relation $c(aba^{-1}b)=0$ . We put $c(a)=(x_{1}, y_{1}, z_{1})$ ,
$c(b)=(x_{2}, y_{2}, z_{2})$ .

$ c(aba^{-1}b)=ac(ba^{-1}b)+c(a)=\cdots$

$=aba^{-1}c(b)-aba^{-1}c(a)+ac(b)+c(a)$

$=RVR^{-1}c(b)-RVR^{-1}c(a)+Rc(b)+c(a)$

$=(R^{\prime}(x_{2}, y_{2})+(x_{2}, y_{2}),$ $2z_{1}$ ) $=0$

where $R^{\prime}=R|_{xy-plane}$ . Since $R^{\prime}$ has not $-1$ as an eigenvalue, $z_{1}=x_{2}=y_{2}=0$ . Hence

$Z^{1}=\{c;c(a)=(x_{1}, y_{1},0), c(b)=(0,0, z_{2})\in R^{3}\}$ .

Furthermore we can show that $c\in Z^{1}$ implies $c\in B^{1}$ , that is to say, every cocycle
is principal and $H^{1}(\pi_{1}(K^{2}, *),$ $R^{3}$) $=0$ follows.

This completes the proof of Theorem 18.
Now we have the following tables, of isomorphism classes and their local stabilities

of foliated neighbourhoods of singular leaves with holonomy group $G$, in a compact
Hausdorff $C(r\geqq 1)$ foliation of closed 5-manifold $M$, whose generic leaf is the torus.

TABLE 7. Local stability for singular $T^{2}$-leaf of type $(\varphi(a), \varphi(b))$



COMPACT HAUSDORFF FOLIATIONS 233

TABLE 8. Local stability for singular $K^{2}$-leaf of type $(\varphi(a), \varphi(b)),$ $(a=d_{1}, b=d_{1}d_{2})$
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