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Abstract. Let §2;, be the n-th layer of the cyclotomic Z3-extension of Q and %, the class number of £2,,. We

claim that if £ is a prime number less than 104, then £ does not divide h,, for any positive integer n.

1. Introduction

Let p be a prime number. It is one of the basic cases of class number problem to ask
whether a prime number ¢ divides the class numbers of the intermediate fields of the cyclo-
tomic Z ,-extension of Q. In the case £ = p, Iwasawa [4] proved that p does not divide any of
the class numbers of the n-th layers of the cyclotomic Z ,-extension of Q. In the case p = 2,
Fukuda and Komatsu [1] showed that £ does not divide any of the class numbers of the n-th
layers of the cyclotomic Z,-extension of Q for £ < 107.

In this paper, we investigate the case p = 3. Put £2, = Q(2 cos(2n/3”+1)). Then £2, is
a cyclic extension of degree 3" over Q and the n-th layer of the cyclotomic Z3-extension of
Q. We denote the class number of £2,, by h,. Masley [6] showed i1 = hp = h3 = 1. Linden
[5] showed h4 = 1 if GRH (the Generalized Riemann Hypothesis) is valid.

Horie [3] proved the following theorem.

THEOREM 1 (Horie). Let the notation be as above for p = 3 and £ a prime number.
If£ =2,4,5,7 (mod 9), then € does not divide h,, for any positive integer n.

In this paper, we prove the following result.

THEOREM 2. Let{ = 5 be a prime number and 3° the exact power of 3 dividing €* —1.
Put

me =3s + 2+ [log5(£ — )]+ [log3 i| + [log;(2s + 1 + [log; (£ — 1],

where [x] denotes the greatest integer not exceeding a real number x. If £ does not divide
hm,, then £ does not divide hy for any positive integer n.

As a corollary to Theorem 2, we obtained the following result by numerical calculation.
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COROLLARY 1. Let £ be a prime number less than 10000. Then € does not divide h,
for any positive integer n.

We prove Theorem 2 in Section 2. In Section 3, we show a criterion in each of four
disjoint cases to determine that a prime number £ does not divide 4,,.

2. Proof of Theorem 2

Let n be a positive integer, £ a prime number with £ = 5, x a character mod ¢ with
x(—=1) = —1 and ¥, an even character mod 3"*1 whose order is 3". Then the generalized
Bernoulli number is defined by

1 3”+]€
Biytn = 31y D bxvn(®).
b=1

Let s be as in Theorem 2 and ¢y, such a primitive 37+1_th root of unity as

3n+17.v

g = Ya(l 43175,

We define a rational function f1(7) in the rational function field Q. (T) by

AM = > xorta¥t-n.

b=1 (mod 3%)
0<b<35¢

We putd = s + 1 + [logz (£ — 1)]. We also put ¢y = cos 27” + 4/—15sin 27” and K, ¢ =
£2,(Ze). Let h; . be the relative class number of K, ¢. Then we have the following result by
[7] p. 387:

LEMMA 1. Let x, Y, beasabove andn = 2s — 1. If B1,yy,, = 0 (mod Z) inZglLy,],
then f1(Ly,) =0 (mod £) in Z¢[Cy, 1, where € is the ideal of [y, | generated by ¢.

LEMMA 2. Ifd +s — 1 < n, then the prime number £ does not divide hy o/ hyis 1 e

PROOF. Assumethatd +s — 1 < n. We put

(T3¢ — 1) f1(T)

g(T) = T
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Since

o= Y x1t,
b=1 (mod 3*)
0<bZ143°(2—1)

we have deg g(T) < 3°(£ — 1) where deg g(T') means the degree of the polynomial g(T).
Since

[Qe(2) : Qo] = 3"175 >3 5 35(¢ — 1) > deg g(T)

for a primitive 3"*!-th root of unity ¢ € Q, we have

9(¢) # 0 (mod ¢)
and hence

f1(§) # 0 (mod £).

In particular, we obtain fi(¢y,) # 0 (mod €). By Lemma 1, we see By yy, % 0 (mod ¢).
Hence we obtain

h _
— L 20 (mod )
hd-i—s—l.[

by the class number formula

3n
he=0ne-2-¢[T]] <— %Bl,w}:)’

X b=l
where O, ¢ = 1 or 2 and x runs over all characters mod ¢ with y (—1) = —1. a
We denote the plus part and the minus part of the ideal class group of K, ¢ by CT(K,.¢)

and by C™ (K, ¢) respectively. We also denote the £-rank of C+(Kn,g) and C™ (K, ¢) by r;r_[
and by r,, respectively. Then Theorem 10.11 in [7] implies

+ —
rn,Z é rn,Z .

LEMMA 3. Suppose s + 1 < n. If £ divides hy, and if £ does not divide hy,—1, then

n—s—1 -
3 <71,

PROOF. Let r, be the ¢-rank of the ideal class group of §2,,. By Theorem 10.8 in [7],
wehaver, 23" if £ =1 (mod3)andr, =2 3" if £ =2 (mod 3). Since r,, < r:,e’ we

n—s—1 -
have 3 <Tpy O

Now we prove Theorem 2.
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Since |By 6| < 37+, we have

£—11n
=3

1
- +1
h,,=2-2. £<53” E)
< DS

Hence we obtain
ot < 3 (n + 1)%—1—2,
and then
-1
2

rye <3 Nd +5) +2 1)

by Lemma 2.

Let my be as in Theorem 2 and assume that £ does not divide #,,,. We also assume that
there exists a positive integer n such that £ divides %,, but does not divide /,_1. Then we have
my < n. By Lemma 3 and (1), we obtain

-1
7

3}’1—S—1 § 3d+s—l(d +S)

Hence we have

0 —
n—s—1=d+s—1+4logy(d+s) + logs 5 ;

this implies

n < 3s 4+ 1+ [logz(€ — 1]+ logz(d + 5) + logs 7

Therefore we have

n < 3s + 2+ [logs(4 — D]+ [log3 :| + [logs(2s + 1 + [logz (£ — D))] = my .

This is a contradiction.

3. Calculation

Let A, = Gal(£2,/Q) be the Galois group of £2,, over Q and A, the ¢-part of the ideal
class group of £2,,.

For a character x : A, — Q,, we define ey by

1
e =
T Al

Z Tr(x " (0))o € Zi[A,],

geA,
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where Tr is the trace map of Q¢(x(A,))/Q¢. We denote by A, , the x-part e, A, of Aj.
Then we have A, = P y An,x Where x runs over all representatives of Q¢-conjugacy classes
of characters of A,,.

In order to prove that £ does not divide &, it is sufficient to prove that £ does not divide
the order of A, , for each x. If x is not injective, then there exists a positive integer k such
that 2% = 25 and An.y = Ay y. Therefore we may assume x is injective.

Now, for n = 1, let ¢, denote a primitive 3"-th root of unity in C and put

En=Cnr1 — D@ =D =2—Gur1 +,3)) € 2.
We fix a truncation e, ¢ € Z[A,] of e, satisfying
ey ¢ = ey (mod £)

in order to consider an action on &,. The following lemma is a special case of Lemma 1 in
(2].

LEMMA 4. If there exists a prime number p which is congruent to 1 modulo 3"+1¢
and satisfies

& T £ 1 (mod p)

for some prime ideal p of $2, lying above p, then we have |A, y| = 1; here |A,, ;| denotes
the order of A, y .

Owing to Lemma 4 , we may regard x as a character of A, into F, and define ey to be
an element of Fy[A,] where F is an algebraic closure of the finite field Fy = Z/¢Z . Let 1,
be a primitive 3”-th root of unity in F; and put K = Fy(n,). Let p be the generator of A,
determined by ¢,+1 ;: 1 and x the character of A, defined by x (p) = 1, ! Then

-1
1 o
i = > Tre e, (mi)o'
-

Let p be a prime number congruent to 1 modulo 3"*!¢ and gp a primitive root of p.
Then

»=l
Gu1 =g (mod p)
for some prime ideal p of £2,, lying above p.

Therefore, if e >, aijp', then we have

x =

31

e j i
é;_nxj = l_[ 2= nt1 — é.n—Jrll)a,]p
i=0
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3"—1

= l_[ 2 - §n+1 n+1)a”

_]l

r—1
1_[ (2 _ ';n+l _ gp 3)H~1 )“u (mOd p)

The last product should be calculated modulo p. We fix positive integers z; and z; satisfying

=1
31

z1=g;"" (mod p)

0= Z; (mod p).

3.1. Thecasef{ =1 (mod3)and2 =n <s. Sincen, € F,, we have Trg /r,(n,) =
nn and

3"—1

ey = an] i

Let g¢ be a primitive root of £ and fix integers a;; satisfying
l l
ajj = 913 (mod 0).
There are 2 - 3"~ ! injective characters of A, and none of them is conjugate over Fy. If we put

={jeZ|1=j<3".(,3)=1},

then {x/ | j € X} is the set of all injective characters of A,. Then Lemma 4 implies the

following criterion.
CRITERION 1. Putb = 4. If there exists a prime number p which is congruent to 1
modulo 3"*1¢ and satisfies
31 s
H(Z—zl —zz)a”) # 1 (mod p) foreach j € X,

then ¢ does not divide &,/ hy,—1.

3.2. Thecasel{ =1 (mod3)ands+1 < n. Wehave [K : F;] = 3"%. The minimal
polynomial of 7, over Fy is

n—s n—s
X" - r}3 .

n
Therefore Trg /F, (nﬁl) = 0if / is not divisible by 3"~*. Hence we have

351

1 3n—s;; n—s:
€ =3 > Tk e, P
i=0



CLASS NUMBER IN CYCLOTOMIC Z3-EXTENSION OF Q 555

351
_ ij 3
=% i _
i=0

Since there are 2 - 3°~! non-conjugate primitive 3”-th roots of unity in Fy, there are the
same number of F¢-conjugacy classes of injective characters of A,,. In this case, we put

X={(jeZ|1Sj<3.(,3)=1).

Then {x/ | j € X} is a set of representatives of F,-conjugacy classes of injective characters
of A,.
Let g¢ be a primitive root of £ and fix integers a;; satisfying

i
ajj = g,° (mod ¢) .
CRITERION 2. Put b = 4% If there exists a prime number p which is congruent to
1 modulo 3"*!¢ and satisfies

S p—1
¥-1 T

< l_[ 2 - Z’l’i — zgi)“"f) # 1 (mod p) foreach je X,
i=0

then £ does not divide A,/ hy—1.

33. Thecase £ = —1 (mod 3)and 2 < n < 5. We have [K : F¢] = 2. Since

there are 3"~ ! non-conjugate primitive 3"-th roots of unity in Fy, there are the same number
of Fy-conjugacy classes of injective characters of A,. In this case, we put

n

X={j€ZI1§j§ ,(j,3)=1}.

Then {x/ | j € X} is a set of representatives of F;-conjugacy classes of injective characters
of A,.
In this case, we have

3n_1

1 o

i =5, Z Tr v, (0 ) p'
~

31

1 38—
= > Trw, 5, (05
i=0

!
Fix integers a;; satisfying
aij = t3s—nl'j (mOd Z) s

where ¢; is the element of F, defined by (2) in 3.4.
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CRITERION 3. Put b = 4. If there exists a prime number p which is congruent to 1
modulo 3"*!¢ and satisfies

p—1
31 T

< [Te-2 - Z’;")“w‘)  #1(mod p) foreach j € X,
=0
then ¢ does not divide h,,/ h;—1.

34. Thecase! = —1(mod3)ands+1<n. Wehave [K : Fy] =2 -3""5. Let
X2 —aX +1
be the minimal polynomial of n; over F,. Then the minimal polynomial of n, over Fy is
X237 —ax? 41,
therefore Trg /¥, (nf,) = 0if / is not divisible by 3" ~*. Hence we have

1 3 -1 s
3n— l] 3n=s;
e =g > Trkp e p¥
i=0
3 -1

=3 > Ter, o (05
i=0

n—s;
We need to calculate
ti = Tre, g,)/F, (1)) - ©)
We start from 11 = ny + g I"and proceed to
n=m 40" =0 +n)° =30 +0) =1 =30
e =0 40l =+ 2 =32 0 =1 - 313
=0 ) = 5y —3ty2 =1,
noting nf“ = 1. Reversing this procedure, we obtain #; recursively.
LEMMA 5. Letb) = —1€Fy. Ifs 2 2, we choose b € Fy 2 <i <) by
bl —3bit1 =b;.
Then we have t| = b.

REMARK. For each step, we have three roots. Hence we have just 3*~! #; which cor-
respond to 3°~! non-conjugate primitive 3°-th roots of unity in F,. We fix arbitrary one.

We obtaint; (2 £ i < 3*—1) from fp = 2 and 7, using the following recurrence formula.
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LEMMA 6. There holds ti1y = tiy1t] — t;.

PROOF. We have
titig1 = (s + )i 4+ 0T
_ n;’+2 + n§i+2)€ + n;’+€+1 + ﬂiHHl
_ (77§+2 + n§i+2)€) + nf+1 (ﬁé + 7726)
=tit2+ 1.
a
Since there are 3*~! non-conjugate primitive 3"-th roots of unity in Fy, there are the
same number of Fy-conjugacy classes of injective characters of A,. In this case, we put
s

2

X={jeZ|l=zj= ,(J,3) =1}.
Then {x/ | j € X} is a set of representatives of F;-conjugacy classes of injective characters
of A,. We fix integers a;; satisfying

ajj =t (mod ?) .

Note that i in the left hand side is a subscript with two indices and that in the right is the
product of i and j.

CRITERION 4. Putb = 43" If there exists a prime number p which is congruent to
1 modulo 3"*1¢ and satisfies
p=1
[4

31
< l_[ Q-5 -4 )“’-’) # 1 (mod p) foreach j € X,
i=0

then £ does not divide A,/ hy—1.
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