A Class Number Problem in the Cyclotomic Z₃-extension of Q

Takayuki MORISAWA

Waseda University

(Communicated by J. Murakami)

Abstract. Let Ω_n be the *n*-th layer of the cyclotomic \mathbb{Z}_3 -extension of \mathbb{Q} and h_n the class number of Ω_n . We claim that if ℓ is a prime number less than 10^4 , then ℓ does not divide h_n for any positive integer n.

1. Introduction

Let p be a prime number. It is one of the basic cases of class number problem to ask whether a prime number ℓ divides the class numbers of the intermediate fields of the cyclotomic \mathbf{Z}_p -extension of \mathbf{Q} . In the case $\ell=p$, Iwasawa [4] proved that p does not divide any of the class numbers of the n-th layers of the cyclotomic \mathbf{Z}_p -extension of \mathbf{Q} . In the case p=2, Fukuda and Komatsu [1] showed that ℓ does not divide any of the class numbers of the n-th layers of the cyclotomic \mathbf{Z}_2 -extension of \mathbf{Q} for $\ell<10^7$.

In this paper, we investigate the case p=3. Put $\Omega_n=\mathbb{Q}(2\cos(2\pi/3^{n+1}))$. Then Ω_n is a cyclic extension of degree 3^n over \mathbb{Q} and the *n*-th layer of the cyclotomic \mathbb{Z}_3 -extension of \mathbb{Q} . We denote the class number of Ω_n by h_n . Masley [6] showed $h_1=h_2=h_3=1$. Linden [5] showed $h_4=1$ if GRH (the Generalized Riemann Hypothesis) is valid.

Horie [3] proved the following theorem.

THEOREM 1 (Horie). Let the notation be as above for p = 3 and ℓ a prime number. If $\ell \equiv 2, 4, 5, 7 \pmod{9}$, then ℓ does not divide h_n for any positive integer n.

In this paper, we prove the following result.

THEOREM 2. Let $\ell \ge 5$ be a prime number and 3^s the exact power of 3 dividing $\ell^2 - 1$. Put

$$m_{\ell} = 3s + 2 + [\log_3(\ell - 1)] + \left[\log_3\frac{\ell - 1}{2}\right] + \left[\log_3(2s + 1 + [\log_3(\ell - 1)])\right],$$

where [x] denotes the greatest integer not exceeding a real number x. If ℓ does not divide $h_{m_{\ell}}$, then ℓ does not divide h_n for any positive integer n.

As a corollary to Theorem 2, we obtained the following result by numerical calculation.

Received November 27, 2008; revised February 9, 2009; revised May 26, 2009

COROLLARY 1. Let ℓ be a prime number less than 10000. Then ℓ does not divide h_n for any positive integer n.

We prove Theorem 2 in Section 2. In Section 3, we show a criterion in each of four disjoint cases to determine that a prime number ℓ does not divide h_n .

2. Proof of Theorem 2

Let n be a positive integer, ℓ a prime number with $\ell \ge 5$, χ a character mod ℓ with $\chi(-1) = -1$ and ψ_n an even character mod 3^{n+1} whose order is 3^n . Then the generalized Bernoulli number is defined by

$$B_{1,\chi\psi_n} = \frac{1}{3^{n+1}\ell} \sum_{h=1}^{3^{n+1}\ell} b\chi\psi_n(b).$$

Let s be as in Theorem 2 and ζ_{ψ_n} such a primitive 3^{n+1} -th root of unity as

$$\zeta_{\psi_n}^{3^{n+1-s}} = \psi_n (1 + 3^{n+1-s}).$$

We define a rational function $f_1(T)$ in the rational function field $\mathbf{Q}_{\ell}(T)$ by

$$f_1(T) = \left(\sum_{\substack{b \equiv 1 \pmod{3^s} \\ 0 < b < 3^s \ell}} \chi(b) T^b \right) (T^{3^s \ell} - 1)^{-1}.$$

We put $d = s + 1 + [\log_3(\ell - 1)]$. We also put $\zeta_\ell = \cos\frac{2\pi}{\ell} + \sqrt{-1}\sin\frac{2\pi}{\ell}$ and $K_{n,\ell} = \Omega_n(\zeta_\ell)$. Let $h_{n,\ell}^-$ be the relative class number of $K_{n,\ell}$. Then we have the following result by [7] p. 387:

LEMMA 1. Let χ , ψ_n be as above and $n \geq 2s - 1$. If $B_{1,\chi\psi_n} \equiv 0 \pmod{\overline{\ell}}$ in $\mathbf{Z}_{\ell}[\zeta_{\psi_n}]$, then $f_1(\zeta_{\psi_n}) \equiv 0 \pmod{\overline{\ell}}$ in $\mathbf{Z}_{\ell}[\zeta_{\psi_n}]$, where $\overline{\ell}$ is the ideal of $\mathbf{Z}_{\ell}[\zeta_{\psi_n}]$ generated by ℓ .

LEMMA 2. If $d + s - 1 \leq n$, then the prime number ℓ does not divide $h_{n,\ell}^- / h_{d+s-1,\ell}^-$.

PROOF. Assume that $d + s - 1 \le n$. We put

$$g(T) = \frac{(T^{3^s\ell} - 1)f_1(T)}{T}.$$

Since

$$g(T) = \sum_{\substack{b \equiv 1 \pmod{3^s} \\ 0 < b \le 1 + 3^s(\ell - 1)}} \chi(b) T^{b - 1},$$

we have $\deg g(T) \leq 3^s(\ell-1)$ where $\deg g(T)$ means the degree of the polynomial g(T). Since

$$[\mathbf{Q}_{\ell}(\zeta):\mathbf{Q}_{\ell}] \ge 3^{n+1-s} \ge 3^d > 3^s(\ell-1) \ge \deg g(T)$$

for a primitive 3^{n+1} -th root of unity $\zeta \in \overline{\mathbf{Q}_{\ell}}$, we have

$$g(\zeta) \not\equiv 0 \pmod{\overline{\ell}}$$
,

and hence

$$f_1(\zeta) \not\equiv 0 \pmod{\overline{\ell}}$$
.

In particular, we obtain $f_1(\zeta \psi_n) \not\equiv 0 \pmod{\overline{\ell}}$. By Lemma 1, we see $B_{1,\chi \psi_n} \not\equiv 0 \pmod{\overline{\ell}}$. Hence we obtain

$$\frac{h_{n,\ell}^{-}}{h_{d+s-1,\ell}^{-}} \not\equiv 0 \pmod{\overline{\ell}}$$

by the class number formula

$$h_{n,\ell}^- = Q_{n,\ell} \cdot 2 \cdot \ell \prod_{\chi} \prod_{b=1}^{3^n} \left(-\frac{1}{2} B_{1,\chi \psi_n^b} \right),$$

where $Q_{n,\ell} = 1$ or 2 and χ runs over all characters mod ℓ with $\chi(-1) = -1$.

We denote the plus part and the minus part of the ideal class group of $K_{n,\ell}$ by $C^+(K_{n,\ell})$ and by $C^-(K_{n,\ell})$ respectively. We also denote the ℓ -rank of $C^+(K_{n,\ell})$ and $C^-(K_{n,\ell})$ by $r_{n,\ell}^+$ and by $r_{n,\ell}^-$ respectively. Then Theorem 10.11 in [7] implies

$$r_{n,\ell}^+ \leq r_{n,\ell}^-$$
.

LEMMA 3. Suppose $s+1 \le n$. If ℓ divides h_n and if ℓ does not divide h_{n-1} , then $3^{n-s-1} < r_{n,\ell}^-$.

PROOF. Let r_n be the ℓ -rank of the ideal class group of Ω_n . By Theorem 10.8 in [7], we have $r_n \ge 3^{n-s}$ if $\ell \equiv 1 \pmod 3$ and $r_n \ge 2 \cdot 3^{n-s}$ if $\ell \equiv 2 \pmod 3$. Since $r_n \le r_{n,\ell}^+$, we have $3^{n-s-1} < r_{n,\ell}^-$.

Now we prove Theorem 2.

Since $|B_{1,\chi\psi_n^b}| \leq 3^{n+1}\ell$, we have

$$h_{n,\ell}^{-} \le 2 \cdot 2 \cdot \ell \left(\frac{1}{2} 3^{n+1} \ell\right)^{\frac{\ell-1}{2} 3^n}$$

$$< \ell^{3^n (n+1) \frac{\ell-1}{2} + 2}.$$

Hence we obtain

$$r_{n,\ell}^- < 3^n(n+1)\frac{\ell-1}{2} + 2$$
,

and then

$$r_{n,\ell}^- < 3^{d+s-1}(d+s)\frac{\ell-1}{2} + 2$$
 (1)

by Lemma 2.

Let m_ℓ be as in Theorem 2 and assume that ℓ does not divide h_{m_ℓ} . We also assume that there exists a positive integer n such that ℓ divides h_n but does not divide h_{n-1} . Then we have $m_\ell < n$. By Lemma 3 and (1), we obtain

$$3^{n-s-1} \le 3^{d+s-1}(d+s)\frac{\ell-1}{2}.$$

Hence we have

$$n-s-1 \le d+s-1 + \log_3(d+s) + \log_3\frac{\ell-1}{2}$$
;

this implies

$$n \le 3s + 1 + [\log_3(\ell - 1)] + \log_3(d + s) + \log_3\frac{\ell - 1}{2}$$
.

Therefore we have

$$n \le 3s + 2 + \left[\log_3(\ell - 1)\right] + \left[\log_3\frac{\ell - 1}{2}\right] + \left[\log_3(2s + 1 + \left[\log_3(\ell - 1)\right])\right] = m_\ell.$$

This is a contradiction.

3. Calculation

Let $\Delta_n = \operatorname{Gal}(\Omega_n/\mathbf{Q})$ be the Galois group of Ω_n over \mathbf{Q} and A_n the ℓ -part of the ideal class group of Ω_n .

For a character $\chi: \Delta_n \to \overline{\mathbf{Q}}_\ell$, we define e_χ by

$$e_{\chi} = \frac{1}{|\Delta_n|} \sum_{\sigma \in \Delta_n} \operatorname{Tr}(\chi^{-1}(\sigma)) \sigma \in \mathbf{Z}_{\ell}[\Delta_n],$$

where Tr is the trace map of $\mathbf{Q}_{\ell}(\chi(\Delta_n))/\mathbf{Q}_{\ell}$. We denote by $A_{n,\chi}$ the χ -part $e_{\chi}A_n$ of A_n . Then we have $A_n = \bigoplus_{\chi} A_{n,\chi}$ where χ runs over all representatives of \mathbf{Q}_{ℓ} -conjugacy classes of characters of Δ_n .

In order to prove that ℓ does not divide h_n , it is sufficient to prove that ℓ does not divide the order of $A_{n,\chi}$ for each χ . If χ is not injective, then there exists a positive integer k such that $\Omega_k = \Omega_n^{\mathrm{Ker}\chi}$ and $A_{n,\chi} \cong A_{k,\chi}$. Therefore we may assume χ is injective.

Now, for $n \ge 1$, let ζ_n denote a primitive 3^n -th root of unity in \mathbb{C} and put

$$\xi_n = (\zeta_{n+1} - 1)(\zeta_{n+1}^{-1} - 1) = 2 - (\zeta_{n+1} + \zeta_{n+1}^{-1}) \in \Omega_n.$$

We fix a truncation $e_{\chi,\ell} \in \mathbf{Z}[\Delta_n]$ of e_{χ} satisfying

$$e_{\chi,\ell} \equiv e_{\chi} \pmod{\ell}$$

in order to consider an action on ξ_n . The following lemma is a special case of Lemma 1 in [2].

LEMMA 4. If there exists a prime number p which is congruent to 1 modulo $3^{n+1}\ell$ and satisfies

$$(\xi_n^{e_{\chi,\ell}})^{\frac{p-1}{\ell}} \not\equiv 1 \pmod{\mathfrak{p}}$$

for some prime ideal \mathfrak{p} of Ω_n lying above p, then we have $|A_{n,\chi}| = 1$; here $|A_{n,\chi}|$ denotes the order of $A_{n,\chi}$.

Owing to Lemma 4, we may regard χ as a character of Δ_n into $\overline{\mathbf{F}}_\ell$ and define e_χ to be an element of $\mathbf{F}_\ell[\Delta_n]$ where $\overline{\mathbf{F}}_\ell$ is an algebraic closure of the finite field $\mathbf{F}_\ell = \mathbf{Z}/\ell\mathbf{Z}$. Let η_n be a primitive 3^n -th root of unity in $\overline{\mathbf{F}}_\ell$ and put $K = \mathbf{F}_\ell(\eta_n)$. Let ρ be the generator of Δ_n determined by $\zeta_{n+1} \mapsto \zeta_{n+1}^4$ and χ the character of Δ_n defined by $\chi(\rho) = \eta_n^{-1}$. Then

$$e_{\chi^j} = \frac{1}{3^n} \sum_{i=0}^{3^n-1} \text{Tr}_{K/\mathbf{F}_{\ell}}(\eta_n^{ij}) \rho^i .$$

Let p be a prime number congruent to 1 modulo $3^{n+1}\ell$ and g_p a primitive root of p. Then

$$\zeta_{n+1} \equiv g_p^{\frac{p-1}{3^{n+1}}} \pmod{\mathfrak{p}}$$

for some prime ideal \mathfrak{p} of Ω_n lying above p.

Therefore, if $e_{\chi^j} = \sum_i a_{ij} \rho^i$, then we have

$$\xi_n^{e_{\chi^j}} = \prod_{i=0}^{3^n-1} (2 - \zeta_{n+1} - \zeta_{n+1}^{-1})^{a_{ij}\rho^i}$$

$$\begin{split} &= \prod_{i=0}^{3^n-1} (2 - \zeta_{n+1}^{4^i} - \zeta_{n+1}^{-4^i})^{a_{ij}} \\ &\equiv \prod_{i=0}^{3^n-1} (2 - g_p^{\frac{p-1}{3^{n+1}}4^i} - g_p^{-\frac{p-1}{3^{n+1}}4^i})^{a_{ij}} \; (\bmod \; \mathfrak{p}) \; . \end{split}$$

The last product should be calculated modulo p. We fix positive integers z_1 and z_2 satisfying

$$z_1 \equiv g_p^{\frac{p-1}{3^{n+1}}} \pmod{p}$$
$$z_2 \equiv z_1^{-1} \pmod{p}.$$

3.1. The case $\ell \equiv 1 \pmod 3$ and $2 \le n \le s$. Since $\eta_n \in \mathbf{F}_{\ell}$, we have $\mathrm{Tr}_{K/\mathbf{F}_{\ell}}(\eta_n) = \eta_n$ and

$$e_{\chi^j} = \frac{1}{3^n} \sum_{i=0}^{3^n-1} \eta_n^{ij} \rho^i$$
.

Let g_{ℓ} be a primitive root of ℓ and fix integers a_{ij} satisfying

$$a_{ij} \equiv g_{\ell}^{\frac{\ell-1}{3^n}ij} \pmod{\ell}$$
.

There are $2 \cdot 3^{n-1}$ injective characters of Δ_n and none of them is conjugate over \mathbf{F}_{ℓ} . If we put

$$X = \{ j \in \mathbf{Z} \mid 1 \le j < 3^n, (j, 3) = 1 \},$$

then $\{\chi^j \mid j \in X\}$ is the set of all injective characters of Δ_n . Then Lemma 4 implies the following criterion.

CRITERION 1. Put b=4. If there exists a prime number p which is congruent to 1 modulo $3^{n+1}\ell$ and satisfies

$$\left(\prod_{i=0}^{3^{n}-1} (2 - z_1^{b^i} - z_2^{b^i})^{a_{ij}}\right)^{\frac{p-1}{\ell}} \not\equiv 1 \pmod{p} \quad \text{for each } j \in X,$$

then ℓ does not divide h_n/h_{n-1} .

3.2. The case $\ell \equiv 1 \pmod{3}$ and $s+1 \leq n$. We have $[K : \mathbf{F}_{\ell}] = 3^{n-s}$. The minimal polynomial of η_n over \mathbf{F}_{ℓ} is

$$X^{3^{n-s}}-\eta_n^{3^{n-s}}.$$

Therefore $\operatorname{Tr}_{K/\mathbb{F}_{\ell}}(\eta_n^i)=0$ if i is not divisible by 3^{n-s} . Hence we have

$$e_{\chi^j} = \frac{1}{3^n} \sum_{i=0}^{3^s-1} \operatorname{Tr}_{K/\mathbf{F}_{\ell}}(\eta_n^{3^{n-s}ij}) \rho^{3^{n-s}i}$$

$$= \frac{1}{3^s} \sum_{i=0}^{3^s-1} \eta_s^{ij} \rho^{3^{n-s}i}.$$

Since there are $2 \cdot 3^{s-1}$ non-conjugate primitive 3^n -th roots of unity in $\overline{\mathbf{F}}_{\ell}$, there are the same number of \mathbf{F}_{ℓ} -conjugacy classes of injective characters of Δ_n . In this case, we put

$$X = \{ j \in \mathbb{Z} \mid 1 \le j < 3^s, (j, 3) = 1 \}.$$

Then $\{\chi^j \mid j \in X\}$ is a set of representatives of \mathbf{F}_ℓ -conjugacy classes of injective characters of Λ_n

Let g_{ℓ} be a primitive root of ℓ and fix integers a_{ij} satisfying

$$a_{ij} \equiv g_{\ell}^{\frac{\ell-1}{3^s}ij} \pmod{\ell}$$
.

CRITERION 2. Put $b = 4^{3^{n-s}}$. If there exists a prime number p which is congruent to 1 modulo $3^{n+1}\ell$ and satisfies

$$\left(\prod_{i=0}^{3^{s}-1} (2 - z_1^{b^i} - z_2^{b^i})^{a_{ij}}\right)^{\frac{p-1}{\ell}} \not\equiv 1 \pmod{p} \quad \text{for each } j \in X,$$

then ℓ does not divide h_n/h_{n-1} .

3.3. The case $\ell \equiv -1 \pmod{3}$ and $2 \leq n \leq s$. We have $[K : \mathbf{F}_{\ell}] = 2$. Since there are 3^{n-1} non-conjugate primitive 3^n -th roots of unity in $\overline{\mathbf{F}}_{\ell}$, there are the same number of \mathbf{F}_{ℓ} -conjugacy classes of injective characters of Δ_n . In this case, we put

$$X = \left\{ j \in \mathbf{Z} \mid 1 \le j \le \frac{3^n - 1}{2}, (j, 3) = 1 \right\}.$$

Then $\{\chi^j \mid j \in X\}$ is a set of representatives of \mathbf{F}_ℓ -conjugacy classes of injective characters of Δ_n .

In this case, we have

$$\begin{split} e_{\chi^j} &= \frac{1}{3^n} \sum_{i=0}^{3^n - 1} \mathrm{Tr}_{K/\mathbf{F}_\ell}(\eta_n^{ij}) \rho^i \\ &= \frac{1}{3^n} \sum_{i=0}^{3^n - 1} \mathrm{Tr}_{\mathbf{F}_\ell(\eta_s)/\mathbf{F}_\ell}(\eta_s^{3^{s-n}ij}) \rho^i \;. \end{split}$$

Fix integers a_{ij} satisfying

$$a_{ij} \equiv t_{3^{s-n}ij} \pmod{\ell}$$
,

where t_i is the element of \mathbf{F}_{ℓ} defined by (2) in 3.4.

CRITERION 3. Put b=4. If there exists a prime number p which is congruent to 1 modulo $3^{n+1}\ell$ and satisfies

$$\left(\prod_{i=0}^{3^n-1} (2 - z_1^{b^i} - z_2^{b^i})^{a_{ij}}\right)^{\frac{p-1}{\ell}} \not\equiv 1 \pmod{p} \quad \text{for each } j \in X,$$

then ℓ does not divide h_n/h_{n-1} .

3.4. The case
$$\ell \equiv -1 \pmod{3}$$
 and $s + 1 \leq n$. We have $[K : \mathbf{F}_{\ell}] = 2 \cdot 3^{n-s}$. Let $X^2 - aX + 1$

be the minimal polynomial of η_s over \mathbf{F}_{ℓ} . Then the minimal polynomial of η_n over \mathbf{F}_{ℓ} is

$$X^{2\cdot 3^{n-s}} - aX^{3^{n-s}} + 1$$
.

therefore $\operatorname{Tr}_{K/\mathbb{F}_{\ell}}(\eta_n^i) = 0$ if i is not divisible by 3^{n-s} . Hence we have

$$e_{\chi^{j}} = \frac{1}{3^{n}} \sum_{i=0}^{3^{s}-1} \operatorname{Tr}_{K/\mathbf{F}_{\ell}}(\eta_{n}^{3^{n-s}ij}) \rho^{3^{n-s}i}$$
$$= \frac{1}{3^{s}} \sum_{i=0}^{3^{s}-1} \operatorname{Tr}_{\mathbf{F}_{\ell}(\eta_{s})/\mathbf{F}_{\ell}}(\eta_{s}^{ij}) \rho^{3^{n-s}i}.$$

We need to calculate

$$t_i = \text{Tr}_{\mathbf{F}_{\ell}(\eta_s)/\mathbf{F}_{\ell}}(\eta_s^i). \tag{2}$$

We start from $t_1 = \eta_s + \eta_s^{-1}$ and proceed to

$$t_{3} = \eta_{s}^{3} + \eta_{s}^{3\ell} = (\eta_{s} + \eta_{s}^{\ell})^{3} - 3\eta_{s}^{(\ell+1)}(\eta_{s} + \eta_{s}^{\ell}) = t_{1}^{3} - 3t_{1}$$

$$t_{3^{2}} = \eta_{s}^{3^{2}} + \eta_{s}^{3^{2}\ell} = (\eta_{s}^{3} + \eta_{s}^{3\ell})^{3} - 3\eta_{s}^{3(\ell+1)}(\eta_{s}^{3} + \eta_{s}^{3\ell}) = t_{3}^{3} - 3t_{3}$$

$$\vdots$$

$$t_{3^{s-1}} = \eta_{s}^{3^{s-1}} + \eta_{s}^{3^{s-1}\ell} = t_{3^{s-2}}^{3} - 3t_{3^{s-2}} = -1,$$

noting $\eta_s^{\ell+1} = 1$. Reversing this procedure, we obtain t_1 recursively.

LEMMA 5. Let
$$b_1 = -1 \in \mathbf{F}_{\ell}$$
. If $s \ge 2$, we choose $b_i \in \mathbf{F}_{\ell}$ $(2 \le i \le s)$ by
$$b_{i+1}^3 - 3b_{i+1} = b_i$$
.

Then we have $t_1 = b_s$.

REMARK. For each step, we have three roots. Hence we have just 3^{s-1} t_1 which correspond to 3^{s-1} non-conjugate primitive 3^s -th roots of unity in $\overline{\mathbf{F}}_{\ell}$. We fix arbitrary one.

We obtain t_i $(2 \le i \le 3^s - 1)$ from $t_0 = 2$ and t_1 using the following recurrence formula.

LEMMA 6. There holds $t_{i+2} = t_{i+1}t_1 - t_i$.

PROOF. We have

$$t_1 t_{i+1} = (\eta_s + \eta_s^{\ell})(\eta_s^{i+1} + \eta_s^{(i+1)\ell})$$

$$= \eta_s^{i+2} + \eta_s^{(i+2)\ell} + \eta_s^{i+\ell+1} + \eta_s^{i\ell+\ell+1}$$

$$= (\eta_s^{i+2} + \eta_s^{(i+2)\ell}) + \eta_s^{\ell+1}(\eta_s^{i} + \eta_s^{i\ell})$$

$$= t_{i+2} + t_i.$$

Since there are 3^{s-1} non-conjugate primitive 3^n -th roots of unity in $\overline{\mathbf{F}}_{\ell}$, there are the same number of \mathbf{F}_{ℓ} -conjugacy classes of injective characters of Δ_n . In this case, we put

$$X = \{j \in \mathbf{Z} \mid 1 \le j \le \frac{3^s - 1}{2}, (j, 3) = 1\}.$$

Then $\{\chi^j \mid j \in X\}$ is a set of representatives of \mathbf{F}_ℓ -conjugacy classes of injective characters of Δ_n . We fix integers a_{ij} satisfying

$$a_{ij} \equiv t_{ij} \pmod{\ell}$$
.

Note that ij in the left hand side is a subscript with two indices and that in the right is the product of i and j.

CRITERION 4. Put $b = 4^{3^{n-s}}$. If there exists a prime number p which is congruent to 1 modulo $3^{n+1}\ell$ and satisfies

$$\left(\prod_{i=0}^{3^{s}-1} (2 - z_{1}^{b^{i}} - z_{2}^{b^{i}})^{a_{ij}}\right)^{\frac{p-1}{\ell}} \not\equiv 1 \pmod{p} \quad \text{for each } j \in X,$$

then ℓ does not divide h_n/h_{n-1} .

References

- [1] T. FUKUDA and K. KOMATSU, Weber's Class Number Problem in the Cyclotomic \mathbb{Z}_2 -Extension of \mathbb{Q} , to appear in Experiment. Math.
- [2] M. AOKI and T. FUKUDA, An Algorithm for Computing p-Class Groups of Abelian Number Fields, Algorithmic Number Theory, 56–71, Lecture Notes in Computer Science, vol. 4076, Springer, Berlin, 2006.
- [3] K. HORIE, Certain Primary Components of the Ideal Class Group of the Z_p-Extension over the Rationals, Tohoku Math. J. 59 (2007), 259–291.
- [4] K. IWASAWA, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258.
- [5] F. J. VAN DER LINDEN, Class Number Computations of Real Abelian Number Fields, Math. Comp. 39 (1982), 693–707.
- [6] J. M. MASLEY, Class numbers of real cyclic number fields with small conductor, Compositio Math. 37 (1978), 297–319.

[7] L. C. WASHINGTON, Introduction to Cyclotomic Fields, 2nd edition, Graduate Texts in Math. 83, Springer-Verlag, New York, Heidelberg, Berlin, 1997.

Present Address:

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, OKUBO, SHINJUKU, TOKYO, 169–8555 JAPAN. *e-mail*: da-vinci-0415@moegi.waseda.jp