Tracial States on the θ-deformed Plane

Ken MIYAKE

Keio University
(Communicated by H. Nakada)

Abstract

Starting from a trivial pure state Ψ^{0}, we construct non-trivial tracial states $\left(\Psi^{i}\right)$ on the θ-deformed $2 m$-plane $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$. Furthermore we generalize Ψ^{i} to another tracial state on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$. We study extreme points of the tracial state space of $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$ in the case that deformation parameters are irrational numbers. Nontrivial pure states $\left(\Phi_{t}^{k}\right)$ on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$ are also given.

1. Introduction

The deformations of funtion algebras by using anti-symmetric real-valued matrix $\theta=$ $\left(\theta_{i j}\right)$ are called the θ-deformations (cf. [3],[4]). The C^{*}-algebra $C\left(T_{\theta}^{m}\right)(c f .[10])$ corresponding to the algebra of continuous functions on the noncommutative torus T_{θ}^{m} is well-known as an example of θ-deformations. Besides, in[3] various examples of θ-deformations are studied in detail.

In this paper, we restrict our attention to the θ-defomed $2 m$-plane $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$. The algebra $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$ is corresponding to the unital $*$-algebra of polynomial functions on the θ-deformed $2 m$-plane $\mathbf{R}_{\theta}^{2 m}$. The purpose of this paper is to construct non-trivial tracial states on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$ for every $m \in \mathbf{N}$. On the other hand, an algebraic probability space (cf. [1]) is defined to be a pair (\mathcal{A}, φ), where \mathcal{A} is a unital $*$-algebra and φ is a state on \mathcal{A}. The notion is obtained by considering a generalization of random variables and their expectation values in probability theory.

Our aim is to give non-trivial examples of algebraic probability spaces. To that end, it is crucial to give a criterion for the trivial pure state Ψ^{0} on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$. Suggested by this criterion, we construct a tracial class Ψ^{i}, and its generalization.

We study also extreme points of the tracial state space in the case that deformation parameters $\theta_{i j}$ are irrational numbers. Further investigation for the tracial states on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$ will be given in the forthcoming paper.

2. Preliminaries

In this paper, we use ${ }^{-}$instead of $*$-operation in consideration of the simplification of the description. We begin by recalling the definition of the θ-deformed $2 m$-plane $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$ (cf.[3]) which is a fundamental example of θ-deformations.

Definition 1. Let $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$ be the unital $*$-algebra generated by m elements z^{i} $(i=1, \ldots, m)$ with the commutation relations:

$$
\begin{align*}
& z^{i} z^{j}=\lambda^{i j} z^{j} z^{i} \\
& \bar{z}^{i} \bar{z}^{j}=\lambda^{i j} \bar{z}^{j} \bar{z}^{i} \\
& z^{i} \bar{z}^{j}=\lambda^{j i} \bar{z}^{j} z^{i} \quad(1 \leq i, j \leq m) . \tag{1}
\end{align*}
$$

Here $\lambda^{i j}$ is defined as $\lambda^{i j}=e^{2 \pi i \theta_{i j}}=\overline{\lambda^{j i}}$, where $\theta=\left(\theta_{i j}\right)$ is an anti-symmetric real-valued matrix of degree m.

3. Tracial state Ψ^{i}

We give the notion of tracial state on $*$-algebra.
Definition 2. Let \mathcal{A} be a unital $*$-algebra and φ be a linear functional $\varphi: \mathcal{A} \rightarrow \mathbf{C}$. We say that φ is a state on \mathcal{A} if φ satisfies the properties:

1. $\varphi(\bar{a} a) \geq 0 \quad(\forall a \in \mathcal{A})$,
2. $\varphi\left(\mathbf{1}_{\mathcal{A}}\right)=1$
where $\mathbf{1}_{\mathcal{A}}$ is the unit element of \mathcal{A}. The set of states of an algebra \mathcal{A} forms a convex set which is called the state space. An extreme point of state space is called a pure state. On the other hand, a non-extreme point of state space is called a mixed state.

DEFINITION 3. A state φ is called a tracial state if φ has the property: $\varphi(x y)=\varphi(y x)$ for $\forall x, y \in \mathcal{A}$. The set of tracial states forms a convex set which is called the tracial state space.

First of all, let us recall a trivial state Ψ^{0} on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$.
DEFINITION 4. Let $n_{1}, n_{1}^{\prime}, \ldots, n_{m}, n_{m}^{\prime}$ be in $\mathbf{Z}_{\geq 0}$, and consider the monomial $X=$ $\left(z^{1}\right)^{n_{1}}\left(\bar{z}^{1}\right)^{n_{1}^{\prime}} \cdots\left(z^{m}\right)^{n_{m}}\left(\bar{z}^{m}\right)^{n_{m}^{\prime}} \in C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$. We set Ψ^{0} as a linear functional satisfying

$$
\Psi^{0}(X):= \begin{cases}1 & \text { if } n_{1}=n_{1}^{\prime}=\cdots=n_{m}=n_{m}^{\prime}=0 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

for X.

We characterize this trivial functional from a little general viewpoints. We denote the unit element of $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$ by $\mathbf{1}$. First we consider a map $\phi: C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right) \rightarrow \mathbf{C}$ which satisfying

$$
\begin{array}{lll}
\phi\left(z^{i} z^{j}\right):=\lambda^{i j} & \phi\left(z^{j} \bar{z}^{i}\right):=\lambda^{i j} & \phi\left(z^{i} \bar{z}^{j}\right):=\lambda^{j i} \\
\phi\left(\bar{z}^{j} \bar{z}^{i}\right):=\lambda^{j i} & \phi\left(z^{j} z^{i}\right):=1 & \phi\left(\bar{z}^{j} z^{i}\right):=1 \\
\phi\left(\bar{z}^{i} \bar{z}^{j}\right):=1 & \phi\left(\bar{z}^{i} z^{j}\right):=1 & \phi\left(z^{i}\right):=0 \\
\phi\left(\bar{z}^{i}\right):=0 & \phi(\mathbf{1}):=1 & (1 \leq i \leq j \leq m) . \tag{3}
\end{array}
$$

We put $z^{1}=w_{1}, \bar{z}^{1}=w_{2}, \ldots, z^{m}=w_{2 m-1}, \bar{z}^{m}=w_{2 m}$, and let $\iota(1), \ldots, \iota(n)$ be in \mathbf{N} such that $1 \leq \iota(1), \ldots, \iota(n) \leq 2 m$, where $\iota(1), \ldots, \iota(n)$ are allowed overlapping. Furthermore, we require that

$$
\begin{equation*}
\phi\left(w_{\iota(1)} \ldots w_{\iota(n)}\right):=\prod_{k<l}^{n} \phi\left(w_{l(k)} w_{l(l)}\right) \tag{4}
\end{equation*}
$$

for the monomial $A=w_{\iota(1)} \cdots w_{\iota(n)}$ of degree more than 2 , and linearity such that

$$
\phi(\lambda X+\mu Y)=\lambda \phi(X)+\mu \phi(Y), \quad \lambda, \mu \in \mathbf{C}, X, Y \in C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)
$$

Lemma 5. ϕ is well-defined uniquely by (3) and (4) as a linear functional.
Proof. It suffices to show following equalities based on (4).

$$
\begin{gather*}
\phi\left(w_{\iota(1)} \cdots w_{\iota(k)}\left(w_{2 p-1} w_{2 q-1}-\lambda^{p q} w_{2 q-1} w_{2 p-1}\right) w_{\iota(k+1)} \cdots w_{\iota(n)}\right)=0 \\
\phi\left(w_{\iota(1)} \cdots w_{\iota(k)}\left(w_{2 p} w_{2 q}-\lambda^{p q} w_{2 q} w_{2 p}\right) w_{\iota(k+1)} \cdots w_{\iota(n)}\right)=0 \\
\phi\left(w_{\iota(1)} \cdots w_{\iota(k)}\left(w_{2 p} w_{2 q-1}-\lambda^{q p} w_{2 q-1} w_{2 p}\right) w_{\iota(k+1)} \cdots w_{\iota(n)}\right)=0 \\
p, q, k \in \mathbf{N}, 1 \leq p, q \leq m, 1 \leq k \leq n-1 \tag{5}
\end{gather*}
$$

Note that $w_{2 p-1}=z^{p}, w_{2 p}=\bar{z}^{p}, w_{2 q-1}=z^{q}, w_{2 q}=\bar{z}^{q}$. We will show the first equation of (5).

$$
\begin{aligned}
\phi\left(w_{\iota(1)}\right. & \left.\cdots w_{\iota(k)}\left(w_{2 p-1} w_{2 q-1}-\lambda^{p q} w_{2 q-1} w_{2 p-1}\right) w_{\iota(k+1)} \cdots w_{\iota(n)}\right) \\
= & \phi\left(w_{\iota(1)} \cdots w_{\iota(k)} w_{2 p-1} w_{2 q-1} w_{\iota(k+1)} \cdots w_{\iota(n)}\right) \\
& -\lambda^{p q} \phi\left(w_{\iota(1)} \cdots w_{\iota(k)} w_{2 q-1} w_{2 p-1} w_{\iota(k+1)} \cdots w_{\iota(n)}\right) \\
= & \left(\phi\left(w_{2 p-1} w_{2 q-1}\right)-\lambda^{p q} \phi\left(w_{2 q-1} w_{2 p-1}\right)\right) \prod_{e=1}^{k} \phi\left(w_{\iota(e)} w_{2 p-1}\right) \phi\left(w_{\iota(e)} w_{2 q-1}\right) \\
& \times \prod_{f=k+1}^{n} \phi\left(w_{2 p-1} w_{\iota(f)}\right) \phi\left(w_{2 q-1} w_{\iota(f)}\right) \prod_{1 \leq g<g^{\prime} \leq n} \phi\left(w_{\iota(g)} w_{\iota\left(g^{\prime}\right)}\right) \\
= & 0
\end{aligned}
$$

by (4).

Hence the first equation is proved. The remaining are proved similarly. Consequently we see that a map ϕ is uniquely determined as a linear functional.

Next let us introduce some notations. Let $t, i(1), \ldots, i(t)$ be in \mathbf{N} such that $1 \leq i(1) \lesseqgtr$ $\cdots \lesseqgtr i(t) \leq m, 1 \leq t \leq m$.

DEFINITION 6. Let $T^{i(1) \cdots i(t)}$ be the set of monomials formed by generators $\mathbf{1}, z^{i(1)}, \bar{z}^{i(1)}, \ldots, z^{i(t)}, \bar{z}^{i(t)} \in C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$. Particularly, we denote the set $\{\mathbf{1}\}$ by T^{0}.

For example $\mathbf{1}, \bar{z}^{1} \bar{z}^{3}, z^{1} z^{2} \in T^{1 \cdot 2 \cdot 3}$.
DEFINITION 7. We say that X is regular in $T^{i(1) \cdots i(t)}$ or simply we say that X is regular if there exists a monomial $Y \in T^{i(1) \cdots i(t)}$ such that $X=\lambda \bar{Y} Y, \lambda \in \mathbf{C}-\{0\}$.

EXAMPLE 8. The monomial $X=\bar{z}^{2} z^{1} z^{2} \bar{z}^{1}$ is regular in $T^{1 \cdot 2}$. In fact, if we set $Y=$ $z^{2} \bar{z}^{1} \in T^{1 \cdot 2}$, then it holds $X=\lambda^{21} \bar{Y} Y$.

LEMMA 9. The functional Ψ^{0} is expressed as follows by using the above terms.

$$
\Psi^{0}(X):= \begin{cases}\phi(X) & \text { if } X \text { is regular in } T^{0} \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

for any monomial $X \in C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$.
Our intention is generalizing Ψ^{0} in accordance with the form of (6). Let us define a functional $\Psi^{i(1) \cdots i(t)}$ on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$.

DEFINITION 10. Let $\Psi^{i(1) \cdots i(t)}$ be the linear functional defined by setting

$$
\Psi^{i(1) \cdots i(t)}(X):= \begin{cases}\phi(X) & \text { if } X \text { is regular in } T^{i(1) \cdots i(t)} \\ 0 & \text { otherwise }\end{cases}
$$

for any monomial $X \in C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$.
In the following we denote $\Psi^{i(1) \cdots i(t)}$ simply by Ψ^{i}.
REMARK 11. In definition 10 , if $T^{i(1) \cdots i(t)}=T^{0}$, then $\Psi^{i(1) \cdots i(t)}=\Psi^{0}$.
Now we will prove that Ψ^{i} is a tracial state on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$. The following Lemma is fundamental.

Lemma 12. We put $z^{1}=w_{1}, \bar{z}^{1}=w_{2}, \ldots, z^{m}=w_{2 m-1}, \bar{z}^{m}=w_{2 m}$. Suppose that $X=w_{j(1)} \cdots w_{j(k)} \in T^{i(1) \cdots i(t)}$ for $j(1), \ldots, j(k) \in\{1, \ldots, 2 m\}, k \in \mathbf{N}$. Then we have

$$
\begin{equation*}
\Psi^{i}(\bar{X} X)=1 \tag{7}
\end{equation*}
$$

Proof. If $X=\mathbf{1}$, then (7) is obvious. Therefore, we assume that $X \neq \mathbf{1}$. Let p, q be in \mathbf{N} such that $1 \leq q \leq p \leq k$. Then we get

$$
\Psi^{i}(\bar{X} X)=\Psi^{i}\left(\bar{w}_{j(k)} \cdots \bar{w}_{j(1)} w_{j(1)} \cdots w_{j(k)}\right)
$$

$$
\begin{aligned}
& =\phi\left(\bar{w}_{j(k)} \cdots \bar{w}_{j(1)} w_{j(1)} \cdots w_{j(k)}\right) \\
& =\prod_{p \neq q} \underbrace{\phi\left(\bar{w}_{j(p)} \bar{w}_{j(q)}\right) \phi\left(w_{j(q)} w_{j(p)}\right)}_{1} \underbrace{\phi\left(\bar{w}_{j(p)} w_{j(q)}\right) \phi\left(\bar{w}_{j(q)} w_{j(p)}\right)}_{1} \\
& =1 .
\end{aligned}
$$

Lemma 13. If X and Y are regular, then $X Y, \bar{X} Y$ are regular.
Note that the converse of Lemma 13 is not true in general.
Proposition 14. If X and Y are regular, then we have

$$
\begin{equation*}
\Psi^{i}(X Y)=\Psi^{i}(X) \Psi^{i}(Y) \tag{8}
\end{equation*}
$$

Proof. If X or Y is a scalar multiplication of $\mathbf{1}$, then (8) is obvious. Therefore, we assume $X, Y \neq \lambda \mathbf{1}, \lambda \in \mathbf{C}-\{0\}$. Let z^{j} be one of elements which forms X. Then \bar{z}^{j} is also one of elements which forms X. Similarly, let z^{k}, \bar{z}^{k} be elements which form Y. Then we obtain the following equality.

$$
\phi\left(z^{j} z^{k}\right) \phi\left(z^{j} \bar{z}^{k}\right) \phi\left(\bar{z}^{j} z^{k}\right) \phi\left(\bar{z}^{j} \bar{z}^{k}\right)=1
$$

Since the elements z^{j} and z^{k} are arbitrary, the result is given.
In relation to Proposition 14, we have the following Lemma.
Lemma 15. If X is regular and Y is not regular, then

$$
\begin{equation*}
\Psi^{i}(X Y)=\Psi^{i}(\bar{X} Y)=0 \tag{9}
\end{equation*}
$$

Proof. If X is regular and Y is not regular, then $X Y, \bar{X} Y$ are not regular. Namely, (9) is proved by Definition 10.
Ψ^{i} has the following property.
PROPOSITION 16. $\Psi^{i}(x y)=\Psi^{i}(y x)$ for $\forall x, y \in C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$.
Proof. By Definition of Ψ^{i}, it suffices to consider the case that $x y$ is regualr. We put $z^{j}=e_{1}, \bar{z}^{j}=e_{2}, z^{k}=e_{3}, \bar{z}^{k}=e_{4}, j, k=1, \ldots, m$. Suppose that $k_{1}, k_{2}, k_{3}, k_{4} \in$ $\{1, \ldots, 4\}$, however $i \neq j \Rightarrow k_{i} \neq k_{j}, i, j=1, \ldots, 4$. Then it is easy to see that

$$
e_{k_{1}} e_{k_{2}} e_{k_{3}} e_{k_{4}}=e_{k_{2}} e_{k_{3}} e_{k_{4}} e_{k_{1}}=e_{k_{3}} e_{k_{4}} e_{k_{1}} e_{k_{2}}=e_{k_{4}} e_{k_{1}} e_{k_{2}} e_{k_{3}}
$$

Hence if $X=x y$ is regular, then it holds $x y=y x$.
By the commutation relations of $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$, it holds the following property concerned with Ψ^{i}.

Lemma 17. Let x be regular and let y be a monomial in $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$. Then it holds $\Psi^{i}(x y)=\Psi^{i}(y x)$.

Definition 18. Let X, Y be in $T^{i(1) \cdots i(t)}$. We denote by $X \sim Y$ if $\bar{X} Y$ is regular.
The relation \sim is an equivalence relation. We denote the equivalence class of A by [A] for $A \in T^{i(1) \cdots i(t)}$. Let $\operatorname{deg}(A)$ denote the degree of a monomial A, and let $[A]_{\text {min }}$ be the subset of $[A]$ such that

$$
[A]_{\min }=\{x \in[A] \mid \operatorname{deg}(x) \leq \operatorname{deg}(y), \forall y \in[A]\}
$$

Lemma 19. Let X, Y be in $T^{i(1) \cdots i(t)}$. If $X \nsim Y$, then

$$
\Psi^{i}(\bar{X} Y)=0 .
$$

Proof. If $X \nsim Y$, then $\bar{X} Y$ is not regular. i.e. $\Psi^{i}(\bar{X} Y)=0$.
PROPOSITION 20. Ψ^{i} is a positive functional.
Proof. By Lemma 19 and Definition of Ψ^{i}, it suffices to prove $\Psi^{i}(\bar{X} X) \geq 0$ for $X=\sum_{t=1}^{k} r_{t} x_{t}, x_{p} \sim x_{q}, p, q=1, \ldots, k, r_{1}, \ldots, r_{k} \in \mathbf{C}$ in order for Ψ^{i} to be a positive functional. We can denote X by $\sum_{t=1}^{k} r_{t}^{\prime} u y_{t}$, where $u \in\left[x_{t}\right]_{\min }, y_{1}, \ldots, y_{k}$ are regular, and $r_{1}^{\prime}, \ldots, r_{k}^{\prime} \in \mathbf{C}$. Then it follows from Proposition 14 and Lemma 17 that

$$
\begin{aligned}
\Psi^{i}(\bar{X} X) & =\Psi^{i}\left(\left(\sum_{t=1}^{k} \bar{r}_{t}^{\prime} \bar{y}_{t} \bar{u}\right)\left(\sum_{t=1}^{k} r_{t}^{\prime} u y_{t}\right)\right) \\
& =\Psi^{i}(\bar{u} u)\left(\sum_{t=1}^{k} \bar{r}_{t}^{\prime} \Psi^{i}\left(\bar{y}_{t}\right)\right)\left(\sum_{t=1}^{k} r_{t}^{\prime} \Psi^{i}\left(y_{t}\right)\right) \\
& =\Psi^{i}(\bar{u} u)\left(\overline{\sum_{t=1}^{k} r_{t}^{\prime} \Psi^{i}\left(y_{t}\right)}\right)\left(\sum_{t=1}^{k} r_{t}^{\prime} \Psi^{i}\left(y_{t}\right)\right) \geq 0 .
\end{aligned}
$$

Thus it is proved that Ψ^{i} is a state on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$.
It follows from Proposition 16 and Proposition 20 that the following Theorem.
THEOREM 21. Ψ^{i} is a tracial state on $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$.

4. Generalization of Ψ^{i}

Tracial state Ψ^{i} is generalized naturally. Let us define a linear functional $\Psi_{x_{1} \cdots x_{t}}^{i(1) \cdots i(t)}$ on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$. Suppose that $x_{1}, \ldots, x_{t} \not \geqslant 0, n_{1}, n_{1}^{\prime}, \ldots, n_{m}, n_{m}^{\prime} \in \mathbf{Z}_{\geq 0}$.

DEFINITION 22. Let $\Psi_{x_{1} \cdots x_{t}}^{i(1) \cdots i(t)}$ be the linear functional defined by setting

$$
\Psi_{x_{1} \cdots x_{t}}^{i(1) \cdots i(t)}(X):= \begin{cases}x_{1}^{n_{i(1)}} \cdots \mathrm{x}_{t}^{n_{i(t)}} \phi(X) & \text { if } X \text { is regular in } T^{i(1) \cdots i(t)} \\ 0 & \text { otherwise }\end{cases}
$$

for the monomial $X=\left(z^{1}\right)^{n_{1}}\left(\bar{z}^{1}\right)^{n_{1}^{\prime}} \cdots\left(z^{m}\right)^{n_{m}}\left(\bar{z}^{m}\right)^{n_{m}^{\prime}} \in C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$.
In the following we denote $\Psi_{x_{1} \cdots x_{t}}^{i(1) \cdots i(t)}$ simply by Ψ_{x}^{i}.
REMARK 23. If $x_{1}=\cdots=x_{t}=1$, then $\Psi_{x}^{i}=\Psi^{i}$.
We have the following Propositions.
Proposition 24. If X and Y are regular, then

$$
\Psi_{x}^{i}(X Y)=\Psi_{x}^{i}(X) \Psi_{x}^{i}(Y)
$$

PROPOSITION 25. $\Psi_{x}^{i}(x y)=\Psi_{x}^{i}(y x)$ for $\forall x, y \in C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$.
We can show the following in a similar way to the proof of Proposition 20.
THEOREM 26. Ψ_{x}^{i} is a tracial state on $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$.
REMARK 27. The unital $*$-algebra $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m+1}\right)$ is defined by adding a selfadjoint generator z^{m+1} to $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$ with relations $z^{i} z^{m+1}=z^{m+1} z^{i}(1 \leq i \leq m)$. We can construct tracial states on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m+1}\right)$ in the same way to the case of $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$.

5. Extreme points of the tracial state space

We would introduce extreme points of the tracial state space of $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$ in the case that deformation parameter $\theta_{i j}(1 \leq i \leq j \leq m)$ are irrational numbers. Let $\Psi^{(2)}$ be the tracial state, which is assumed to be $t=2$ in $\Psi_{x_{1} \cdots x_{t}}^{i(1) \cdots i(t)}$. Namely it holds $\Psi^{(2)}=\Psi_{x_{1} x_{2}}^{i(1) i(2)}$, where $1 \leq i(1) \leq i(2) \leq m, x_{1}, x_{2} \nsucceq 0$.

PROPOSITION 28. If $\theta_{i(1) i(2)}$ is an irrational number, then $\Psi^{(2)}$ is an extreme point of the tracial state space of $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$.

Proof. We assume that there exist tracial states Ψ_{1}, Ψ_{2} on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$ such that

$$
\begin{equation*}
\Psi^{(2)}=(1-s) \Psi_{1}+s \Psi_{2} \quad(0 \lesseqgtr s \lesseqgtr 1) . \tag{10}
\end{equation*}
$$

We prove this Proposition in three steps.
1 ST STEP: Let K be a monomial formed from the set of generators

$$
\left\{z^{1}, \bar{z}^{1}, \ldots, z^{m}, \bar{z}^{m}\right\}-\left\{z^{i(1)}, \bar{z}^{i(1)}, z^{i(2)}, \bar{z}^{i(2)}\right\}
$$

Suppose that $L=\bar{K} K$. By definition of $\Psi^{(2)}$ and (10), we have

$$
(1-s) \Psi_{1}(L)+s \Psi_{2}(L)=0
$$

Since a state is positive

$$
\Psi_{1}(L) \geq 0 \quad \Psi_{2}(L) \geq 0
$$

Hence

$$
\Psi_{1}(L)=\Psi_{2}(L)=0
$$

Let $\lambda_{1}, \lambda_{2} \in \mathbf{C}-\{0\}$. We assume $\Psi_{1}(K) \neq 0$. Then we have

$$
\begin{equation*}
\Psi_{1}\left(\overline{\left(\lambda_{1} \mathbf{1}+\lambda_{2} K\right)}\left(\lambda_{1} \mathbf{1}+\lambda_{2} K\right)\right)=\left|\lambda_{1}\right|^{2}+2 \operatorname{Re}\left(\overline{\lambda_{1}} \lambda_{2} \Psi_{1}(K)\right) \geq 0 \tag{11}
\end{equation*}
$$

However, if we take

$$
\lambda_{2}=-\lambda_{1} \frac{1}{\Psi_{1}(K)}
$$

then we have

$$
\begin{equation*}
\left|\lambda_{1}\right|^{2}+2 \operatorname{Re}\left(\overline{\lambda_{1}} \lambda_{2} \Psi_{1}(K)\right)=-\left|\lambda_{1}\right|^{2} \lesseqgtr 0 \tag{12}
\end{equation*}
$$

(12) contradicts (11). Hence we get $\Psi_{1}(K)=0$. As well as Ψ_{1}, we get $\Psi_{2}(K)=0$.

2ND STEP: Let M be regular in $T^{i(1) i(2)}$. Then we have

$$
\left|\Psi^{(2)}(M)\right|^{2}=\Psi^{(2)}(\bar{M} M)
$$

by definition of $\Psi^{(2)}$. Therefore there exists $\omega(0 \leq \omega \leq 2 \pi)$ that satisfies

$$
\begin{equation*}
\Psi^{(2)}\left(\overline{\left(\left|\Psi^{(2)}(M)\right| \mathbf{1}+e^{i \omega} M\right)}\left(\left|\Psi^{(2)}(M)\right| \mathbf{1}+e^{i \omega} M\right)\right)=0 \tag{13}
\end{equation*}
$$

We denote $\left|\Psi^{(2)}(M)\right| \mathbf{1}+e^{i \omega} M$ by S. By (10) and (13) we have

$$
(1-s) \Psi_{1}(\bar{S} S)+s \Psi_{2}(\bar{S} S)=0
$$

However, since a state is positive

$$
\Psi_{1}(\bar{S} S) \geq 0 \quad \Psi_{2}(\bar{S} S) \geq 0
$$

Hence

$$
\Psi_{1}(\bar{S} S)=\Psi_{2}(\bar{S} S)=0
$$

Let $r_{1}, r_{2} \in \mathbf{C}-\{0\}$. Assuming that $\Psi^{(2)}(S) \neq 0$, then we have

$$
\begin{equation*}
\Psi^{(2)}\left(\left(\overline{r_{1} \mathbf{1}+r_{2} S}\right)\left(r_{1} \mathbf{1}+r_{2} S\right)\right)=\left|r_{1}\right|^{2}+2 \operatorname{Re}\left(\overline{r_{1}} r_{2} \Psi^{(2)}(S)\right) \geq 0 \tag{14}
\end{equation*}
$$

However, if we take

$$
r_{2}=-\frac{r_{1}}{\Psi^{(2)}(S)}
$$

then

$$
\begin{equation*}
\left|r_{1}\right|^{2}+2 \operatorname{Re}\left(\overline{r_{1}} r_{2} \Psi^{(2)}(S)\right)=-\left|r_{1}\right|^{2} \lesseqgtr 0 \tag{15}
\end{equation*}
$$

(15) contradicts (14). Hence, we get

$$
\Psi^{(2)}(S)=0
$$

In the similar way, we get

$$
\Psi_{1}(S)=\Psi_{2}(S)=0
$$

Consequently, we obtain

$$
\Psi^{(2)}(M)=\Psi_{1}(M)=\Psi_{2}(M)
$$

3RD STEP: Suppose that $P, Q \in T^{i(1) i(2)}$ and P is not regular in $T^{i(1) i(2)}$. Then we have

$$
\begin{align*}
& \Psi_{1}\left(\left(\overline{P \Psi_{1}(\bar{Q} Q)-P \bar{Q} Q}\right)\left(P \Psi_{1}(\bar{Q} Q)-P \bar{Q} Q\right)\right) \\
& \quad=\Psi_{1}(\bar{P} P) \Psi_{1}(\bar{Q} Q)^{2}+\Psi_{1}(\bar{Q} Q \bar{P} P \bar{Q} Q)-2 \Psi_{1}(\bar{P} Q \bar{Q} P) \Psi_{1}(\bar{Q} Q) \\
& \quad=0 \tag{16}
\end{align*}
$$

By (16), we get the following in the same way that the 2nd step.

$$
\begin{equation*}
\Psi_{1}(P \bar{Q} Q)=\Psi_{1}(P) \Psi_{1}(\bar{Q} Q) \tag{17}
\end{equation*}
$$

Considering (17), We see that $\Psi_{1}(P)=0$ in order for Ψ_{1} to be a tracial state in the case that $\theta_{i(1) i(2)}$ is an irrational number. Let m, n be in natural number. In fact, if $\Psi_{1}\left(\left(z^{i(1)}\right)^{m}\left(z^{i(2)}\right)^{n}\right) \neq 0$, then we get

$$
\begin{equation*}
\Psi_{1}\left(\left(z^{i(1)}\right)^{m}\left(z^{i(2)}\right)^{n}\right) \neq \Psi_{1}\left(\left(z^{i(2)}\right)^{n}\left(z^{i(1)}\right)^{m}\right) \tag{18}
\end{equation*}
$$

since $\theta_{i(1) i(2)}$ is an irrational number. On the other hand, if $\Psi_{1}\left(\left(z^{i(1)}\right)^{m}\right) \neq 0$, then (17) shows that

$$
\Psi_{1}\left(\left(z^{i(1)}\right)^{m}\right) \Psi_{1}\left(\left(z^{i(2)}\right)^{n}\left(z^{i(2)}\right)^{n}\right)=\Psi_{1}\left(\left(z^{i(1)}\right)^{m}\left(\bar{z}^{i(2)}\right)^{n}\left(z^{i(2)}\right)^{n}\right) \neq 0 .
$$

Then we obtain

$$
\Psi_{1}\left(\left(z^{i(1)}\right)^{m}\left(\bar{z}^{i(2)}\right)^{n}\left(z^{i(2)}\right)^{n}\right) \neq \Psi_{1}\left(\left(z^{i(2)}\right)^{n}\left(z^{i(1)}\right)^{m}\left(z^{i(2)}\right)^{n}\right) .
$$

as well as (18). Eventually, it turns out in these cases that Ψ_{1} is not tracial. This contradicts to that Ψ_{1} is a tracial state. Hence we see that $\Psi_{1}(P)=0$ generally. As well as Ψ_{1}, we see that $\Psi_{2}(P)=0$.

Eventually we obtain

$$
\Psi^{(2)}=\Psi_{1}=\Psi_{2}
$$

from three steps. This completes the proof.
We have the following Corollary in relation to Proposition 28.
Corollary 29. Let $\mathcal{A}^{a b}$ be the quotient of $C^{a l g}\left(\mathbf{R}_{\theta}^{4}\right)$ by the two-sided ideal generated by $\bar{z}^{1} z^{1}-a \mathbf{1}$ and $\bar{z}^{2} z^{2}-b \mathbf{1},(a, b \ngtr 0)$. If θ_{12} is an irrational number, then $\mathcal{A}^{a b}$ has the unique tracial state.

We consider the case that deformation parameters $\theta_{i j}(i, j=1, \ldots, m)$ of $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$ are irrational numbers and satisfy the following condition: For any integers $k_{i j}(i, j=1, \ldots, m)$ such that $\sum_{i \not f j}\left|k_{i j}\right| \neq 0, \theta_{i j}$ satisfy $\sum_{i \ngtr j} k_{i j} \theta_{i j} \notin \mathbf{Z}_{\geq 0}$. Then we have the following Lemma.

LEMMA 30. Let x, y be monomials of $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$ which both are not scalar multiple of 1. If a monomial $x y$ is not regular and $x y$ is formed by two or more different generators, then $x y \neq y x$.

The following Proposition holds based on Lemma 30.
Proposition 31. If $t \geq 2$ for a tracial state $\Psi_{x}^{i}=\Psi_{x_{1} \cdots x_{t}}^{i(1) \cdots i(t)}$, then Ψ_{x}^{i} is an extreme point of the tracial state space of $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$.

The proof is obtained by the similar method to Proposition 28.

6. Pure state

We give non-trivial pure states on $C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$. Suppose that $n_{1}, n_{1}^{\prime}, \ldots, n_{m}, n_{m}^{\prime} \in \mathbf{Z}_{\geq 0}$, $t \in \mathbf{C}-\{0\}, k=1, \ldots, m$.

Definition 32. Let Φ_{t}^{k} be the linear functional defined by setting

$$
\Phi_{t}^{k}(X):= \begin{cases}t^{n_{k}} \bar{t}^{n_{k}^{\prime}} & \text { if } X \in T^{k} \\ 0 & \text { otherwise }\end{cases}
$$

for the monomial $X=\left(z^{1}\right)^{n_{1}}\left(\bar{z}^{1}\right)^{n_{1}^{\prime}} \cdots\left(z^{m}\right)^{n_{m}}\left(\bar{z}^{m}\right)^{n_{m}^{\prime}} \in C^{a l g}\left(\mathbf{R}_{\theta}^{2 m}\right)$.
It is obvious that Φ_{t}^{k} is a positive linear functional. Then we have the following.
THEOREM 33. Φ_{t}^{k} is a pure state on $C^{\text {alg }}\left(\mathbf{R}_{\theta}^{2 m}\right)$.
The proof is obtained by the similar method to Proposition 28.
REMARK 34. We can construct tracial states on the θ-deformed sphere and so on in a similar way to the θ-deformed plane.

References

[1] L. Accardi, N. Obata, Foundations of Quantum Probability Theory (in Japanese), Makino Shoten, 2003.
[2] A. Connes, Noncommutative geometry, Academic Press, 1994.
[3] A. Connes, M. Dubois-Violette, Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples, Commun. Math. Phys. 230 (2002), 539-579.
[4] A. Connes, G. Landi, Noncommutative manifolds, the instanton algebra and isospectral deformations, Commun. Math. Phys. 221 (2001), 141-159.
[5] J. M. Gracia-Bondía, J. C. VÁrilly, H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser, Boston 2001.
[6] S. Kamimura, From Quantum Tori to Quantum Homogeneous Spaces, Lect. Notes Phys. 662 (2005), 67-74.
[7] A. Konechny, A. Schwarz, Introduction to M(atrix) theory and noncommutative geometry, hepth/0012145.
[8] P. A. Meyer, Quantum Probability for Probabilists, Lect. Notes in Math. Vol. 1538, Springer-Verlag, 1993.
[9] A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series 335, Cambridge University Press, 2006.
[10] M. A. Rieffel, Non-commutative tori - A case study of non-commutative differentiable manifolds, Contemp. Math. 105 (1990), 191-212.

Present Address:
Department of Mathmatics, Faculty of Science and technology, Keio University,
YoKOHAMA, 223-8522 JAPAN.
e-mail: miyakenn@a6.keio.jp

