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Abstract. A generalization of the Schur Q-function is introduced. This generalization, called generalized Q-
function, is indexed by any pair of strict partitions, and can be expressed by the Pfaffian. A connection to the theory
of integrable systems is clarified. Firstly, the bilinear identities satisfied by the generalized Q-functions are given
and proved to be equivalent to a system of partial differential equations of infinite order. This system is called the
UC hierarchy of B-type (BUC hierarchy). Secondly, the algebraic structure of the BUC hierarchy is investigated
from the representation theoretic viewpoint. Some new kind of the boson-fermion correspondence is established,
and a representation of an infinite dimensional Lie algebra, denoted by go2∞, is obtained. The bilinear identities are
translated to the language of neutral fermions, which turn out to characterize a G-orbit of the vacuum vector, where
G is the group corresponding to go2∞.

1. Introduction

1.1. Schur Q-functions and BKP hierarchy. The Schur Q-functions arise from the
theory of projective representations of the symmetric and alternating groups[6], which play
similar roles to Schur S-functions for irreducible characters of the general linear groups. The
Schur Q-functions are also understood as a t = −1-specialization of the Hall-Littlewood
symmetric function [14].

Let λ = (λ1, λ2, . . . , λ2r ) be any strict partition, i.e., all the λi are non-negative integers
such that λ1 > λ2 > · · · > λ2r ≥ 0. Let qn(x) (n ∈ Z) be elementary Q-functions which are
polynomials in variables x = (x1, x3, x5, . . . ) (see (2.1)). We set for all m,n ∈ Z,

qm,n(x)=qm(x)qn(x)+ 2
∑
k≥1

(−1)kqm+k(x)qn−k(x)

which include qn(x) as qn,0(x) = qn(x) and satisfy qm,n(x) + qn,m(x) = 2(−1)mδm+n,0.

The Schur Q-function Qλ(x) indexed by the strict partition λ is then expressed as a Pfaffian
[6, 14]

Qλ(x) = Pf [Mλ] (1.1)

for a skew-symmetric matrix Mλ = (mi,j )1≤i,j≤2r with entries mi,j = qλi,λj (x) for i �= j

and mi,j = 0 for i = j . Notice that the original definition of the Schur Q-function as a
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symmetric function can be obtained by setting the variables as xn = 2pn/n where pn is the
n-th power sum.

The Schur Q-functions appear as polynomial solutions of the BKP hierarchy of partial
differential equations [1, 2, 3, 7], which is one of the variants of the famous KP (Kadomtsev-
Petviashivili) hierarchy [16]. From the viewpoint of infinite dimensional Lie algebras [9], the
BKP hierarchy corresponds to a Lie algebra of B-type, while the KP hierarchy corresponds to
A-type. It was discovered by Y. You [19] that Qλ(x) for any strict partition λ gives a solution
of the BKP hierarchy.

As was proved by M. Sato, the Schur S-functions give solutions of the KP hierarchy
[16]. It is interesting that solutions for both KP and BKP hierarchies include special functions
(“character polynomials”) related to the representation theory of the finite groups.

1.2. Universal characters and UC hierarchy. The universal (rational) character,
defined by K. Koike [12], is a generalization of the Schur S-function, which gives an irre-
ducible rational representation of the general linear groups. (The Schur S-function describes
a polynomial representation). The universal character is defined for each pair of (ordinary)
partitions, while the S-function is defined for a single partition. Moreover the universal char-
acter has a (twisted) Jacobi-Trudi formula (determinant expression).

Recently T. Tsuda [18] proposed an extension of the KP hierarchy called the UC hier-
archy. The UC hierarchy is an integrable system corresponding to the universal characters.
The UC hierarchy may be somewhat strange among many classical integrable systems, be-
cause all the differential equations included in the hierarchy have infinite order. However
many interesting properties of the UC hierarchy were revealed remarkably similar in style
with those for the KP hierarchy, e.g., boson-fermion correspondence, Lie algebra symmetry,
Plücker relations, etc.

1.3. Purpose. The aim of this paper, motivated by the fact mentioned above, is two-
hold. Firstly we define a generalization of the Schur Q-function, as an analogue of the univer-
sal character. This generalization, called the generalized Q-function, is defined for any pair
of strict partitions and possesses a Pfaffian structure which gives a natural generalization of
(1.1). Secondly we present a system of differential equations satisfied by the generalized Q-
functions. Since this system may be considered as a B-type analogue of the UC hierarchy, we
call it the UC hierarchy of B-type (BUC hierarchy). We also investigate an algebraic structure
of the BUC hierarchy, i.e., an infinitesimal symmetry of a certain infinite dimensional Lie
algebra, by using the language of neutral fermions.

1.4. Summary of results. The results of this paper are summarized as follows.
By a strict partition, we mean a sequence λ = (λ1, λ2, . . . , λr ) of non-negative integers

such that λ1 > λ2 > · · · > λr ≥ 0. Let (x, y) = (x1, x3, x5, . . . , y1, y3, y5, . . . ) be a set of
independent variables. We first define the generalized Q-functions.
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DEFINITION 1.1. Let λ and µ be arbitrary strict partitions. We define the generalized
Q-function Q[λ,µ](x, y) by

Q[λ,µ](x, y) = Qλ(x − 2̃∂y)Qµ(y − 2̃∂x) · 1 (1.2)

where ∂̃x =
(
∂x1, ∂x3/3, ∂x5/5, . . .

)
.

Since we have Q[λ,∅](x, y) = Qλ(x) and Q[∅,µ](x, y) = Qµ(y) where ∅ = (0), the
generalized Q-function is regarded as a generalization of the Schur Q-function. This definition
(1.2) is motivated from a similar relation between the Schur S-function and the universal
character (see [18], Lemma 4.7).

The generalized Q-function has a Pfaffian structure as follows (see Theorem 2.8).

THEOREM 1.2. Let λ = (λ1, λ2, . . . , λ2r ) and µ = (µ1, µ2, . . . , µ2s) be strict parti-

tions. Let Mλ be a skew-symmetric matrix given in (1.1) and M̄µ = (m̄i,j )1≤i,j≤2s a skew-
symmetric matrix with entries m̄i,j = qµ2s−j+1,µ2s−i+1(x) if i �= j and m̄i,j = 0 if i = j .

We furthermore define the matrix Nλ,µ = (rµ2s−i+1,λj (x, y))1≤i≤2s,1≤j≤2r , where rm,n(x, y)

(m, n ∈ Z) are defined by

rm,n(x, y) = qm(y)qn(x)+ 2
∑
k≥1

(−1)kqm−k(y)qn−k(x) .

Then the generalized Q-function Q[λ,µ](x, y) can be expressed as a Pfaffian of the form

Q[λ,µ](x, y) = Pf

[
M̄µ Nλ,µ

−NT
λ,µ Mλ

]
(1.3)

where NT
λ,µ denotes the transpose of Nλ,µ.

We discuss a relationship between the generalized Q-functions and the following linear
differential operators:

X(z) = X(z; x, y, ∂x, ∂y) = eξ(x−2̃∂y ,z)e−2ξ(̃∂x,z−1)

X̄(z) = X̄(z; x, y, ∂x , ∂y) = eξ(y−2̃∂x ,z)e−2ξ(̃∂y ,z−1)
(1.4)

where ξ(x, z) =∑n≥1 x2n−1z
2n−1 and z is a non-zero complex number. In physics, operators

of these types are called vertex operators.
We express the vertex operators as

X(z) =
∑
n∈Z

Xnz
n X̄(z) =

∑
n∈Z

X̄nz
n .

The coefficients Xn = Xn(x, y, ∂x , ∂y), X̄n = X̄n(x, y, ∂x , ∂y) (n ∈ Z) are differential oper-
ators on the polynomial algebra C[x, y], which have the following property (see Proposition
3.1).
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PROPOSITION 1.3. Let λ = (λ1, . . . , λ2r ) and µ = (µ1, . . . , µ2s) be strict partitions.
Then we have the formula

Q[λ,µ](x, y) = Xλ1 · · ·Xλ2r
X̄µ1 · · · X̄µ2s

· 1 . (1.5)

We now introduce the BUC hierarchy. Consider the following quadratic relations for an
unknown function τ = τ (x, y):∑

n∈Z

(−1)nXnτ ⊗X−nτ =
∑
n∈Z

(−1)nX̄nτ ⊗ X̄−nτ = τ ⊗ τ . (1.6)

We call this equation bilinear identities. The bilinear identities are equivalent to a system of
differential equations for τ . In fact, by virtue of a calculus on “Hirota differentials”, we can
rewrite (1.6) as follows (see Proposition 3.4)∑

n,m≥0

qn(2a)qn+m(−2D̃x) qm(−2D̃y)e〈a,Dx 〉e〈b,Dy 〉τ · τ = e〈a,Dx 〉e〈b,Dy 〉τ · τ
∑

n,m≥0

qn(2b)qm(−2D̃x) qn+m(−2D̃y) e〈a,Dx 〉e〈b,Dy 〉τ · τ = e〈a,Dx 〉e〈b,Dy 〉τ · τ
(1.7)

where a = (a1, a3, a5, . . . ), b = (b1, b3, b5, . . . ) are newly introduced variables, and
we have used notation 〈a,Dx〉 = ∑n≥1 a2n−1Dx2n−1 for Hirota differentials D̃x =
(Dx1, Dx3/3, Dx5/5, . . . ). This equation produces an infinite number of Hirota bilinear equa-
tions, when we regard (1.7) as multiple Taylor series with variables (a, b).

DEFINITION 1.4. A system of the Hirota bilinear equations (1.7) is called the UC
hierarchy of B-type (or the BUC hierarchy for short).

Note that the BUC hierarchy reduces to the (bilinear) BKP hierarchy when τ is indepen-
dent of y.

We have a class of polynomial solutions of the BUC hierarchy (see Theorem 3.7).

THEOREM 1.5. The generalized Q-functions are solutions of the BUC hierarchy.

We can also obtain soliton-type solutions, which can be expressed by Pfaffians (see The-
orem 3.9 and Proposition 3.11).

We next investigate an algebraic structure of the BUC hierarchy. We use the language of
neutral fermions. Let A be an associative C-algebra with generators φm, φ̄m (m ∈ Z) (neutral
fermions) satisfying fundamental relations

[φm, φn]+ = [φ̄m, φ̄n]+ = (−1)mδm+n,0 [φm, φ̄n] = 0

(the former is “anti-commutative” and the latter is “commutative”). The Fock representation
of A is an irreducible representation on the vector space F = A|0〉 = {a|0〉 | a ∈ A}, where
|0〉 satisfies the relations φn|0〉 = φ̄n|0〉 = 0 for n < 0. The representation space F is called
the fermionic Fock space.

The Fock representation has an explicit realization in the polynomial algebra with infinite

variables x, y, q , q̄. Let T be an ideal of C[x, y, q, q̄ ] generated by q2 − 1/2 and q̄ 2 − 1/2.
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We define the bosonic Fock space by B = C[x, y, q, q̄ ]/T . Then we have the following
theorem (see Theorem 4.8).

THEOREM 1.6. There exists a vector space isomorphism σ : F ∼= B.

The map σ is called the boson-fermion correspondence, which gives a new version of
a similar correspondence due to DJKM [2, 3, 7] for single component neutral fermions. An
explicit description of the map σ can be given in an analogous way to the case of the UC
hierarchy [18] (see Section 4.2). Through the boson-fermion correspondence, we can realize
the neutral fermion on B by means of the vertex operators (see Theorem 4.11).

We now discuss a relationship between the BUC hierarchy and an infinite dimensional
Lie algebra. Consider any element of the form

X =
∑
i,j∈Z

(aij : φiφ−j : +āij : φ̄i φ̄−j :)+ c (c ∈ C)

where : : denotes a normal product of neutral fermions, and aij , āij are assumed to be subject
to the condition aij = āij = 0 if |i − j | � 0. The set of such elements forms an infinite
dimensional Lie algebra, denoted by go2∞, which is realized as an infinite rank matrix Lie
algebra (see Section 5.1 and 5.2). We define the (formal) Lie group G corresponding to go2∞:

G = {eX1 · · · eXk |Xi ∈ go2∞ : locally nilpotent}
and consider G|0〉 = {g|0〉 | g ∈ G}. By the boson-fermion correspondence, G|0〉 is mapped
to the subspace of C[x, y], which turns out to give a description of polynomial solutions of
the BUC hierarchy (see Theorem 5.4).

THEOREM 1.7. A polynomial function τ ∈ C[x, y] gives a solution of the BUC hier-
archy if and only if there exists a g|0〉 ∈ G|0〉 such that τ = σ(g|0〉).

By the explicit formula of σ , a polynomial solution corresponding to g|0〉 can be given
in terms of a vacuum expectation value

τ = 〈eH(x,y) g〉 · 1
with the Hamiltonian operator H(x, y) (defined in Section 4.2). Solution expressed in this
form is referred to as a τ -function, in soliton theory.

Our discussion will be finished by showing the relationship for solutions between the
BUC hierarchy and the BKP hierarchy (see Theorem 5.8).

THEOREM 1.8. τ (x, y) ∈ C[x, y] is a solution of the BUC hierarchy if and only if
there exist solutions τ1(x), τ2(x) ∈ C[x] of the BKP hierarchy such that

τ (x, y) = τ1(x − 2̃∂y) τ2(y − 2̃∂x) · 1 . (1.8)

1.5. Contents of the paper. In Section 2, we define the generalized Q-functions and
prove their Pfaffian structures. In Section 3, we introduce the BUC hierarchy and construct
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exact solutions of polynomial-type and soliton-type. In Section 4, we establish the boson-
fermion correspondence. In Section 5, we define the Lie algebra go2∞ and give a Lie algebraic
description of the BUC hierarchy. We also discuss a relation to the BKP hierarchy. Section 6
is devoted to concluding remarks.

2. The generalized Q-functions

In this section, we first recall a definition of the Schur Q-function and then introduce
the generalized Q-function. The goal of this section is to prove a Pfaffian formula for the
generalized Q-function (Theorem 2.8).

2.1. Schur Q-functions.

DEFINITION 2.1. Let x = (x1, x3, x5, . . . ) be a set of independent variables. Elemen-
tary Q-functions qn(x) (n ∈ Z) are polynomials in x defined by the generating series:∑

n∈Z

qn(x)zn = eξ(x,z) where ξ(x, z) =
∑
n≥1

x2n−1z
2n−1 . (2.1)

Explicitly, q0(x) = 1, qn(x) = 0 (n < 0), and

qn(x) =
∑

k1+3k3+5k5+···=n

x
k1
1 x

k3
3 x

k5
5 · · ·

k1!k3!k5! · · · for n ≥ 1 .

The n-th elementary Q-function qn(x) is a homogeneous polynomial of degree n when
we put deg xn = n (n ≥ 1). Since

1 = eξ(x,z)e−ξ(x,z) =
∑

m,n∈Z

qm(x)qn(−x)zm+n

we obtain the following equality:∑
m+n=k

(−1)nqm(x)qn(x) = δk,0 (2.2)

where we have used qn(−x) = (−1)nqn(x) by homogeneity. For each m,n ∈ Z, we define

qm,n(x) = qm(x)qn(x)+ 2
∑
k≥1

(−1)kqm+k(x)qn−k(x) (2.3)

which include qn(x) as qn,0(x) = qn(x). It is proved by using (2.2) that for all m,n ∈ Z

qm,n(x)+ qn,m(x) = 2(−1)mδm+n,0 . (2.4)

A sequence λ = (λ1, λ2, . . . , λr ) of non-negative integers is called a strict (or distinct)
partition if λ1 > λ2 > · · · > λr ≥ 0. The length of λ denoted by l(λ) is a number of non-zero
λi in λ, and the sum |λ| = λ1 + λ2 + · · · + λl(λ) is called the weight of λ. We may write
any strict partition as (λ1, λ2, . . . , λ2r ) by adding λ2r = 0 (if necessary). For example, (1, 0),
(2, 0), (3, 2, 1, 0) and so on.
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DEFINITION 2.2 ([6]). For any strict partition λ, we define the Schur Q-function
Qλ(x) by the following inductive formulae.

1. If λ = (λ1, λ2, . . . , λ2k+1) be a strict partition with odd length, i.e., l(λ) = 2k + 1,
then

Q(λ1,λ2,...,λ2k+1)(x) =
2k+1∑
i=1

(−1)i+1qλi (x)Q(λ1,...,̂λi ,...,λ2k+1)
(x) . (2.5a)

2. If λ = (λ1, λ2, . . . , λ2k) be a strict partition with even length, i.e., l(λ) = 2k, then

Q(λ1,λ2,...,λ2k)(x) =
2k∑
i=2

(−1)i+1qλ1,λi (x)Q(λ2,...,̂λi ,...,λ2k)
(x). (2.5b)

In the above, the hat̂ denotes the absence of the corresponding letter and we put Q∅(x)=1,
Q(λ1,λ2)(x)=qλ1,λ2(x) for λ1 > λ2 ≥ 0.

EXAMPLE 2.3. The following is a list of Qλ(x) with degree |λ| ≤ 5:

λ Qλ(x) λ Qλ(x)

degree 0 ∅ 1 degree 4 (4) 1
24x4

1 + x1x3

degree 1 (1) x1 (3, 1) 1
12x4

1 − x1x3

degree 2 (2) 1
2x2

1 degree 5 (5) 1
120x5

1 + 1
2x2

1x3 + x5

degree 3 (3) 1
6x3

1 + x3 (4, 1) 1
40x5

1 − 2x5

(2, 1) 1
6x3

1 − 2x3 (3, 2) 1
60x5

1 − 1
2x2

1x3 + 2x5

Another useful definition of Qλ(x) is given in terms of Pfaffian. For each strict partition
λ = (λ1, λ2, . . . , λ2r ), define the matrix

Mλ=(mi,j )1≤i,j≤2r

by putting each (i, j)-th entry as mi,j = qλi,λj (x) for i �= j and mi,j = 0 for i = j . Notice
that Mλ is a skew-symmetric matrix by the relation (2.4). The inductive definition of Qλ(x)

given in (2.5) can be rewritten in terms of Pfaffian [6, 14]:

Qλ(x) = Pf [Mλ] . (2.6)

Here recall that Pfaffian for a skew-symmetric matrix A = (aij )1≤i,j≤2r is defined by

Pf[A] =
∑ ′ sgn

(
1 2 · · · 2r

i1 i2 · · · i2r

)
ai1i2ai3i4 · · · ai2r−1i2r

where
∑ ′ means the summation running through i1 < i3 < · · · < i2r−1 and i1 < i2, i3 <

i4, . . . , i2r−1 < i2r . The equivalence between (2.6) and (2.5) follows from the expansion rule
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for Pfaffian (cf. [5]):

Pf [A] =
2r∑

i=1

(−1)i+j−1aij Pf[A∗ij ] (1 ≤ j ≤ 2r) (2.7)

where A∗ij denotes the submatrix of A obtained by deleting the i-th, j -th rows and i-th, j -th

columns.

2.2. Definition of generalized Q-functions

DEFINITION 2.4. Let (x, y) = (x1, x3, x5, . . . , y1, y3, y5, . . . ) be a set of independent
variables. Let λ and µ be arbitrary strict partitions. We define the generalized Q-function
Q[λ,µ](x, y) by the following formula:

Q[λ,µ](x, y) = Qλ(x − 2̃∂y)Qµ(y − 2̃∂x) · 1 (2.8)

where ∂̃x stands for (∂x1, ∂x3/3, ∂x5/5, . . . ) (∂xn = ∂
∂xn

).

Notice that (2.8) resembles a similar relation between the Schur S-function and the uni-
versal character (see [18], Lemma 4.7).

EXAMPLE 2.5. If either λ or µ is chosen to be ∅ = (0), then Q[λ,µ](x, y) reduces to
the Schur Q-function:

Q[λ,∅](x, y) = Qλ(x) Q[∅,µ](x, y) = Qµ(y) .

If we count the degree of each variables as deg xn = n and deg yn = −n, then
Q[λ,µ](x, y) is a homogeneous polynomial of degree |λ| − |µ|.

EXAMPLE 2.6. Let [λ,µ] = [(2, 1), (1, 0)], then

Q[(2,1),(1,0)](x, y) =
(

1

6
x3

1 − 2x3

)∣∣∣∣
x→x−2̃∂y

(
y1 − 2∂x1

) · 1 = (1

6
x3

1 − 2x3

)
y1 − x2

1

which has homogeneous degree |λ| − |µ| = 2. Furthermore by using Q[λ,µ](x, y) =
Q[µ,λ](y, x) (see Remark 2.7 below), we have

Q[(1,0),(2,1)](x, y) = Q[(2,1),(1,0)](y, x) =
(

1

6
y3

1 − 2y3

)
x1 − y2

1

which has homogeneous degree |λ| − |µ| = −2.

REMARK 2.7. Eq.(2.8) can be equivalently rewritten as

Q[λ,µ](x, y) = exp

(
−
∑
n

2

n
∂xn∂yn

)
Qλ(x)Qµ(y) exp

(∑
n

2

n
∂xn∂yn

)
· 1

= exp

(
−
∑
n

2

n
∂xn∂yn

)
[Qλ(x)Qµ(y)] .
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so that we have in particular

Q[λ,µ](x, y) = Q[µ,λ](y, x) .

2.3. Pfaffian representation. The generalized Q-function can be expressible in terms
of Pfaffian described as follows. Let rm,n(x, y) (m, n ∈ Z) be polynomials in x and y defined
by

rm,n(x, y) = qm(y)qn(x)+ 2
∑
k≥1

(−1)kqm−k(y)qn−k(x) . (2.9)

For strict partitions λ = (λ1, λ2, . . . , λ2r ) and µ = (µ1, µ2, . . . , µ2s), define the matrix

Nλ,µ = (rµ2s−i+1,λj (x, y))1≤i≤2s,1≤j≤2r .

We also define the skew-symmetric matrix

M̄µ =
(
m̄i,j

)
1≤i,j≤2s

by putting each (i, j)-th entry as m̄i,j = qµ2s−j+1,µ2s−i+1(y) for i �= j and m̄i,j = 0 for i = j .
We will prove the following theorem.

THEOREM 2.8. The generalized Q-function Q[λ,µ](x, y) for any pair of strict parti-
tions [λ,µ] can be expressed as a single Pfaffian of the form:

Q[λ,µ](x, y) = Pf

[
M̄µ Nλ,µ

−NT
λ,µ Mλ

]
(2.10)

where NT
λ,µ denotes the transposed matrix of Nλ,µ.

EXAMPLE 2.9. If [λ,µ] = [(2, 1), (1, 0)], then

Mλ =
[

0 q2,1

q1,2 0

]
M̄µ =

[
0 q̄1,0

q̄0,1 0

]
Nλ,µ =

[
r0,2 r0,1

r1,2 r1,1

]
and hence

Q[(2,1),(1,0)](x, y) = Pf


0 q̄1,0 r0,2 r0,1

q̄0,1 0 r1,2 r1,1

−r0,2 −r1,2 0 q2,1

−r0,1 −r1,1 q1,2 0

 = q̄1,0q2,1 − r0,2r1,1 + r0,1r1,2

where we have denoted qm,n = qm,n(x), q̄m,n = qm,n(y) and rm,n = rm,n(x, y) for simplicity.
Substituting

q̄1,0 = y1 q2,1 = x3
1/6− 2x3

r0,1 = x1 r0,2 = x2
1/2 r1,1 = x1y1 − 2 r1,2 = x2

1y1/2− 2x1

yields the same result given in Example 2.6.



358 YUJI OGAWA

EXAMPLE 2.10. If [λ,µ] = [(m, 0), (n, 0)], then

Q[(m,0),(n,0)](x, y) = Pf


0 q̄n,0 r0,m r0,0

q̄0,n 0 rn,m rn,0

−r0,m −rn,m 0 qm,0

−r0,0 −rn,0 q0,m 0

 = rn,m .

Here notice that r0,m = qm(x) and rn,0 = qn(y).

The rest of this section is devoted to the proof of Theorem 2.8.

2.4. Generating function. In order to prove Theorem 2.8, we here give a supplemen-
tary discussion on the generating function for generalized Q-functions.

First we consider a generating function E(x; z1, z2) = ∑m,.n∈Z qm,n(x)zm
1 zn

2 for the
polynomials qm,n(x) defined in (2.3). It is easy to check that this function can be written
equivalently as

E(x; z1, z2) = 1− z2/z1

1+ z2/z1
eξ(x,z1)eξ(x,z2) (2.11)

where the rational function on the right hand side should be understood as the Laurent series
with |z1| > |z2|, i.e.,

1− z2/z1

1+ z2/z1
= 1+ 2

∑
k≥1

(−z2/z1)
k .

Now by introducing more complex variables z = (z1, z2, . . . , z2r ), we define the function

G1(x; z) =
∏

1≤i<j≤2r

E(x; zi, zj ) (2.12)

or equivalently

G1(x; z)=
∏

1≤i<j≤2r

1− zj /zi

1+ zj /zi

2r∏
i=1

eξ(x,zi ) (2.13)

where as remarked above, the right hand side should be considered as the Laurent series with
|z1| > |z2| > · · · > |z2r |. Then we have

LEMMA 2.11 ([14]). The coefficient of zλ = z
λ1
1 z

λ2
2 · · · zλ2r

2r in (2.13) is equal to
Qλ(x).

PROOF. In general, we have the factorization formula∏
1≤i<j≤2r

zi − zj

zi + zj

= Pf

[
zi − zj

zi + zj

]
1≤i,j≤2r

(2.14)
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(cf. [14]). Using this, we can rewrite (2.13) as

G1(x; z) = Pf

[
1− zj /zi

1+ zj /zi

eξ(x,zi )eξ(x,zj )

]
1≤i,j≤2r

= Pf
[
E(x; zi, zj )

]
1≤i,j≤2r

so that, by definition of Pfaffians, G1(x; z) is a sum of terms of the form

±E(x; zi1, zi2)E(x; zi3, zi4) · · ·E(x; zi2r−1 , zi2r
)

where i1 < i3 < · · · < i2r−1 and i1 < i2, . . . , i2r−1 < i2r . The coefficient of zλ =
z
λ1
1 z

λ2
2 · · · zλ2r

2r in the term just written yields

±qλi1 ,λi2
(x)qλi3 ,λi4

(x) · · · qλi2r−1 ,λi2r
(x) .

Hence the coefficient of zλ in G1(x; z) equals∑ ′ ± qλi1 ,λi2
(x)qλi3 ,λi4

(x) · · · qλi2r−1 ,λi2r
(x) = Pf [Mλ] = Qλ(x)

as required. �

Thanks to this lemma, we can introduce a generating function for the general-
ized Q-functions. Introduce the sets of complex variables z = (z1, z2, . . . , z2r ), w =
(w1, w2, . . . , w2s), and define

G2(x, y; z,w) = G1(x − 2̃∂y; z)G1(y − 2̃∂x;w) · 1 . (2.15)

By Lemma A.1 in the appendix, this function has an expression

G2(x, y; z,w) =
∏

1≤i<j≤2r

1− zj /zi

1+ zj /zi

∏
1≤i<j≤2s

1−wj/wi

1+wj/wi

∏
1≤i≤2r
1≤j≤2s

1− ziwj

1+ ziwj

×
2r∏
i=1

eξ(x,zi )
2s∏

i=1

eξ(y,wi ) . (2.16)

where the right hand side is considered as the Laurent series with |w−1
2s | > · · · > |w−1

1 | >
|z1| > · · · > |z2r |.

Comparing Definition 2.4, Lemma 2.11 and (2.15), we obtain

LEMMA 2.12. The coefficient of zλwµ = z
λ1
1 · · · zλ2r

2r w
µ1
1 · · ·wµ2s

2s in (2.16) is equal to
Q[λ,µ](x, y).

2.5. Verification of Theorem 2.8. First of all, we express the right hand side of (2.16)
as a certain Pfaffian. In what follows, we denote the variables as

z
def= (z1, z2, . . . , z2r ) w

def= (z−1
−1, z

−1
−2, . . . , z

−1
−2s) .



360 YUJI OGAWA

Then

G2(x, y; z,w) =
∏

−2s≤i<j≤2r
i,j �=0

1− zj /zi

1+ zj /zi

2s∏
i=1

eξ(y,z−1
i )

2r∏
j=1

eξ(x,zj ) .

By the same argument as in the proof of Lemma 2.11, the right hand side can be written as a
Pfaffian of the form

G2(x, y; z,w) = Pf

[
1− zj /zi

1+ zj /zi

eξi eξj

]
−2s≤i<j≤2r

i,j �=0

where the exponential factor ξi denotes ξ(y, z−1
i ) for negative i and ξ(x, zi ) for positive i.

We put

Ci,j = 1− zj /zi

1+ zj /zi

eξi eξj (−2s ≤ i, j ≤ 2r, i, j �= 0) .

Then by definition of Pfaffians, G2(x, y; z,w) can be expressed as a sum

G2(x, y; z,w) =
∑ ′ ± Ci−2s ,i−2s+1Ci−2s+2,i−2s+3 · · ·Ci2r−1,i2r

. (2.17)

We now prepare the following lemma.

LEMMA 2.13. Let C
(m,n)
i,j be the coefficient of zm

i zn
j in Ci,j , i.e., Ci,j =∑

m,n∈Z C
(m,n)
i,j zm

i zn
j . Then

C
(m,n)
i,j =



qm,n(x) 0 < i < j

−qn,m(x) 0 < j < i

q−n,−m(y) i < j < 0

−q−m,−n(y) j < i < 0

r−m,n(x, y) i < 0 < j

−r−n,m(x, y) j < 0 < i .

(2.18)

Note that each Ci,j has been considered as the Laurent series with |z−2s | > · · · > |z−1| >
|z1| > · · · > |z2r |.

PROOF. This is a straightforward calculation. �

Let [λ,µ] be a pair of strict partitions, which we denote by

λ = (λ1, λ2, . . . , λ2r ) µ = (−λ−1,−λ−2, . . . ,−λ−2s )

i.e., λ1 > λ2 > · · · > λ2r ≥ 0 and λ−1 < λ−2 < · · · < λ−2s ≤ 0. We already know by

Lemma 2.12 that the coefficient of z
λ1
1 · · · zλ2r

2r z
λ−1
−1 · · · zλ−2s

−2s in the right hand side of (2.17),
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i.e., ∑ ′ ± C
(λi−2s

,λi−2s+1 )

i−2s ,i−2s+1
C

(λi−2s+2 ,λi−2s+3 )

i−2s+2,i−2s+3
· · ·C(λi2r−1 ,λi2r

)

i2r−1,i2r

is equal to Q[λ,µ](x, y). This sum can be rewritten into a Pfaffian

Pf
[
C

(λi,λj )

i,j

]
−2s≤i,j≤2r

i,j �=0

where we note that this Pfaffian does make sense by Lemma 2.13. By re-denoting µ as
(µ1, µ2, . . . , µ2s) and substituting the expressions (2.18), we see that the last Pfaffian coin-
cides with the desirous formula (2.10). The proof is completed.

3. The UC hierarchy of B-type (BUC hierarchy)

In this section, we introduce a series of differential equations called the BUC hierarchy.
We construct two classes of exact solutions: polynomial solutions and soliton-type solutions.

3.1. Vertex operators. We start with linear differential operators of infinite order,

called vertex operators. Let X(z) = X(z; x, y, ∂x , ∂y) and X̄(z) = X̄(z; x, y, ∂x, ∂y) be the
following linear differential operators:

X(z) = eξ(x−2̃∂y ,z)e−2ξ(̃∂x,z−1) X̄(z) = eξ(y−2̃∂x,z)e−2ξ(̃∂y,z−1) (3.1)

with a non-zero complex number z. With regards the notation used here, see the previous
section. In physics, the operators of these types are called vertex operators

We define differential operators Xn = Xn(x, y, ∂x, ∂y), X̄n = X̄n(z; x, y, ∂x , ∂y) (n ∈
Z) by expansions

X(z) =
∑
n∈Z

Xnz
n X̄(z) =

∑
n∈Z

X̄nz
n

or equivalently in terms of the elementary Q-functions (see (2.1))

Xn =
∑
i≥0

qn+i(x − 2̃∂y)qi(−2̃∂x) X̄n =
∑
i≥0

qn+i (y − 2̃∂x)qi(−2̃∂y) .

These operators have the following important property.

PROPOSITION 3.1. Let λ = (λ1, . . . , λ2r ), µ = (µ1, . . . , µ2s ) be arbitrary strict
partitions. Then we have a formula

Q[λ,µ](x, y) = Xλ1 · · ·Xλ2r
X̄µ1 · · · X̄µ2s

· 1 . (3.2)

PROOF. Applying Lemma A.1 in the appendix, one easily obtain the equality

G2(x, y; z,w) = X(z1) · · ·X(z2r )X̄(w1) · · · X̄(w2s ) · 1 .

Equating the coefficient of zλwµ = z
λ1
1 · · · zλ2r

2r w
µ1
1 · · ·wµ2s

2s in both sides, we obtain the
desirous formula by Lemma 2.12. �
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LEMMA 3.2. The differential operators Xn, X̄n (n ∈ Z) satisfy the relations

[Xm,Xn]+ = [X̄m, X̄n]+ = 2(−1)mδm+n,0 [Xm, X̄n] = 0 (3.3)

where [A,B]+ def= AB + BA and [A,B] def= AB − BA. In particular, X2
m = X̄2

m = δm,0.

PROOF. The relations are written equivalently as

[X(z),X(w)]+ = [X̄(z), X̄(w)]+ = 2δ(−w/z) [X(z), X̄(w)] = 0

where δ(z) = ∑n∈Z zn = 1/(1 − z) + z−1/(1 − z−1) denotes the formal δ-function. These
relations can be checked by using Lemma A.1 and δ(w/z)f (z,w) = δ(w/z)f (z, z) that
holds for any Laurent series f (z,w) of z and w. �

3.2. Bilinear identities. Consider the bilinear relations for an unknown function τ =
τ (x, y): ∑

n∈Z

(−1)nXnτ ⊗X−nτ =
∑
n∈Z

(−1)nX̄nτ ⊗ X̄−nτ = τ ⊗ τ (3.4)

or equivalently in term of the vertex operators:∮
X(z)τ ⊗X(−z)τ

dz

2πiz
=
∮

X̄(z)τ ⊗ X̄(−z)τ
dz

2πiz
= τ ⊗ τ (3.5)

where the contour integral means an algebraic operation extracting the coefficient of z0 for
the (formal) Laurent series, i.e., ∮

zn dz

2πiz
= δn,0 .

Hereafter we call (3.4) or (3.5) bilinear identities.
Note that

X0 · 1 = X̄0 · 1 = 1 Xn · 1 = X̄n · 1 = 0 n < 0

which follows from X(z) · 1 = eξ(x,z) and X̄(z) · 1 = eξ(y,z). Therefore any constant satisfies
the bilinear identities.

The bilinear identities can be converted to an infinite number of Hirota bilinear equations
for τ . Firstly the bilinear identities are equivalent to the following equations:∮

eξ(x′−x,z)τ (x′ − 2[z−1], y′ − 2[z])τ (x + 2[z−1], y + 2[z]) dz

2πiz
= τ (x ′, y ′)τ (x, y)

(3.6a)∮
eξ(y′−y,z)τ (x′ − 2[z], y′ − 2[z−1])τ (x + 2[z], y + 2[z−1]) dz

2πiz
= τ (x′, y′)τ (x, y)

(3.6b)

where x′, y′, x, y are arbitrary and [z] stands for
(
z, z3/3, z5/5, . . .

)
. To rewrite these further,

we here recall the definition of Hirota differentials [5].
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DEFINITION 3.3. Let P(D) be arbitrary polynomial (possibly formal power series) in
D = (Dx1,Dx3,Dx5 , . . . ,Dy1 ,Dy3,Dy5 , . . . ) (symbols of Hirota differentials). The Hirota
bilinear equation P(D)f · g = 0 for functions f = f (x, y) and g = g(x, y) is defined by
setting

P(D)f · g = P(∂)f (x + a, y + b)g(x − a, y − b)
∣∣
a=b=0

where ∂ = (∂a1, ∂a3, ∂a5, . . . , ∂b1, ∂b3, ∂b5, . . . ). For instance,

Dx1f · g = ∂x1f · g − f ∂x1g D2
x1

f · g = ∂2
x1

f · g − ∂x1f · ∂x1g + f ∂2
x1

g .

We have the following proposition.

PROPOSITION 3.4. The bilinear identities are represented as the following system of
Hirota bilinear equations:∑

n,m≥0

qn(2a)qn+m(−2D̃x) qm(−2D̃y)e〈a,Dx 〉e〈b,Dy 〉τ · τ = e〈a,Dx 〉e〈b,Dy 〉τ · τ (3.7a)

∑
n,m≥0

qn(2b)qm(−2D̃x) qn+m(−2D̃y) e〈a,Dx 〉e〈b,Dy 〉τ · τ = e〈a,Dx 〉e〈b,Dy 〉τ · τ (3.7b)

where a = (a1, a3, a5, . . . ), b = (b1, b3, b5, . . . ) are newly introduced variables, and

D̃x = (Dx1,Dx3/3,Dx5/5, . . . ) 〈a,Dx〉 =
∑
n≥1

a2n−1Dx2n−1 .

PROOF. If we substitute x ′ �→ x + a, x �→ x − a, y ′ �→ y + b, y �→ y − b into (3.6a),
then∮

eξ(2a,z) = τ (x + a − 2[z−1], y + b − 2[z])τ (x − a + 2[z−1], y − b + 2[z]) dz

2πiz

= τ (x + a, y + b) τ (x − a, y − b) .

By virtue of a calculus on Hirota differentials (cf. [9], Ch.14), this equation can be rewritten
into ∮

eξ(2a,z)e−2ξ(D̃x,z−1)e−2ξ(D̃y ,z)e〈a,Dx 〉e〈b,Dy 〉τ · τ dz

2πiz
= e〈a,Dx 〉e〈b,Dy 〉τ · τ .

Let us express the first three exponentials on the left hand side as(∑
n∈Z

qn(2a)zn

)(∑
n∈Z

qn

(− 2D̃x

)
z−n

)(∑
n∈Z

qn

(− 2D̃y

)
zn

)

by using (2.1). Then by picking out the coefficient of z0 for the last bilinear equation, we
obtain the first equation (3.7a). We can derive the second equation (3.7b), starting from (3.6b)
by the same calculation. �
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Eq. (3.7) includes two copies of the bilinear BKP hierarchy in each sectors x, y. Indeed
if τ is independent of y, then (3.7a) reduces to the bilinear form of the BKP hierarchy [2]∑

n≥1

qn(2a)qn(−2D̃x) e〈a,Dx 〉τ · τ = 0 (3.8a)

while (3.7b) turns to a trivial identity e〈a,Dx 〉τ · τ = e〈a,Dx 〉τ · τ . Similarly, if τ is independent
of x, then (3.7) reduces to the bilinear form of the BKP hierarchy with y-flows:∑

n≥1

qn(2b)qn(−2D̃y) e〈b,Dy 〉τ · τ = 0 . (3.8b)

By expanding (3.7) into a multiple Taylor series with respect to the variables (a, b) =
(a1, a3, a5, . . . , b1, b3, b5, . . . ), we can obtain several Hirota bilinear equations from each

coefficients of a
r1
1 a

r3
3 a

r5
5 · · · bs1

1 b
s3
3 b

s5
5 · · · . For example, from the coefficient of a0b0 =

a0
1a0

3a0
5 · · · b0

1b
0
3b

0
5 · · · in (3.7a), one obtains∑

m≥1

qm(−2D̃x)qm(−2D̃y)τ · τ = 0

which is a Hirota bilinear equation of infinite order. All the equations obtained from (3.7) in
this way are in fact differential equations of infinite order, as in the case of the UC hierarchy
[18].

DEFINITION 3.5. A whole system of the Hirota bilinear equations included in (3.7) is
called the UC hierarchy of B-type or the BUC hierarchy.

3.3. The BUC hierarchy and generalized Q-functions. We present a class of poly-
nomial solutions of the BUC hierarchy. First we prove the following transformation property
for the BUC hierarchy.

LEMMA 3.6. If τ ∈ C[x, y] is a solution of the BUC hierarchy, then so are Xkτ and

X̄kτ for any k ∈ Z.

PROOF. We express the bilinear identities (3.4) compactly as

ΩB(τ ⊗ τ ) = Ω̄B(τ ⊗ τ ) = τ ⊗ τ .

by defining ΩB
def= ∑n∈Z(−1)nXn ⊗ X−n and Ω̄B

def= ∑n∈Z(−1)nX̄n ⊗ X̄−n. The proof of

the lemma is done by showing that ΩB and Ω̄B commute with Xk ⊗Xk and X̄k ⊗ X̄k for all
k ∈ Z. By virtue of Lemma 3.2, we obtain

ΩB ◦ (Xk ⊗Xk) =
∑
n∈Z

(−1)n(−XkXn + 2(−1)nδk+n,0)⊗ (−XkX−n + 2(−1)nδk−n,0)

= (Xk ⊗Xk) ◦ΩB − 2(X2
k ⊗ 1+ 1⊗X2

k )+ 4
∑
n∈Z

(−1)nδk+n,0 ⊗ δk−n,0
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= (Xk ⊗Xk) ◦ΩB

where the last equality is due to X2
k = δk,0. Similarly we have [Ω̄B, X̄k ⊗ X̄k] = 0. Also

we have [ΩB, X̄k ⊗ X̄k] = [Ω̄B,Xk ⊗ Xk] = 0 by the commutative relation in Lemma 3.2.
Hence the proof is completed. �

Since τ ≡ 1 is a solution of the BUC hierarchy, Lemma 3.6 together with Proposition
3.1 leads to the following theorem.

THEOREM 3.7. The generalized Q-function for any pair of strict partitions gives a
solution of the BUC hierarchy.

REMARK 3.8. Recall that the generalized Q-function not depending on y reduces to
the Schur Q-function. Thus we can recover from Theorem 3.7 the result by Y. You [19] that
the Schur Q-functions are solutions of the BKP hierarchy (3.8a).

3.4. (M,N)-soliton solutions. The BUC hierarchy has another important class of
exact solutions called (M,N)-soliton solutions. Note that Theorem 3.9 and Proposition 3.11
given below will be proved in the appendix.

Define linear differential operators Γ ±(z,w) = Γ ±(z,w; x, y, ∂x , ∂y) by

Γ +(z,w) = eξ(x−2̃∂y ,z)eξ(x−2̃∂y ,w)e−2ξ(̃∂x,z−1)e−2ξ(̃∂x,w−1)

Γ −(z,w) = eξ(y−2̃∂x ,z)eξ(y−2̃∂x ,w)e−2ξ(̃∂y,z−1)e−2ξ(̃∂y,w−1) (z,w ∈ C×)

(3.9)

which are also called vertex operators. These vertex operators have a close connection to a
certain infinite dimensional Lie algebra (see Section 5.2). Notice that

X(z)X(w) = 1−w/z

1+w/z
Γ +(z,w) X̄(z)X̄(w) = 1−w/z

1+w/z
Γ −(z,w) (3.10)

where we assume |z| > |w|.
Let M,N be arbitrary non-negative integers. We define the function

τM,N(x, y; a, b, c) =
−1∏

i=−M

eciΓ
−(a−1

i ,b−1
i )

N∏
i=1

eciΓ
+(ai ,bi) · 1 (3.11)

with ai , bi , ci (i ∈ {−M, . . . ,−1, 1, . . . , N}) being complex constants such that ai �= −aj ,
ai �= −bj , bi �= −bj for i < j . Then we have

THEOREM 3.9. The function τM,N(x, y; a, b, c) is a solution of the BUC hierarchy,
which is called the (M,N)-soliton solution.

By using Lemma A.2 in the appendix, we can rewrite this solution as follows.
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COROLLARY 3.10. The (M,N)-soliton solution can be written as

τM,N(x, y; a, b, c) =
∑

K⊂I−∪I+

( ∏
i<j

i,j∈K

Aij

)
exp

(∑
i∈K

ηi

)
(3.12)

where I− = {−M, . . . ,−1}, I+ = {1, . . . , N} denote indexing sets and we have denoted

Ai,j = (ai − aj )(ai − bj )(bi − aj )(bi − bj )

(ai + aj )(ai + bj )(bi + aj )(bi + bj )
i, j ∈ I− ∪ I+;

ηi =
{

ξ(y, a−1
i )+ ξ(y, b−1

i )+ log ci i ∈ I−
ξ(x, ai)+ ξ(x, bi)+ log ci i ∈ I+ .

The (M,N)-soliton solution can be expressible in terms of a Pfaffian described as fol-
lows. For each i, j ∈ I− ∪ I+, we define the 2× 2-matrix Si,j of the form

Si,j =
 ai−aj

ai+aj
eξ̂i (a)+ξ̂j (a) ai−bj

ai+bj
eξ̂i (a)+ξ̂j (b)

bi−aj

bi+aj
eξ̂i (b)+ξ̂j (a) bi−bj

bi+bj
eξ̂i(b)+ξ̂j (b)

 (3.13)

where the exponential factors are defined by

ξ̂i (a) =
{

ξ(y, a−1
i )+ α0

i i ∈ I−
ξ(x, ai)+ α0

i i ∈ I+
ξ̂i (b) =

{
ξ(y, b−1

i )+ β0
i i ∈ I−

ξ(x, bi)+ β0
i i ∈ I+

with α0
i , β0

i (i ∈ I− ∪ I+) being arbitrary complex constants such that

α0
i + β0

i = log
ai + bi

ai − bi

+ log ci for all i ∈ I− ∪ I+ . (3.14)

We define the following 2(M + N)× 2(M +N)-matrix:

S = (Si,j

)
i,j∈I−∪I+

which is a skew-symmetric matrix, because Si,j = −(Sj,i )T. Then we have the following
proposition (see Appendix B for the proof).

PROPOSITION 3.11. The (M,N)-soliton solution can be represented as a Pfaffian

τM,N(x, y; a, b, c) = Pf [J + S] (3.15)

where J denotes the 2(M + N) × 2(M + N)-matrix
∑M+N

i=1 (E2i−1,2i − E2i,2i−1) with Ei,j

being a matrix unit with a 1 on the (i, j)-th entry and zeros elsewhere.

EXAMPLE 3.12. As an example, we have the (1, 1)-soliton solution:

τ1,1(x, y; a, b, c) = 1+ eη−1 + eη1 + (a−1 − a1)(b−1 − b1)(a−1 − b1)(b−1 − a1)

(a−1 + a1)(b−1 + b1)(a−1 + b1)(b−1 + a1)
eη−1+η1 .
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Notice that ηi = ξ̂i (a)+ ξ̂i (b)−α0
i −β0

i + log ci (i ∈ I−∪I+), so that eηi = ai−bi

ai+bi
eξ̂i (a)+ξ̂i (b).

The (1, 1)-soliton solution can thus be written as follows:

1+ a−1 − b−1

a−1 + b−1
eξ̂−1(a)+ξ̂−1(b) + a1 − b1

a1 + b1
eξ̂1(a)+ξ̂1(b)

+ (a−1−a1)(b−1−b1)(a−1−b1)(b−1−a1)(a−1−b−1)(a1−b1)

(a−1+a1)(b−1+b1)(a−1+b1)(b−1+a1)(a−1+b−1)(a1+b1)
eξ̂−1(a)+ξ̂−1(b)+ξ̂1(a)+ξ̂1(b)

which coincides with an expansion of Pf [J + S] with M = N = 1.

4. The boson-fermion correspondence

This section deals with a new kind of the (neutral) boson-fermion correspondence. The
results of this section will be used in next section.

4.1. Neutral fermions and fermionic Fock space

DEFINITION 4.1. Let A be an associative algebra over C generated by φm, φ̄m (m ∈
Z) with anti-commutative and commutative relations

[φm, φn]+ = [φ̄m, φ̄n]+ = (−1)mδm+n,0 [φm, φ̄n] = 0 (4.1)

where [A,B]+ def= AB + BA and [A,B] def= AB − BA. The generators φm, φ̄m (m ∈ Z) are

referred to as neutral fermions. In particular, φ2
0 = φ̄2

0 = 1/2.

Note that the above definition of neutral fermions differs to φm, φ̂m in [7, 19] defined
from “charged free fermions”.

The algebra A has a standard representation in the so-called fermionic Fock space.

DEFINITION 4.2. The fermionic Fock space is a vector space F = A |0〉 = {a|0〉 | a ∈
A} with a vacuum vector |0〉 satisfying the relations

φn|0〉 = φ̄n|0〉 = 0 for n < 0 . (4.2)

A representation of A on F , by left multiplication, is called the Fock representation. Note
that F is an infinite dimensional vector space with a basis

{φm1 · · ·φmr φ̄n1 · · · φ̄ns |0〉 |m1 > · · · > mr ≥ 0, n1 > · · · > ns ≥ 0} .
Similarly we define a representation of A on the vector space F∗ = 〈0|A = {〈0|a | a ∈

A} by right multiplication, where the (dual) vacuum vector 〈0| satisfies the relations

〈0|φn = 〈0|φ̄n = 0 for n > 0 . (4.3)

Two representations of A above are dual to each other with respect to the canonical
pairing between F∗ and F , namely
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DEFINITION 4.3. There exists a unique bilinear form F∗ ×F → C:

(〈0|a, b|0〉) �→ 〈0|a · b|0〉 def= 〈ab〉
such that 〈1〉 = 1, 〈φ0 〉 = 〈 φ̄0 〉 = 〈φ0 φ̄0 〉 = 0. The quantity 〈a〉 (a ∈ A) is said to be the
(vacuum) expectation value of a.

EXAMPLE 4.4. The expectation values for quadratic elements are calculated as

〈φmφn〉 = 〈φ̄mφ̄n〉 =


0 n < 0

δm,0/2 n = 0

(−1)mδm+n,0 n > 0

and 〈φmφ̄n〉 = 0 for all m,n ∈ Z.

EXAMPLE 4.5 (Wick’s theorem). Let wi (1 ≤ i ≤ r) be elements from A expressed
by linear combinations of φm and φ̄m (m ∈ Z). The Wick’s theorem gives a simple way to
compute the expectation value (cf. [8]):

〈w1w2 · · ·wr 〉 =
∑ ′ sgn

(
1 · · · r

i1 · · · ir
)
〈wi1 wi2〉 · · · 〈wir−1 wir 〉 (r: even)

and 〈w1w2 · · ·wr 〉 = 0 for odd r . Here
∑ ′ denotes the summation over all permutations

(i1, . . . , ir ) of (1, . . . , r) satisfying i1 < i3 < · · · < i2r−1 and i1 < i2, i3 < i4, . . . , i2r−1 <

i2r .

We decompose the fermionic Fock space F as a direct sum

F =
⊕

i,j=0,1

Fi,j . (4.4)

Here each element of F belongs to the space Fi,j (i, j = 0, 1), according to whether it is

spanned by monomial vectors of the form φm1 · · ·φmr φ̄n1 · · · φ̄ns |0〉 with r ≡ i, s ≡ j mod 2.

We further decompose each Fi,j into subspaces F (d1,d2)
i,j with fixed degree (d1, d2):

Fi,j =
⊕

d1,d2≥0

F (d1,d2)
i,j (4.5)

by letting for |ν〉 = φm1 · · ·φmr φ̄n1 · · · φ̄ns |0〉,

deg (|ν〉) = (d1, d2) if
∑

mi = d1

∑
ni = d2 .

Note that deg (|ν〉) is always a pair of non-negative integers.
The following lemma will be used later.
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LEMMA 4.6. The dimension of F (d1,d2)
i,j is equal to P̄ (d1)P̄ (d2), where P̄ (n) denotes

the number of the strict partition for the natural number n, i.e.,∏
n≥1

1

1− z2n−1 =
∑

m1,m3,m5,···≥0

zm1+3m3+5m5+··· =
∑
n∈Z

P̄ (n)zn .

4.2. Boson-fermion correspondence. The Fock representation has an explicit real-
ization in the polynomial algebra with infinite variables called the bosonic Fock space.

DEFINITION 4.7. Let C[x, y, q, q̄ ] be a polynomial algebra with variables x, y, q ,q̄,

and T an ideal of C[x, y, q, q̄ ] generated by elements of the form q2 − 1/2, q̄ 2 − 1/2. The
bosonic Fock space is defined by

B = C[x, y, q, q̄ ]/T
which has a decomposition B =⊕i,j=0,1 Bi,j , where Bi,j = C[x, y]qiq̄ j .

The boson-fermion correspondence states that the fermionic Fock space can be identified
with the bosonic Fock space.

THEOREM 4.8. There exists a vector space isomorphism σ : F ∼= B.

The proof of this theorem will be given in Section 4.3.
A concrete form of σ can be constructed in the following way. For each m ∈ 2Z+ 1, we

put

Hm = 1

2

∑
j∈Z

(−1)j+1φjφ−j−m H̄m = 1

2

∑
j∈Z

(−1)j+1φ̄j φ̄−j−m .

It is straightforward to check that

Hm|0〉 = H̄m|0〉 = 0 if m > 0 ; (4.6)

[Hm, φn] = φn−m [H̄m, φ̄n] = φ̄n−m (4.7)

and also that

[Hm,Hn] = [H̄m, H̄n] = m

2
δm+n,0 · 1 . (4.8)

We now introduce the operator called “Hamiltonian" with variables (x, y):

H(x, y) =
∑

l∈Nodd

{(
xl − 2

l

∂

∂yl

)
Hl +

(
yl − 2

l

∂

∂xl

)
H̄l

}
.

Multiplication of H(x, y) on F , as well as eH(x,y), is well-defined, so that we can define a
linear map σ : F → B by

σ(|ν〉) =
∑

i,j=0,1

2i+j qi q̄j 〈φi
0 φ̄

j

0 eH(x,y)|ν〉 · 1 (4.9)
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which yields the isomorphism of Theorem 4.8. An image of σ will be described by means of
the generalized Q-functions (see (4.13)).

The following lemma is easily verified.

LEMMA 4.9. We have the following formulae for m = 1, 3, 5, . . .

σHmσ−1 = ∂

∂xm
σH−mσ−1 = m

2
xm − ∂

∂ym

σH̄mσ−1 = ∂

∂ym

σH̄−mσ−1 = m

2
ym − ∂

∂xm

.

(4.10)

REMARK 4.10. If we put αm= 2
m

(H−m + H̄m), ᾱm= 2
m

(H̄−m + Hm) for m =
1, 3, 5, . . . , then we have the following equality:

σ(αm1 · · ·αmr ᾱn1 · · · ᾱns φ
i
0φ̄

j

0 |0〉) = xm1 · · · xmr yn1 · · · yns q
i q̄ j . (4.11)

4.3. Verification of Theorem 4.8. The proof is completely parallel to that of Theo-
rem 2.1 in [18]. We count the degree of each variables as deg xn = n and deg yn = −n.
Fix non-negative integers M and N . Let CM,N [x, y] be a linear span of the following set of
polynomials belonging to C[x, y]:{

xm1 · · · xmr yn1 · · · yns

∣∣∣∑mi ≤M,
∑

ni ≤ N,
∑

mi −
∑

ni = M −N
}

.

The dimension of CM,N [x, y] can be readily calculated by means of (strict) partition numbers:

dim CM,N [x, y] =
∑

0≤d1≤M, 0≤d2≤N
d1−d2=M−N

P̄ (d1)P̄ (d2) =
∑
k≥0

P̄ (M − k)P̄ (N − k) .

We note that

C[x, y] = lim−→
∑
finite

CM,N [x, y] .

Define the subspace FM,N
i,j of the fermionic Fock space as follows:

FM,N
i,j =

⊕
0≤d1≤M, 0≤d2≤N

d1−d2=M−N

F (d1,d2)
i,j .

Then by Lemma 4.6, we have

dimFM,N
i,j =

∑
k≥0

P̄ (M − k)P̄ (N − k) Fi,j = lim−→
∑
finite

FM,N
i,j .

To prove the theorem, it suffices to verify that the map σ gives a bijection between

FM,N
i,j and BM,N

i,j

def= CM,N [x, y]qiq̄j ⊂ Bi,j . Since the dimension of BM,N
i,j is equal to that
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of FM,N
i,j , we have to check that σ is surjective from FM,N

i,j to BM,N
i,j . Take any basis element

xm1 . . . xmr yn1 . . . yns q
iq̄ j from BM,N

i,j , i.e.,∑
mi ≤M

∑
ni ≤ N

∑
mi −

∑
ni = M − N .

By (4.11), we have σ(αm1 · · ·αmr ᾱn1 · · · ᾱns φ
i
0φ̄

j

0 |0〉) = xm1 . . . xmr yn1 . . . yns q
i q̄ j . We

here notice that Hm (resp. H̄m) is a linear map of degree (−m, 0) (resp. (0,−m)),

i.e., maps F (d1,d2)
i,j into F (d1−m,d2)

i,j (resp. F (d1,d2−m)
i,j ). From this fact, we see that

αm1 · · ·αmr ᾱn1 · · · ᾱns φ
i
0φ̄

j
0 |0〉 belongs to FM,N

i,j . This means that σ is surjective from FM,N
i,j

to BM,N
i,j . The proof is done.

4.4. Realization of the neutral fermions. Having established the boson-fermion cor-
respondence, we now describe the action of A on the bosonic Fock space. For our purpose,
let us introduce the generating sums of neutral fermions

φ(z)=
∑
n∈Z

φnz
n φ̄(z)=

∑
n∈Z

φ̄nz
n.

THEOREM 4.11. Let |ν〉 ∈ F . We have the following correspondence of operators:
σ(φ(z)|ν〉) = qX(z)σ (|ν〉) σ (φ̄(z)|ν〉) = q̄X̄(z)σ (|ν〉). (4.12)

PROOF. We put χ(z) = e2ξ(̃∂y,z)σφ(z)σ−1. With the help of Lemma 4.9, we can show
that

[xn, χ(z)] = 2

n
z−nχ(z)

[
∂

∂xn

, χ(z)

]
= znχ(z) [yn, χ(z)] =

[
∂

∂yn

, χ(z)

]
= 0 .

By virtue of a calculus on the vertex operators (see [9], Lemma 14.5), χ(z) can be uniquely

represented as the form χ(z) = c eξ(x,z)e−2ξ(̃∂x,z−1) for some constant c. To determine c, we

have to notice that eH(x,y)φ(z) = eξ(x−2̃∂y ,z)φ(z)eH(x,y) which follows from (4.7). Since
σ−1(1) = |0〉, eH(x,y)|0〉 = |0〉 and 〈φ0 φ(z)〉 = 1/2, we have

χ(z) · 1 = e2ξ(̃∂y,z)σ (φ(z)|0〉) = 2qe2ξ(̃∂y ,z)〈φ0e
H(x,y)φ(z)〉 · 1

= 2qe2ξ(̃∂y ,z)〈φ0e
ξ(x−2̃∂y ,z)φ(z)eH(x,y)〉 · 1 = 2qeξ(x,z)〈φ0 φ(z)〉 = qeξ(x,z)

which together with χ(z) · 1 = c eξ(x,z) yields c = q . This means σφ(z)σ−1 =
e−2ξ(̃∂y,z)χ(z) = qX(z), as required. We can derive the second equality of (4.12) by the
similar calculation. �

REMARK 4.12. The above theorem implies the following equalities:

X(z)〈0|φi
0 φ̄

j

0 eH(x,y)|ν〉 = 〈0|φi−1
0 φ̄

j

0 eH(x,y)φ(z)|ν〉
X̄(z)〈0|φi

0 φ̄
j

0 eH(x,y)|ν〉 = 〈0|φi
0 φ̄

j−1
0 eH(x,y)φ̄(z)|ν〉
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for i, j ∈ Z and |ν〉 ∈ F .

As an application of this theorem, we can describe the image of σ by means of the
generalized Q-functions. Let |ν〉 = φλ1 · · ·φλr φ̄µ1 · · · φ̄µs |0〉 where λ1 > · · · > λr ≥ 0 and
µ1 > · · · > µs ≥ 0. By virtue of Theorem 4.11, the image of |ν〉 can be written as

σ(|ν〉) = qr q̄sXλ1 · · ·Xλr X̄µ1 · · · X̄µs · 1
here notice that σ(|0〉) = 1. By Proposition 2.4, we have the following corollary.

COROLLARY 4.13. We have for λ1 > · · · > λr ≥ 0 and µ1 > · · · > µs ≥ 0

σ(|ν〉) = qr q̄s Q[(λ1,...,λr ),(µ1,...,µs )](x, y). (4.13)

Notice that {φλ1 · · ·φλ2r
φ̄µ1 · · · φ̄µ2s

|0〉 | λ1 > · · · > λ2r ≥ 0, µ1 > · · · > µ2s ≥ 0} is a
linear basis of F0,0, and F0,0 is isomorphic to B0,0 = C[x, y] by Theorem 4.8. The formula
(4.13) further leads to the following result.

COROLLARY 4.14. A whole set of the generalized Q-functions forms a linear basis of
the polynomial algebra C[x, y].

5. The BUC hierarchy from representation theory

In this section, we define the Lie algebra go2∞ and discuss the relation to the BUC
hierarchy.

5.1. The Lie algebras go∞ and go∞. We first recall an infinite rank matrix Lie al-
gebra go∞ [2, 13]. Consider the set of infinite complex matrices a = (aij ) satisfying the
condition:

aij = 0 for |i − j | � 0 (5.1)

i.e., all non-zero entries of the matrix are within a finite distance from the main diagonal. The

set of infinite matrices satisfying this condition forms a Lie algebra, which we denote by gl∞.

The Lie algebra gl∞ has a one dimensional central extension gl∞=gl∞ ⊕ CcA with the
following bracket relation:

[a ⊕ αcA, b ⊕ βcA]=(ab − ba)⊕ µ(a, b)cA

for a, b ∈ gl∞ and α, β ∈ C. Here µ denotes a 2-cocycle on gl∞ defined by

µ(ei,j , ek,l)=δi,lδj,k(θ(j)− θ(i)) (5.2)

where ei,j denotes an infinite matrix unit with a 1 on (i, j)-th entry and zeros elsewhere, and
θ is defined by θ(i) = 1 for i ≥ 0 and θ(i) = 0 for i < 0.

Define

go∞={a = (aij ) ∈ gl∞ | aij = (−1)i+j+1a−j,−i} (5.3)
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which forms a Lie subalgebra of gl∞. The 2-cocycle µ defined above is also defined on go∞,
so that a central extension go∞=go∞ ⊕ CcB can be defined by setting the bracket relation:

[a ⊕ αcB, b ⊕ βcB]=(ab − ba)⊕ 1

2
µ(a, b)cB

for a, b ∈ go∞ and α, β ∈ C.

LEMMA 5.1 ([13, 19]). We have a representation π0 of go∞ on the fermionic Fock
space F defined by

π0(fi,j ) =: φiφ−j : π0(cB) = 1

where fi,j=(−1)j ei,j − (−1)ie−j,−i = (−1)i+j+1fj,i and : φmφn : =φmφn − 〈φmφn〉
is a normal product. Note that any matrix belonging to go∞ can be expressed as a linear
combination of fi,j (i < j).

5.2. The Lie algebra go2∞. In order to discuss the BUC hierarchy from the Lie al-
gebraic viewpoint, we consider a direct sum of go∞, which forms a Lie algebra with a canon-
ically defined bracket. Let us define the one dimensional central extension go2∞=go∞ ⊕
go∞ ⊕ CcB by introducing the following bracket relation:

[a ⊕ ā ⊕ αcB, b ⊕ b̄ ⊕ βcB]=(ab − ba)⊕ (āb̄ − b̄ā)⊕ 1

2

(
µ(a, b)+ µ(ā, b̄)

)
cB

for a, b, ā, b̄ ∈ go∞ and α, β ∈ C. Then we have the following lemma.

LEMMA 5.2. We can define a representation π of go2∞ on the fermionic Fock space
F by

π(Fi,j ) =: φiφ−j : π(F̄i,j ) =: φ̄i φ̄−j : π(cB) = 1

where Fi,j=fi,j ⊕0, F̄i,j=0⊕fi,j ∈ go∞⊕go∞, and : : denotes the normal product notation
defined as before.

In terms of the generating series f (z,w)=∑i,j∈Z Fi,j z
iw−j and

f̄ (z,w)=∑i,j∈Z F̄i,j z
iw−j , the above lemma reads

π(f (z,w)) =: φ(z)φ(w) : π(f̄ (z,w)) =: φ̄(z)φ̄(w) : .

Notice that the representation π is invariant with respect to the decomposition F = ⊕Fi,j .
In particular, F0,0 is an invariant subspace mapped to B0,0 = C[x, y] via the isomorphism σ .
We note

〈φ(z)φ(w)〉 = 〈φ̄(z)φ̄(w)〉 = 1

2

1−w/z

1+w/z
= 1+ 2

∑
k≥1

(−w/z)k .

Combining this, (3.10) and (4.12), we obtain the following proposition.
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PROPOSITION 5.3. The Lie algebra go2∞ acts on C[x, y] by the following formulae:

σ(: φ(z)φ(w) :)σ−1 = 1

2

1−w/z

1+w/z

(
Γ +(z,w)− 1

)
σ(: φ̄(z)φ̄(w) :)σ−1 = 1

2

1− w/z

1+ w/z

(
Γ −(z,w)− 1

) (5.4)

where Γ ±(z,w) are the vertex operators defined in (3.9) and we assume |z| > |w|.

5.3. Bilinear identities and τ -function. We now give a Lie algebraic description of
the BUC hierarchy. We regard the Lie algebra go2∞ as

go2∞ ∼=
{
X=
∑
i,j∈Z

(
aij : φiφ−j : +āij : φ̄i φ̄−j :

)+ c

∣∣∣∣ (aij ), (āij ) satisfy (5.1) and c ∈ C
}

.

We define the (formal) Lie group G corresponding to go2∞:

G = {eX1 · · · eXk |Xi ∈ go2∞ : locally nilpotent} . (5.5)

Of particular importance is a G-orbit space of the vacuum vector

G|0〉 = {g|0〉 |g ∈ G} ⊂ F0,0 .

The following proposition can be verified in the same way as in the case of the BKP hierarchy
(cf. [11, 19]).

PROPOSITION 5.4. A non-zero |L〉 ∈ F0,0 lies in G|0〉 if and only if |L〉 satisfies the
following quadratic relations on F0,0 ⊗ F0,0:

∑
n∈Z

(−1)nφn|L〉 ⊗ φ−n|L〉 = Q|L〉 ⊗Q|L〉
∑
n∈Z

(−1)nφ̄n|L〉 ⊗ φ̄−n|L〉 = Q̄|L〉 ⊗ Q̄|L〉 .
(5.6)

Here Q and Q̄ are linear operators on F defined via σQσ−1 = q and σQ̄σ−1 = q̄ , respec-
tively.

REMARK 5.5. The above operators Q and Q̄ satisfy the following basic properties:

Q|0〉 = φ0|0〉 Q̄|0〉 = φ̄0|0〉 [Q, Q̄] = 0 ;
[Q,φm] = [Q, φ̄m] = [Q̄, φm] = [Q̄, φ̄m] = 0 for all m ∈ Z .

We are now in a position to state the following theorem.

THEOREM 5.6. Let τ ∈ C[x, y]. Then τ satisfies the bilinear identities (3.4) if and
only if there exists a g|0〉 ∈ G|0〉 such that

τ = σ(g|0〉) = 〈eH(x,y)g〉 · 1 . (5.7)
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PROOF. The bilinear identities (3.4) are equivalent to (5.6) by the correspondence
(4.12). Therefore this theorem is a consequence of Lemma 5.4. �

We have thus shown that a G-orbit space G|0〉 can be identified with a space of poly-
nomial solutions of the BUC hierarchy. In particular, (5.7) gives a general formula for the
polynomial solutions. The solution expressed in this form should be traditionally referred to
as a τ -function in soliton theory. For example, let X = aφ1φ0 + bφ̄3φ̄2 (a, b ∈ C), then
eX = 1+ aφ1φ0 + bφ̄3φ̄2 + abφ1φ0φ̄3φ̄2, and hence the corresponding τ -function is

σ(eX|0〉) = 1+ a

2
Q(1,0)(x)+ b

2
Q(3,2)(y)+ ab

4
Q[(1,0),(3,2)](x, y)

which solves the BUC hierarchy. It should be remarked that the expectation value 〈 · 〉 in (5.7)
becomes in general a differential operator; this is a crucial difference to usual τ -functions for
well-known KP-type hierarchies.

5.4. Relation to τ -function for the BKP hierarchy. Since our setting of the neutral
fermion system (considered in Section 4) includes a single component neutral fermion system,
we can consider the τ -function of the BKP hierarchy in our framework.

To introduce the τ -function for the BKP hierarchy, consider the Lie algebra go∞ defined
in Section 5.1:

go∞ ∼=
{
Y =

∑
i,j∈Z

aij : φiφ−j : +c

∣∣∣∣ (aij ) satisfies (5.1) and c ∈ C
}

(5.8)

and define the corresponding Lie group H = {eY1 · · · eYk | Yi ∈ π0(go∞) : locally nilpotent}.
DEFINITION 5.7. For any h ∈ H , we define the τ -function of the BKP hierarchy as a

special case of our τ -function:

τBKP (x; h)
def= σ(h|0〉) . (5.9)

By noting that [H̄n, h] = 0 and H̄n|0〉 = 0 for n > 0, we can rewrite it as follows:

τBKP (x; h) = 〈eH(x,y)h〉 · 1

= 〈e
∑(

xn− 2
n ∂yn

)
Hn

h〉 · 1 = 〈eHBKP (x)h〉 (5.10)

where HBKP (x)
def= ∑l≥1 x2l−1H2l−1. Since the right hand side does not depend on y, the

τ -function (5.10) gives a solution of the BKP hierarchy.

Before entering the following theorem, let us note that any element g ∈ G can be de-
composed as a product g = h1ν(h2) for some h1, h2 ∈ H , where ν denotes an automorphism
of the algebra A defined by

ν(φm) = φ̄m ν(φ̄m) = φm (m ∈ Z) . (5.11)
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This decomposition of g is unique up to arbitrariness (h1, h2) �→ (ch1, c
−1h2) for c ∈ C×.

Given such a decomposition,

〈g〉 = 〈h1ν(h2)〉 = 〈h1〉〈ν(h2)〉 = 〈h1〉〈h2〉
where the second equality follows by applying the Wick’s theorem (see Example 4.5).

We are now in a position to prove the following theorem.

THEOREM 5.8. τ (x, y) ∈ C[x, y] is a solution of the BUC hierarchy if and only if
there exist solutions τ1(x), τ2(x) ∈ C[x] of the BKP hierarchy such that

τ (x, y) = τ1(x − 2̃∂y)τ2(y − 2̃∂x) · 1 . (5.12)

This theorem can be easily deduced from the following lemma.

LEMMA 5.9. Let g ∈ G and decompose it as g = h1ν(h2) for h1, h2 ∈ H . Then the
corresponding τ -function τ = σ(g|0〉) can be represented as

τ = τBKP (x − 2̃∂y; h1) τBKP (y − 2̃∂x; h2) · 1 . (5.13)

PROOF. The Hamiltonian operator H(x, y) breaks into

H(x, y) = HBKP (x − 2̃∂y)+ ν(HBKP (y − 2̃∂x)) .

Notice that two terms on the right hand side commute with each other. Hence we have

τ (x, y; g) = 〈eHBKP (x−2̃∂y)eν(HBKP (y−2̃∂x))h1 ν(h2)〉 · 1
= 〈eHBKP (x−2̃∂y)h1e

ν(HBKP (y−2̃∂x)) ν(h2)〉 · 1
= 〈eHBKP (x−2̃∂y)h1〉〈eν(HBKP (y−2̃∂x)) ν(h2)〉 · 1
= τBKP (x − 2̃∂y; h1) τBKP (y − 2̃∂x; h2) · 1

as required. �

REMARK 5.10. Arbitrariness of the decomposition of g ∈ G induces the ar-
bitrariness of the BKP τ -functions in (5.13) such as (τBKP (x; h1), τBKP (x; h2)) →
(c τBKP (x; h1), c

−1τBKP (x; h2)) for c ∈ C×. Therefore we have a one-to-one correspon-
dence:

{τ (x, y; g) | g ∈ G} 1:1←→ {(τBKP (x; h1), τBKP (x; h2)) | h1, h2 ∈ H } /C× .

6. Concluding remarks

We have defined the generalized Q-functions and introduced the system of differential
equations, called the BUC hierarchy. There are some interesting problems concerning to the
present work.

Firstly, for most of the integrable hierarchies of soliton equations, the equations are ex-
pressed as a system of compatible evolution equations of Lax type. For the BUC hierarchy (as
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well as the UC hierarchy), the author does not know how to express the hierarchy as a system
of Lax type evolution equations.

Secondly it is known that the BKP hierarchy is a reduction of the KP hierarchy [2] (see
also [7, 19]). This is simply viewed from that the solutions of the BKP hierarchy are Pfaffians,
and their squares are determinants which give determinant solutions of the KP hierarchy.
Since the solutions of the BUC hierarchy are Pfaffians as well, we might expect that the BUC
hierarchy is understood as a reduction of the UC hierarchy.

Finally as mentioned in Introduction, the Schur Q-functions arise from the theory of the
projective representations of the symmetric groups. It might be an intriguing issue on whether
the generalized Q-functions have such a representation–theoretical meaning. We hope to
discuss these subjects elsewhere.
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A. Verification of Theorem 3.9. We first prove an elementary lemma below, which
we have used in the text in several times.

LEMMA A.1. The following “operator identity” holds:

e−2ξ(̃∂x,z−1)eξ(x,w) = 1−w/z

1+w/z
eξ(x,w)e−2ξ(̃∂x,z−1) where |z| > |w| . (A.1)

PROOF. We use the well-known formula [8] eAeBe−A = e[A,B]eB that holds for arbi-
trary operators A and B such that [A,B](= AB − BA) is a scalar. By direct calculation,

[−2ξ(̃∂x, z−1), ξ(x, w)] = −2
∑

l∈Nodd

1

l

(
w

z

)l

= −
∑
l≥1

1

l

(
w

z

)l

+
∑
l≥1

1

l

(
− w

z

)l

= log

(
1−w/z

1+w/z

)

which leads to the lemma. �

Let : : denote a normal product notation for differential operators defined by

: xn
∂

∂xn

: = : ∂

∂xn

xn : = xn
∂

∂xn

.

Namely, : : is the operation that rearranges the order of operators inside the colons such that
all the differentials are right to multiplications. By Lemma A.1, one easily prove the following
lemma.
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LEMMA A.2. The following formulae hold:
Γ ±(ai, bi)Γ

±(aj , bj ) = Aij : Γ ±(ai, bi)Γ
±(aj , bj ) :

Γ −(a−1
i , b−1

i )Γ +(aj , bj ) = Aij : Γ −(a−1
i , b−1

i )Γ +(aj , bj ) :
(A.2)

where

Aij = (ai − aj )(ai − bj )(bi − aj )(bi − bj )

(ai + aj )(ai + bj )(bi + aj )(bi + bj )
.

In particular, Γ ±(ai, bi)
2 = 0, so that exp cΓ ±(ai, bi) = 1+ cΓ ±(ai, bi) for c ∈ C×.

We further prepare two lemmas below.

LEMMA A.3. If τ is a solution of the BUC hierarchy, then Γ ±(a, b)τ (a, b ∈ C×) are
also solutions.

PROOF. Notice that ΩB =
∑

n∈Z(−1)nXn ⊗ X−n and Ω̄B =
∑

n∈Z(−1)nX̄n ⊗ X̄−n

commute with X(z) and X̄(z) (cf. the proof of Lemma 3.6). Therefore this lemma follows
from (3.10). �

LEMMA A.4. It holds that

[ΩB, 1⊗ Γ ±(a, b)+ Γ ±(a, b)⊗ 1] = [Ω̄B, 1⊗ Γ ±(a, b)+ Γ ±(a, b)⊗ 1] = 0 (A.3)

where ΩB =
∮

X(z)⊗X(−z) dz
2πiz

and Ω̄B =
∮

X̄(z)⊗ X̄(−z) dz
2πiz

.

PROOF. We have the equality (cf. the formula displayed in the proof of Lemma 3.2)

[X(a)X(b),X(z)] = 2X(a)δ(−b/a)− 2X(b)δ(−a/z)

and similarly for X̄, from which the lemma follows by direct calculation. �

Suppose τ being a solution of the bilinear identities (3.4). We put τ̃
def= (1+cΓ ±(a, b))τ .

Then by using (3.4), Lemma A.3 and A.4,

ΩB (̃τ ⊗ τ̃ ) = ΩB(τ ⊗ τ )+ cΩB(τ ⊗ Γ ±(a, b)τ + Γ ±(a, b)τ ⊗ τ )

+ c2ΩB
(
Γ ±(a, b)τ ⊗ Γ ±(a, b)τ

)
= τ ⊗ τ + c

(
τ ⊗ Γ ±(a, b)τ + Γ ±(a, b)τ ⊗ τ

)+ c2Γ ±(a, b)τ ⊗ Γ ±(a, b)τ

= τ̃ ⊗ τ̃

and similarly for Ω̄B. Hence τ̃ solves (3.4). Noticing that τ ≡ 1 solves (3.4), we see that the
(M,N)-soliton solution defined in (3.11) is indeed a solution of the bilinear identities. The
theorem is proved.

B. Verification of Proposition 3.11. In order to see the equivalence between (3.11)
and (3.15), we recall the following lemma (“Fredholm Pfaffian”), due to E. M. Rains.
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LEMMA B.1 ([15]). Let X = (Xi,j )1≤i,j≤p be a skew-symmetric matrix of size 2p ×
2p, where every Xi,j is a 2× 2-block. Let J be the 2p× 2p-matrix defined as in Proposition
3.11. Then

Pf [J +X] =
∑

0≤r≤p
1≤i1<i2<···<ir≤p

Pf
[
X∗〈i1,i2,...,ir 〉

]
(B.1)

where X∗〈i1,i2,...,ir 〉 denotes the skew-symmetric submatrix (Xi,j )i,j=i1,i2,...,ir of X.

Applying Lemma B.1 to the case where X = S yields the expansion

Pf [J + S] =
∑

K⊂I−∪I+
Pf
[
S∗〈K〉
]

where K runs over all the subsets of I−∪I+, and S∗〈K〉 denotes the skew-symmetric submatrix

of S corresponding to K . By noting the formula
∏

i<j

zi−zj

zi+zj
= Pf
[ zi−zj

zi+zj

]
i,j

, we can directly

verify

Pf[S∗〈K〉] =
∏
i∈K

ai − bi

ai + bi

∏
i<j

i,j∈K

(ai − aj )(ai − bj )(bi − aj )(bi − bj )

(ai + aj )(ai + bj )(bi + aj )(ai + bj )

∏
i∈K

eξ̂i(a)+ξ̂i (b)

for every subset K of I− ∪ I+. Plugging this expression into the above expansion and noting
the relation (3.14), we obtain the proposition.
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