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Introduction.

The first example of an elliptic curve having good reduction everywhere over a quadratic
field is given by Tate (see [16]). His example

$y^{2}+xy+(\frac{5+\sqrt{29}}{2})^{2}y=x^{3}$

has good reduction at every finite place of the ring of integers of $Q(\sqrt{29})$ . Other examples of
such elliptic curves are found by several authors (see for example [17] and [5]).

The aim of this paper is to give a systematic method to compute all such elliptic curves
defined over quadratic number field for a given modular invariant. In other words, we give
an algorithm for finding all twists having good reduction everywhere. For the case of rational
j-invariants, Setzer ([17, Lemma]) gives some conditions which these twists must satisfy. But
his characterization is not easy to use for a practical computation. In this paper, using twists
of elliptic curves explicitly, we shall clarify his argument and give a general method that is
relevant to explicit computation. Our method mainly involves a computation of quartic fields
with given discriminant.

As an application, we compute elliptic curves having good reduction everywhere over
certain real quadratic fields that have rational or singular j-invariants.

Throughout this paper, we use the following notation.
For an algebraic number field $K$ , let $K^{*}$ be the multiplicative group of $K$ and $\mathcal{O}_{K}$ the

ring of algebraic integers of $K$ . Suppose that $L/K$ is a field extension of finite degree. We
denote by $d_{L/K}$ the discriminant of the extension. If the base field $K$ is equal to the field $Q$ of
rational numbers, we use $d_{L}$ instead of $d_{L/Q}$ for simplicity. The symbol $N_{L/K}$ stands for the
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norm map. Moreover, if the extension $L/K$ is a Galois extension, let $Ga1(L/K)$ be its Galois
group.

For an elliptic curve $E$ defined over $K$ , let $j(E)$ be the modular invariant of $E$ and
$Cond_{L}(E_{L})$ the conductor over $L$ where $E_{L}$ is the base change $E\times KL$ .

We also use the following term for the sake of brevity. An elliptic curve $E$ defined over
$K$ is said to have good reduction (over $K$ ) if it has good reduction at every Pnite prime of $\mathcal{O}_{K}$ .
When we refer to the reduction at a specific prime, we always say that the curve has good
reduction $at$ the prime.

This paper consists of four sections. In the first section, we recall the theory of twist
in brief. Our algorithm for finding appropriate twists will be given in the second section. In
the third section, we count the number of the twists. In the fourth section, we compute some
examples of elliptic curves having good reduction over certain real quadratic fields.

1. Preliminaries.

Let $E$ be an elliptic curve defined over a number field $K$ whose j-invariant is neither $0$

nor 1728. We take a short Weierstrass equation for $E$ :
$y^{2}=x^{3}+a_{4}x+a_{6}$ .

Then the quadratic twist $E^{u}$ corresponding to an element $u\in K^{*}/K^{*2}$ is an elliptic curve
defined over $K$ given by the Weierstrass equation

$y^{2}=x^{3}+u^{2}a_{4}x+u^{3}a_{6}$ . (1.1)

The curves $E$ and $E^{u}$ are isomorphic over the quadratic extension $K(\sqrt{u})$ of $K$ , hence, in
particular, we have $j(E)=j(E^{u})$ .

We also need a notion of quartic twists. Let $M/K$ be a quartic extension with a quadratic
intermediate field $L$ . We write $M=L(\sqrt{u})$ with $u\in L^{*}/L^{*2}$ . For an elliptic curve $E$ defined
over $K$ , we call the elliptic curve $(E_{L})^{u}$ defined over $L$ the quartic twist corresponding to $u$ .
We denote it also by $E^{u}$ , if no confusion will be made. Note that, in this notation, a model of
the quartic twist is also given by (1.1).

The following proposition describes the variation of the conductor of an elliptic curve by
a quadratic twist.

PROPOSITION 1.1. Let $L=K(\sqrt{u})$ be a quadratic extension ofa numberfield $K$ and
$E$ an elliptic curve defined over K. Then we have

$N_{L/K}(Cond_{L}(E_{L}))\cdot(d_{L/K})^{2}=Cond_{K}(E)$ . Cond$K(E^{u})$ . (1.2)

PROOF. This proposition follows immediately from [15, Proposition 1] and [12, Theo-
rem]. See also [21, Proposition 5.2]. $\square $
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2. Finding twists.

Let $k=Q(\sqrt{m})$ be a quadratic number field where $m$ is a square-free integer. Suppose
that an integer $j\in \mathcal{O}_{k}$ is given. In this section, we describe an algorithm to find all the elliptic
curves defined over $k$ having good reduction whose j-invariant is this given $j$ .

We do not really need to known whether there is such an elliptic curve in advance, be-
cause our algorithm also answers the question of the existence.

We remark also that our assumption on the integrality of $j$ is justified by the fact that an
elliptic curve has potential good reduction if and only if its j-invariant is integral $([19,VII.5.5])$ .

In the rest of this paper, we do not treat the cases where $j=0$ and 1728, since Setzer
showed that any elliptic curve having these j-invariants must have bad reduction at some
prime over any quadratic field ([17, Theorem 2 $(a)]$ ). In fact, it is known that these j-values
behave even worse (see [8]).

If an elliptic curve has good reduction, then the ideal generated by the discriminant of
the curve is a 12-th power. Thus it easily follows that the conditions

$v(j)\equiv 0$ (mod3) and $v(j-1728)\equiv 0$ (mod2) (2.1)

are necessary for every discrete valuation $v$ of $\mathcal{O}_{k}$ .
We separate the description of our algorithm into two cases depending on the degree of

the given integer $j$ .

2.1. The case where $j$ is rational. Since $k$ is a quadratic field, we can write $j=A^{3}$

with some $A\in Z$ by (2.1).

ALGORITHM 1.
Input: $A\in Z,$ $(A\neq 0,12)$ .
Output: All elliptic curves having good reduction with $j=A^{3}$ .

Step 1: Let $E_{A}$ be an elliptic curve defined by

$y^{2}=x^{3}-3A(A^{3}-1728)x-2(A^{3}-1728)^{2}$ (2.2)

The j-invariant of $E_{A}$ is $A^{3}$ and the discriminant is $2^{12}\cdot 3^{6}\cdot(A^{3}-1728)^{3}$ .

This is the same notation as one used in Setzer’s paper [17].

Step 2: The curve $E_{A}$ itself cannot have good reduction over $Q$ by a well-known the-
orem of Tate. Furthermore, since we want to find elliptic curves defined over $k$ which
are isomorphic to $E_{A}$ over an algebraic closure of $k$ (in fact, over a quadratic extension
of $k$), we have to find appropriate quartic twists $E_{A}^{u}$ of the curve $E_{A}$ or equivalently
the quartic fields $K=k(\sqrt{u})$ .

The following proposition enables us to find the candidates for $K$ .

PROPOSITION 2.1. Let $k=Q(\sqrt{m}),$ $K=k(\sqrt{u})$ and $E_{4}$ be as above. If the quartic
twist $E_{A}^{u}$ corresponding to $K$ has good reduction over $k$ , then we have

$(N_{k/Q}(d_{K/k})\cdot d_{k})^{2}=Cond_{Q}(E_{A})Cond_{Q}(E_{A}^{m})$ . (2.3)
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PROOF. Here we simply write $E$ for $E_{A}$ . First we write down the identity (1.2) in
Proposition 1.1 for the quadratic extensions $k/Q$ and $K/k$ . They are

$N_{k/Q}(Cond_{k}(E_{k}))\cdot(d_{k/Q})^{2}=Cond_{Q}(E)\cdot Cond_{Q}(E^{m})$ (2.4)

and
$N_{K/k}$ (Cond$K(E_{K})$ ) $\cdot(d_{K/k})^{2}=Cond_{k}(E_{k})\cdot Cond_{k}(E_{k}^{u})$ . (2.5)

If $E_{k}^{u}$ has good reduction, then we have $Cond_{k}(E_{k}^{u})=\mathcal{O}_{k}$ . Since $E_{k}$ is isomorphic to $E_{K}^{u}$ , it
follows from [19, VII.5.4] that $N_{K/k}(Cond_{K}(E_{K}))=\mathcal{O}_{k}$ . Now the equality (2.5) becomes

$(d_{K/k})^{2}=Cond_{k}(E_{k})$ .
Substituting this into (2.4), we obtin (2.3). $\square $

The conductor of an elliptic curve can be computed by Tate’s algorithm ([20, IV.9]).

Therefore by the above proposition, we can calculate $N_{k/Q}(d_{K/k})$ . We thus have the absolute
discriminant $d_{K}$ of $K$ modulo the sign from the relation $|d_{K}|=|N_{k/Q}(d_{K/k})\cdot d_{k}^{2}|$ .

Step 3: The problem of finding appropriate quartic twists is now reduced to the prob-
lem of finding quartic fields with given discriminant. We can carry out this procedure
by the following proposition.

PROPOSITION 2.2 (Buchmann, Ford, Pohst). Let $K$ be a quartic field over $Q$ with a
quadratic intermediate field $k$ . Denote by $\omega=\frac{\sigma+\sqrt{d_{k}}}{2}$ an integral base of $k$ where we take
$\sigma\in\{0,1\}$ so that $\sigma\equiv d_{k}(mod 4)$. Then we can take a generator of $K$ whose minimal
polynomial

$x^{2}-\alpha x+\beta\in \mathcal{O}_{k}[x]$ , $(\alpha=a_{1}+a_{2}\omega, \beta=b_{1}+b_{2}\omega)$

overe $k$ satisfies the following inequalities:

$a_{1}\in\{0,1\}$ , $a_{2}\in\{0,1,2,3\}$ ,

$\frac{A_{2}-\sqrt{2}M}{4}\leq b_{2}\leq\frac{A_{2}+M}{4}$

$\frac{1}{16}(A_{1}-8b_{2}\sigma-\sqrt{2}N)\leq b_{1}\leq\frac{1}{16}(A_{1}-8b_{2}\sigma+\sqrt{2}N)$ ,

where $A_{1},$ $A_{2},$ $M$ and $N$ are defined asfollows:
$A_{1}=4a_{1}^{2}+4a_{1}a_{2}\sigma+a_{2}^{2}(d_{k}+\sigma)$ , $A_{2}=a_{2}(2a_{1}+a_{2}\sigma)$ ,

$ M=\lfloor 2\sqrt{\frac{|d_{K}|}{3|d_{k}|^{2}}}\rfloor$ $ N=\lfloor 4\sqrt{\frac{|d_{K}|}{3|d_{k}|}}\rfloor$ .

PROOF. This proposition is a consequence of [1, Proposition 2.25], [10, Proposition
4.1] and [2, Proposition 3]. $\square $

Of course, two different polynomials may generate isomorphic fields. We can find such
field isomorphisms by an algorithm described in Cohen’s textbook ([3, Section 4.5.4]). In this
way, the redundant polynomials are eliminated.
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Step 4: Again by Tate’s algorithm, we compute the conductor of $E_{A}^{u}$ over $k$ for each
$K=k(\sqrt{u})$ obtained in the preceding step and check if the conductor $Cond_{k}(E_{A}^{u})$ is
trivial or not to determine which curves have good reduction.

2.2. The case where $j$ is quadratic.
follows.

ALGORITHM 2.

If $j$ is a quadratic integer, our algorithm is as

Input: A quadratic integer $j$ .
Output: All elliptic curves having good reduction with given j-invariant.

Step 1: Let $E(j)$ be a plane curve defined by

$y^{2}=x^{3}-3j(j-1728)x-2j(j-1728)^{2}$ (2.6)

This curve is an elliptic curve if $j\neq 0$ , 1728. Then the modular invariant of $E(j)$ is $j$

and its discriminant is $2^{12}\cdot 3^{6}\cdot j^{2}(j-1728)^{3}$ .

Step 2: We have to find quadratic twists of $E(j)$ . By the same argument as in the
proof of Proposition 2.1, we can derive the next proposition.

PROPOSITION 2.3. Let $K=k(\sqrt{u})$ be a quadratic extension over $k=Q(\sqrt{m})$ . If the
quadratic twist $E(j)^{u}$ corresponding to $K$ has good reduction over $k$ , then we have

$(d_{K/k})^{2}=Condk(E(j))$ . (2.7)

Again, by this proposition, we can compute the absolute discriminant $d_{K}$ of $K$ modulo
the sign.

Steps 3 and 4: These steps are the same as the corresponding steps in the previous
case.

REMARK 2.4. We may start with any model having the given j-invariant in Step 1 in
the above algorithms. But starting with a model with smaller discriminant usually reduces the
amount of computation.

We now illustrate our method by the following example.

EXAMPLE 2.5. Let $j=A^{3}=4^{3}$ and $k=Q(\sqrt{442})$ . We use Algorithm 1.

Step 1: The elliptic curve $E_{4}$ is

$E_{4}$ : $y^{2}=x^{3}+19968x-5537792$ .

Step 2: We have
$d_{k}=1768=2^{3}\cdot 13\cdot 17$ ,

$Cond_{Q}(E_{4})=2^{8}\cdot 3^{2}\cdot 13^{2}$ $Cond_{Q}(E_{4}^{442})=2^{8}\cdot 3^{2}\cdot 13^{2}\cdot 17^{2}$

Here and hereafter, we mainly used TECC ([14]) to compute conductors. Now it
readily follows from (2.3) that $N_{k/Q}(d_{K/k})=\pm 2^{5}\cdot 3^{2}\cdot 13$ , where $K$ is a quartic field
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we want to find. It yields
$d_{K}=\pm 2^{11}\cdot 3^{2}\cdot 13^{3}\cdot 17^{2}$ (2.8)

Step 3: In the present case, the constants in Proposition 2.2 are

$M=70$ , $N=5941$ .

As a result, we find 40 polynomials which generate number fields with the given dis-
criminant (2.8) and they are divided into 8 isomorphism classes. A set of representa-
tives is

$x^{4}+156x^{2}+2106$ , $x^{4}+312x^{2}+8424$ , $x^{4}+312x^{2}-11466$ ,

$x^{4}+312x^{2}-170586$ , $x^{4}+624x^{2}-2106$ , $x^{4}-156x^{2}+2106$ ,

$x^{4}-312x^{2}+8424$ , $x^{4}-312x^{2}-11466$ .

Step 4: Computing the conductors of the corresponding quartic twists, we find that
the following two polynomials give the twisted curves having good reduction:

$x^{4}-156x^{2}+2106$ , $\pm\sqrt{78\pm 3\sqrt{442}}$ ,

$x^{4}-312x^{2}+8424$ , $\pm\sqrt{156\pm 6\sqrt{442}}$ ,

where the numbers on the right are the roots of the polynomials on the left. The Galois
group of each polynomial is isomorphic to the dihedral group $D_{4}$ of order 8, hence,

in particular, the extension $K/Q$ is not Galois. As a consequence, two isomorphism
classes result from each polynomial:

$C_{1}=E_{4}^{(78+3\sqrt{442})}$ $C_{2}=C_{1}^{\sigma}=E_{4}^{(78-3\sqrt{442})}$

$C_{3}=E_{4}^{(156+6\sqrt{442})}$ $C_{4}=C_{3}^{\sigma}=E_{4}^{(156-6\sqrt{442})}$

Here $\sigma$ is the generator of $Ga1(k/Q)$ .
The explicit equations can be calculated by the formula (1.1):

$C_{1}$ : $y^{2}=x^{3}+(200918016+9345024\sqrt{442})x-7782835027968$
$-369315348480\sqrt{442}$ ,

$C_{2}$ : $y^{2}=x^{3}+(200918016-9345024\sqrt{442})x-7782835027968$
$+369315348480\sqrt{442}$ ,

$C_{3}$ : $y^{2}=x^{3}+(803672064+37380096\sqrt{442})x-62262680223744$
$-2954522787840\sqrt{442}$ ,

$C_{4}$ : $y^{2}=x^{3}+(803672064-3738\alpha)96\sqrt{442})x-62262680223744$

$+2954522787840\sqrt{442}$ .

Consequently, these four curves are all the elliptic curves having good reduction over $Q(\sqrt{442})$

with j-invariant $4^{3}$ .
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REMARK 2.6 In general, we need a lot of time to find the candidates for the quartic
fields in the third step, since the constants $M$ and $N$ are sometimes large.

For this reason, we propose the following alternative. Let us write $K=k(\sqrt{u})$ with
$u\in k^{*}$ . Assume that the class number of $k$ is 1. Then we can impose some restrictions on
$umod (k^{*})^{2}$ by the ramification theory of Kummer extension. Namely, the possible prime
divisors of $u$ are the ramifying primes (we know all of them from $d_{K}$ ) and the primes above 2.
Checking the discriminants of the fields generated by these possible $u’ s$ , we obtain candidates
of polynomials in the third step.

This method sometimes works even if the class number is greater than one and it is
empirically faster than the preceding method. It is thus worth trying this method Prst.

Professor Lemmermeyer kindly pointed out to the author that recent results on computing
ray class fields (see [4]) may be used for our purpose.

3. Counting the number of curves having good reduction.

Once we find an elliptic curve having good reduction for a given j-invariant, it is natural
to ask how many isomorphism classes over $k$ there are. The answer to the question is provided
by the following more or less known proposition.

In what follows, by an unramified extension of an algebraic number field, we mean
an unramified extension in the narrow sense, namely an extension unramified outside the
archimedean primes.

PROPOSITION 3.1. Let $K$ be an algebraic numberfield and $E$ an elliptic curve defined
over $K$ having good reduction. Then every quadratic twist of $E$ having good reduction is a
twist of $E$ by an unramified quadratic extension over $K$ , and vice versa.

We include a proof of this proposition for completeness.

PROOF. Let $E^{u}$ be a quadratic twist of $E$ having good reduction. Set $L=K(\sqrt{u})$ .
Using [19, VII.5.4] again, we have

$N_{L/K}(Cond_{L}(E_{L}))=\mathcal{O}_{K}$ .

It immediately follows from Proposition 1.1 that $d_{L/K}=\mathcal{O}_{K}$ . This shows that $L/K$ is an
unramified extension.

Conversely, assume $L=K(\sqrt{u})$ is an unramified quadratic extension of $K$ . We shall
show that the conductor of an elliptic curve remains unchanged under the unramified quadratic
twist by $u$ . Let $\mathcal{D}(E/K)$ (resp. $\mathcal{D}(E^{u}/K)$ ) be the minimal discriminant (for the definition,
see [19, p. 224]) of $E/K$ (resp. $E^{u}/K$ ). By Ogg’s formula ([20, IV. II]), we have, for each
discrete valuation $v$ of $K$ ,

$v(Cond_{K}(E))=v(\mathcal{D}(E/K))+1-m_{v}$ ,

$v(Cond_{K}(E^{u}))=v(\mathcal{D}(E^{u}/K))+1-m_{v}^{u}$ ,
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where $m_{\nu}$ (resp. $m_{v}^{u}$ ) is the number of irreducible components counted without multiplicity
on the special fiber of the minimal proper regular model of $E$ (resp. $E^{u}$ ) at $v$ . Subtracting the

first equality from the second one, we obtain

$v(Cond_{K}(E^{u}))-v(Cond_{K}(E))=v(\mathcal{D}(E^{u}/K))-v(\mathcal{D}(E/K))-m_{v}^{u}+m_{v}$ . (3.1)

Now we need a result due to Silverman.

PROPOSITION 3.2 (Silverman [18, Theorem 3]). Let $E$ be an elliptic curve defined
over $K$ and $L=K(\sqrt{u})$ a quadratic extension of K. Assume that $L/K$ is unramified at all

primes of $K$ lying above 2 and at all primesfor which $E$ has bad reduction. Then

$\mathcal{D}(E^{u}/K)=\mathcal{D}(E/K)(d_{L/K})^{6}$ (3.2)

REMARK 3.3. Silverman proved the above theorem using somewhat finer invariants
than the usual minimal discriminants and the usual field discriminants. A generalization of

the formula (3.2) is obtained by Comalada [6].

We retum to the proof of Proposition 3.1. Since $E$ has good reduction and $L/K$ is
unramified, the assumptions in the preceding proposition are satisfied. Taking the valuations
of (3.2) and substituting it into (3.1), we get

$v(Cond_{K}(E^{u}))-v(CondK(E))=6v(dL/K)-m_{v}^{u}+m_{v}$ .

On the other hand, it follows from our assumption that

$v(d_{L/K})=0$ , $v(Cond_{K}(E))=0$ , $m_{v}=1$ .

Therefore it yields $v(Cond_{K}(E^{u}))=1-m_{v}^{u}$ . Since $v(Cond_{K}(E^{u}))\geq 0$ and $m_{v}^{u}\geq 1$ , we
have $v(Cond_{K}(E^{u}))=0$ . This completes the proof of Proposition 3.1. $\square $

Applying Proposition 3.1 to the case where $K$ is a quadratic field, we have the following
corollary.

COROLLARY 3.4. Let $E$ be an elliptic curve defined over a quadraticfield $k$ having

good reduction. Let $s$ denote the number of the ramifying primes in the extension $k/Q$. Then

the number of the twists of $E$ having good reduction is $2^{s-1}$ .
PROOF. By the genus theory (see [11]), there are exactly $2^{s-1}-1$ unramified quadratic

extensions over $k$ . Therefore, the number of the twists is $2^{s-1}$ in total. $\square $

For the case of elliptic curves having rational j-invariants, the above corollary is already

proved by Setzer ([17, Theorem 2]) by a different method.

EXAMPLE 3.5. Proposition 3.1 gives an altemative method to compute the twists.
Namely, if we find one twist having good reduction, then others can be found by unrami-
fied quadratic twists according to Proposition 3.1. In Example 2.5, suppose that we found $C_{1}$ .
There are $2^{3-1}-1=3$ unramified quadratic extensions of $k=Q(\sqrt{422})$ . Specifically, they
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are
$Q(\sqrt{26}, \sqrt{17})=Q(\sqrt{43+2\sqrt{442}})$ ,

$Q(\sqrt{34}, \sqrt{13})=Q(\sqrt{47+2\sqrt{442}})$ ,

$Q(\sqrt{2}, \sqrt{221})=Q(\sqrt{223+2\sqrt{442}})$ .
The other three curves $C_{2},$ $C_{3},$ $C_{4}$ arise as twists corresponding to these biquadratic fields.
Indeed, we can verify the following isomorphisms:

$C_{1}^{(43+2\sqrt{442})}\simeq C_{2}$ , $C_{1}^{(47+2\sqrt{442})}\simeq C_{4}$ , $C_{1}^{(223+2\sqrt{442})}\simeq C_{3}$ .

4. Computing elliptic curve$s$ having good reduction.

In this section, we apply our method developed in Section 2 to the computation of elliptic
curves having good reduction over real quadratic fields.

For that purpose, we first find possible pairs of a real quadratic field $k$ and an integer $j$

for which there is an elliptic curve defined over $k$ having good reduction whose j-invariant is
$j$ .

4.1. Rational j-invariants. Comalada and Nart [7] study the properties of j-invariants
of elliptic curves having good reduction. We use their result to find the candidates of rational
integers that appear as the j-invariants of elliptic curves having good reduction over $Q(\sqrt{m})$

$(1<m<100)$ (see [13] for the detail).

In fact, as our computation below will show, all these values in Table 1 do appear. In
this table, $j=-15^{3},20^{3},255^{3}$ are singular j-invariants. The values 255 and-153 always
appear in pairs, because there is a 2-isogeny between curves having these j-invariants and the
good reduction property is invariant under an isogeny ([19, VII.7.2.]).

4.2. Singular j-invariants. Next we shall find all singular j-invariants that appear
as the j-invariants of elliptic curves with good reduction.

For the thirteen imaginary quadratic orders of class number one, we first check if $j$ is
a cube of a rational integer. For example, $j(\sqrt{-3})=5400=2\cdot 30^{3}$ does not appear as a
j-invariant of an elliptic curve having good reduction. Then we apply the results in [7] and
obtain the following table (Table 2).

In the column of “Examples of $m’$ , we list all $m’ s$ less than 100. If there is no $m$ in the
range, we fill in the smallest $m$ satisfying the conditions.
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Next we consider the orders of class number two. There are twenty-nine such orders.

Let $E$ be an elliptic curve defined over $k=Q(\sqrt{m})$ with complex multiplication by an imag-

inary quadratic order of $discriminant-d$ . We first check the necessary conditions (2.1). The

following pairs satisfy the conditions.

$(-d, m)=(-20,5),$ $(-32,2),$ $(-52,13),$ $(-72,6),$ $(-99,33),$ $(-112,7)$ .

We apply the following lemma to these pairs.

LEMMA 4.1. Let $E$ be an elliptic curve defined over a real quadratic field $k$ with

complex multiplication. Assume that $E$ has good reduction and that $k=Q(j(E))$ . Let $K$ be

the quotientfield of the endomorphism ring of E. If the ray class number modulo 2 of $Kk$ is

prime to 3, then $E$ has a k-rational point oforder 2.

PROOF. Let $E_{2}$ be the kernel of the multiplication-by-2 map on $E$ in an algebraic clo-

sure of $k$ . Note that the absolute Galois group of $k$ acts on $E_{2}$ through a finite quotient
isomorphic to a subgroup of $S_{3}$ . By the theory of complex multiplication, $Kk(E2)/Kk$ is

an abelian extension (see [20, II.5.7]). Since $E$ has good reduction, this extension is unram-
ified outside the prime ideals dividing 2. By the assumption on the ray class number, we
have $[Kk(E_{2}) : Kk]\leq 2$ . It yields $[k(E_{2}) : Kk\cap k(E_{2})]\leq 2$ . On the other hand, we
know $[Kk\cap k(E_{2}) : k]\leq[Kk : k]=2$ . Since $[k(E_{2}) : k]$ is a divisor of 6, it follows
$[k(E_{2}) : k]\leq 2$ . This implies that there exists a k-rational point of order 2 on E.

The ray class numbers modulo 2 of $Kk=Q(\sqrt{m}, \sqrt{-d})$ for the pair $(-d, m)$ are 2, 1,

2, 2, 3 and 1, respectively in the above order. Thus, among the six pairs, only $(-d, m)=$

$(-99,33)$ does not satisfy the assumption on the ray class number in Lemma 4.1. For the

remaining 5 pairs, any corresponding elliptic curve having good reduction must have a k-

rational point of order two. In connection with this, Comalada [5] makes a list of elliptic

curves with good reduction having a k-rational point of order 2 for $Q(\sqrt{m})(1<m<1(X))$ .
Checking his table, we find that the following quadratic singular j-invariants appear as a
modular invariant of an elliptic curve having good reduction:

$m=6$ , $d=-72$ , $j(3\sqrt{-2})=188837384000+77092288000\sqrt{6}$ , (4.1)
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$m=7$ , $d=-112$ , $j(2\sqrt{-7})=137458661985000+51954490735875\sqrt{7}$ (4.2)

and their Galois conjugates.
As we will see below, there exist elliptic curves having good reduction corresponding to

$(-d, m)=(-99,33)$ . Thus we write down the j-value here.

$m=33$ , $d=-99$ , $j(3\cdot\frac{1+\sqrt{-11}}{2})=-18808030478336-3274057859072\sqrt{33}$

(4.3)

4.3. Computing the twists. We now compute elliptic curves having good reduction
with the j-invariants we found in the above.

Our computation results are collected in Table 3 and Table 4. A name is given to each
isomorphism class of elliptic curve having good reduction.

In Table 3, the quartic twist $u$ of $E_{A}$ (see (2.2)) is given by the standard basis of the

quadratic field, i.e.,

$[a, b]=a+b(\frac{\sigma+\sqrt{d_{k}}}{2})$ (4.4)

where $\sigma\in\{0,1\},$ $\sigma\equiv d_{k}$ (mod4).

A curve name with over-line means the Galois conjugate. For example, the curve $6\overline{B}$ is
the Galois conjugate curve of $6B$ .

The quartic twist of $E_{A}$ by $u$ is given by

$E_{A}^{u}$ : $y^{2}=x^{3}-3A(A^{3}-1728)u^{2}x-2(A^{3}-1728)^{2}u^{3}$

The cyclic isogenies are noted in the manner of Cremona’s book [9]. For example, the
entry 2: $\overline{A},$ $3:B$ ’ for the curve $6A$ indicates that $6A$ is 2-isogenous to $6\overline{A}$ and 3-isogenous
to $6B$ . We do not claim that they are all isogenies they have. It is still difficult to find all
isogenous curves of an elliptic curve defined over a number field larger than $Q$ in general. If
all the curves having good reduction are determined, however, then we are often able to find

all the isogenies among them. In the following tables, this is the case when $m=6,7,14,37$ .
For $m\leq 100$ , all the elliptic curves having good reduction with rational j-invariant are

listed. Note that $m=33$ is lacked in Setzer’s computation in [17].
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TABLE 3. Rational j-invariants.
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In Table 4, we calculate the quadratic twists with respect to the curve $E(j)$ (see (2.6)) for
$j’ s$ given by (4.1), (4.2) and (4.3). The twists are given by the standard basis (4.4) as before.
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