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Abstract. In this paper we shall give a proof of the Paley-Wiener theorem for hyperfunctions supported by a
convex compact set by the heat kernel method.

1. Introduction

In 1987, T. Matsuzawa gave a new proof of the Paley-Wiener theorem for hyperfunctions
supported by a ball by the heat kernel method [4]. S. Lee and S.-Y. Chung gave a proof of the
Paley-Wiener-Schwartz theorem for distributions supported by a convex compact set by the
heat kernel method [3]. M. Suwa and K. Yoshino treated the case of tempered distributions
supported by a proper convex cone [6].

In this paper we shall treat the Paley-Wiener theorem for hyperfunctions supported by a
convex compact set by the heat kernel method (Theorem 4.2).

2. Preliminaries

DEFINITION 2.1. We define some notations:
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9% 9 9?
D= — i A=) —.
8xf” dxp ; asz.

E(x,t) = (4nt) " Zexp(—x2/4t), (>0, xeR").

For¢ € C" ¢ = (¢1, -+, &n)s weput [¢] = VIS 2 + - + [2al2.

DEFINITION 2.2 ([1]). If K € C" is a compact set, then A'(K), the space of analytic
functionals carried by K, is the space of linear forms u on the space A of entire functions in
C" such that for every neighborhood w of K

lu(p)] < Cysuple|, ¢ A.
w

DEFINITION 2.3. Let K C R” be a compact set. Then we call the element of A’(K)
hyperfunctions supported by K.

DEFINITION 2.4. D(R") is the space of C*° functions with compact support. S(R") is
the space of rapidly decreasing C*° functions.

DEFINITION 2.5. Let K be a convex compact set in R”. Then for § > 0 we set K5 =
K + B(0, §) and we define supporting function of K by hk (x) = supgcg (£, x).

Let K C R”. Then the following proposition is known for between A(K) and .A. For
the details of the proof we refer the reader to [1]:

PROPOSITION 2.6 ([1]). Let K C R" be a compact set, and set for & > 0
K ={z € C"; |Rez — x| +2|Imz| < & for somex € K}.

For every ¢ which is analytic in a neighborhood V of K ) one can then find a sequence
@j € Asuch that

supleg; —¢| =0, j— oo.
K

3. A characterization of hyperfunctions by using the heat kernel

In this section, we shall introduce a characterization of hyperfunctions by the heat kernel
method. For the details, we refer the reader to [4], [5].

THEOREM 3.1 ([4], [5]). Let K be a compact set in R", u € A(K) and U(x,t) =
(uy, E(x — y,1). Then U(x,1) € C®R" x (0,00)) and U(-,t) € A for each t > 0.
Furthermore U satisfies the heat equation:

(1) (% - A)U(x, =0 in R"x (0,00).
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For every ¢ > 0 we have
2) |U(x,1)| < Ceet in R" x (0, 00).

We have for any § > 0

3) U(-,t) > 0 uniformly in {x € R";dis(x,K) > 8} as t — 0.
(@) UG, t) > u in AK) as t — Oy,
ie.
®)) (u, ) = lim Ux,Hxx)ex)dx, ¢eA.
t—=04 JR?

for any x(x) € D such that x (x) = 1 in a neighborhood of K.
Conversely, every U(x,t) € C*°(R" x (0, 00)) satisfying the condition (1), (2) and (3)
can be expressed in the form U (x, t) = (uy, E(x — y, 1)) with unique element u € A'(K).

4. A proof of the Paley-Wiener theorem by the heat kernel method
In this section, we shall give a proof of the Paley-Wiener theorem for hyperfunctions
with a convex compact support by the heat kernel method given in section 3.

DEFINITION 4.1. Letu € A'(K), K is a compact set in R”. Then we denote the
Fourier-Laplace transform i(¢) by

~ 1 —i1gx
ug) = —ux, e
(2m)2

Then the following Paley-Wiener type theorem is known [2]:

THEOREM 4.2. Let K be a convex compact set in R" andu € A'(K). Then u(¢) is an
entire function such that for every ¢ > 0 there exists a constant C; > 0 such that

(6) ii(2)| < CeekMTERl v — ¢ LipeCn.

Conversely, if F(¢) is an entire function satisfying the estimate (6) , then there exists a unique
u € A (K) such that F () = u(Z).

PROOF. By the continuity, we have the necessity. Now we shall prove the sufficiency
by the heat kernel method.

Let§ > 0 and x € R"\K»s. Since x ¢ Ks, there exist ng € R”, [no| = 1, and ¢y € R
such that

(x,m0) > co, (y.mo) <co, VyeKs.
So we have

sup (y, no) < co < hk;(no) < co
yeKs
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< hg(Mo) + hgg5(00) < co
< hk (mo) + 8lnol < co
& hg(no) +8 < co < (x,m0) .
Therefore
(7 hk (mo) — (x,no) < —4.

Now we set U (x, t) by

8) Ux, 1) = /F(g)e*ffze'f)‘dg, t>0.

)3

Then for U (x, t), we have the following conditions [4]:

i A)Ux,t)=0
(2-5)ven=o.

for every ¢ > 0, there exists a constant C; > 0 such that

£
t

|U(x,t)| < Ceer, in R" x (0, 00).

Now we shift the integration in (8) into the complex domain:

U, 1) = —— / F(& +1n)e ™! G gt o g
2m)2 JR™

where ' = %770 Estimating this integral by using (7), we have

|U(x, )| < Cghx<n’>+s|n/\+m/2—n’x/ e1E el g

n

n

2 2 2
— Celx ) +eln 1+ fn’x+%,/ e 1UE1=3)" g

) 2 2
< Celk el L+ fn’x+i—,/ o~ HEPHT g

n

2
_ Cehx(n’)+8ln/\+tn/z—r/’X+§—,/ 4R g
Rn

2

— C(zn)%t—%ehk(nl)+8lﬂ/\+tﬂ/z—7/lx+§—,
= dp ( )_;,_&_;,_ﬁ_i x_;,_é
= C't 7 2e2"KN0) T3 T3 — 27 N0X T
) 62 g8 82 §2
< C’t_%g_f"'g_r""ﬂ"'ez_r.
)
If we pute = 4,then

82,62 52 82
U@, )| < C't e mtwtatsm
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So we have

Ux,t) -0 (t—04),

uniformly in R"\K7s. By Theorem 3.1, there exists u € A’(K) such that
U(x, t) = <uy7 E(x - Y t)) .

Since F(£)e '€ € S,

F(&)e ' = / Ux, e "% dx
27)7 Jre
1

9) = ——(Ux, 1), e5%).

(2m)2

LEMMA 4.3.
(10 lim Ux, ) x(x)e ¥ dx = lim Ux, t)e "¥dx,
t—04 R t—04 R”

where x(x) € D and x(x) = 1 in a neighborhood of K.

PROOF OF LEMMA. Since for ¢ > 0 there exists C, > 0 such that
_dis(,\',l()2

\U(x, 1) < Ceei ™" @

(see [5]), for

(x) = 1, xeKs,
X “ o, x € R"\K»s,

we have

/IU(x,t)(x(x)—l)e’“ldxzf U (x, )(x (x) — De'**|dx
R" R"\K

e 82  dis(x,K)?
< Cgei™ e 8 dx
RH\K(S
, £
< Cger 5.

2
When we put ¢ = ‘13—6, we have

2
lim [ UG 0(x @) — De's¥|dx < C, lim e~ 15 = 0.
[4)0+ R" I‘)O+
The proof is complete.

Now we resume the proof of Theorem 4.2.

39
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By (4), (9) and (10),
F(&)

lim F(é,&)efﬂ‘f2
t*>0+

= lim —(U(x,1), e'5%)
=04 (27)2
1 1Ex
= n (uX7 e ) = M(f;:)
(2m)

1
ug, e '), r=E+ime

2m)2
C". If u(¢) = 0, then (u,, x™) = 0 for Vm € N". By Proposition 2.6, for any ¢(z) € A(K),
there exists ¢;(z) € A such that

Since F(¢) and (¢) are entire functions, we have F () =

sup ¢ —¢j|—> 0, j—0.
ZEK(g)

So we have (u, ¢) = 0 for Vo(z) € A(K). This means that u is unique. O
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